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When correlation meets with spin-orbit coupling

1. INTRODUCTION

The subject of this review is the combination of two central threads of quantummaterials research.
The first, correlated electron physics, is a venerable but still vibrant subject, born from observa-
tions ofMott, Hubbard, Anderson, and others on the properties of 3d transition metal oxides. It is
largely concerned with the diverse properties of electronic materials that are insulating, or in the
process of becoming so, as a result of electron-electron interactions (1, 2), most importantly the
strong local Hubbard repulsion U between electrons that occupy the same orbital. A plethora of
phenomena arises from correlated electron physics, including local moment formation and
magnetism, correlated metallic states, quantum criticality, and unconventional superconductivity
(2). The second thread of quantum materials research, nontrivial physics from strong spin-orbit
coupling (SOC), includes a body of work on f-electron materials (3) and the much more recent
activity that beganwith the theoretical proposal of topological insulators (TIs) in 2005 (4–6). SOC
is a relativistic effect that provides an interaction between the orbital angular momentum and
electron spin in atoms, and is usually considered a small perturbation in the discussion of electrons
in solid.However, in heavy elements it need not beweak—it effectively increases proportionally to
Z4, where Z is the atomic number—and indeed has striking qualitative effects. Since 2005, the
investigation of topological aspects of electron bands has exploded, both theoretically and ex-
perimentally (4–6). From the materials perspective, the domain of the TI field has mostly been the
class of solids with heavy s- and p-electron elements, such as Bi, Pb, Sb, Hg, and Te. In these
materials, topologically protected Dirac-like surface states have been predicted and observed, and
a host of further phenomena are currently under intense investigation.

The two research strands come together in the heavy transition metal compounds drawn es-
pecially from the 5d series and, in some cases, the 4d series as well. Upon descending the periodic
table from the 3d to the 4d to the 5d series, there are several competing trends. First, the d orbitals
become more extended, tending to reduce the electronic repulsion U and thereby diminish cor-
relation effects. However, simultaneously, the SOC increases dramatically, leading to enhanced
splittings between otherwise degenerate or nearly degenerate orbitals and bands, in many cases
reducing the kinetic energy. The latter effect can offset the reduction in U, allowing correlation
physics to come into play.

It is instructive to consider a generic model Hamiltonian that describes the above discussion:

H ¼
X

i,j;ab
tij,ab c

†
iacjb þ h.c.þ l

X

i
Li × Si þU

X

i,a
niaðnia $ 1Þ , 1:

where cia in the annihilation operator for an electron in orbital a at site i, nia ¼ c†iacia is the
correspondingoccupation number, t is the hopping amplitude,l is the atomic SOCentangling spin
(Si) and angular momentum (Li), andU is theHubbard repulsion. An explicit example of the spin-
orbital entanglement due to l is given later in Equation 3. We have for simplicity omitted the
Hund’s interaction between spins in different orbitals on the same site, which is much smaller than
Ubut can sometimes have significant effects (7); however, it is unimportant in the specific examples
discussed in detail in this review.A schematic phase diagram canbedrawnas inFigure 1 in terms of
the relative strength of the interactionU/t and the SOC l/t (8). We emphasize this is schematic, in
part because the problem is unsolved and in part because Equation 1 can represent many different
physical situations by the choice of orbitals and lattice and band structure encoded in tij,ab, and the
ground states that occur certainly depend on these choices. In this diagram, two lines (which are
not meant necessarily as sharp boundaries but rather as demarcating different limits) divide the
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Why do we care about this?  First it is real !

Heavy elements have stronger spin-orbit couplings.  
For 4d, 5d, 4f, 5f electrons, even for 3d electrons (when the orbitals are 
degenerate), SOC needs to be seriously considered.
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Na4Ir3O8: hyperkagome quantum spin liquid ?

Why Ir ion behaves as a spin-1/2 ?

hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.
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FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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� ⇠ constant, Cv/T ⇠ constant

Na4Ir3O8, but we should allow for simpler explanations.
As is well known, the effective moment of ions in solids

varies widely from the quantized values expected from
SU!2" symmetric considerations. This is of course due to
spin-orbit coupling. In general, with spin-orbit interactions
present, the ground state of an impurity can be expected to
be a Kramer’s singlet or a Kramer’s doublet. In the latter
case, it will behave energetically !i.e., in specific heat" as a
spin-1/2 spin, but will have in general a nontrivial g tensor
describing its coupling to a field. This reflects a change in the
effective moment. Thus there is no “quantization” of the ef-
fective moment once spin-orbit coupling is substantial. The
observed fractional effective moment in Na4Ir3O8 is perhaps
another indication in this direction.

III. SPIN-ORBIT COUPLING IN THE HYPER-KAGOME
LATTICE

In this section, we discuss the form of the spin-orbit
modifications to the isotropic Heisenberg Hamiltonian. This
is not directly calculable from semi-microscopic consider-
ations without some assumptions about the local energetics
due to crystal field splittings. Therefore we consider below a
number of cases.

A. Symmetry-allowed DM vector components

In several cases, we will find that the dominant effect of
spin-orbit coupling is to induce DM interactions between the
nearest-neighbor spins. Therefore before attempting any cal-
culations, it is instructive to first consider the symmetry con-
straints upon them. Generally, DM interactions are rather
highly constrained. For instance, they are absent if there is an
inversion center between the two spins in question !this is
not the case in Na4Ir3O8". The compound Na4Ir3O8 has cubic
symmetry, described by the space group P4132, and conse-
quently has a number of point-group symmetries. For our
purposes, it is useful to consider an unconventional set of
generators of these symmetries. Specifically, the full point
group can be generated from the set of 180° rotations around
a local C2 axis at each site. Due to this symmetry, all the
hyper-kagome sites and bonds are equivalent. In Table V, we
list the directions of the C2 axes !!1" for every site in the unit
cell !see Fig. 3 for the labeling". The C2 rotational symme-
tries relate the DM vectors of any two bonds. That is, given
the DM vector on any one hyper-kagome bond, all others are
determined. This one DM vector, however, is itself entirely
unconstrained by the P1432 symmetry.

Since any single bond of the hyper-kagome is uniquely
associated with one triangle, it is natural to adopt a local
coordinate system based on this triangle to describe the DM
vector’s components. We denote the component aligned with
the bond D1, the component normal to the triangle plane D2,
and the component normal to the bond but localized in the
triangle plane D3. Three components have been illustrated in
Fig. 3. If we select the direction of D1 component axis by
assigning a direction to one bond !arrows in Fig. 3", the C2
rotation symmetry can generate the equivalent D1 axis for
other bonds !see Fig. 3". In every triangle, there is a chirality

of the D1 axis of three edges, which can be considered as the
direction of D2 axis. The cross product of D1 and D2 direc-
tional vector generates the direction of D3 axis.

Such a parametrization may be applied not only for the
hyper-kagome lattice, but for any lattice consisting of corner-
sharing triangles, such as the slightly distorted kagome lat-
tice of Fe/Cr-jarosites.13–15 In that example, the D1 compo-
nent is forbidden by a mirror plane symmetry. In Na4Ir3O8,
there are as we said no constraints on the Di, and we might
naively expect all three components to be nonvanishing and
comparable. We will investigate this by microscopic calcula-
tions below.

B. Local electron energetics of Ir ion

Before moving to the microscopic theory of spin-orbit
interactions, we need to understand the electron energy lev-
els of the Ir4+ ions. With coordinates taken from Table I in
Ref. 7, two Ir4+ and their surrounding O2− are drawn in Fig.
4. For A ion, the C2 axis orients along 1

#2 !1,−1,0". Under
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FIG. 3. !Color online" Left: One unit cell of the hyper-kagome
lattice. The pink balls are occupied by magnetic ions, which are
connected by dark black bonds. There are 12 sites in one primitive
unit cell. The arrow from site i to site j corresponds to Dij · !Si
"S j" in the Hamiltonian. We will call these arrows DM interaction
path. Right: DM vector components illustrated on one triangle. D1
is the component which is aligned with the DM interaction path
!left". D2 is the component normal to the triangle plane. The direc-
tion is decided by the chirality of bond direction. D3 is the compo-
nent perpendicular to the bond but in the triangle plane.
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t2g orbitals in octahedral crystal field: J=1/2

IrO6 octahedron
t2g: xy,xz,yz

Ir4+ : 5d5

eg : x2 � y

2
, 3z2 � r

2

Crystal electric field Spin-orbit coupling

j = 3/2

j = 1/2

Gang Chen, Balents PRB 2008,  
B.J. Kim etc, Science 2008,  
G. Jackeli, G. Khaliullin PRL 2009.

h{t2g}|L|{t2g}i = �l, H
soc

= ��l · S, j = l+ S

It is interesting to look at how the magnetic moment M = L+2S = -l+2S varies.

BTW, SOC is quenched for eg orbitals.
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Exchange interaction: direct

2

spin supercurrent ?”. The answer to this question can
be found in the Aharonov-Casher (AC) effect [14] and
Dzyaloshinskii-Moriya (DM) interaction [6, 7]. The con-
ventional DM interaction[7] is given by

HDM =
∑

<ij>

D⃗ij · (S⃗i × S⃗j). (4)

When the DM vector D⃗ij = Dij êz, the total Hamiltonian
Htotal = HXY + HDM with HXY in eq. (1) is written as

Htotal = −
∑

<ij>

J̃⊥ij

2
(e−iAij S+

i S−
j + eiAij S+

i S−
j ) (5)

where J̃⊥ijeiAij = J⊥ij + iDij . Therefore the DM vec-

tor D⃗ acts as the vector potential or gauge field to the
spin current. It is well known that the DM interaction
exists only when the inversion symmetry is broken at the
middle point between the two spins. Therefore when the
crystal structure has the inversion symmetry, the exter-
nal electric field E⃗ induces the DM interaction. Namely
D⃗ij ∝ E⃗× e⃗ij, where e⃗ij is the unit vector connecting the
two sites i and j. This form is identical to the Aharanov-
Casher (AC) effect, where the Lorentz transformation of
the electric field induces the magnetic field in the moving
frame which interacts with the spin moment. However
the magnitude of the coupling constant for AC effect is
extremely small in vacuum since it contains the rest mass
of the electron mc2 ∼= 5×105eV in the denominator. The
situation is different for the DM interaction in solids, i.e.,
the electrons are trapped in the strong potential of the
atoms with large momentum distribution leading to the
enhanced spin-orbit interaction. Therefore the gauge po-
tential Aij could be (a fraction) of the order of unity, e.g.
Aij ∼ 2π as seen below.

To illustrate this, consider the electron energy levels in
the ligand field of 3d-transition metal [16]. In the octa-
hedral ligand field, the d-orbitals are split into eg orbitals
and t2g orbitals. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energy lower than eg orbitals. If we take account
of the spin degree of freedom, there is 6-fold degeneracy
in t2g energy level. Due to the on-site spin-orbit interac-
tion, however, this degeneracy is lifted and we have two
groups of spin-orbit coupled states, labeled Γ7 and Γ8.
The 2-fold degenerate states, i.e., Γ7, are given by

|a⟩ =
1√
3
(|dxy,↑⟩ + |dyz,↓⟩ + i|dzx,↓⟩), (6)

and

|b⟩ =
1√
3
(|dxy,↓⟩ − |dyz,↑⟩ + i|dzx,↑⟩), (7)

respectively, where the quantization axis of spin is taken
to be the z axis. For the sake of simplicity, we consider

the above two states alone. However, our method is valid
for more general cases and one can easily generalize it to
any other spin-orbit strongly coupled situation.

We consider the case where the inversion symmetry
exists at the middle point of the two magnetic ions, and
the generic non-collinear magnetic ordering is realized
by the competing exchange interactions J ’s and/or by
the symmetry breaking due to the spin-orbit interaction.
Here the magnetic moment at j-th site points to the unit
vector e⃗j = (cosφj sin θj , sin φj sin θj , cos θj). The mean
field Hamiltonian applied to the Hubbard model is given
by ( we take the unit where h̄ = 1 hereafter): H =
−U

∑

j e⃗j · S⃗j, where U is energy of Coulomb repulsion.
For each site j, we restrict the Hilbert space to the 2-
dimensional one spanned by the above two states, and
the effective Hamiltonian is reduced to the 2× 2 matrix

−
U

3

[

− cos θ sin θe−iφ

sin θeiφ cos θ

]

. (8)

We diagonalize this Hamiltonian matrix to obtain eigen-
states |P ⟩, |AP ⟩ as

|P ⟩ = sin
θ

2
|a⟩ + eiφ cos

θ

2
|b⟩,

|AP ⟩ = cos
θ

2
|a⟩ − eiφ sin

θ

2
|b⟩. (9)

Here |P ⟩ and |AP ⟩ means the spin state parallel and
anti-parallel to the unit vector e⃗, and the corresponding
eigenvalues are −U

3 and +U
3 , respectively. For conve-

nience, we define the coefficients Aiσ and Biσ and ab-
breviate the above two states as, |P ⟩ =

∑

iσ Aiσ|diσ⟩,
|AP ⟩ =

∑

iσ Biσ|diσ⟩, where i = xy, yz, zx, σ =↑, ↓.
From now on, we focus on the three atom model as

shown in Fig.1, which represents the bond between the
two transition metal ions M1, M2 through the oxygen
atom O. We take the hole picture below, where the oxy-
gen orbitals are empty. We assume the generic case of e⃗1

and e⃗2 including the non-collinear configuration. Each
site has two states, i.e., |P ⟩ and |AP ⟩, mentioned above.
So we define |P ⟩j and |AP ⟩j (j = 1, 2) corresponding to
the magnetic order on each site. Because of the existence
of the oxygen atom, there are hopping processes between
the M site and the O site. The transfer integrals between
the d- and p-orbitals can be found in the Slater-Koster
tables[17, 18], and the hopping Hamiltonian is given as
follows:

Ht = H1−m
t + Hm−1

t + H2−m
t + Hm−2

t ,

H1−m
t = +V

∑

σ

(p†y,σd(1)
xy,σ + p†z,σd(1)

zx,σ) = (Hm−1
t )†

H2−m
t = −V

∑

σ

(p†y,σd(2)
xy,σ + p†z,σd(2)

zx,σ) = (Hm−2
t )†,

2
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two sites i and j. This form is identical to the Aharanov-
Casher (AC) effect, where the Lorentz transformation of
the electric field induces the magnetic field in the moving
frame which interacts with the spin moment. However
the magnitude of the coupling constant for AC effect is
extremely small in vacuum since it contains the rest mass
of the electron mc2 ∼= 5×105eV in the denominator. The
situation is different for the DM interaction in solids, i.e.,
the electrons are trapped in the strong potential of the
atoms with large momentum distribution leading to the
enhanced spin-orbit interaction. Therefore the gauge po-
tential Aij could be (a fraction) of the order of unity, e.g.
Aij ∼ 2π as seen below.

To illustrate this, consider the electron energy levels in
the ligand field of 3d-transition metal [16]. In the octa-
hedral ligand field, the d-orbitals are split into eg orbitals
and t2g orbitals. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energy lower than eg orbitals. If we take account
of the spin degree of freedom, there is 6-fold degeneracy
in t2g energy level. Due to the on-site spin-orbit interac-
tion, however, this degeneracy is lifted and we have two
groups of spin-orbit coupled states, labeled Γ7 and Γ8.
The 2-fold degenerate states, i.e., Γ7, are given by

|a⟩ =
1√
3
(|dxy,↑⟩ + |dyz,↓⟩ + i|dzx,↓⟩), (6)

and

|b⟩ =
1√
3
(|dxy,↓⟩ − |dyz,↑⟩ + i|dzx,↑⟩), (7)

respectively, where the quantization axis of spin is taken
to be the z axis. For the sake of simplicity, we consider

the above two states alone. However, our method is valid
for more general cases and one can easily generalize it to
any other spin-orbit strongly coupled situation.

We consider the case where the inversion symmetry
exists at the middle point of the two magnetic ions, and
the generic non-collinear magnetic ordering is realized
by the competing exchange interactions J ’s and/or by
the symmetry breaking due to the spin-orbit interaction.
Here the magnetic moment at j-th site points to the unit
vector e⃗j = (cosφj sin θj , sin φj sin θj , cos θj). The mean
field Hamiltonian applied to the Hubbard model is given
by ( we take the unit where h̄ = 1 hereafter): H =
−U

∑

j e⃗j · S⃗j, where U is energy of Coulomb repulsion.
For each site j, we restrict the Hilbert space to the 2-
dimensional one spanned by the above two states, and
the effective Hamiltonian is reduced to the 2× 2 matrix

−
U

3

[

− cos θ sin θe−iφ

sin θeiφ cos θ

]

. (8)

We diagonalize this Hamiltonian matrix to obtain eigen-
states |P ⟩, |AP ⟩ as

|P ⟩ = sin
θ

2
|a⟩ + eiφ cos

θ

2
|b⟩,

|AP ⟩ = cos
θ

2
|a⟩ − eiφ sin

θ

2
|b⟩. (9)

Here |P ⟩ and |AP ⟩ means the spin state parallel and
anti-parallel to the unit vector e⃗, and the corresponding
eigenvalues are −U

3 and +U
3 , respectively. For conve-

nience, we define the coefficients Aiσ and Biσ and ab-
breviate the above two states as, |P ⟩ =

∑

iσ Aiσ|diσ⟩,
|AP ⟩ =

∑

iσ Biσ|diσ⟩, where i = xy, yz, zx, σ =↑, ↓.
From now on, we focus on the three atom model as

shown in Fig.1, which represents the bond between the
two transition metal ions M1, M2 through the oxygen
atom O. We take the hole picture below, where the oxy-
gen orbitals are empty. We assume the generic case of e⃗1

and e⃗2 including the non-collinear configuration. Each
site has two states, i.e., |P ⟩ and |AP ⟩, mentioned above.
So we define |P ⟩j and |AP ⟩j (j = 1, 2) corresponding to
the magnetic order on each site. Because of the existence
of the oxygen atom, there are hopping processes between
the M site and the O site. The transfer integrals between
the d- and p-orbitals can be found in the Slater-Koster
tables[17, 18], and the hopping Hamiltonian is given as
follows:

Ht = H1−m
t + Hm−1

t + H2−m
t + Hm−2

t ,

H1−m
t = +V

∑

σ

(p†y,σd(1)
xy,σ + p†z,σd(1)

zx,σ) = (Hm−1
t )†

H2−m
t = −V

∑

σ

(p†y,σd(2)
xy,σ + p†z,σd(2)

zx,σ) = (Hm−2
t )†,

Spin-orbit entangled j=1/2 doublet

this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya !DM" interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, !19"

where,

H0 = #
jm!

"mdjm!
† djm! + #

kn!

"pn
pkn!

† pkn!

+
Ud

2 #
jmm!!!!

djm!
† djm!!!

† djm!!!djm!

+
Up

2 #
knn!!!!

pkn!
† pkn!!!

† pkn!!!pkn!, !20"

Ht = #
jm!

#
k!j"n

!tjm,kndjm!
† pkn! + H.c."

+ #
$j j!%

#
mm!

tjm,j!m!
d djm!

† dj!m!!, !21"

HLS = ##
j

! j · s j . !22"

k!j" denotes the O2− of the neighboring Ir4+ site j, djm!
† is the

creation operator of an electron with spin ! of the mth 5d
orbital of ith Ir ion, and "m is the energy of this orbital. m
will take 1, 2, and 3. pkn!

† is the creation operator of an
electron on the 2pn orbital with spin !. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j!m!

d

TABLE I. The parity sectors of 5d electron orbitals by C2
rotation.

State 5d orbitals at A 3d orbitals at B Parity

&1% xy yz even
&2% 1

'2 !xz−yz" 1
'2 !yx+zx" odd

&3% 1
'2 !xz+yz" 1

'2 !yx−zx" even

&4% x2−y2 y2−z2 odd
&5% 3z2−r2 3x2−r2 even

A

1

3

2!3'"
4

5!6'"6

4'

1'

2'

5'
B

C2

C2

x
y

z

x
y

z

FIG. 4. !Color online" Ir4+ and octahedron O2− environment
!thin black line". Two neighboring Ir4+ are denoted by A and B !in
orange". A /B’s six O2− are labeled as 1 /1!, 2 /2!, 3 /3!, 4 /4!, 5 /5!,
and 6 /6! !in pink", in which, 2 and 3!, 5 and 6! label the same
points. The distances between Ir4+ and O2− order this way: &A5&
= &A6&= &B5!&= &B6!&$ &A3&= &A4&= &B3!&= &B4!&$ &A1&= &A2&= &B1!&
= &B2!&. The C2 axis !thick dash line" orients along 1

'2 !1,−1,0" at
Ir4+ A and 1

'2 !0,1 ,1" at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.
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FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.
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Surprisingly, direct hopping gives us a Heisenberg model !  
This is very special especially since orbitals have orientations. 
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz
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pz

pz

(b)

xz yz

yz xz
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass

Gang Chen’s theory group 

Gang Chen’s theory group



Exchange interaction: indirect, iridate as Kitaev material

Remark: almost all iridates have the same local structure,  
-  IrO6 form an octahedron, 
-  Neighboring IrO6 octahedra share 2 oxygens, 
- Ir-O-Ir bond angle is close to be 90 degrees.   
- The microscopic analysis may apply to many other iridate families. 

this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya !DM" interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, !19"

where,

H0 = #
jm!

"mdjm!
† djm! + #

kn!

"pn
pkn!

† pkn!

+
Ud

2 #
jmm!!!!

djm!
† djm!!!

† djm!!!djm!

+
Up

2 #
knn!!!!

pkn!
† pkn!!!

† pkn!!!pkn!, !20"

Ht = #
jm!

#
k!j"n

!tjm,kndjm!
† pkn! + H.c."

+ #
$j j!%

#
mm!

tjm,j!m!
d djm!

† dj!m!!, !21"

HLS = ##
j

! j · s j . !22"

k!j" denotes the O2− of the neighboring Ir4+ site j, djm!
† is the

creation operator of an electron with spin ! of the mth 5d
orbital of ith Ir ion, and "m is the energy of this orbital. m
will take 1, 2, and 3. pkn!

† is the creation operator of an
electron on the 2pn orbital with spin !. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j!m!

d

TABLE I. The parity sectors of 5d electron orbitals by C2
rotation.

State 5d orbitals at A 3d orbitals at B Parity

&1% xy yz even
&2% 1

'2 !xz−yz" 1
'2 !yx+zx" odd

&3% 1
'2 !xz+yz" 1

'2 !yx−zx" even

&4% x2−y2 y2−z2 odd
&5% 3z2−r2 3x2−r2 even

A

1

3

2!3'"
4

5!6'"6

4'

1'

2'

5'
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FIG. 4. !Color online" Ir4+ and octahedron O2− environment
!thin black line". Two neighboring Ir4+ are denoted by A and B !in
orange". A /B’s six O2− are labeled as 1 /1!, 2 /2!, 3 /3!, 4 /4!, 5 /5!,
and 6 /6! !in pink", in which, 2 and 3!, 5 and 6! label the same
points. The distances between Ir4+ and O2− order this way: &A5&
= &A6&= &B5!&= &B6!&$ &A3&= &A4&= &B3!&= &B4!&$ &A1&= &A2&= &B1!&
= &B2!&. The C2 axis !thick dash line" orients along 1

'2 !1,−1,0" at
Ir4+ A and 1

'2 !0,1 ,1" at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.
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FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz

180o
(a)

pz

pz

(b)

xz yz

yz xz

o90

FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass

Kitaev term for gamma bond 
after including Hund’s coupling

J =
2!t̃i j

d !2

Ud
, "46#

Dij = −
4i

Ud
"Cij

d t̃ ji
d − t̃i j

d C ji
d # , "47#

!Jij =
4

Ud
"C! ij

d C" ji
d + C! ji

d C" ij
d − 1"Cij

d · C ji
d ## . "48#

F. Strong spin-orbit interaction

As discussed in Sec. I, in the strong spin-orbit limit, "
# !$1,2−$3!, one can obtain effective total angular momentum
eigenstates with j=1 /2. Choosing Eq. "28#, and rewriting the
corresponding eigenstates in the canonical t2g basis, Eq. "32#
becomes

ai3↑ =
1
$3

""− i#di,xz↓ + di,yz↓ + di,xy↑# , "49#

ai3↓ =
1
$3

""i#di,xz↑ + di,yz↑ − di,xy↓# , "50#

in which we have expressed ai3↑ /ai3↓ in terms of the t2g
annihilation operator to avoid the position dependence of the
coefficients.

1. Superexchange through oxygen ions

The complicated expression of Eq. "42# requires simplifi-
cation if we want to have a quantitative understanding of the
exchange coupling. However, some information can be im-
mediately obtained from Eq. "50#, in particular that all t̃i3,kn

=0, which makes J, Dij, and !Jij only the remaining terms
with Ci,kn. To simplify further, we need some explicit form
for the transfer integrals tjm,kn. Hence, we will make further
approximation that the surrounding octahedra of Ir4+ are per-
fect so that we can apply the cubic symmetry to find out the
nonvanishing transfer integrals and also the relation between

them, which is listed in Table II for Ir4+ A and B in Fig. 4.
Deviations from these forms should presumably be small
since the noncubic distortion is.

Based on the transfer integrals listed in Table II, we evalu-
ate the exchange coupling constant J and !JAB. For bond AB,
collecting nonzero coupling constants "actually J=0, DAB
=0#, we obtain

HAB = − JSA
x SB

x + JSA
y SB

y + JSA
z SB

z , "51#

with

J =
4
9

!t!4"2g2px,5px
− g2px,2px

− g5px,5px
# . "52#

Since from Eq. "45# g2px,5px
%g2px,2px

,g5px,5px
, then J%0.

Thus we find ferromagnetic interaction between the x com-
ponents and antiferromagnetic interactions between the y and
z components along this link. This corresponds to the form in
Eq. "1# of Sec. I, with $ij

y =$ij
z =−$ij

x =1 for this link.
Because all links are equivalent by point-group opera-

tions, we can deduce the exchange interactions of all other
bonds by symmetry. The sites A and B correspond to point 4
and 8 in our notation in Fig. 3. The result is that the ex-
change interactions on each bond are ferromagnetic between
one component, and antiferromagnetic between the other
two. These principal components are always along x, y, or z.
We will call a bond in which the x component is ferromag-
netic a “type-x bond,” and similarly for y and z. The type of
each bond is listed in Table III. This Hamiltonian breaks spin
rotational symmetry strongly. A simple rule can be used to
characterize the Hamiltonian of a given bond: if bond "ij# is
located in y-z plane, then the bond is type-x bond and has
type-x exchange Hamiltonian; if it is located in x-z plane,
then the bond is type-y bond and has type-y exchange Hamil-
tonian; if it is located in x-y plane, the bond is type-z bond
and has type-z exchange Hamiltonian. As a result, the three
bonds in every triangle "see Fig. 3# have different exchange
Hamiltonian. The ground states of this Hamiltonian will be
studied in Sec. IV.

TABLE II. The transfer integrals between the t2g orbitals on A
and B Ir4+ and the px,y,z orbitals on the intermediate O2− ions. “2px”
represents the px orbital on the second O2− ion in Fig. 4, “A, xz”
represents the xz orbital on the A ion, and the entry t on the row of
“A, xz” and the column of “2px” denotes the hopping amplitude
"transfer integral# from xz orbital at A ion to px orbital on second
O2− ion. Other notation can be understood likewise.

2px 2py 2pz 5px 5py 5pz

A, xz t 0 0 0 0 0
A, yz 0 t 0 0 0 −t
A, xy 0 0 0 −t 0 0
B, xz 0 0 0 −t 0 0
B, yz 0 0 t 0 −t 0
B, xy t 0 0 0 0 0

TABLE III. The bond types of 24 bonds in one unit cell. Points
and bonds are based on the notation in Fig. 3. “ī” is used for the
points which are simply a translation by a basis vector from point
“i.”

Type x Type y Type z

"1,2# "1,3# "2,3#
"3,5# "3,4# "4,5#

"5̄ ,7# "5̄ ,6# "6,7#

"4,8# "8,9# "4,9#
"8,11# "7,11# "7,8#

"1̄ , 6̄# "6̄ ,12# "1̄ ,12#
"9,10# "2̄ ,9# "2̄ ,10#
"10,12# "10,11# "11,12#

GANG CHEN AND LEON BALENTS PHYSICAL REVIEW B 78, 094403 "2008#
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that splits the (2J +1)-fold degeneracy of the spin-orbit-
entangled total moment J. For a half-integer moment
J , the CEF ground state is a Kramers’ doublet whose
degeneracy is protected by the time reversal symmetry.
Often, the CEF gap is much larger than the tempera-
ture scale and exchange interaction in the system, and
the low-temperature magnetic properties are fully cap-
tured by the ground state doublets that are modeled by
pseudospin-1/2 local moments.

For the rare-earth double perovskites (Ba2LnSbO6, Ln
= rare earths)40–45, we propose a generic model on the
FCC lattice that describes the nearest-neighbor interac-
tion between the Kramers’ doublet local moments. This
generic model involves the Heisenberg interaction, the
Kitaev interaction, and an additional crossing exchange
that is symmetric in two pseudospin components. In the
mean-field phase diagram of this generic model, we find
large parameter regions that support ground states with
continuous degeneracies. Due to the spin-orbit entangle-
ment, the generic model does not have any continuous
symmetry. The continuous degeneracy is thus acciden-
tal and not related to any microscopic symmetry of the
model. We expect that, the quantum fluctuations should
break the accidental degeneracy and favor magnetic or-
dered states. This mechanism is known as order by quan-
tum disorder (ObQD)36,46–48. Because of the continuous
degeneracy, the fluctuations within the degenerate mean-
field ground state manifold are very soft and are char-
acterized by the pseudo-Goldstone mode with a nearly
gapless dispersion when the system becomes ordered.
The pseudo-Goldstone mode is a direct consequence of
the ObQD, and the consequence of the nearly gapless
pseudo-Goldstone mode is a T 3 temperature dependence
of the heat capacity in the ordered phases. In addition
to the pseudo-Goldstone mode, the Weyl magnon mode49

is found in the magnetic excitation for certain magnetic
order. In contrast to the low energy pseudo-Goldstone
mode, the Weyl magnon mode appears at finite energies
due to the bosonic nature of the spin wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of
this model in Sec. III. Competition between di↵erent
interactions, together with the geometrical frustration,
leads to a very rich phase diagram. Specifically, among
di↵erent phases, we focus on the regions with a contin-
uous U(1) or O(3) degeneracy, in Sec. IV. The degen-
eracy at the mean-field level is lifted when the quantum
fluctuation is included, and various magnetic orders are
favored in these regions. We demonstrate the ObQD ex-
plicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Fi-
nally, we conclude with a discussion in Sec. V.
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FIG. 2. (Color online.) The mean-field phase diagrams for
an antiferromagnetic Heisenberg coupling (a) and for a fer-
romagnetic Heisenberg coupling (b). The incommensurate
phase has non-uniform spin amplitudes on every site. Both
phase I and phase II have antiferromagnetic collinear orders
with the wavevector X, and a continuous U(1) ground state
degeneracy exists in phase II. Both phase III and phase IV
have antiferromagnetic collinear orders with the wavevector
L, and phase IV shows a U(1) degeneracy. Phase V is ferro-
magnetically ordered with an O(3) ground state degeneracy.
See the main text and Tab. I for a detailed discussion. The
lattice constant of the FCC lattice is set to unity throughout
the paper.

II. THE GENERALIZED
KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides40,
Ba2LnSbO6 (Ln= rare earth), where the Ba ions are lo-
cated at the A sites of the perovskite-type oxides ABO3,
and the Ln and Sb ions are regularly ordered at the B
sites. Specifically, the Ln and Sb ions are ordered in the
rock-salt type structure, with space group Fm3̄m. Each
of the two kinds of ions forms a separate FCC lattice. The
magnetic behavior depends on the Ln3+ ions ([Xe]4fn,
[Xe]: electronic xenon core), where the SOCs are typi-
cally quite large. We study the Kramers’ doublet that is
formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.
Under the Fm3̄m space group symmetry, the pseu-

dospin, S, that acts on the Kramers’ doublet of the
rare earth ion, transforms as a pseudovector. Both the
pseudospin position and the pseudospin orientation are
transformed. The most general exchange interaction be-
tween the local moments on the nearest neighbor sites,

3

Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.

allowed by the lattice symmetry, is a generalized Kitaev-
Heisenberg model with

H =
X

hiji�±

⇥
J S

i

·S
j

+KS�

i

S�

j

±F (S↵

i

S�

j

+S�

i

S↵

j

)
⇤
, (1)

where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system50. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,21,26,27,38.

Compared with the rare-earth triangular system37,38,51

and the pyrochlore system30,32,34, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of

the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as
the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method52

that is to replace the local hard spin constraint by a
global one such that

X

i

|S
i

|2 = NS2, (2)

where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,

Ecl =
X

q

X

↵�

E
↵�

(q)S↵

q S�

�q, (3)

under the global constraint. Here we have defined

S↵

i

=
1

N
1
2

X

q

S↵

q eiq·ri . (4)

Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained

Ordered double perovskites  
with rare-earth moments
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Kitaev 相互作⽤用以及得到物理⾏行为。 所以要寻找honeycomb lattice稀⼟土磁体。

FY Li, YD Li, ……, Gang Chen*, Phys. Rev. B, 2017 

李⾮非也博⼠士
（复旦⼤大学）

李耀东
(复旦-> Santa Barbara)

Gang Chen’s theory group 

Gang Chen’s theory group
其实从物理的⾓角度，真正给予我们kitaev 
相互作⽤用的不是 ir, ru, 这些元素，


⽽而是⾃自选轨道耦合 以及 特定的晶格结
构，。。。 所以我们可以视野开阔⼀一
些，


从这个⾓角度，稀⼟土磁体会是更好的kitaev 
材料，更short range，更强的soc, ⽽而且
没有中⼦子吸收的问题。。。。


按照这个思想，我们提出了。。。


指出可以在稀⼟土材料⾥里头实现kitaev 
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We study the physics of the spin-one local moments with a generic interacting spin model on
a pyrochlore lattice. Our spin model includes the antiferromagnetic Heisenberg interaction, the
Dzyaloshinskii-Moriya interaction and the single-ion spin anisotropy. We develop a flavor wave
theory and combine with a mean-field approach to study the global phase diagram of this model
and establish the relation between different phases in the phase diagram. We find the regime
of the quantum paramagnetic phase where a degenerate line of the magnetic excitations emerges
in the momentum space. We further predict the critical properties of the transition out of the
quantum paramagnet to the proximate orders. The presence of quantum order by disorder in
the part of the ordered phases is then suggested. We also point out the generic existence of the
topological excitations in various phases. We discuss the relevance with fluoride pyrochlore material
NaCaNi2F7 and explain the role of the spin-orbit coupling and the magnetic structures of the Ru-
based pyrochlore A2Ru2O7 and the Mo-based pyrochlore A2Mo2O7.

I. INTRODUCTION

Recently, there is a growing interest and effort in
the frustrated magnetic systems with spin-one local mo-
ments, and interesting quantum phases and unconven-
tional excitations have been predicted for frustrated spin-
one systems1–8. In particular, a chiral liquid phase with
a finite vector chirality order has been obtained for the
spin-one triangular lattice magnet8, Haldane phase like
symmetry-protected topological phases have been sug-
gested for three-dimensional spin-one systems5,9, spin liq-
uid related physics and phenomenology has been explored
for the layered triangular material Ba3NiSb2O9

10–16, and
exotic excitations with degenerate band minima were es-
tablished for the spin-one diamond lattice antiferromag-
net6,17. In this work, we turn our attention to the spin-
one pyrochlore lattice antiferromagnet.

Pyrochlore lattice antiferromagnet is a stereotype of
spin systems with geometrical frustration and potential
quantum phases. In last decade or so, most of efforts
in the field were devoted to the rare-earth pyrochlore
magnets where the relevant degrees of freedom are cer-
tain spin-orbital-entangled effective spin-1/2 local mo-
ments18–63. Due to the geometrical frustration and the
bond-dependent anisotropic spin interaction19,20,25,64,65,
interesting magnetic phases and phenomena, quantum
spin ice and U(1) quantum spin liquid for example, have
been proposed and explored22,25–27. This field is fer-
tilized by the existence of the abundant rare-earth py-
rochlore magnets with different magnetic ions. Recently,
a new family of fluoride pyrochlore systems with the
transition metal ions Fe2+, Co2+, Ni2+ and Mn2+ has
been synthesized66–69. Unlike the rare-earth 4f electrons
whose interactions are usually quite small, these new

systems, consisting of transition metal ions, have much
stronger spin interactions. Moreover, spin-orbit coupling
is less important in these systems, although spin-orbit
coupling sometimes becomes active and modifies the lo-
cal moment structure if there exists a partially filled t2g
shell for the magnetic ions70.

Just like the fundamental distinction between the half-
integer and the integer spin moments for one dimensional
spin chains that was pointed out by F.D.M. Haldane1,2,
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FIG. 1. The phase diagram of our generic spin model for
the spin-1 pyrochlore system. Here, the Heisenberg exchange
J is set to be antiferromagnetic with J > 0. “Quant Para”
refers to the quantum paramagnetic phase. The details of the
ordered phases are explained in the main text. The (red) dot
is the Heisenberg point of the model. A similar phase diagram
with the ferromagnetic Heisenberg exchange is found in the
Appendix.
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the physical properties of the half-integer spin and the
integer spin moments on the pyrochlore lattice are ex-
pected to be quite different. In fact, for the rare-earth
pyrochlore magnets, such a distinction has already been
manifested in the Kramers doublet system and the non-
Kramers doublet system where the non-Kramers dou-
blet originates from integer spin and supports magnetic
quadrupolar order25,27,33. Since most works in this field
are dealing with effective spin-1/2 pyrochlores, it is valu-
able to consider the physics of the spin-1 pyrochlores.

Among the existing fluoride pyrochlores, Co2+ and
Mn2+ have half-integer spin moments while Ni2+ and
Fe2+ have integer spin moments66–69. From the con-
ventional wisdom, when the spin moment is large, the
system tends to behave more classically. For geometri-
cally frustrated systems, however, the spin-one local mo-
ments may occasionally give rise to quantum phenomena.
Indeed, in the Ni-based fluoride pyrochlore NaCaNi2F7,
spin-ordering-related features were not found in the ther-
modynamic measurement down to the spin glassy tran-
sition at 3.6K that is attributed to the possible bond
randomness, although the system has the Curie-Weiss
temperature �129K66. Apart from this new material,
the spin-one pyrochlores have already been suggested for
the Ru-based pyrochlore A2Ru2O7 and the Mo-based py-
rochlore A2Mo2O7, despite the fact that the stronger
spin-orbit coupling of the 4d electrons may be more im-
portant in these two systems. Partly motivated by these
experiments and more broadly about the physics of the
spin-one moments, in this paper, we study the generic
spin model and the magnetic properties of the spin-one
local moments on the pyrochlore lattice.

We point out that, in addition to the Heisenberg model
that is usually assumed for the 3d transition metal ions
and sometimes for the 4d transition metal ions, there
exist the on-site single-ion spin anisotropy and the anti-
symmetric Dyzaloshinskii-Moriya interaction. Our phase
diagram is summarized in Fig. 1. In our approach, we
start from the quantum paramagnetic ground state in
the strong single-ion spin anisotropic limit and explore
the instability of this quantum state as the Heisenberg
exchange and the Dyzaloshinskii-Moriya interaction are
switched on. Mostly relying on a flavor wave theory, we
access the phase transitions out of this quantum para-
magnetic state and explore the properties of criticalities.
Inside the ordered phases, we implement the usual mean-
field theory and establish the phase diagram on the or-
dered side. We further identify the region on the or-
dered side where there exist continuous degeneracies of
the ground state manifold at the mean-field level. The
quantum fluctuation is studied and lifts the continuous
degeneracies. The topological magnetic excitations in
different phases are also discussed.

The following parts of the paper are organized as fol-
lows. In Sec. II, we introduce the model Hamiltonian.
In Sec. III, we use the flavor wave theory and study the
magnetic excitation and the instability of the quantum
paramagnetic phase. In Sec. IV, we focus on the ordered

side and study the magnetic properties of the magnetic
orders. Finally in Sec. V, we summarize the theoreti-
cal prediction and the physical properties of the phase
diagram, discuss the materials’ relevance, and make an
extension to spin-3/2 pyrochlores.

II. MODEL HAMILTONIAN

We start from the local moment physics of the Ni2+
ion in NaCaNi2F7. Although the starting point here
is specific to NaCaNi2F7, the physical model itself ap-
plies broadly to other spin-one pyrochlore systems, and
we merely deliver the model through the specific case
of NaCaNi2F7. The Ni2+ ion has a 3d8 electron config-
uration. In the octahedral crystal field environment of
NaCaNi2F7, the six electrons occupy the lower t2g or-
bitals, and the remaining two electrons occupy the upper
eg orbitals and form a spin S = 1 local moment. There
is no orbital degeneracy here. We propose the follow-
ing spin model for the interaction between the local mo-
ments. The minimal spin Hamiltonian is given as65,
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and Dij ’s on other bonds are readily obtained from the
lattice symmmetry. The Dz term is the single-ion spin
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FIG. 5. Configuration of ordered states. (a) All-in all-out AFM. (b) Splayed FM. (c) Coplanar XY AFM1. (d) Coplanar XY
AFM2. (e) Non-coplanar XY AFM. The magnetic unit cell of the ordered states that are listed here is identical to the crystal
unit cell.

� to X and symmetry equivalent momentum directions
in Fig.X(a),(b), and doubly degenerate Weyl nodes from
� to X and W to L in Fig.X(b).

The two-fold band degeneracy in the inset of Fig.X is
protected by a glide symmetry. One can apply an exter-
nal magnetic field to split the triply degenerate nodes to
two doubly degenerate Weyl nodes, since a generic field
removes this symmetry and break the two-fold band de-
generacy.

Both triply degenerate nodes and double Weyl nodes
have been previously discussed in the electronic systems.
Unlike the cases for the electronic systems where the
modes at the nodes become unconventional quasiparticles
if the Fermi level is tuned to the nodes, these topologi-
cal excitations occur at the finite energies for the bosonic
flavor waves.

IV. MEAN-FIELD THEORY

To study the proximate magnetic order out of the
quantum paramagnetic phase, one natural approach
would simply follow the flavor wave theory that we have
introduced in the previous section and study the conden-
sation of the critical flavor wave modes. This is certainly
feasible and requires including the interactions between
the flavor wave modes that lift the degeneracy of the
low-energy modes. We, however, implement a mean-field
theory in this section. This is justified since the system
develops magnetic orders in the parameter regimes that
we are interested. This mean-field approach works best
deep on the ordered side. In the mean-field theory, we
simply replace the spin operator with the mean-field or-
der parameter and optimize the mean-field Hamiltonian,

hHi =

X

hiji

J mi ·mj + Dij · (mi ⇥mj)

+

X

i

Dz(mi · ẑi)2, (16)

under the local constraint |mi|2 = S2. The mean-
field ground state can then be found using the simple
Luttinger-Tisza method. Our results are summarized

and displayed in Fig. 1 and Fig. 5. All of these orders sup-
port an ordering wavevector Q = 0 where the magnetic
unit cell coincides with the crystal unit cell. In the fol-
lowing, we describe the magnetic orders in details. Since
we are interested in magnetic orders in this section, our
results will be presented from bottom to top and from
left to right in the phase diagram of Fig. 1.

A. All-in all-out AFM

In the lower left region of the phase diagram, the “all-in
all-out” magnetic order is stabilized. This is understood
as follows. The easy-axis anisotropy favors the spins to
be aligned with the local ẑ direction, and the Heisen-
berg interaction requires the vector addition of the spins
from the four sublattices to be zero. The Dzyaloshinskii-
Moriya interaction is less obvious, but naturally favors
non-collinear spin configurations. Simple diagonaliza-
tion of the Dzyaloshinskii-Moriya interaction term di-
rectly gives the “all-in all-out” spin configuration. There-
fore, all three interactions in the Hamiltonian are opti-
mized by the “all-in all-out” spin configuration. Since
the Dzyaloshinskii-Moriya interaction interaction favors
this ground state, this “all-in all-out” state extends fur-
ther into the easy-plane anisotropic regime with Dz > 0.
As the local ẑ direction is a three-fold rotational axis,
this symmetry operation does not generate new ground
states, and the ground state spin configuration merely
has a Z2 degeneracy from the time-reversal transforma-
tion.

B. Splayed FM

In the lower right region of the phase diagram, the
“splayed ferromagnet” (“splayed FM”) is stabilized. One
such spin configuration is given in Fig.Xa and parame-
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In many transitional metal oxides, the electron config-
uration on the metal ions has orbital degeneracy in addi-
tion to spin degeneracy. In these systems, the sign and
magnitude of the spin-spin couplings depend on the orbital
occupancy. This may result in interesting magnetic prop-
erties of the Mott insulating phase, and is believed to be
relevant to unusual properties of many vanadium, titanium,
manganese, and nickel oxides [1–12]. It may be also rele-
vant to the quasi-one-dimensional tetrahis-dimethylamino-
ethylene (TDAE)-C60 [13], and to artificial quantum dot
arrays [14]. Orbitals are much more difficult to measure
in experiments than spins. Recent successful measurement
of orbitals using a reflection technique in x ray [15] has
opened a new avenue in the study of orbitals in spin sys-
tems. The Hamiltonian describing spin s ≠ 1y2 systems
with a twofold orbital degeneracy (isospin t ≠ 1y2) was
derived by Castellani et al. [2]. The Hamiltonian is gener-
ally rotationally symmetric in $s space, but not in $t space.
The anisotropy of the latter is due to Hund’s rule and the
anisotropy in orbital wave functions.
In this Letter we study a simplified Hamiltonian, Eq. (1),

which has SU(4) symmetry. The insight learned from this
higher symmetric model should shed light on our under-
standing of more realistic systems. The model provides a
new possibility for spin liquid ground states in higher di-
mensions. For the square lattice, using the fermion mean
field theory, we find the flavor liquid state to be stable
against flavor or generalized spin density wave formation.
By comparing the energies of long-ranged ordered states
to short-ranged ones on the triangular lattice, we argue
the ground state is likely to be a resonant plaquette flavor
liquid. In the SU(4) Néel ordered state, the spin-spin corre-
lations can be antiferromagnetic (AF) between two neigh-
boring sites with parallel magnetic moments.
The simplest AF quantum spin-1y2 system with

twofold degenerate orbitals (t-1y2) and rotational invari-
ance in both $s and $t spaces is given by [5]

H ≠
X

ki,jl
s2$si ? $sj 1 1y2d s2 $ti ? $tj 1 1y2d , (1)

where kijl is the nearest neighbor (nn) pairs. Apparently,
(1) has SUs2d 3 SUs2d symmetry, representing rotational

invariance in both spin and orbital spaces, and also
interchange symmetry between spins and orbitals. As we
will see, the full symmetry of (1) is actually the higher
symmetry group SU(4), which unifies the spin and orbital
degrees of freedom. An intuitive way to see the SU(4)
symmetry is to rewrite (1) as

H ≠ s1y4d
X

ki,jl

0
@

15X

g≠1
A

g
i A

g
j 1 1

1
A , (2)

where Ag ≠ 2sa , 2ta , 4satb for a, b ≠ x, y, z. Ag can
be considered as the 15 generators of the SU(4) group
[13]. The symmetry can be examined in terms of the more
standard generators of group theory. The Hamiltonian (1)
acts on a Hilbert space of four basis states at each site.
Choosing these as jsz , tzl, we label them as

j1l ≠ j1y2, 1y2l, j2l ≠ j 2 1y2, 1y2l ,

j3l ≠ j1y2, 21y2l, j4l ≠ j 2 1y2, 21y2l .
(3)

These basis states form a fundamental representation of
SU(4). The conventional SU(4) generators Sn

m act on
a basis state jml according to Sn

mjml ≠ dn,mjml. The
SU(4) algebra is given by fSn

m, Sl
kg ≠ dn,kSl

m 2 dm,lS
n
k .

In terms of electron operators, Sn
msid ≠ cy

i,mci,n, where
ci,m is the annihilation operator of an electron at site i and
state jml. The operators $s and $t can be expressed in terms
of Sn

m. For example, 2sz ≠
P

m≠1,3sSm
m 2 Sm11

m11d, and
s1 ≠

P
m≠1,3 Sm11

m . The expressions for $t are similar.
In terms of Sn

m, (1) becomes

H ≠
X

ki,jl
Sn

msidSm
n s jd . (4)

The repeated indices n, m are summed in Eq. (4) and
hereafter. It is clear from (4) that H has global SU(4)
invariance.
Equation (1), or equivalently (4), gives the effective

Hamiltonian for the corresponding Hubbard model in the
large U-limit and at 1y4 filling. Equation (4) is equivalent
to the model studied by Pokrovskii and Uimin [16],
and to one of a class of models that has been solved
by Sutherland in one dimension (1D) [17]. This model
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the pyrochlore lattice, and ẑi is the local h111i axis that
is defined locally for each pyrochlore sublattice. Even
though the Dzyaloshinskii-Moriya interaction arises from
the first order effect of the spin-orbit coupling and the
single-ion spin anisotropy arises from the second order
effect of the spin-orbit coupling, it does not necessar-
ily indicate the single-ion anisotropy is weaker than the
Dzyaloshinskii-Moriya interaction. In fact, ignoring the
effect from Hund’s coupling, one has the following re-
sults72

|Dij |/J ⇠ O(�/�), (3)
|Dz|/� ⇠ O(�2/�

2
), (4)

where � is the spin-orbit coupling and � is the crystal
electric field splitting between the t2g and the eg man-
ifolds and can be much larger than the superexchange
interaction J . As a result, whether � appears as the lin-
ear order or as the second order cannot be used to argue
for the relative magnitudes of |Dij | and Dz. We include
both couplings in our model Hamiltonian. We have ne-
glected the pseudo-dipolar interactions, as they are sub-
leading compared to the Dzyaloshinskii-Moriya interac-
tion for the 3d transition metal ions without any orbital
degeneracy73. The pseudo-dipolar interactions, however,
may become important for the 4d transition metal ions,
and we will come back to this point in Sec. V.

III. FLAVOR WAVE THEORY FOR QUANTUM
PARAMAGNET

Our minimal model contains three different interac-
tions. The quantum ground state of the Heisenberg
model is one of the hardest problems in quantum mag-
netism, so it is not so profitable to start from there. In-
stead, we start from the strong single-ion spin anisotropy
limit with Dz > 0 where the ground state is a simple
product state of the quantum paramagnet with

|quantum paramagneti =

Y

i

|Sz
i ⌘ Si · ẑi = 0i. (5)

This state is impossible for the half-integer spin local mo-
ments as there is always Kramers’ degeneracy. From this
well-understood limit, we turn on the exchange interac-
tion and study the evolution of the magnetic excitation
and the instability.

For our convenience, we first rewrite the spin Hamil-
tonian in the local coordinate basis since the single-ion
anisotropy is defined locally. Under the local coordinate
systems that are defined in the Appendix, our spin model
reduces to65

H =

X

hiji

⇥
JzzS

z
i Sz

j + J±(S+
i S�

j + h.c.) + J±±(�ijS
+
i S+

j

+�⇤
ijS

�
i S�

j ) + Jz±(⇠ijS
z
i S+

j + ⇠ijS
+
i Sz

j + h.c.)
⇤

+

X

i

Dz(S
z
i )

2, (6)

where these spin operators, Sz
i , S+

i , S�
i , are defined in the

local coordinate system for each sublattice. Note the ex-
change part of the model has the general form as the one
for the Kramers doublet on the pyrochlore lattice, and
the bond dependent phase variables �ij and ⇠ij where �ij
takes 1, ei2⇡/3, e�i2⇡/3 for the bonds on different planes
and ⇠ij = ��⇤

ij . The relation between the couplings in
the above equation and the couplings in Eq. (1) is listed
in Appendix. In the following, we will focus our analysis
on this form of the model.

A. Flavor wave representation

This quantum paramagnet has no long-range magnetic
order, and the conventional Holstein-Primarkoff spin-
wave theory cannot be directly applied at all. For our
purpose, we invoke so-called flavor wave theory, that
was first developed in Ref. 74 for the SU(4) spin-orbital
model75, and properly adjust the theory to our case. We
define the states in the Hilbert space as

|mii ⌘ |Sz
i = mi, (7)

where m = 0,±1, and the elementary operator is then
given as Sn

m(i) ⌘ |miihn|i. For the quantum paramagnet,
we introduce the following flavor-wave representation,

S0
0(i) = 1 � a†

1(i)a1(i) � a†
1̄(i)a1̄(i), (8)

S0
1(i) = a†

1(i)
⇥
1 � a†

1(i)a1(i) � a†
1̄(i)a1̄(i)

⇤ 1
2 , (9)

S0
1̄(i) = a†

1̄(i)
⇥
1 � a†

1(i)a1(i) � a†
1̄(i)a1̄(i)

⇤ 1
2 , (10)

S1
1̄(i) = a†

1̄(i)a1(i), (11)

S1
1(i) = a†

1(i)a1(i), (12)
S1̄
1̄(i) = a†

1̄(i)a1̄(i), (13)

where a†
1(i), a

†
1̄(i) create magnetic excitation from |0ii to

|1ii, |�1ii, respectively. Here we have introduced two fla-
vors of the boson operators. This is very different from
the usual Holstein-Primakoff transformation where only
one boson is introduced to describe the quantum fluctu-
ation of the magnetic order. The underlying reason is
due to the particular form of the Hamiltonian and the
quantum paramagnetic ground state that allow the exci-
tations of the |1ii, |�1ii states to be equally important.
As a consequence, the excitation spectra for this quantum
paramagnet should have eight bands, rather than the four
bands in the usual Holstein-Primakoff spin wave theory.
Moreover, since the model has no continuous symmetry,
the magnetic excitation should be fully gapped.

B. Linear flavor wave theory

To carry out the actual calculation of the excitation
spectra, we replace the physical spin operators using the
flavor wave transformation and keep the Hamiltonian to
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FIG. 3. The (gapped) magnetic excitations in the quantum
paramagnetic phase from the flavor wave theory. Notice the
existence of the triply degenerate nodes (in red circle) and
doubly degenerate Weyl nodes (in blue circle) in the spec-
trum. In the inset of (a), the two degenerate bands are split
artificially for demonstration. The parameters are XXX.

the quadratic orders in the boson operators. The result-
ing flavor wave Hamiltonian is given as

Hfw =

X

k

 

†
kM(k) k, (14)

where

 k ⌘ �
ak01, ak01̄, ak11, ak11̄, ak21, ak21̄, ak31, ak31̄,

a†
k̄01

, a†
k̄01̄

, a†
k̄11

, a†
k̄11̄

, a†
k̄21

, a†
k̄21̄

, a†
k̄31

, a†
k̄31̄

�T
,(15)

and M(k) is a 16⇥ 16 matrix whose matrix elements are
listed in Appendix.X. Here ¯k ⌘ �k.

In Fig. 3, we plot the linear flavor wave dispersion for
the specific choices of the couplings within the quantum
paramagnetic phase. As we expect, there are eight bands
of the magnetic excitations that are fully gapped. Be-
sides the doubled number of the bands, we notice other
unusual properties of the excitations. We find that, in
the D < 0 region of the quantum paramagnetic phase,
the minima of the magnetic excitations develop a line of
degeneracies from � to L in the momentum space. In
the D > 0 region of the quantum paramagnetic phase,
the band minima of the two lowest bands touch at the �
point with an accidental two-fold degeneracy in the spin
space. Both the momentum space degeneracy and the
spin space degeneracy are not protected by any symme-
try of the spin Hamiltonian. We expect the emergent
degeneracy to be lifted when we go beyond the linear fla-
vor wave theory and include the interaction between the
flavor bosons.

C. Critical properties from flavor wave theory

As we further increase the exchange interaction from
the quantum paramagnet, the gap of the magnetic ex-
citations gradually diminishes. Eventually, as the gap is
closed, phase transition happens and the system develops
magnetic orders. To understand the critical properties,
we examine the transition from the flavor wave theory.
In the D < 0 region, the degenerate modes along the mo-
mentum line from � to L become critical at the same
time as the gap is closed, see Fig.X(a). Because of the
line degeneracy, there is an enhanced density of states
at low energies at the criticality, and we would expect
the specific heat Cv ⇠ T 2 behavior at low temperatures
from the mean-field theory. The zero-temperature limit
of the specific heat should be modified because the fluc-
tuations break the momentum space degeneracy and lead
to discrete degeneracy. In the D > 0 region, as the sys-
tem approaches the criticality, only the � point becomes
critical, see Fig.X(b), and we expect a simple Cv ⇠ T 3 at
the mean-field level.

D. Topological flavor wave excitations

In the flavor wave excitation spectrum, we find the
generic existence of topological band touchings. Unlike
the fermionic or electronic counterparts that can appear
right at the Fermi level, these bosonic band touchings
would generically occur at finite energies.

In particular, there exist triply degenerate nodes from
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FIG. 4. The (gapless) magnetic excitations at the phase
boundary of the quantum paramagnetic phase. The parame-
ters are XXX.
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H. Topological magnons and spin wave excitations
of the ordered phases

topological magnons
type-II Weyl nodes
pseudo-Goldstone mode

V. DISCUSSION

A. Summary of theoretical results

In this paper, we have proposed a generic spin model
to describe the interacting spin-one moments on the py-
rochlore lattice. We have established a global phase dia-
gram with very rich phases for this model using several
different and complementary methods. The magnetic or-
dered states are understood from both the mean field
theory and the instability of the quantum paramagnetic
phase. The relations between different phases are further
clarified. Both the magnetic structures of the ordered
phases and the corresponding elementary excitations are
carefully studied. We point out the general existence
of topological excitations. While these results are valid
within the approximation that we made, we would like
to point out the caveat of our theoretical results. We
expect that our results break down when the system ap-
proaches the Heisenberg limit. Thus, the phases in the
vicinity of the Heisenberg model of Fig. 1 are expected
to altered, and more quantum treatment is needed. The
ground state for the pyrochlore lattice Heisenberg model
is one of the hardest problems in quantum magnetism.
The early theoretical attempts provide insights for the

  

y

z

x
�

X

W

L

Γ X W L Γ
0

2

4

ω
/J

Γ X W L Γ
0

2

4

ω
/J

Γ X W L Γ
0

2

4

ω
/J

Γ X W L Γ
0

2

4

6

ω
/J

Γ X W L Γ
0
2
4
6
8

10

ω
/J

(a) (b)

(c) (d)

(e) (f)

FIG. 8. Spin wave dispersion of each ordered phase along
symmetry lines. The parameters are xxx.

classical limit76,77. Due to the extensive classical ground
state degeneracy, the quantum fluctuation is deemed to
be very strong when the quantum nature of the spins is
considered. Moreover, there should be fundamental dis-
tinctions between the spin-1/2 and the spin-1 Heisenberg
models.

B. Survery of spin-one pyrochlore materials

There have already been several spin-one pyrochlore
materials in the literature. We start with from the Ni-
based pyrochlore material NaCaNi2F7

66. This material
has a �129K Curie-Weiss temperature, and no features of
spin orderings are observed in the thermodynamic mea-
surement until a spin glassy transition at 3.6K. The spin
glassy transition is evidenced by the bifurcation in the
magnetic susceptibility between the zero-field-cooled and
field-cooled results. The magnetic entropy saturates to
Rln2 when the temperature is increased to 70K66. The
highest temperature 70K in the entropy measurement is
probably not too large to exhaust the actual magnetic
entropy as the Curie-Weiss temperature is �129K. If one
takes this entropy result, this magnetic entropy differs
from the simple expectation for the spin-1 local moment
and indicates a significant easy-axis spin anisotropy that
reduces the total magnetic entropy. In this case, based
on our phase diagram in Fig. 1, there would be magnetic
orders. It is possible that the exchange randomness be-
comes important at low temperatures and drives the sys-
tem into a spin glassy state instead. Since the glassy tran-
sition occurs at very low temperatures, the spin physics
and dynamics at higher temperatures and energy scales
are probably less influenced by the exchange random-
ness. If the current entropy result is not reliable due
to the small upper temperature limit, one could extend
the entropy measurement further in the temperature to
see if one can exhaust the spin-1 magnetic entropy. In
any case, to test the relevance of the model Hamilto-
nian, it can be helpful to measure the spin correlation in
the momentum space with neutron scattering and com-
pare with the theoretical results. Since our spin model
contains the spin space anisotropy in additional to the
momentum space due to the single-ion anisotropy and
Dzyaloshinskii-Moriya interaction, it is also quite useful
to carry out the polarized neutron scattering measure-
ment on the single-crystalline sample to detect the spin
correlation function in the spin space. A very recent neu-
tron scattering experiment was actually implemented on
the single crystal sample. The general features of the spin
correlation seem to be well captured by the first neigh-
bor Heisenberg model with much weaker further neighbor
interactions99.

In fact, there exists a simple and useful recipe to esti-
mate the Dzyaloshinskii-Moriya interaction but not the
single-ion spin anisotropy. The effective magnetic mo-
ment of the Ni ion in NaCaNi2F7 is found to be 3.7µB
from the susceptibility data from 5K to 300K66. This
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paramagnetic phase from the flavor wave theory. Notice the
existence of the triply degenerate nodes (in red circle) and
doubly degenerate Weyl nodes (in blue circle) in the spec-
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the quadratic orders in the boson operators. The result-
ing flavor wave Hamiltonian is given as

Hfw =

X

k

 

†
kM(k) k, (14)

where

 k ⌘ �
ak01, ak01̄, ak11, ak11̄, ak21, ak21̄, ak31, ak31̄,

a†
k̄01

, a†
k̄01̄

, a†
k̄11

, a†
k̄11̄

, a†
k̄21

, a†
k̄21̄

, a†
k̄31

, a†
k̄31̄

�T
,(15)

and M(k) is a 16⇥ 16 matrix whose matrix elements are
listed in Appendix.X. Here ¯k ⌘ �k.

In Fig. 3, we plot the linear flavor wave dispersion for
the specific choices of the couplings within the quantum
paramagnetic phase. As we expect, there are eight bands
of the magnetic excitations that are fully gapped. Be-
sides the doubled number of the bands, we notice other
unusual properties of the excitations. We find that, in
the D < 0 region of the quantum paramagnetic phase,
the minima of the magnetic excitations develop a line of
degeneracies from � to L in the momentum space. In
the D > 0 region of the quantum paramagnetic phase,
the band minima of the two lowest bands touch at the �
point with an accidental two-fold degeneracy in the spin
space. Both the momentum space degeneracy and the
spin space degeneracy are not protected by any symme-
try of the spin Hamiltonian. We expect the emergent
degeneracy to be lifted when we go beyond the linear fla-
vor wave theory and include the interaction between the
flavor bosons.

C. Critical properties from flavor wave theory

As we further increase the exchange interaction from
the quantum paramagnet, the gap of the magnetic ex-
citations gradually diminishes. Eventually, as the gap is
closed, phase transition happens and the system develops
magnetic orders. To understand the critical properties,
we examine the transition from the flavor wave theory.
In the D < 0 region, the degenerate modes along the mo-
mentum line from � to L become critical at the same
time as the gap is closed, see Fig.X(a). Because of the
line degeneracy, there is an enhanced density of states
at low energies at the criticality, and we would expect
the specific heat Cv ⇠ T 2 behavior at low temperatures
from the mean-field theory. The zero-temperature limit
of the specific heat should be modified because the fluc-
tuations break the momentum space degeneracy and lead
to discrete degeneracy. In the D > 0 region, as the sys-
tem approaches the criticality, only the � point becomes
critical, see Fig.X(b), and we expect a simple Cv ⇠ T 3 at
the mean-field level.

D. Topological flavor wave excitations

In the flavor wave excitation spectrum, we find the
generic existence of topological band touchings. Unlike
the fermionic or electronic counterparts that can appear
right at the Fermi level, these bosonic band touchings
would generically occur at finite energies.

In particular, there exist triply degenerate nodes from
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FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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materials magnetic ions ⇥CW magnetic transitions magnetic structure refs
NaCaNi2F7 Ni2+(3d8) �129K glassy transition at 3.6K spin glass 66
Y2Ru2O7 Ru4+(4d4) �1250K AFM transition at 76K canted AFM Q = 0 78
Tl2Ru2O7 Ru4+(4d4) �956K structure transition at 120K gapped paramagnet 79
Eu2Ru2O7 Ru4+(4d4) - Ru order at 118K Ru order 80
Pr2Ru2O7 Ru4+(4d4), Pr3+(4f2) �224K Ru AFM order at 162K Ru AFM order 81 and 82
Nd2Ru2O7 Ru4+(4d4), Nd3+(4f3) �168K Ru AFM order at 143K Ru AFM order 83
Gd2Ru2O7 Ru4+(4d4), Gd3+(4f7) �10K Ru AFM order at 114K Ru AFM order Q = 0 84
Tb2Ru2O7 Ru4+(4d4), Tb3+(4f8) �16K Ru AFM order at 110K Ru AFM order Q = 0 85
Dy2Ru2O7 Ru4+(4d4), Dy3+(4f9) �10K Ru AFM order at 100K Ru AFM order 86
Ho2Ru2O7 Ru4+(4d4), Ho3+(4f10) �4K Ru AFM order at 95K Ru FM order Q = 0 87 and 88
Er2Ru2O7 Ru4+(4d4), Er3+(4f11) �16K Ru AFM order at 92K Ru AFM order Q = 0 89 and 90
Yb2Ru2O7 Ru4+(4d4), Yb3+(4f13) - Ru AFM order at 83K Ru AFM order 88
Y2Mo2O7 Mo4+(4d2) �200K Mo spin glass at 22K Mo spin glass 91–94
Lu2Mo2O7 Mo4+(4d2) �160K Mo spin glass at 16K Mo spin glass 95
Tb2Mo2O7 Mo4+(4d2), Tb3+(4f8) 20K spin glass at 25K spin glass 96–98

TABLE I. A list of candidate spin-one pyrochlore materials. The null entry means that the data is not available.

deviates from 2.82µB for the pure S = 1 moment in the
atomic limit, and this deviation is due to the spin-orbit
coupling. It is known that the deviation �g of the Landé
g factor is given by �g/g ⇠ |Dij |/J . This suggests that
the Dzyaloshinskii-Moriya interaction could be up to 20-
30% of the Heisenberg exchange and can become im-
portant for the low-temperature physical properties of
NaCaNi2F7.

Other existing spin-1 pyrochlore materials are the Ru-
based pyrochlore A2Ru2O7 and the Mo-based pyrochlore
A2Mo2O7. Both of them are discussed and summarized
in a very nice review paper18 by Gardner, Gingras and
Greedan. In both systems, the A site can be a rare-
earth ion or a non-magnetic ion with no moments. In
the former case, the coupling between the rare-earth mo-
ments and the Ru/Mo moments may be important, and
the rare-earth magnetism also contributes to the mag-
netic properties of the system. If the Ru-Ru interaction
is the dominant one, one may first consider the magnetic
physics of the Ru subsystem. In the latter case and also
for A=Eu, one only needs to consider the Ru/Mo mag-
netism.

FIG. 9. The orbital occupations for 4d4 electron configura-
tion. Under the trigonal distortion, the three-fold degenerate
t2g orbitals are splitted into a1g and two-fold degenerate e2g

states. There are two electron occupation configurations here.
(a) has an unquenched orbital degree of freedom.

The Ru4+ ion has a 4d4 electron configuration, and
the electrons occupy the lower t2g orbitals. Although
the atomic spin-orbit coupling is still active due to the
partially filled t2g manifold, the Hund’s coupling could
suppress the effect of the spin-orbit coupling for the 4d4

electron configuration. If the spin-orbit coupling is truly
dominant over the Hund’s coupling, a quenched local mo-
ment would be obtained. Since these are 4d electrons,
we expect the spin-orbit coupling could just be moder-
ate compared to the Hund’s coupling. From the exper-
imental result of a spin-1 moment for the Ru4+ ion, it
is reasonable to take the view of a moderate spin-orbit
coupling. Moreover, as we show in Fig. 9, there can be
two different occupation configurations after one includes
the trigonal distortion. Fig. 9a has an orbital degeneracy,
while Fig. 9b has no orbital degeneracy. The prevailing
view of spin-only moment18 for the Ru4+ ion supports
the choice of Fig. 9b. Moreover, due to different or-
bital occupation configurations and the realization of the
spin-orbit coupling for the Ru4+ ion, although the model
stays the same as Eq. (1), the single-ion anisotropy and
the Dzyaloshinskii-Moriya interaction would have differ-
ent relations from the ones in Eqs. (3) and (4).

As we show in Table. I, almost all materials in
the A2Ru2O7 family develop magnetic orders except
Tl2Ru2O7. We start from the materials with pure Ru
moments. The canted AFM state, that was found for
Y2Ru2O7 in Ref. 78, is simply the coplanar AFM1 state
in Fig. 5. It is thus of interest to search for topological
magnons in this material. Tl2Ru2O7 experiences a struc-
tural transition at 120K that breaks the cubic symmetry,
so our model does not really apply here. Eu2Ru2O7 was
suggested to develop Ru sublattice orders at 118K and
experience a glassy-like transtion at 23K80. The precise
nature of the Ru order is not known.

The Ru materials with the unquenched rare-earth mo-
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Pyrochlore ice U(1) spin liquid

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
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S+
k
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S+
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+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

Figure from Michel Gingras

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.
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rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
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labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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2

“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H

big

= H
spin

⌦ H
Q

,
where H

spin

=
N

N

H
1/2

is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H

big

to the subspace H, in which

Qr = ⌘r
X

µ

szr,r+⌘reµ
, (2)

where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr

counts the number of spinons. The restriction of Qr, �r

and �†
r to H exactly reproduces all matrix elements of

the original H
spin

, with the replacements

S+r,r+eµ
= �†

r s
+

r,r+eµ
�r+eµ , Szr,r+eµ

= szr,r+eµ
. (3)

Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes

H =
X

r2I,II

J
zz

2
Q2

r � J±

8
<

:
X

r2I

X

µ,⌫ 6=µ

�†
r+eµ

�r+e⌫
s�r,r+eµ

s+r,r+e⌫
+

X

r2II

X

µ,⌫ 6=µ

�†
r�eµ

�r�e⌫
s+r,r�eµ

s�r,r�e⌫

9
=

; (4)

�J
z±

8
<

:
X

r2I

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�r+e⌫

szr,r+eµ
s+r,r+e⌫

+ h.c.
⌘
+

X

r2II

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�e⌫

�
r

szr,r�eµ
s+r,r�e⌫

+ h.c.
⌘
9
=

;+ const..

The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-
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U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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simple XXZ model already realizes and captures the
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perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz
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space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

⇡

3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

= ±1

If K < 0, curlA = ⇡

If K > 0, curlA = 0

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

2

“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H

big

= H
spin

⌦ H
Q

,
where H

spin

=
N

N

H
1/2

is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H

big

to the subspace H, in which

Qr = ⌘r
X

µ

szr,r+⌘reµ
, (2)

where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr

counts the number of spinons. The restriction of Qr, �r

and �†
r to H exactly reproduces all matrix elements of

the original H
spin

, with the replacements

S+r,r+eµ
= �†

r s
+

r,r+eµ
�r+eµ , Szr,r+eµ

= szr,r+eµ
. (3)

Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes

H =
X

r2I,II

J
zz

2
Q2

r � J±

8
<

:
X

r2I

X

µ,⌫ 6=µ

�†
r+eµ

�r+e⌫
s�r,r+eµ

s+r,r+e⌫
+

X

r2II

X

µ,⌫ 6=µ

�†
r�eµ

�r�e⌫
s+r,r�eµ

s�r,r�e⌫

9
=

; (4)

�J
z±

8
<

:
X

r2I

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�r+e⌫

szr,r+eµ
s+r,r+e⌫

+ h.c.
⌘
+

X

r2II

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�e⌫

�
r

szr,r�eµ
s+r,r�e⌫

+ h.c.
⌘
9
=

;+ const..

The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-
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Pi flux means crystal symmetry fractionalization

3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J
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. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J
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/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz
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= szrr0 , S
+
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= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s
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T s

⌫

(T s
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)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)
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QSL with J? < 0, we have
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⌫
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µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s
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⌫
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⌫
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µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
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where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives
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a3 + ⇡. (11)

Likewise, we have
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a3 + ⇡, (12)
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
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QSL.
The U(1)
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QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.
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QSL. We focus on the
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mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
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QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)
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QSL. Following the previous treat-
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Calculation to demonstrate the above prediction
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iArr0 . The XXZ model is ex-
pressed as
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�†
r�r0e�iArr0 , (17)

where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
relator via the INS. From the relation
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)
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QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.
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V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)
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QSL is
a sharp signature for the experimental observation. Since
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QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)
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QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
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QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

Lower excitation edge of spinon continuum 

绝⼤大部分参数空间拥有 
这个性质！
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Lots of pyrochlore materialsmany many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery

many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery所以要在这些材料⾥里头寻找谱周期的增强效应
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总结

复杂量⼦子磁性材料 不仅是 spin liquid 物理的载体， 
更是提供了实现其他有趣物理的可能性。 

我们这⾥里的⼏几个⼯工作指出了⼀一系列体系、新的物理、 
以及这些物理对应的观测量效应。

李⾮非也博⼠士
（复旦⼤大学）
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