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SU(N) symmetry of alkaline-earth atoms
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Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the
realization of novel atomic clocks and degenerate quantum gases. At the same time, they are attracting
considerable theoretical attention in the context of quantum information processing. Here we demon-
strate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of
unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the
electronic angular momentum can be used to implement many-body systems with an unprecedented de-
gree of symmetry, characterized by the SU(N) group with N as large as 10. Moreover, the interplay of
the nuclear spin with the electronic degree of freedom provided by a stable optically excited state allows
for the study of spin-orbital physics. Such systems may provide valuable insights into strongly correlated
physics of transition metal oxides, heavy fermion materials, and spin liquid phases.




SU(N) Mott insulator

An SU(6) Mott insulator of an atomic Fermi gas
realized by large-spin Pomeranchuk cooling NatPhys

Shintaro Taie'*, Rekishu Yamazaki'?, Seiji Sugawa' and Yoshiro Takahashi'?

The Hubbard model accounts for many of the diverse phenomena observed in solid-state materials, despite incorporating
only nearest-neighbour hopping and on-site interactions for correlated electrons. One interesting extension to the model
involves enlarging its spin symmetry to SU(\ > 2), which describes systems with orbital degeneracy. Here we report a
successful formation of the SU(6) symmetric Mott-insulator state with an atomic Fermi gas of ytterbium ("73Yb) atoms in a
three-dimensional optical lattice. In addition to the suppression of compressibility and the charge-excitation gap characteristic
of a Mott-insulating phase, we reveal that the SU(6) system can achieve lower temperatures than the SU(2) state, owing to
differences in the entropy carried by an isolated spin. The mechanism is analogous to Pomeranchuk cooling in solid *He and will
be helpful for investigating exotic quantum phases of the SU(\/) Hubbard system at extremely low temperatures.

even magnetic Feshbash resonance is not available...




SU(N) Heisenberg model on square lattice
Fundamentally different from the SU(2) spin-S Heisenberg model
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weak guantum fluctuation
for SU(2) spins

Quantum fluctuation is much much stronger for SU(N) matter,
SO exotic (unconventional) phases are expected.




Large-N approach of the SU(N) Heisenberg model
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“‘Break” the spin into halves, and glue them back by gauge field,
this is exact in the large-N limit.

Hermele, etc PRL 2010, XG Wen 1990,
U Affleck, Baskaran, Anderson 1988.




Chiral spin liquid of the SU(N) Heisenberg model

N>4, there will be Chiral spin liquid.

1. Spontaneously break T by developing flux for spinons.

2pi/N | 2pi/N | 2pi/N | 2pi/N 2. At MFT, spinon experience flux and form Landau level,

actually fill the lowest Landau level.

3. The system is fully gapped, supporting anyonic excitation

with fractional statistics. There are topologically

protected edge states.

Experimental issue:

1. cooling to spin liquid regime
2. How to do braiding?
3. How to measure edge states?




Extension to the SU(N) Hubbard model
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Slave rotor approach

This approach is designed to be smoothly connected to
the parton-gauge construction in the Heisenberg limit.

Caj =€ " fay. (3)

In order to reproduce the original Hilbert space, we must
impose the constraint

Li=Y fl.f.;—1 (4)

that the rotor angular momentum L; is uniquely de-
termined by the particle number. Here, L; satisfies
0;,L;] = i. We rewrite the Hamiltonian in terms of

these new degrees of freedom, giving
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where h; is a Lagrange multiplier that enforces on aver-
age the constraint Eq. (4), t;; = t(e%i=%), and J;; =
telPii Za<f;r¢,ifa,j>f' Here the sub-index r (f) refers



Phase diagram of Hubbard model with no gauge flux

no gauge field
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Phase diagram of Hubbard model with gauge flux

. 1 | with gauge field C N =
10 Ha valence bond T | @TM
solid (VBS) | | T T
= 6 chiral spin Fermi liquid "
O Ol |l liquid (CSL) (FL)
f h 4
2' IQH ] ( O"+\ g?%
O ] 3 | (1C / /“%‘\ )
3 4 5 6 7 8 9 10 A
- N 04 R N=5&=2r/N
03 '." —— N=5&=0
S N =10,8 = 2r/N
- ! N=10,2=0
5 02 -
How to think about the transition ol |
from the IQH to CSL?
00 4 6 8 10 12
U/t

FIG. 2. The excitation gap of the CSL phase, A, as a function
of interaction strength, U, both in units of the tunnelling ¢ .




Ditferent phases

Phases (e rotor flux spinon gap spinon flux

FL #~ 0 0 0 0

SF'S 0 0 0 0

CSL 0 —27 /N # 0 27 /N
SU(3)-VBS 0 — # 0 s
SU(4)-VBS 0 0 # 0 0

IQH #~ 0 0 # 0 27 /N

CSL 0 0 # 0 27 /N
SU(3)-VBS 0 /3 # 0 T
SU(4)-VBS 0 /2 # 0 0




Open theoretical questions

1. Direct transition between the CSL to magnetic ordered states.
(Gang Chen, unpublished)

(a)

destroy the Chiral Abelian topological order
and induce magnetic order at the same time?

F Mila,etc PRL 2010

2. Direct transition between the SU(3) VBS to magnetic ordered states.
(Gang Chen, unpublished)
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Summary of this part

1. SU(N) Hubbard model is more realistic than SU(N) Heisenberg model.

2. SU(N) Hubbard model with and without gauge flux could stabilize the
Chiral spin liquid in a much larger parameter space, and provide a
larger energy gap for experimental observation.




2. Quantum Paramagnet and frustrated quantum
criticality on a diamond lattice
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Spin-one Haldane chain

Due to Berry phase effect, spin-1/2 chain is
gapless, spin-1 Heisenberg chain is gapped.

Duncan Haldane

LOo—L oL oL o—Go—Go—(Ge S=1 chain
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Building degree of freedom is S=1, but at there is S=1/2 edge state.




Symmetry d=0 d=1 d=2
U(1) x Z} Z Z Z;
Z; Z @ Z1
U(1) Z Z4 Z
S0O(3) Z4 Z; Z
S0B3) x Z, Z, Z5 Z,
Zn Zn Zl Zn
Z) x D; = Dy Z2 Z3 Z8

Table for boson SPTs
classified with group cohomology from symmetry and dimension.

It turns out, the well-known topological insulator is a fermion SPT that is protected
by time reversal symmetry. Boson SPT must be stabilized by interaction.
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Senthil’s suggestion

PhysRevB, 2015

Topological Paramagnetism in Frustrated Spin-One Mott Insulators

Chong Wang, Adam Nahum, and T. Senthil
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(Dated: January 7, 2015)

Time reversal protected three dimensional (3D) topological paramagnets are magnetic analogs of
the celebrated 3D topological insulators. Such paramagnets have a bulk gap, no exotic bulk exci- —_——
tations, but non-trivial surface states protected by symmetry. We propose that frustrated spin-1 .
quantum magnets are a natural setting for realising such states in 3D. We describe a physical picture T Seﬂth | |
of the ground state wavetunction for such a spin-1 topological paramagnet in terms of loops of fluc-
tuating Haldane chains with non-trivial linking phases. We illustrate some aspects of such loop gases
with simple exactly solvable models. We also show how 3D topological paramagnets can be very
naturally accessed within a slave particle description of a spin-1 magnet. Specifically we construct
slave particle mean field states which are naturally driven into the topological paramagnet upon
including fluctuations. We propose bulk projected wave functions for the topological paramagnet
based on this slave particle description. An alternate slave particle construction leads to a stable
U(1) quantum spin liquid from which a topological paramagnet may be accessed by condensing the
emergent magnetic monopole excitation of the spin liquid.

'1'he frustrated diamond lattice model appears to de-

scribe well [56] the physics of the spinel oxide materials
MnAl,O4 and CoAl;O4 [58] which belong to a general
family of materials of the form AB50Oy4. The A site forms

There is no sharp question in 1D any more. So
what is the 3D analogue of Haldane spin-1 phase?
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An S = 1 system has the potential of rich physics, and has been the subject of intense theoretical work. Extensive work has been done on one-
dimensional and two-dimensional S = 1 systems, yet three dimensional systems remain elusive. Experimental realizations of three-dimensional S
= 1, however, are limited, and no system to date has been found to genuinely harbor this. Recent theoretical work suggests that S =1on a
diamond lattice would enable a novel topological paramagnet state, generated by fluctuating Haldane chains within the structure, with
topologically protected end states. Here we present data on NiRh204, a tetragonal spinel that has a structural phase transition from cubic to
fetragonal at T = 380 K. High resolution XRD shows it to have a tetragonally distorted spinel structure, with Ni2+ (d8, S = 1) on the tetrahedral,
diamond sublattice site. Magnetic susceptibility and specific heat measurements show that it does not order magnetically down to T = 0.1 K.
Nearest neighbor interactions remain the same despite the cubic to tetragonal phase transition. Comparison to theoretical models indicate that
this system might fulfill the requirements necessary to have both highly entangled and topological behaviors.




Minimal spin model

Spinel AB204

A Site - one metal with four
nearest-neighbor oxygens.
Tetrahedral site

B site — one metal with six
nearest-neighbor oxygens.
Octahedral site
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The phase diagram

Quantum
Paramagnet

D, /(Jy + 3J3)

Deep in quantum paramagnet, the ground state is a trivial product state.
The state is trivial, but excitation and phase transition out of it can be non-trivial.

) =11, 15 = 0)




Rotor representation for spin-1 moment
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Unconventional magnetic excitation

J2=0.05J:,D,= 3]s J»=0.18J1,D,=1.5];
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These are bosonic excitations. What is relevant for bosons is the lowest energy mode.
Usually, the lowest energy modes occur at certain discrete momenta. But here, the lowest
energy modes occur at a surface in the reciprocal space.




Frustrated Quantum Criticality: collapse of boson surface

J2=0.18U" Jo=J1/3
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These degenerate surfaces are NOT Fermi surface !

But at low temperature, the fluctuation of the system is governed by
the surface, i.e. low-energy fluctuations are near the 2D surface.
We obtain a linear-T heat capacity Cv ~ T, which is like a Fermi surface.
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Degeneracy breaking in the ordered side

Quantum
Paramagnet

Here, because infinite number of
boson modes are condensed, the
system does not know which order
to select.

So quantum fluctuation will pick
up the order that gives the lowest
guantum zero-point energy.



Summary

We point out that NiRh204 spin-1 diamond lattice antiferromagnet
s NOT the topological guantum paramagnet.

Through a minimal model, we find that the ground state can be a
trivial qguantum paramagnet. But due to the frustrated interaction,

the excitations with respect to this trivial state develop an extensively
degenerate minima in the reciprocal space.

Moreover, as the system approaches the phase transition to a
magnetic order, these extensively degenerate low-energy bosonic
modes condense at the same time, leading to an unusual critical
behavior.



Quantum Paramagnet and Frustrated Quantum Criticality in spin-1 diamond lattice

Quantum
Paramagnet
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Phase diagram

degenerate minima of the excitations
in quantum paramagnet

Magnetic excitation in the kx-ky plane Gang Chen, arXiv 1701.05634



