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提出了“威尔磁⼦子” (Weyl Magnon) 的新概念
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FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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的元激发可以拥有⾮非平庸的拓扑能带结构。
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FIG. 4. Surface states of a slab (cut in h110i direction)
by setting D = 0.2J , J

0 = 0.6J and ✓ = ⇡/2. (a) Sur-
face band dispersion in surface Brillouin zone (k1-k2 plane).
States with E = EWeyl form (red) arcs connecting the pro-
jection of Weyl nodes (Pink and Light Blue, only four nodes
independent). States near the two longer(shorter) arcs are
localized in one(another) surface. The chiral semi-classical
velocity of states can be implied by the gradient of the band
dispersion. (b) Dispersion along (k,⇡) (Blue, Dashed line in
(a)): projected bulk spectrum(Blue), chiral edge states(Red),
EWeyl(Green, Dashed).

Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region II, there is no Weyl
band crossing, and this is what really distinguishes region
II from region I.

When we apply an external magnetic field to the sys-
tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian [11]. As we show in Figure 5, Weyl nodes
are shifted gradually and finally annihilated when mag-

FIG. 5. The evolution of Weyl nodes under the mag-

netic field. Applying a magnetic field along the global z

direction, B = B[001], Weyl nodes are shifted but still in
kz = 0 plane. They are annihilated at � when magnetic field
is strong enough. Red and blue indicate the opposite chiral-
ity. (a) to (f): B = 0, 0.1, 0.5, 0.9, 1.0, 1.1. We have set
D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2.

netic field increasing.

Discussion.

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal probe to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Moreover, the Weyl magnon can be
potentially detected optically [16]. As it appears at finite
energies, one necessarily needs to use the pump-probe
approach to measure the optical absorption. In addition
to the spectrascopic property, the presence of the Weyl
magnon spectrum may lead to thermal Hall e↵ect, just
like the Weyl fermion that gives rise to the anomalous
Hall current in the electron systems [17, 18]. Further-
more, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop the AFM long-range
orders at low temperature [8, 9], the precise structures of
the magnetic order in these two systems are not yet clear
at this stage. Therefore, it is certainly of interest to con-
firm the magnetic order and detect possible Weyl magnon
excitations in these systems and other three dimensional
Mott insulators with long range magnetic orders.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional

由于⾃自旋没有Lorentz 耦合，所以 

在外场下，没有所谓的chiral朗道 

能级,可以通过外场来调控威尔点, 
这是威尔磁⼦子的独特的地⽅方！ 

⽽而中⼦子散射可以直接测量这个过程。

⽤用外磁场来量⼦子调控“威尔磁⼦子”

外磁场下威尔点的移动
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We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl
semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl
nodes. In addition, there exists a novel type, dubbed “hybrid Weyl semimetal”, in which one Weyl
node is of type-I while the other is of type-II. For the hybrid Weyl semimetal, we further demonstrate
the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau
level structure and quantum oscillation, and discuss the conditions for possible material realization.

Introduction.—Since the theoretical and experimental
discovery of topological insulator1,2, the study of topolog-
ical states of matter has become one of the major topics
in condensed matter physics. Apart from the triumphs of
systems with full energy gaps, the concept and discovery
of Weyl semimetals (WSMs) have stimulated intensive
activities in understanding the band topology for gap-
less systems3–18. A WSM, in the original setting, has
linear conic band crossings at the Fermi energy5. These
band crossing points, i.e., the “Weyl nodes”, behave like
sources and sinks of the Berry curvature in the momen-
tum space and are topologically protected. Based on
the bulk-boundary correspondence, the surface state of a
WSM takes the form of Fermi arc that connects a pair of
Weyl points with opposite chiralities5.

A novel type of structured Weyl node, dubbed type-
II, was recently discovered in WTe214 and a spin-orbit-
coupled superfluid15. In the original WSM, referred as
type-I, the Fermi surface is composed of discrete Weyl
points with emergent Lorentz invariance. In type-II
WSMs, the conic spectrum is tilted near the nodes,
and the emergent Lorentz invariance is broken. These
Lorentz-invariance-violating type-II Weyl nodes appear
at the contact points of the electron and hole pockets in
type-II WSMs. In all the previous works on type-I or
type-II WSMs, the two Weyl nodes in a pair with oppo-
site chiralities are of the same type14,19. One may wonder
whether it is possible to have a WSM such that one Weyl
node belongs to type-I whereas its chiral partner belongs
to type-II (see Fig. 1). In this paper, we analyze the
band topology of a concrete lattice model and demon-
strate that the proposed WSM phase with mixed types
of Weyl nodes can be realized in the concrete model. We
dub this special type of WSM “hybrid WSM”. Remark-
ably, it is possible to have a single isolated Weyl fermion

in the excitation spectrum of this hybrid WSM rather
than several pairs of Weyl fermions in the conventional
case. We explicitly show that the band structure con-

type-II

node

type-I

node

E

k

FIG. 1. (Color online.) A schematic band structure of a
hybrid WSM with a pair of Weyl nodes. The left (right) node
is a type-II (type-I) Weyl node. Generically, the energies of
these two Weyl nodes cannot be identical when both time
reversal and inversion symmetries are absent.

tains two Weyl nodes, whose types can be tuned sepa-
rately and independently. Therefore, our model provides
a simple platform to manipulate the energy-momentum
positions, the types of Weyl nodes, and the transitions
among di↵erent types of WSMs. We further explore the
unique Landau level structure and quantum oscillation of
the hybrid WSM. Based on our results, we propose that
the hybrid WSM may be found in magnetically ordered
non-centrosymmetric materials.

We start from the classification of the type I and type II
Weyl nodes following Ref. 14 and Ref. 15. Due to the lin-
ear band touching, the original pair of Weyl nodes with
opposite chiralities has an emergent Lorentz invariance
at low energies, and the gapless elementary excitation
near the nodes are often called “Weyl fermions”. The
Lorentz invariance, however, is broken by the lattice reg-
ularization that necessarily connects the two Weyl nodes
at high energy20. Significantly, this leads to the intact-
ness of anomalous Hall e↵ect but the breakdown of chiral
magnetic e↵ect. More seriously, the violation of Lorentz
invariance in condensed matter systems allows the tilting

F-Y Li, X Luo, Xi Dai, Yue Yu, F Zhang, Gang Chen*, 
Phys Rev B (Rapid Comm) 

94, 121105 (2016)

威尔点有两个基本性质:  

1. 它的 chirality, 
2. 它的    type.  

前者是能带的拓扑(或整体)性质，局域的扰动 
难以改变它；后者是能带的局域性质，局域 
的扰动可以改动它。 

我们因此提出了⼀一种新型的威尔半⾦金属,能带 
中有chiral对的威尔点的type可以独⽴立地变化, 
可以出现杂糅两种type威尔点的能带结构,称 
之为“Hybrid Weyl semimetal”.

Hybrid Weyl Semimetal
Gang Chen’s theory group 

Gang Chen’s theory group



⽤用近邻相变来间接 “confirm”  
量⼦子⾃自旋液体
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with an application to Pr2Ir2O7 and Yb2Ti2O7

Gang Chen1,2
1
State Key Laboratory of Surface Physics, Center for Field Theory and Particle Physics,

Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China and

2
Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, People’s Republic of China

(Dated: June 22, 2016)

Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phe-
nomena are intertwined with strong spin-orbit coupling, substantial electron correlation and geo-
metrical frustration. Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7

and Yb2Ti2O7, we study the proximate Ising orders and the quantum phase transition out of quan-
tum spin ice U(1) quantum spin liquid (QSL). We apply the electromagnetic duality of the compact
quantum electrodynamics to analyze the condensation of the “magnetic monopoles” in the U(1)
QSL. The monopole condensation naturally and necessarily leads to the Ising orders that generi-
cally break the lattice translation symmetry. We demonstrate that the antiferromagnetic Ising order
with the ordering wavevector Q = 2⇡(001) is proximate to the U(1) QSL while the ferromagnetic
Ising state with Q = (000) is not proximate to the U(1) QSL. This implies that if there exists a
direct transition from the U(1) QSL to the ferromagnetic Ising order, the transition must be strongly
first order. We apply the monopole condensation to explain the magnetic orders and the transitions
in Pr2Ir2O7 and Yb2Ti2O7.

I. INTRODUCTION

Pyrochlore iridates (R2Ir2O7)1,2 have stimulated a
wide interest in recent years, and many interesting re-
sults, including topological Mott insulator3, quadratic
band touching4, Weyl semimetal5–8, non-Fermi liquid9

and so on, have been proposed. Among these mate-
rials, Pr2Ir2O7 is of particular interest. In Pr2Ir2O7,
the Ir system remains metallic at low temperatures10.
More intriguingly, no magnetic order was found except
a partial spin freezing of the Pr local moments due to
disorder at very low temperatures in the early experi-
ments10–12. A recent experiment on di↵erent Pr2Ir2O7

samples, however, discovered an antiferromagnetic long-
range Ising order for the Pr moments13. While most
theoretical works on pyrochlore iridates focused on the
Ir pyrochlores and explored the interplay between the
electron correlation and the strong spin-orbit coupling of
the Ir 5d electrons3,14, very few works considered the in-
fluence and the physics of the local moments from the
rare-earth sites that also form a pyrochlore lattice7,15–17.
In this paper, we address the local moment physics in
Pr2Ir2O7 and propose that the disordered state of the Pr
moments is in the quantum spin ice (QSI) U(1) quantum
spin liquid state. We explore the proximate Ising order
and the confinement transition of the QSI U(1) quantum
spin liquid (QSL) for the Pr local moments.

The QSI U(1) QSL is an exotic quantum phase of mat-
ter and is described by emergent compact quantum elec-
trodynamics, or equivalently, by the compact U(1) lattice
gauge theory (LGT) with a gapless U(1) gauge photon
and deconfined spinon excitations18–20. Recently several
rare-earth pyrochlores with 4f electron local moments
are proposed as candidates for the QSI U(1) QSLs21–29.
In these systems, the predominant antiferromagnetic ex-
change interaction between the Ising components of the

FIG. 1. (Color online.) The monopole condensation transi-
tion from the QSI U(1) QSL to the proximate antiferromag-
netic Ising order. The dashed (solid) line represents a thermal
crossover (transition). “g” is a tuning parameter that corre-
sponds to the mass of “magnetic monopole” (see the discus-
sion in the main text). The inset Ising order has an ordering
wavevector Q = 2⇡(001). The Pr moment of Pr2Ir2O7 is
likely to be close to this quantum critical point (QCP).

local moments favors an extensively degenerate “2-in 2-
out” spin ice manifold on the pyrochlore lattice19,21,30–34.
The transverse spin interaction allows the system to tun-
nel quantum mechanically within the ice manifold, giving
rise to a U(1) QSL ground state33–38.

Like Pr2Ir2O7, the experimental results on the QSI
U(1) QSL candidate materials depend sensitively on the
stoichiometry and the sample preparation21. In particu-
lar, for the pyrochlore ice system Yb2Ti2O7, while some
samples remain disordered down to the lowest tempera-
ture and the neutron scattering shows a di↵usive scatter-
ing22, others develop a ferromagnetic order24,39–41. This
suggests that both the Yb moments in Yb2Ti2O7 and the
Pr moments in Pr2Ir2O7 could be located near a phase
transition between a disordered state (that might be a

Pr2Ir2O7的理论相图, 
Pr 磁矩从⼀一个U(1)量⼦子⾃自旋液体到⼀一个有序态 
的相变：这是⼀一个磁单极⼦子凝聚的相变， 

类似于夸克紧闭的相变，这个理论得到的序就是 
中⼦子实验测量到的序

量⼦子⾃自旋液体是物质新的态，它带有 
层展的规范结构和分数化的元激发。 

⾃自旋液体到它附近的⼀一般态的 
量⼦子相变也往往是⾮非平庸的。 

这些⾮非平庸的量⼦子相变 
(⽐比如: deconfined quantum criticality) 
的⾏行为反应了量⼦子⾃自旋液体的特征。

Gang Chen, Phys. Rev. B, 94, 205107 (2016)

Pyrochlore Lattice
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the
induced magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condensation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

edge of the spinon continuum in the dynamic spin struc-
ture factors can thus be modified by the magnetic fields,
which gives a sharp prediction for the inelastic neutron
scattering experiments. When the magnetic field exceeds
the critical value and closes the spinon gap, the spinons
are condensed, driving the system through an Anderson-
Higgs’ transition and inducing the long-range magnetic
orders.

Generic model for DO doublets on the pyrochlore lat-
tice.—Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as
HDO =

P
hiji[Jx⌧

x

i

⌧x
j

+ J
y

⌧y
i

⌧y
j

+ J
z

⌧z
i

⌧z
j

+ J
xz

(⌧x
i

⌧z
j

+
⌧z
i

⌧x
j

)] [10]. Here the interaction is uniform on every bond
despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [15–20], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [10]. It is this important di↵erence that leads
to some of the unique properties of its U(1) QSL ground
states.
Due to the spatial uniformity of the generic model, we

can transform the model HDO into the XYZ model with

HXYZ =
X

hiji

J̃
x

⌧̃x
i

⌧̃x
j

+ J̃
y

⌧̃y
i

⌧̃y
j

+ J̃
z

⌧̃z
i

⌧̃z
j

, (1)

where ⌧̃x and ⌧̃z (J̃
x

and J̃
z

) are related to ⌧x and ⌧z

(J
x

and J
z

) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃

y

⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃µ, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum

electrodynamics description of the low energy properties
of the U(1) QSL [21, 22], the Ising component is identified
as the emergent electric field [21]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [10].
Octupolar U(1) QSL and field-driven Anderson-Higgs’

transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [10, 23–31], we here fo-
cus on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is
unique to the DO doublet and cannot be found in any
other doublets on the pyrochlore lattice.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃y is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃
µ

⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (2)

where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [32]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. To capture the essential physics, we here con-
sider a simplified version of the generic model in Eq. (2).
The simplified model is

Hsim =
X

hiji

J
y

⌧y
i

⌧y
j

� J±(⌧
+
i

⌧�
j

+ h.c.)

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (3)
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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking
phases and the more exotic quantum and topological phases of matter. We explore the symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce
local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole
doublet. The generic model for these unusual doublets supports two distinct symmetry enriched
U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are
dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed
in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of
the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL,
elucidating the unique spectroscopic properties in the external magnetic fields. We further predict
the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields.
We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-
octupole doublet systems.

Introduction.—The interplay between symmetry and
topology is the frontier subject in modern condensed
matter physics [1–3]. At the single particle level, the
non-trivial realization of time reversal symmetry in elec-
tron band structure has led to the discovery of topolog-
ical insulators [4, 5]. For the intrinsic topological or-
der such as Z2 toric code and chiral Abelian topologi-
cal order, a given symmetry of the system could enrich
the topological order into distinct phases that cannot
be smoothly connected without crossing a phase tran-
sition [6–9]. Despite the active theoretical e↵orts, the
experimentally relevant symmetry enriched topological
order is extremely rare. In this work, we explore one
physical realization of symmetry enriched U(1) topolog-

ical order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental conse-
quences of distinct symmetry enrichment. The DO dou-
blet is a special Kramers’ doublet in the D3d crystal
field environment [10–12]. Both states of the DO dou-
blet transform as the one-dimensional irreducible repre-
sentations (�+

5 or �+
6 ) of the D3d point group [10]. It

was realized that the DO doublets on the pyrochlore lat-
tice could support two distinct U(1) quantum spin liquid
(QSL) ground states [10]. These distinct U(1) QSLs are
the symmetry enriched U(1) topological orders [13] and
are enriched by the lattice symmetries of the pyrochlore
systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based
QSL candidate in the pyrochlore family [14], in which no
magnetic order was observed down to 0.02K. Although
it was not noticed previously, the Ce3+ local moment in
Ce2Sn2O7 is actually a DO doublet. The strong atomic
spin-orbit coupling (SOC) of the 4f1 electron in the Ce3+

ion entangles the electron spin (S = 1/2) with the orbital
angular momentum (L = 3) into a J = 5/2 total mo-

FIG. 1. The electron configuration and the D3d crystal elec-
tric field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The
CEF ground state wavefunctions are combinations of Jz =
±3/2 states [14], thus the CEF ground state is a DO doublet.
� is the CEF gap and was fitted to be � = 50± 5meV [14].

ment. The six-fold degeneracy of the J = 5/2 total mo-
ment is further splitted into three Kramers’ doublets by
the D3d crystal field (see Fig. 1). Since the ground state
doublet wavefunctions are combinations of Jz = ±3/2
states [14], this doublet is precisely the DO doublet that
we defined [10]. Because the crystal field gap is much
larger than the interaction energy scale of the local mo-
ments and the temperature scale in the experiments, the
low temperature magnetic property of Ce2Sn2O7 is fully
governed by the ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the dis-
tinct symmetry enriched U(1) QSLs for the DO doublets,
in this Letter, we explore the peculiar properties of the
DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for
the DO doublets, we find that the external magnetic field
directly couples to the spinons and modifies the spinon
dispersions. This e↵ect allows us to control the spinon
excitations with the magnetic fields. The lower excitation

提出⼀一个由晶格对称性丰富的U(1)拓扑序的模型以及和实验材料(Ce2Sn2O7)的联系, 

指出如何在实验中探测对称丰富的实验后果和现象。我们强调了外场诱导的 
Anderson-Higgs 凝聚机制以及场调控的⾃自旋⼦子连续谱。

Y-D Li, Gang Chen*, Phys. Rev. B (Rapid Comm), 95, 041106 (2017)
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⾃自旋⼦子费⽶米⾯面 in YbMgGaO4 

1.我们提出了⼀一个⼀一般的⾃自旋模型 
来刻画YbMgGaO4⾥里的低温物理 
 
2. 指出了YbMgGaO4关键的物理 
是强⾃自旋轨道耦合。 

3. 解出了基本的物理相图以及 
量⼦子涨落之后的相图 

4. 解释了赵俊YbMgGaO4中⼦子散射 
连续谱的物理原因，提出⾃自旋⼦子 
费⽶米⾯面的基态。
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always possible to excite a spinon particle-hole pair with the momenta near the zone boundary, the spectral

intensity is not considerably a↵ected at the zone boundary as E increases. Therefore, the broad continuum

continues to cover a large portion of the Brillouin zone at a finite E.

The stability of the spinon Fermi surface U(1) quantum spin liquid against the spinon confinement has

been addressed extensively in literatures4,5. It was proposed and understood that the large densities of

gapless fermionic spinons on the spinon Fermi surface help suppress the instanton events of the compact

U(1) gauge field for a two-dimensional U(1) quantum spin liquid4,5. The proliferation of the instanton

events is the cause of the confinement for a U(1) quantum spin liquid without gapless spinons6. Since

the instanton event is suppressed here, the compactness of the U(1) gauge field is no longer an issue,

and the low-energy property of our U(1) quantum spin liquid is then described by gapless spinons on

the Fermi surface coupled with a noncompact U(1) gauge field5,7,8. Due to the coupling to the gapless

spinons, the U(1) gauge photon is over-damped and becomes very soft. The soft gauge photon further

scatters the fermionic spinons strongly, gives a self-energy correction to the spinon Green’s function, and

kills the spinon quasi-particle weight5,7–9. The resulting spinon non-Fermi liquid state has an enhanced
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三⾓角晶格强⾃自旋轨道体系的多极磁矩的“隐藏序”3

is given as

H =
X

hrr0i

⇥
J
x

T x

r T
x

r0 + J
y

T y

r T
y

r0 + J
z

T z

r T
z

r0 ]

�h
X

r

[cos ✓ T z

r + sin ✓ T y

r ], (4)

where T x = ⌧x, T y = ⌧z sin ✓ + ⌧y cos ✓, T z = ⌧z cos ✓ �
⌧y sin ✓, and J

x

, J
y

, J
z

are defined in the Supplementary
information. Note both T y and T z behave like dipole
moments. Like the XYZ model on the pyrochlore lat-
tice [19, 20], this model does not have a sign problem for
quantum Monte Carlo simulation in a large parameter
regime, and this is valid on any other lattices such as the
3D FCC lattice where DO doublets could exist [7].

Hidden ferro-octupolar orders.—We now explain the
hidden multipolar orders of the model in Eq. (4). We
start with the parameter regime on the I

z

surface with
J
z

= �1 (see Fig. 1a). This regime simply gives a
conventional ferromagnetic ground state with a uniform
hT zi. Since T z is a dipole moment, this state is dubbed
ferro-dipolar (FD

z

) state, where the subindex z refers to
the direction of the dipole moment. With a ferromag-
netic dipole moment, this state can be readily confirmed
in a magnetization measurement.

The reduced model in Eq. (4) has an interesting per-
mutation structure. Using the result on the I

z

surface,
we can generate the ground states on the I

y

surface with
J
y

= �1 and the I
x

surface with J
x

= �1. As the FD
y

order of the I
y

surface shares the same symmetry as the
FD

z

order of the I
z

surface, we do not give a repeated
discussion here. Although the permutation trick to re-
late di↵erent regimes seems simple, the physics on the
I
x

surface is rather special and unconventional, and it is
this distinction that we clarify below. Clearly, as hT xi
is uniform and non-zero on the I

x

surface, time reversal
symmetry is explicitly broken and the ground state is
a ferromagnetic state with a pure ferro-octupolar (FO)
order. As we compute within the mean-field theory in
the Supplementary Information and show in Fig. 1, how-
ever, the magnetic susceptibility does not show any di-
vergent behavior. This is very di↵erent from what we
would naively expect for an usual ferromagnetic state.
The order parameter hT xi is an octupole moment and
does not couple linearly to the external magnetic field.
Therefore, it is hidden in the usual magnetization mea-
surement [7, 8, 49].

Despite its invisibility in the usual thermodynamic
measurements, one could instead search for the evidence
of the octupolar order by other experimental probes.
Since the octupolar order explicitly breaks time rever-
sal symmetry, polar Kerr e↵ect could be used to de-
tect the time reversal symmetry breaking [50]. More-
over, inside the FO phase, the dipole moment ⌧z flips
the octupole moment and creates octupolar-wave excita-
tions. As ⌧z directly couples to the neutron spin, the
octupolar-wave excitation can be directly detected by
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FIG. 2. (Color online.) The phase diagram on the O
x

surface
(J

x

= 1). Solid (dashed) lines indicate first (continuous)
order phase transitions.

an inelastic neutron scattering experiment. Using the
Holstein-Primako↵ boson transformation [47], we obtain
the octupolar-wave dispersion,

!k =
⇥
J
y

X

i

cos [k · a
i

]� 3J
x

⇤ 1
2

⇥
⇥
J
z

X

i

cos [k · a
i

]� 3J
x

⇤ 1
2 , (5)

where the summation is over the three nearest neigh-
boring vectors a

1

= (1, 0), a
2

= (�1/2,
p
3/2), and

a
3

= (�1/2,�
p
3/2). One should observe a well-defined

octupolar wave excitation below the FO transition de-
spite the absence of ordering in the magnetization mea-
surement. This mode is generically gapped because of
the low symmetry of the model. We depict the octupolar
wave excitation in Fig. 1d.
Hidden antiferro-octupolar orders.—Here we consider

the parameter regimes where the dominant interaction is
antiferromagnetic. We focus on the O

x

surface where the
octupolar exchange coupling J

x

is antiferromagnetic and
dominant. For the O

y

and the O
z

surfaces, one can ap-
ply the permutation on the O

x

surface and generate the
phase diagrams and the relevant phases . In the absence
of the exchange couplings J

y

and J
z

, the Ising exchange
interaction J

x

is highly frustrated on the triangular lat-
tice. Any state that satisfies the “2-plus 1-minus” or
“2-minus 1-plus” condition for the T x configuration on
every triangle is the ground state. Therefore, the ground
state is extensively degenerate.
In the XXZ limit of the model with J

y

= J
z

, the
weak J

y

and J
z

exchanges allows the system to tun-
nel quantum mechanically within the degenerate ground
state manifold and lifts the degeneracy via an order by
quantum disorder e↵ect [51–54]. It is well established
that the system develops a supersolid order in a large

2

Like the case in the rare-earth pyrochlores [33], the lo-
cal D

3d

crystal electric field (CEF) splits the (2J + 1)
states into the crystal field states [9]. For a half-integer
(integer) J , the CEF ground state is a Kramers’ doublet
(either a singlet or a non-Kramers’ doublet). The ground
state doublets define the low-temperature magnetic prop-
erties of the system. In the previous work, we proposed
a generic anisotropic spin model for non-Kramers’ dou-
blets and the usual Kramers’ doublets on a triangular
lattice [9]. Here we introduce a generic model for the
DO Kramers’ doublet on the triangular lattice [9, 24]
and predict the experimental consequences of the hidden
multipolar orders.

Dipole-octupole doublet.—The DO doublet is a special
type of Kramers’ doublet. It occurs when the crystal
field ground state wavefunctions | ±i are linear super-
positions of the states with Jz = 3n/2 where n is an odd
integer. Unlike the usual Kramers doublets that trans-
form as a two-dimensional irreducible representation of
the D

3d

point group [9], each state of the DO doublet
transforms as a one-dimensional irreducible representa-
tion (�+

5

or �+
6

) of the D
3d

point group [19]. This crucial
di↵erence is most easy to be understood if one applies the
3-fold rotation along the z axis to these states. Under
the 3-fold rotation, we have exp(�i 2⇡

3

Jz) |Jz = 3n/2i =
�|Jz = 3n/2i. Therefore, the wavefunctions of the DO
doublet, | ±i, stay invariant under this rotation except
getting an overall minus sign, i.e.,

exp(�i
2⇡

3
Jz) | ±i = �| ±i. (1)

In contrast, for the usual Kramers’ doublet, the two
states would mix with each other under this rotation.
The degeneracy of the DO doublet is protected by time
reversal symmetry that switches the two states. This spe-
cial doublet has been found in various neodymium (Nd)
pyrochlores [34–40], dysprosium (Dy) pyrochlore [41], os-
mium (Os) pyrochlore [42, 43], erbium (Er) and ytter-
bium (Yb) spinels [44, 45], and Ce

2

Sn
2

O
7

[46]. We expect
the DO doublet should occur in some of the rare-earth
triangular materials, especially since these rare-earth ions
experience the same D

3d

crystal field environment.
Generic pseudospin model on a triangular lattice.—

Here we explain the interaction between the DO doublets
on a triangular lattice. Due to the two-fold degeneracy
of the DO doublet, we introduce the pseudospin opera-
tors, ⌧µ, that act on this DO doublet, ⌧+ = | 

+

ih �|,
⌧� = | �ih +

|, ⌧z = 1

2

| 
+

ih 
+

| � 1

2

| �ih �|, where
⌧± ⌘ ⌧x ± i⌧y. To obtain the exchange interaction, we
start with the symmetry properties of the pseudospins
under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials [9, 24–32], the space group is either R3̄m
or P6

3

mmc. All rare-earth ions in these materials have
a layered triangular structure, and the interlayer separa-
tion is much larger than the intralayer lattice constant

in most materials. Therefore, it is su�cient to just keep
the interaction within the triangular layer and ignore the
interlayer couplings for most materials, though the in-
terlayer couplings in certain materials in the R

2

O
2

CO
3

family may be important. Here we restrict ourselves to
the intralayer interaction. As far as the space group sym-
metry is concerned, we only need to retain the symmetry
generators that operate within each triangular layer. It
turns out that, for a single triangular layer, both R3̄m
and P6

3

/mmc space groups give a three-fold rotation
around the z axis, C

3

, a two-fold rotation about the di-
agonal direction of the oblique coordinate system, C

2

, a
site inversion symmetry I, and two lattice translations,
T
x

and T
y

. The symmetry operation on ⌧µr is given as [47]

8
>>>>>>>>><

>>>>>>>>>:

C
3

: ⌧xr ! ⌧x
C3(r)

, ⌧yr ! ⌧y
C3(r)

, ⌧zr ! ⌧z
C3(r)

,

C
2

: ⌧xr ! ⌧x
C2(r)

, ⌧yr ! �⌧y
C2(r)

, ⌧zr ! �⌧z
C2(r)

,

I : ⌧xr ! ⌧x
I(r), ⌧yr ! ⌧y

I(r), ⌧zr ! ⌧z
I(r),

T
x

: ⌧xr ! ⌧x
T

x

(r), ⌧yr ! ⌧y
T

x

(r), ⌧zr ! ⌧z
T

x

(r),

T
y

: ⌧xr ! ⌧x
T

y

(r), ⌧yr ! ⌧y
T

y

(r), ⌧zr ! ⌧z
T

y

(r).

(2)

Since the 4f electron wavefunction is very localized, we
only need to keep the nearest-neighbor interactions. The
most general nearest-neighbor model, allowed by the
above symmetries, is given as

H
0

=
X

hrr0i

⇥
J
x

⌧xr ⌧
x

r0 + J
y

⌧yr ⌧
y

r0 + J
z

⌧zr ⌧
z

r0

+J
yz

(⌧yr ⌧
z

r0 + ⌧zr ⌧
y

r0)
⇤
. (3)

Here we give a few comments on this model. First of
all, the pseudospin interaction is anisotropic in the pseu-
dospin space because of the spin-orbit entanglement in
the DO doublet. What is surprising is that the interac-
tion is spatially uniform and is identical for every bond
orientation. This is unusual since the orbitals have ori-
entations. This remarkable spatial property comes from
the peculiar symmetry property of the DO doublet in
Eq. (2). Secondly, there exists a crossing coupling be-
tween ⌧y and ⌧z because ⌧y and ⌧z transform identically
and behave like the magnetic dipole moments under the
space group. Thirdly, there is no crossing coupling be-
tween ⌧x and ⌧y or ⌧z because ⌧x transforms as an oc-
tupole moment under the space group. This holds even
for further neighbor interactions [48]. The J

x

interaction
is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H

0

� h
P

r ⌧
z

r .
Due to the spatial uniformity of the interaction, we are
able to implement a rotation by an angle ✓ around the
x direction in the pseudospin space and eliminate the
crossing coupling between ⌧y and ⌧z. The reduced model

AFO=antiferromagnetic octupolar order 
AFD=antiferromagnetic dipolar order
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parameter regime of the XXZ limit [51–54]. With a su-
persolid order, the system spontaneously breaks the U(1)
symmetry with hT y,zi 6= 0 and the translation symmetry
with hT xi 6= 0. Moreover, the system has a 3-sublattice
magnetic structure in the supersolid phase.

To obtain the phase diagram away from the XXZ
limit, we implement a self-consistent mean-field theory
by assuming a 3-sublattice structure for the mean-field
ansatz [47]. Via the mean-field decoupling, we have

H
MF

= 3
X

r2A

X

µ

⇥
J
µ

(mµ

B

+mµ

C

)Tµ

r

⇤

+ 3
X

r2B

X

µ

⇥
J
µ

(mµ

C

+mµ

A

)Tµ

r

⇤

+ 3
X

r2C

X

µ

⇥
J
µ

(mµ

A

+mµ

B

)Tµ

r

⇤

� h
X

r

⇥
cos ✓ T z

r + sin ✓ T y

r

⇤
, (6)

where mµ

⇤

= hTµ

r i is determined self-consistently for
r 2 ⇤-th sublattice with ⇤ = A, B, C. Such a mean-
field theory captures both the uniform state and the 3-
sublattice state. The mean-field phase diagram is de-
picted in Fig. 2. The FD

y

and the FD
z

phases are the
previously mentioned ferro-dipolar orders with an uni-
form hT yi 6= 0 and hT zi 6= 0, respectively. There is
no octupolar order here. It is the considerable ferro-
dipolar interaction in these regions that competes with
the antiferro-octupolar interaction and competely sup-
presses any octupolar order.

In region AFO-FD
y

(AFO-FD
z

) where the trans-
verse exchange J

y

(J
z

) is reduced, the octupole mo-
ment T x orders antiferromagnetically and develops a 3-
sublattice structure while the dipole moment T y (T z)
remains ferromagnetically ordered (see Fig. 3a). There-
fore, the phase is listed as AFO-FD

y

(AFO-FD
z

). In
these regions, the weak ferro-dipolar interaction allows
the system to fluctuate within the extensively degener-
ate ground state manifold of the predominant antiferro-
octupolar interaction and breaks the degeneracy, leading
to the 3-sublattice octupolar order. The background 3-
sublattice octupolar order further modulates the ferro-
dipolar order, and the ferro-dipolar order also develops
the 3-sublattice structure with a non-uniform dipolar or-
dered structure. Such a mutual modulation between
unfrustrated ferro-dipolar and the frustrated antiferro-
octupolar interactions is in fact a quantum e↵ect, and
cannot occur in a classical spin system with the same
model.

The 3-sublattice structure of the ferro-dipolar order is
a direct consequence of the underlying antiferromagnetic
octupolar order. This 3-sublattice structure, however,
is completely hidden in the magnetization measurement
that merely gives a finite net magnetization. To reveal
the underlying 3-sublattice structure, one would need lo-
cal probes such as NMR and µSR. The nuclear spin and
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FIG. 3. (a) The ordering pattern in the AFO-FD
y
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phases. The local moments are in the xy-plane of the
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across the diagonal line of the phase diagram in Fig. 2 are
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is the coordinate system for the pseudospins. (b) The origi-
nal Brillouin zone and the folded Brillouin zone due to the
3-sublattice ordering. (c, d) Excitation spectrum by lin-
ear spin-wave theory with dominant antiferromagnetic J

x

,
for (c) (J

x

,J
y

,J
z

) = (1, 0.4, 0) in AFO-AFD
y

, and (d)
(J

x

,J
y

,J
z

) = (1,�0.4, 0) in AFO-FD
y

.

muon spin only couple to the dipolar moment, and probe
the local dipolar orders of di↵erent sublattices. Alterna-
tively, the elastic neutron scattering directly probes the
structure of the dipolar orders, and would observe the
magnetic Bragg peaks at the � point that corresponds
to the uniform part of the dipolar order as well as the
K points that correspond to the 3-sublattice modulation
of the dipolar order. Besides the static properties, the
system supports three bands of excitations because of
the 3-sublattice structure of the octupolar order. This
can be well-observed in an inelastic neutron scattering
measurement. We plot the the magnetic excitations in
Fig. 3c.
In region AFO-AFD

y

(AFO-AFD
z

), the transverse
coupling J

y

(J
z

) is antiferromagnetic. The system
is therefore frustrated, and due to frustration the 3-
sublattice structure persists for rather large J

y

and J
z

.
Besides the antiferromagnetic order of the octupolar mo-
ment T x, the dipolar moments are also antiferromagnet-
ically ordered (Fig. 3a). The ordering of the local mo-
ments is constrained to either xy- or xz-plane depending
on the magnitude of J

y

and J
z

, as in AFO-FD
y

and
AFO-AFD

z

phases. The net magnetization of the dipo-
lar moments in AFO-AFD phases is always vanishing,
but the 3-sublattice structure can manifest itself in the
spin-wave excitations with 3 bands (see Fig. 3d). The
gapless modes at � in Fig. 3c and d are accidentical due
to the extended degeneracy in the Ising limit and should
be gapped when the magnon interactions are included.
Discussion.—It has been realized that a strong SOC

我们指出了三⾓角晶格中的⼀一个generic模型， 
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Kitaev materials beyond iridates
2

that splits the (2J +1)-fold degeneracy of the spin-orbit-
entangled total moment J. For a half-integer moment
J , the CEF ground state is a Kramers’ doublet whose
degeneracy is protected by the time reversal symmetry.
Often, the CEF gap is much larger than the tempera-
ture scale and exchange interaction in the system, and
the low-temperature magnetic properties are fully cap-
tured by the ground state doublets that are modeled by
pseudospin-1/2 local moments.

For the rare-earth double perovskites (Ba2LnSbO6, Ln
= rare earths)40–45, we propose a generic model on the
FCC lattice that describes the nearest-neighbor interac-
tion between the Kramers’ doublet local moments. This
generic model involves the Heisenberg interaction, the
Kitaev interaction, and an additional crossing exchange
that is symmetric in two pseudospin components. In the
mean-field phase diagram of this generic model, we find
large parameter regions that support ground states with
continuous degeneracies. Due to the spin-orbit entangle-
ment, the generic model does not have any continuous
symmetry. The continuous degeneracy is thus acciden-
tal and not related to any microscopic symmetry of the
model. We expect that, the quantum fluctuations should
break the accidental degeneracy and favor magnetic or-
dered states. This mechanism is known as order by quan-
tum disorder (ObQD)36,46–48. Because of the continuous
degeneracy, the fluctuations within the degenerate mean-
field ground state manifold are very soft and are char-
acterized by the pseudo-Goldstone mode with a nearly
gapless dispersion when the system becomes ordered.
The pseudo-Goldstone mode is a direct consequence of
the ObQD, and the consequence of the nearly gapless
pseudo-Goldstone mode is a T 3 temperature dependence
of the heat capacity in the ordered phases. In addition
to the pseudo-Goldstone mode, the Weyl magnon mode49

is found in the magnetic excitation for certain magnetic
order. In contrast to the low energy pseudo-Goldstone
mode, the Weyl magnon mode appears at finite energies
due to the bosonic nature of the spin wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of
this model in Sec. III. Competition between di↵erent
interactions, together with the geometrical frustration,
leads to a very rich phase diagram. Specifically, among
di↵erent phases, we focus on the regions with a contin-
uous U(1) or O(3) degeneracy, in Sec. IV. The degen-
eracy at the mean-field level is lifted when the quantum
fluctuation is included, and various magnetic orders are
favored in these regions. We demonstrate the ObQD ex-
plicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Fi-
nally, we conclude with a discussion in Sec. V.
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FIG. 2. (Color online.) The mean-field phase diagrams for
an antiferromagnetic Heisenberg coupling (a) and for a fer-
romagnetic Heisenberg coupling (b). The incommensurate
phase has non-uniform spin amplitudes on every site. Both
phase I and phase II have antiferromagnetic collinear orders
with the wavevector X, and a continuous U(1) ground state
degeneracy exists in phase II. Both phase III and phase IV
have antiferromagnetic collinear orders with the wavevector
L, and phase IV shows a U(1) degeneracy. Phase V is ferro-
magnetically ordered with an O(3) ground state degeneracy.
See the main text and Tab. I for a detailed discussion. The
lattice constant of the FCC lattice is set to unity throughout
the paper.

II. THE GENERALIZED
KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides40,
Ba2LnSbO6 (Ln= rare earth), where the Ba ions are lo-
cated at the A sites of the perovskite-type oxides ABO3,
and the Ln and Sb ions are regularly ordered at the B
sites. Specifically, the Ln and Sb ions are ordered in the
rock-salt type structure, with space group Fm3̄m. Each
of the two kinds of ions forms a separate FCC lattice. The
magnetic behavior depends on the Ln3+ ions ([Xe]4fn,
[Xe]: electronic xenon core), where the SOCs are typi-
cally quite large. We study the Kramers’ doublet that is
formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.
Under the Fm3̄m space group symmetry, the pseu-

dospin, S, that acts on the Kramers’ doublet of the
rare earth ion, transforms as a pseudovector. Both the
pseudospin position and the pseudospin orientation are
transformed. The most general exchange interaction be-
tween the local moments on the nearest neighbor sites,

3

Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.

allowed by the lattice symmetry, is a generalized Kitaev-
Heisenberg model with

H =
X

hiji�±

⇥
J S

i

·S
j

+KS�

i

S�

j

±F (S↵

i

S�

j

+S�

i

S↵

j

)
⇤
, (1)

where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system50. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,21,26,27,38.

Compared with the rare-earth triangular system37,38,51

and the pyrochlore system30,32,34, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of

the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as
the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method52

that is to replace the local hard spin constraint by a
global one such that

X

i

|S
i

|2 = NS2, (2)

where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,

Ecl =
X

q

X

↵�

E
↵�

(q)S↵

q S�

�q, (3)

under the global constraint. Here we have defined

S↵

i

=
1

N
1
2

X

q

S↵

q eiq·ri . (4)

Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained

Ordered double perovskites  
with rare-earth moments

我们指出Kitaev 材料应该远远超过⺫⽬目前的铱氧化物，我们讨论稀⼟土材料⾥里头的 
Kitaev 相互作⽤用以及得到物理⾏行为。
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Breathing pyrochlore 晶格的量⼦子⾃自旋冰
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The Coulombic quantum spin liquid in quantum spin ice is an exotic quantum phase of matter
that emerges on the pyrochlore lattice and is currently actively searched for. Motivated by recent
experiments on the Yb-based breathing pyrochlore material Ba3Yb2Zn5O11, we theoretically study
the phase diagram and magnetic properties of the relevant spin model. The latter takes the form
of a quantum spin ice Hamiltonian on a breathing pyrochlore lattice, and we analyze the stability
of the quantum spin liquid phase in the absence of the inversion symmetry which the lattice breaks
explicitly at lattice sites. Using a gauge mean-field approach, we show that the quantum spin liquid
occupies a finite region in parameter space. Moreover, there exists a direct quantum phase transition
between the quantum spin liquid phase and featureless paramagnets, even though none of theses
phases break any symmetry. At nonzero temperature, we show that breathing pyrochlores provide
a much broader finite temperature spin liquid regime than their regular counterparts. We discuss
the implications of the results for current experiments and make predictions for future experiments
on breathing pyrochlores.

I. INTRODUCTION

Frustrated magnetic materials provide a fertile arena
to look for novel quantum phenomena. Frustration of-
ten leads to a large classical ground state degeneracy
and quantum fluctuations are accordingly enhanced in
quantum spin systems1,2. When strong quantum fluctua-
tions are taken to the extreme, they suppress any conven-
tional magnetic order and may drive systems into a com-
pletely disordered quantum mechanical state, namely, a
quantum spin liquid (QSL)2,3. QSLs are exotic quan-
tum phases of matter, with long-range quantum entan-
glement, and are characterized by emergent gauge fields
and deconfined fractionalized excitations2–4.

A three-dimensional U(1) QSL with an emergent U(1)
gauge field and deconfined bosonic spinons has been pro-
posed for rare-earth pyrochlore materials5–19. In the con-
text of rare-earth pyrochlores, Hamiltonians susceptible
of hosting such QSLs are often referred to as “quantum
spin ice” (QSI)6–9,11,12, and their QSL is called QSI QSL
or Coulombic QSL. Despite intense theoretical and ex-
perimental e↵orts, no definitive experimental evidence of
such a QSL in QSI has been identified yet. This is partly
because the underlying spin moment comes from 4f elec-
trons whose exchange energy scale is usually very small.
Thus, very challenging low temperature experiments are
required to observe the intrinsic quantum properties of
these materials, such as spinon deconfinement and the
emergent gapless gauge photon. This raises an impor-
tant question: Can we find an alternative physical sys-
tem that realizes the QSI QSL ground state at a higher
energy scale? A proposal has suggested to replace the
spin degrees of freedom by charge degrees of freedom.

QSL

PMd

PMu

AFM
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FIG. 1. (Color online.) (a) The breathing pyrochlore lat-
tice. The letter ‘u’ (‘d’) refers to the up- (down-) pointing
tetrahedra. The bond lengths on up and down tetrahedra are
di↵erent. (b) The phase diagram of the Hamiltonian H in
Eq. (1) at T = 0. See the main text for a detailed discussion.

The resulting cluster Mott insulator on the pyrochlore
lattice can realize QSI physics in the charge sector at a
much higher temperature scale20. Recently, a new mate-
rial, Ba3Yb2Zn5O11, where the Yb atoms form a breath-
ing pyrochlore lattice (see Fig. 1a), was synthesized. In
contrast to the regular pyrochlore lattice, the breathing
pyrochlore lattice has its up-pointing and down-pointing
tetrahedra expanded and contracted, respectively, and

4

Phase h�ri, r 2 u h�ri, r 2 d hs±i hszi |h~si|

QSL = 0 = 0 6= 0 = 0 6= 0

AFM 6= 0 6= 0 6= 0 = 0 6= 0

PMu 6= 0 = 0 6= 0 = 0 6= 0

PMd = 0 6= 0 6= 0 = 0 6= 0

TSL = 0 = 0 = 0 = 0 = 0

TABLE I. Di↵erent ground state phases with their order pa-
rameters in gMFT. QSL and TSL stand for the quantum spin
ice quantum spin liquid, and thermal spin liquid, respectively.

sublattice are not condensed. According to the slave par-
ticle construction in Eq. (2), this proximate state of the
QSI QSL, obtained by condensing spinons on one sublat-
tice but not on the other, does not develop any transverse
magnetic long range order following

h⌧±rr0i = h�†
rih�r0ihs

±
rr0i = 0. (6)

This paramagnetic state preserves time reversal symme-
try and all the lattice symmetries of the breathing py-
rochlore lattice. We thus dub this paramagnetic (PM)
state PMu in Fig. 1b and Table I.

To understand the nature of the PMu/d phases better,
especially outside of gMFT, we consider the limiting case
 ! 0. In this special limit, the breathing pyrochlore
system reduces to a set of decoupled up-pointing tetra-
hedra, i.e. set of four spins. Since a tetrahedron con-
tains a finite number of spins (it is a finite system), its
ground state must preserve all the symmetries of the sys-
tem. For each up-pointing tetrahedron, the local magne-
tization

P
i2u ⌧

z

i

commutes with the Hamiltonian and is
therefore a good quantum number, and the ground state
is unique with

P
i2u ⌧

z

i

= 0. Since the tetrahedra are de-
coupled, the many-body ground state is simply a product
state of the single-up-tetrahedron ground states. Hence,
the system is an obvious paramagnetic state, preserving
all symmetries. A finite and small  introduces inter-
up-tetrahedral couplings but does not significantly alter
the ground state. Moreover, due to the weak ⌧z cou-
pling on the down-pointing tetrahedra, the local magne-
tization (

P
i2d ⌧

z

i

) on each down-pointing tetrahedron is
strongly fluctuating quantum mechanically and thus is
not a good quantum number. These features are exactly
reproduced by the gMFT description of the PMu: the
spinon condensate on the down tetrahedra corresponds
to an ill-defined spinon number Qr2d =

P
i2d ⌧

z

i

, and
the single-tetrahedron ground state with its (small) ‘cat’
state on the up tetrahedra preserves all symmetries and
corresponds to h�r2ui = 0. Therefore, the gMFT ap-
proach provides a good description of the  ! 0 limit,
like it did for the QSI QSL phase.

The state obtained by instead condensing the spinons
on the down sublattice, is naturally labelled PMd. Like
the relation between the PMu and the  ! 0 limit, the

FIG. 2. (Color online.) Phase diagram in the -J±/Jzz-T/Jzz

space. The three-dimensional surface indicates the first-order
transition between the phases akin to the zero-temperature
phases, namely the QSL, AFM, PMu,d (below the surface),
and the TSL (above the surface). The colors on the surface
correspond to those of the phases immediately below the sur-
face.

PMd is smoothly connected to the paramagnetic state in
the limit  ! 1, and the gMFT also provides a good de-
scription of this limit. As the PMu and the PMd have nei-
ther gapless emergent gauge photon nor spontaneous con-
tinuous symmetry breaking, the system is fully gapped in
these two phases. The quantum phase transition from the
gapless QSI QSL to the gapped PMu or PMd is described
by the condensation of one critical bosonic spinon mode
coupled to a fluctuating U(1) gauge field. This quantum
phase transition is not present for the regular pyrochlores
and is a new feature of the breathing pyrochlores.
A condensate of both spinon flavors is obtained for

example by increasing J±/Jzz and keeping a moderate
. The resulting state breaks time reversal symmetry
and develops magnetic order via

h⌧±rr0i = h�†
rih�r0ihs

±
rr0i 6= 0. (7)

In terms of the original physical magnetic moments, this
ordered state is an AFM state and the magnetic unit cell
is identical to that of the crystal. Moreover, the direct
treatment of the limiting case with a dominant J±/Jzz
and a moderate  also leads to a transverse spin ordering,
which is again consistent with the results from the gMFT
approach.

IV. NONZERO TEMPERATURE SPIN LIQUID
REGIME OF QSI

Now we turn to the nonzero temperature behavior of
the system. Strictly speaking, the QSI QSL is truly a
quantum phase and cannot exist at non-zero tempera-
tures. This is because the topological defects (or mag-
netic monopole excitations) of the emergent U(1) gauge
field5 in the QSI QSL state are point-like particles and
have a finite energy37. These topological excitations
can always be created with a finite concentration at a

2

thus breaks the lattice inversion symmetry at each lat-
tice site21–28. Despite the a priori dominant antiferro-
magnetic interactions with a Curie-Weiss temperature
⇥CW = �6.7K, the Yb local moments in Ba3Yb2Zn5O11

remain disordered down to 0.38K29. Motivated by the
latter experiments, in this paper we propose that breath-
ing pyrochlore materials are a new place to search for
QSI physics, and in particular its QSL. Moreover, we
argue that, due to the unique structure of breathing py-
rochlores, the transition or crossover temperature from
QSI to the higher-temperature thermal spin liquid phase
occurs in breathing pyrochlores at a much higher tem-
perature than in their ‘regular’ counterparts.

The breathing pyrochlore lattice harbors the same
symmetries as the regular pyrochlore lattice except that
it lacks the inversion symmetry centered at lattice sites.
The spin model that we propose takes care of the ab-
sence of inversion symmetry by allowing di↵erent ex-
change couplings on the up and down tetrahedra. Near
the symmetric limit, the system and the model are under-
stood from the known results on the regular pyrochlores.
There exists a QSI U(1) QSL phase in this limit. To
understand the robustness of the QSL phase, we extend
the gauge mean-field approach to access the parameter
regime for the breathing pyrochlore system. As one ob-
serves in Fig. 1b, the QSL phase covers a large parameter
regime. In addition, two paramagnetic (PM) phases are
present in the asymmetric regime. These PM states are
well understood in the strong asymmetric regime where
the system breaks into decoupled tetrahedra. Since the
ground state of the decoupled tetrahedron for our spin
model is a singlet state, the PM in the asymmetric regime
is smoothly connected to the simple product state of
these decoupled tetrahedral singlets.

In the QSI U(1) QSL phase, there are gapless gauge
photon modes and deconfined and fractionalized spinon
excitations. These exotic excitations are absent in the
PM phases. In the gauge mean-field theory framework,
the quantum phase transition from the QSL phase to the
nearby PM phases is understood as the condensation of
the spinons. The gauge photon picks up a mass due to the
spinon condensation. This is essentially the Anderson-
Higgs’ phenomenon, but it occurs in a system where the
gauge field is emergent.

We further explore the finite temperature properties
of the QSL phase. Both the perturbative argument and
the gauge mean-field theory show that the onset temper-
ature of the finite temperature QSL regime can be much
higher than the regular pyrochlore system. This is be-
cause the asymmetric exchange couplings on the breath-
ing pyrochlores allow the spins to fluctuate more e↵ec-
tively and thus enhance the energy scale of the collective
spin fluctuations. The gauge mean-field theory is used to
obtain the finite temperature phase diagram of the spin
model. The persistence of the QSL physics to the high
temperature regime gives a large room for the experimen-
tal confirmation.

The remaining parts of the paper are organized as fol-

lows. In Sec. II, we propose a minimal spin model for the
breathing pyrochlore systems. In Sec. III, we implement
the gauge mean-field mapping and obtain the full phase
diagram of the spin model. We explain all the four phases
and elucidate the nature of the phase transitions between
them. In Sec. IV, we extend the gauge mean-field the-
ory to finite temperatures and explore the properties of
the system in the finite temperature regime. Finally, in
Sec. V, we discuss the experimental consequences of the
di↵erent phases. In the appendices, we provide the de-
tails of the derivation and the theoretical framework.

II. MINIMAL MODEL FOR BREATHING
PYROCHLORES

In Ba3Yb2Zn5O11, the 4f electrons of a Yb3+ ion form
a J = 7/2 local moment due to the strong spin-orbit
coupling of 4f electrons. The crystalline electric fields
further split the eight-fold degeneracy of the J = 7/2
manifold and lead to an on-site ground state with two-
fold Kramers degeneracy. This local ground state doublet
is separated from the excited doublets by a large crystal
field energy gap of ⇡ 500K29. Since the Curie-Weiss tem-
perature ⇥CW = �6.7K is much smaller than the crystal
field energy gap, one then introduces a pseudospin-1/2
operator, ⌧ , that operates within the local ground state
doublet, to describe the low temperature magnetic prop-
erties of Ba3Yb2Zn5O11. Moreover, the strong crystal
fields and spin-orbit coupling lead to a very large on-site
anisotropy, which naturally singles out the local three-
fold axis of the D3d point group, which corresponds to
a h111i crystallographic direction. Like the regular py-
rochlore lattice, the local h111i direction at a site is the
direction that points into or out of the centers of the
neighboring tetrahedra. We define the z components of
the pseudospins to be along their local h111i axis (see
Appendix. A).

We consider a minimal model for the pseudospins ⌧ =
1/2 with Hamiltonian

H =
X

hiji2u

J
zz

⌧z
i

⌧z
j

� J±(⌧
+
i

⌧�
j

+ ⌧�
i

⌧+
j

)

+
X

hiji2d


⇥
J
zz

⌧z
i

⌧z
j

� J±(⌧
+
i

⌧�
j

+ ⌧�
i

⌧+
j

)
⇤
, (1)

where ⌧±
i

= ⌧x
i

± i⌧y
i

. The hallmark of breathing py-
rochlore systems is the absence of inversion symmetry
centered at lattice sites, and the parameter  captures
this property. More precisely, it parametrizes the asym-
metry of the spin interactions between the up-pointing
(labelled by ‘u’) and down-pointing (labelled by ‘d’)
tetrahedra of the breathing pyrochlore lattice. On a reg-
ular pyrochlore lattice, due to the presence of inversion
symmetry, one has  = 1. In breathing pyrochlore sys-
tems, the asymmetry parameter  should generically de-
viate from 1.
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由于breathing pyrochlore特殊的结构,其上的⾃自旋模型会增⼤大量⼦子⾃自旋冰类型的 
⾃自旋液体存在的参数空间，使得实验上观测到它的可能性增⼤大。
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Motivated by the very recent proposal of topological quantum paramagnet in the diamond lattice
antiferromagnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and
properties of the diamond material with the spin-one local moments. The minimal model includes
the first and second neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that
is allowed by the spin-one nature of the local moment and the tetragonal symmetry of NiRh

2

O
4

below 380K. We point out that there exists a quantum phase transition from a trivial quantum

paramagnet when the single-ion spin anisotropy is dominant to the magnetic ordered states when the
exchange is dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum
paramagnetic state supports extensively degenerate band minima in the spectra. As the system
approaches the transition, extensively degenerate bosonic modes become critical at the criticality,
giving rise to unusual magnetic properties. Our phase diagram and experimental predictions for
di↵erent phases provide a guildline for the identification of the ground state for NiRh

2

O
4

. Although
our results are fundamentally di↵erent from the proposal of topological quantum paramagnet for
NiRh

2

O
4

, it represents interesting possibilities for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community [1–
25]. The well-known topological insulator, that was pro-
posed and discovered earlier, is a non-interacting fermion
SPT protected by time reversal symmetry [26, 27]. In
contrast, the SPTs in bosonic systems must be stabilized
by the interactions [11]. The spin degrees of freedom with
exchange interactions seem to be a natural candidate for
realizing the boson SPTs [10]. In fact, the Haldane spin-
one chain is a 1D boson SPT and is protected by the
SO(3) spin rotational symmetry [1, 2, 28]. The realiza-
tion of boson SPTs in high dimensions is still missing.
It was suggested that, the spin-one diamond lattice anti-
ferromagnet with frustrated spin interactions may host a
topological quantum paramagnet that is a spin analogue
of topological insulator and protected by time reversal
symmetry [29]. Quite recently, a diamond lattice anti-
ferromagnet NiRh

2

O
4

with Ni2+ spin-one local moments
was proposed to fit into the early suggestion [30].

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K [30]. As we show in Fig. 1, the magnetic ion
Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Letter, we pro-
pose a minimal spin model for NiRh

2

O
4

and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As

FIG. 1. (Color online.) The diamond lattice formed by the
Ni2+ ions. The J

1

and J
2

interactions are indicated by (red)
dashed arrows. Due to the tetragonal symmetry of the lattice,
the a and b directions are not equivalent to the c direction.
The Ni2+ ion is in a tetrahedral environment, so the e

g

or-
bitals are lower in energy than the t

2g

levels. The tetragonal
distortion further splits the two e

g

orbitals and the three t
2g

orbitals. But the degeneracy of the xz and yz orbitals re-
mains intact under the tetragonal distortion. To avoid the
orbital degree of freedom, we here place the xz and yz or-
bitals above the xy orbitals. The opposite case is discussed
in the Supplementary information.

4

ity. When J
2

< J
1

/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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+cos
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2
cos
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2
=

J2

1

16J2

2

�1,

(11)
where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
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induced by quantum fluctuations via quantum order by
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interaction alone
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model. Moreover, an
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spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Phase diagram

degenerate minima of the excitations  
in quantum paramagnet

指出spin-1的三维diamond晶格中的激发的特殊性质 
以及这些激发凝聚之后的⾮非平凡相变。 

这个体系并不是⼈人们期望的⾃自旋对称保护的拓扑序。
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1. 拓扑绝缘体表⾯面的新型磁性态和输运特性 
2. iridates的掺杂效应和本征的⾃自旋轨道耦合 
3. K-dosed FeSe 的超导体相图研究 
（motivated by Donglai Feng’s experiment） 

4. ⼀一种新型的⾮非费⽶米液体 
5. Quantum Kagome ice and its excitation properties 
6. 烧绿⽯石中的internal 交换相互作⽤用和emergent quantum  

phase 
7. 和⼀一些⻓长于数值的物理学家的合作(主要是提出模型和理论， 
数值学家去验证和完善理解)。 

8. 弱晶体场诱导的激⼦子凝聚。

拟开展和待完成的部分⼯工作
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