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SU(N) symmetry of alkaline-earth atoms
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Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the
realization of novel atomic clocks and degenerate quantum gases. At the same time, they are attracting
considerable theoretical attention in the context of quantum information processing. Here we demon-
strate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of
unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the
electronic angular momentum can be used to implement many-body systems with an unprecedented de-
gree of symmetry, characterized by the SU(N) group with N as large as 10. Moreover, the interplay of
the nuclear spin with the electronic degree of freedom provided by a stable optically excited state allows
for the study of spin-orbital physics. Such systems may provide valuable insights into strongly correlated
physics of transition metal oxides, heavy fermion materials, and spin liquid phases.

The interest in fermionic alkaline-earth atoms [1, 2, 3, 4, 5,
6, 7, 8] stems from their two key features: (1) the presence of
a metastable excited state 3P0 coupled to the ground 1S0 state
via an ultranarrow doubly-forbidden transition [1] and (2) the
almost perfect decoupling [1] of the nuclear spin I from the
electronic angular momentum J in these two states, since they
both have J = 0. This decoupling implies that s-wave scat-
tering lengths involving states 1S0 and 3P0 are independent
of the nuclear spin, aside from the restrictions imposed by
fermionic antisymmetry. We show that the resulting SU(N)
spin symmetry (where N = 2I + 1 can be as large as 10) to-
gether with the possibility of combining (nuclear) spin physics
with (electronic) orbital physics open up a wide field of ex-
tremely rich many-body systems with alkaline-earth atoms.

In what follows, we derive the two-orbital SU(N)-
symmetric Hubbard model describing alkaline-earth atoms
in 1S0 and 3P0 states trapped in an optical lattice. We fo-
cus on specific parameter regimes characterized by full or
partial atom localization due to strong atomic interactions,
where simpler effective spin Hamiltonians can be derived.
The interplay between orbital and spin degrees of freedom
in such effective models is a central topic in quantum mag-
netism and has attracted tremendous interest in the condensed
matter community. Alkaline earth atoms thus provide, on
the one hand, a unique opportunity for the implementation
of some of these models for the first time in a defect-free
and fully controllable environment. On the other hand, they
open a new arena to study a wide range of models, many of
which have not been discussed previously, even theoretically.
We demonstrate, in particular, how to implement the Kugel-
Khomskii model studied in the context of transition metal ox-
ides [9, 10, 11, 12, 13], the Kondo lattice model [14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26] studied in context of

manganese oxide perovskites [20] and heavy fermion materi-
als [25], as well as various SU(N)-symmetric spin Hamilto-
nians that are believed to have spin liquid and valence-bond-
solid ground states [27, 28, 29, 30, 31, 32, 33, 34]. For ex-
ample, we discuss how, by appropriately choosing the initial
state, a single alkaline-earth atom species with I = 9/2 (such
as 87Sr) can be used to study experimentally such a distinc-
tively theoretical object as the phase diagram as a function of
N for all N ≤ 10.

Before proceeding, we note that, while an orthogonal sym-
metry group SO(5) can be realized in alkali atoms [35],
proposals to obtain SU(N>2)-symmetric models with alkali
atoms [36, 37] and solid state systems [11, 38] are a sub-
stantial idealization due to strong hyperfine coupling and a
complex solid state environment, respectively. In this context,
alkaline-earth-like atoms make a truly exceptional system to
study models with SU(N>2) symmetry.
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An SU(6) Mott insulator of an atomic Fermi gas
realized by large-spin Pomeranchuk cooling
Shintaro Taie1*, Rekishu Yamazaki1,2, Seiji Sugawa1 and Yoshiro Takahashi1,2

The Hubbard model accounts for many of the diverse phenomena observed in solid-state materials, despite incorporating
only nearest-neighbour hopping and on-site interactions for correlated electrons. One interesting extension to the model
involves enlarging its spin symmetry to SU(N > 2), which describes systems with orbital degeneracy. Here we report a
successful formation of the SU(6) symmetric Mott-insulator state with an atomic Fermi gas of ytterbium (173Yb) atoms in a
three-dimensional optical lattice. In addition to the suppression of compressibility and the charge-excitation gap characteristic
of a Mott-insulating phase, we reveal that the SU(6) system can achieve lower temperatures than the SU(2) state, owing to
differences in the entropy carried by an isolated spin. Themechanism is analogous to Pomeranchuk cooling in solid 3He andwill
be helpful for investigating exotic quantum phases of the SU(N ) Hubbard system at extremely low temperatures.

In the past decade, a great deal of progress has been made for
two-component atomic Fermi gases. The high controllability
and simplicity of these systems allow systematic study over an

extremely wide range of system parameters, including interatomic
interactions. One of the milestone experiments in the strongly
correlated regime is the recently reported realization of a fermionic
Mott insulator1,2 for atoms in optical lattices, which is of interest
itself and is also considered to be the parent state of high-Tc
superconductors3.

On the other hand, many-body physics with multicomponent
Fermi gases is experimentally unexplored despite the increasing
theoretical interest4–11. Fermionic isotopes of alkaline-earth-metal-
like atoms, such as ytterbium (173Yb; ref. 12) and strontium (87Sr;
refs 13,14), are suitable for this aim because of their simple
SU(N = 2I +1) symmetric interactions for nuclear spin I (refs 5,9,
10). Although a systematic study with different spin combinations
has not been performed, we observe no detectable spin-changing
collision such as mF = (+5/2,�5/2) ! (+3/2,�3/2) during
several seconds of evaporation, which is a characteristic of SU(N )
symmetry10. Another implication of the equality of the scattering
lengths for different spin combinations is the single resonance
peak observed in the two-colour photoassociation spectrum15. This
SU(N ) symmetry is predicted to be realized very precisely5,10 and
there is some experimental support for Sr (ref. 16).

An N -component Fermi gas with SU(N ) symmetry in an optical
lattice is well described by the SU(N ) Hubbardmodel

H = �t
X

hi,ji,�
(c †

i,� cj,� +H.c.)+ U
2

X

i,� 6=� 0
ni,�ni,� 0

+
X

k=x,y,z

Vk

X

i,�

✓
ki
d

◆2

ni,� (1)

where ci,� is the fermionic annihilation operator for site i and spin
� =�I ,...,+I , ni,� = c †

i,� ci,� is the number operator,Vk =m!2
kd

2/2
is the strength of the harmonic confinement along the k
(= x,y,z) axis with an atomic mass m and trap frequency !k , d

1Department of Physics, Graduate School of Science, Kyoto University, 606-8502, Japan, 2CREST, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
*e-mail: taie@scphys.kyoto-u.ac.jp.

denotes the lattice constant, U is the on-site interaction and t the
hopping matrix element. All parameters are independent of spin
states, which manifests the SU(N ) symmetry of the system. The
positive scattering lengths a= 10.55 nm for 173Yb (ref. 15) and a=
5.09 nm for 87Sr (ref. 17) correspond to repulsive interactions (U >
0), the case of interest in the context of most theoretical studies. The
low-temperature behaviour of the SU(N > 2) model is predicted
to be qualitatively different from that of the SU(2) model, mainly
owing to the enhancement of the quantum fluctuation for the large-
N system18. For instance, the analysis on the square lattice, often
considered in the Heisenberg limit U/t !1, reveals the tendency
towards disordered spin states8,18–22, whereas the ground state of
the half-filled SU(2) model is widely believed to be Néel-ordered.
Moreover, a striking difference is theoretically predicted for a one-
dimensional system. An infinitely small repulsive interaction results
in the formation of a Mott insulating state for the SU(2) system,
whereas a finite strength is required for SU(N > 2) (refs 23,24).
Experimental study of the SU(N > 2) system will lead to a better
understanding of the underlying physics, and will also provide
insights into the important role of the orbital degeneracy25,26 in
condensed matter physics. Here, the SU(2n) system realizes the
isotropic limit of solid-state systemswithn-fold orbital degeneracy.

A milestone in the study of the SU(N > 2) Hubbard system is
the realization and characterization of the SU(N ) Mott insulating
phase. There are several signatures for a successful formation of
a Mott insulating state. One important feature is the existence
of the charge-excitation gap. As the interaction U increases, the
density of states at the Fermi level is decreased, which suppresses
the mobility of atoms. Finally, the system enters the incompressible
Mott phase when the gap opens. At the same time, multiple
occupation of lattice sites becomes energetically unfavourable and
suppressed in the Mott regime. More quantitatively, the fraction
of the atoms in doubly occupied lattice sites (double occupancy)
is closely related to the compressibility @n/@µ evaluated at the
trap centre27, where µ denotes the chemical potent. Besides these
common features of a Mott insulator, it is especially important to
clarify the difference between the behaviours ofMott insulatorswith
SU(2) and SU(N > 2) symmetries.

NATURE PHYSICS | VOL 8 | NOVEMBER 2012 | www.nature.com/naturephysics 825
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SU(N) Heisenberg model on square lattice
Fundamentally different from the SU(2) spin-S Heisenberg model

Quantum fluctuation is much much stronger for SU(N) matter,  
so exotic (unconventional) phases are expected.
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Mott Insulators of Ultracold Fermionic Alkaline Earth Atoms:
Underconstrained Magnetism and Chiral Spin Liquid
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].

Specifically, we consider the large-U (insulating) limit
of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable for m not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.

It is convenient to define the model in terms of f †
rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr
′⟩

Sαβ(r)Sβα(r′), Sαβ(r) = f †
rαf

rβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †

rαf
rα = m. Study of correction terms arising away

from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a

SU(N) Heisenberg modelSz=S

Sz=S-1

Sz=S-2

weak quantum fluctuation 
for SU(2) spins
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Large-N approach of the SU(N) Heisenberg model
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].

Specifically, we consider the large-U (insulating) limit
of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable for m not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.

It is convenient to define the model in terms of f †
rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr
′⟩

Sαβ(r)Sβα(r′), Sαβ(r) = f †
rαf

rβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †

rαf
rα = m. Study of correction terms arising away

from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].

Specifically, we consider the large-U (insulating) limit
of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable for m not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.

It is convenient to define the model in terms of f †
rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr
′⟩

Sαβ(r)Sβα(r′), Sαβ(r) = f †
rαf

rβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †

rαf
rα = m. Study of correction terms arising away

from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a

2

quantum plaquette model [15].

Semiclassical limit. The semiclassical limit considered
here is a generalization of the large-S limit of SU(2) mag-
netism. We consider a generalized model where the spin
at each site transforms in the SU(N) irreducible represen-
tation labeled by the Young tableau with one row and nc

columns [11]. This representation is the symmetric com-
bination of nc fundamental representations, and in the
SU(2) case is a spin-S spin (S = nc/2).

We can define this model in terms of fermion opera-
tors f †

rαa, where a = 1, . . . , nc is a “color” index. On
every site we place nc fermions, and antisymmetrize over
their color indices. Defining Sαβ(r) =

∑
a f †

rαaf
rβa, the

Hamiltonian is identical in form to Eq. (1). We define
the coherent state |z⟩ = (zαf †

α1) . . . (zαf †
αnc

)|0⟩, which
is parametrized by the N -component complex spinor z
(z†z = 1) [11]. Since z → eiφz only changes |z⟩ by a
phase, the overall phase of z is unphysical and coher-
ent states are labeled by points in the manifold CPN−1,
which has dimension 2(N − 1). In the limit nc → ∞,
the state

∏
r
|zr⟩ is an eigenstate, and the energy is

E = Jn2
c

∑
⟨rr

′⟩ |z
†
r
z

r
′ |2 + O(nc).

The energy is minimized for z†
r
z

r
′ = 0 on nearest-

neighbor bonds. For N > 2, we immediately see a signif-
icant difference from SU(2) magnetism: knowing zr does
not uniquely determine the neighboring zr

′ that mini-
mizes the energy. This leads to an extensive degeneracy
of classical ground states. To see this, we estimate the di-
mension D of the ground state manifold [16]. Letting Ns

be the number of lattice sites, the total dimension of all
the CPN−1 spins is 2Ns(N−1). On every bond, z†

r
z

r
′ = 0

provides two constraints, for a total of 4Ns constraints.
Treating the constraints as independent leads to a lower
bound : D ≥ 2Ns(N − 3). For N = 3, where this bound
is not helpful, it can be shown by explicit construction of
ground states that D ∝ Ns.

Such extensive degeneracy is a hallmark of geometri-
cally frustrated systems, where underconstraint emerges
from the inability to simultaneously satisfy a set of com-
peting interactions. A crucial physical consequence is
a strong, even complete, suppression of magnetic order
[16]. The semiclassical limit is biased towards magnetic
order, and since it is suppressed even there, we expect
that the present models lack magnetic order altogether
for nc = 1, the case of interest for AEA Mott insulators.

Large-N limit. Returning to the model Eq. (1), mag-
netically disordered ground states can be be controllably
studied in the limit N → ∞, where m = N/k, J = J /N ,
and k and J are held fixed. This limit was studied for
k = 2 in [10], where the ground state is a valence-bond
solid (VBS) [17]. Here, we find the k = 3, 4 ground states
break lattice symmetry and are analogous to the VBS
(Fig. 1). For 5 ≤ k ≤ 10 we present evidence that the
ground state is the CSL, and also discuss low-lying com-
peting states. We conjecture that the CSL is the ground
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FIG. 1: Large-N dimer and plaquette ground states for k = 2
(a), k = 3 (b) and k = 4 (c). χrr

′ has constant magnitude on
the dark bonds and is zero on the others. For k = 3 (k = 4),
the phase of χrr

′ is chosen so that the flux through each
plaquette is π (zero). The patterns shown are not necessarily
those selected by 1/N corrections.

state for all k ≥ 5.
The mathematical structure of the large-N limit is the

same as for the k = 2 case already studied. The prob-
lem reduces to finding the ground state of the mean-
field Hamiltonian HMFT = H̃MFT +

∑
r
µr(m− f †

rαf
rα),

where H̃MFT = (N/J )
∑

⟨rr
′⟩ |χrr

′ |2 + HK and HK =
∑

⟨rr
′⟩(χrr

′f †
rαf

r
′α + H.c.). This is required to satisfy

the self-consistency conditions

χrr
′ = −

J

N
⟨f †

r
′αf

rα⟩ (a), m = ⟨f †
rαf

rα⟩ (b). (2)

The field χrr
′ arises from decoupling the exchange inter-

action on each bond, and µr arises from a Lagrange mul-
tiplier field implementing the constraint of m fermions
per site. Without loss of generality, we assume

∑
r
µr =

0. A set of (χrr
′ , µr) satisfying Eq. (2) is a mean-field

saddle point. The saddle-point energy EMFT is an ex-
tremum with respect to variations of the fields, but not
necessarily the global minimum. The task at hand is to
find the lowest energy saddle point as a function of k.

For k = 2, Rokhsar established a lower bound on
EMFT, and showed that, on any lattice where a dimer
covering is possible, any dimer state such as that shown
in Fig. 1a saturates the bound [17]. The leading correc-
tions in the 1/N expansion then select an ordered VBS
configuration from among the various dimer states [11].
It is straightforward to extend Rokhsar’s bound to gen-
eral k. First, for a given saddle point, using Eq. (2b),
EMFT = ⟨H̃MFT⟩ ≥ ẼMFT, the ground state energy of
H̃MFT. A lower bound on ẼMFT is easily obtained fol-
lowing Ref. [17]. For k = 2, one divides the spectrum
of HK in half; in general, one divides the spectrum into
occupied and unoccupied levels. On the square lattice,
one finds EMFT ≥ −[(k − 1)NJNs]/2k2.

A stricter lower bound can be established for bipartite
lattices, where the spectrum of HK is symmetric about
zero energy. We divide the spectrum into the sets L
(occupied levels), U (image of L under ϵ → −ϵ), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

EMFT ≥ −NJNs/4k. (3)

2

quantum plaquette model [15].

Semiclassical limit. The semiclassical limit considered
here is a generalization of the large-S limit of SU(2) mag-
netism. We consider a generalized model where the spin
at each site transforms in the SU(N) irreducible represen-
tation labeled by the Young tableau with one row and nc

columns [11]. This representation is the symmetric com-
bination of nc fundamental representations, and in the
SU(2) case is a spin-S spin (S = nc/2).

We can define this model in terms of fermion opera-
tors f †

rαa, where a = 1, . . . , nc is a “color” index. On
every site we place nc fermions, and antisymmetrize over
their color indices. Defining Sαβ(r) =

∑
a f †

rαaf
rβa, the

Hamiltonian is identical in form to Eq. (1). We define
the coherent state |z⟩ = (zαf †

α1) . . . (zαf †
αnc

)|0⟩, which
is parametrized by the N -component complex spinor z
(z†z = 1) [11]. Since z → eiφz only changes |z⟩ by a
phase, the overall phase of z is unphysical and coher-
ent states are labeled by points in the manifold CPN−1,
which has dimension 2(N − 1). In the limit nc → ∞,
the state

∏
r
|zr⟩ is an eigenstate, and the energy is

E = Jn2
c

∑
⟨rr

′⟩ |z
†
r
z

r
′ |2 + O(nc).

The energy is minimized for z†
r
z

r
′ = 0 on nearest-

neighbor bonds. For N > 2, we immediately see a signif-
icant difference from SU(2) magnetism: knowing zr does
not uniquely determine the neighboring zr

′ that mini-
mizes the energy. This leads to an extensive degeneracy
of classical ground states. To see this, we estimate the di-
mension D of the ground state manifold [16]. Letting Ns

be the number of lattice sites, the total dimension of all
the CPN−1 spins is 2Ns(N−1). On every bond, z†

r
z

r
′ = 0

provides two constraints, for a total of 4Ns constraints.
Treating the constraints as independent leads to a lower
bound : D ≥ 2Ns(N − 3). For N = 3, where this bound
is not helpful, it can be shown by explicit construction of
ground states that D ∝ Ns.

Such extensive degeneracy is a hallmark of geometri-
cally frustrated systems, where underconstraint emerges
from the inability to simultaneously satisfy a set of com-
peting interactions. A crucial physical consequence is
a strong, even complete, suppression of magnetic order
[16]. The semiclassical limit is biased towards magnetic
order, and since it is suppressed even there, we expect
that the present models lack magnetic order altogether
for nc = 1, the case of interest for AEA Mott insulators.

Large-N limit. Returning to the model Eq. (1), mag-
netically disordered ground states can be be controllably
studied in the limit N → ∞, where m = N/k, J = J /N ,
and k and J are held fixed. This limit was studied for
k = 2 in [10], where the ground state is a valence-bond
solid (VBS) [17]. Here, we find the k = 3, 4 ground states
break lattice symmetry and are analogous to the VBS
(Fig. 1). For 5 ≤ k ≤ 10 we present evidence that the
ground state is the CSL, and also discuss low-lying com-
peting states. We conjecture that the CSL is the ground
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FIG. 1: Large-N dimer and plaquette ground states for k = 2
(a), k = 3 (b) and k = 4 (c). χrr

′ has constant magnitude on
the dark bonds and is zero on the others. For k = 3 (k = 4),
the phase of χrr

′ is chosen so that the flux through each
plaquette is π (zero). The patterns shown are not necessarily
those selected by 1/N corrections.

state for all k ≥ 5.
The mathematical structure of the large-N limit is the

same as for the k = 2 case already studied. The prob-
lem reduces to finding the ground state of the mean-
field Hamiltonian HMFT = H̃MFT +

∑
r
µr(m− f †

rαf
rα),

where H̃MFT = (N/J )
∑

⟨rr
′⟩ |χrr

′ |2 + HK and HK =
∑

⟨rr
′⟩(χrr

′f †
rαf

r
′α + H.c.). This is required to satisfy

the self-consistency conditions

χrr
′ = −

J

N
⟨f †

r
′αf

rα⟩ (a), m = ⟨f †
rαf

rα⟩ (b). (2)

The field χrr
′ arises from decoupling the exchange inter-

action on each bond, and µr arises from a Lagrange mul-
tiplier field implementing the constraint of m fermions
per site. Without loss of generality, we assume

∑
r
µr =

0. A set of (χrr
′ , µr) satisfying Eq. (2) is a mean-field

saddle point. The saddle-point energy EMFT is an ex-
tremum with respect to variations of the fields, but not
necessarily the global minimum. The task at hand is to
find the lowest energy saddle point as a function of k.

For k = 2, Rokhsar established a lower bound on
EMFT, and showed that, on any lattice where a dimer
covering is possible, any dimer state such as that shown
in Fig. 1a saturates the bound [17]. The leading correc-
tions in the 1/N expansion then select an ordered VBS
configuration from among the various dimer states [11].
It is straightforward to extend Rokhsar’s bound to gen-
eral k. First, for a given saddle point, using Eq. (2b),
EMFT = ⟨H̃MFT⟩ ≥ ẼMFT, the ground state energy of
H̃MFT. A lower bound on ẼMFT is easily obtained fol-
lowing Ref. [17]. For k = 2, one divides the spectrum
of HK in half; in general, one divides the spectrum into
occupied and unoccupied levels. On the square lattice,
one finds EMFT ≥ −[(k − 1)NJNs]/2k2.

A stricter lower bound can be established for bipartite
lattices, where the spectrum of HK is symmetric about
zero energy. We divide the spectrum into the sets L
(occupied levels), U (image of L under ϵ → −ϵ), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

EMFT ≥ −NJNs/4k. (3)

3
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FIG. 2: Lowest-energy competing state for k = 6 (the k = 5
state has a similar pattern). The lattice is covered by stripes,
of which one is shown. The shading of bonds represents
|χrr

′ |, interpolating between the maximum |χrr
′ | (black), and

|χrr
′ | = 0 (white). Some regions enclose π-flux, as indicated.

k CSL ICSL LC

5 -0.043080 -0.043070 -0.042987

6 -0.033069 -0.03299 -0.032961

7 -0.026130 -0.02597 -0.025730

8 -0.021138 -0.02102 -0.020897

TABLE I: Energies of CSL and competing states, in units of
NJNs = N2JNs, for 5 ≤ k ≤ 8. ICSL is the lowest-energy
inhomogeneous CSL that was found. LC is the lowest com-
peting state that cannot be interpreted as an inhomogeneous
CSL. Note that the energy difference between CSL and LC is
larger for k = 7, 8 than for k = 5, 6.

For k > 2 this bound is stricter than that above, and is
saturated if and only if

∑
r
µrñr = 0, L (U) contains only

the constant energy −ϵ (+ϵ), and M contains only zero
energy levels. Here, ñr is the average fermion number
calculated in the ground state of HK .

For k = 3, 4 the bound is saturated by the plaque-
tte states (Fig. 1). In each case 1/N corrections are ex-
pected to select an ordered configuration, and the large-
N ground state for k = 3, 4 is analogous to the k = 2
VBS. It is impossible to saturate the bound for k > 8: the
large-N ground state energy of the two-site problem is
−NJ /k2, which gives the bound EMFT ≥ −2NJNs/k2,
stricter than Eq. (3) for k > 8. Even for 5 ≤ k ≤ 8, the
conditions needed to saturate Eq. (3) are very restrictive
and we conjecture they cannot be satisfied.

Below, we present evidence that the CSL is the large-
N ground state for 5 ≤ k ≤ 10. The CSL saddle point
has µr = 0 and |χrr

′ | = χ, with the phase of χrr
′ such

that the flux through each square plaquette is 2π/k. This
results in a fermion band structure with k bands, where
only the lowest band is filled, and for k ≥ 3 it is separated
from the others by a gap. This mean-field state is a lattice
integer quantum Hall state: there is a quantized Hall
conductance of N , where the (fictitious) fermion charge
and Planck’s constant have been set to unity [18].

To determine the lowest-energy saddle point for 5 ≤
k ≤ 10, in addition to explicit construction of saddle
points, we implemented a numerical self-consistent min-
imization (SCM) algorithm. The algorithm begins with
a random choice of χrr

′ , and self-consistently iterates
equation (2a), while choosing µr at each step to satisfy

equation (2b). We allowed χrr
′ and µr to vary within

a given unit cell embedded within a larger system (with
periodic boundary conditions). It can be proven that
SCM converges to a local minimum of the energy. For
5 ≤ k ≤ 8, we studied all rectangular unit cells with k2

or fewer sites, excluding cells of unit width. For each cell,
we ran the SCM procedure on at least 30 (in some cases
more than 500) different sets of random initial conditions.
The CSL was the lowest energy state found (Table I). For
k = 9, 10, less extensive application of SCM also found
no states below the CSL in energy.

We also find locally stable competing states, some only
slightly higher in energy than the CSL (Table I). The
competition between CSL and these states will need to
be resolved by going beyond the large-N limit, and, ul-
timately, by experiments. The lowest such states found
can be viewed as inhomogeneous versions of the CSL. For
k = 5, a 2 × 2 ordering pattern is superimposed on an
average 2π/5 flux per plaquette. For k = 6, 7, 8, the CSL
divides into domains. As long as the CSL remains stable
to inhomogeneity (e.g. the domain wall energy is posi-
tive), these states will not be ground states. Therefore,
we also searched for the lowest competing states that can-
not be viewed as inhomogeneous CSLs. For k = 5, 6, we
find stripe states (Fig. 2) that break various lattice sym-
metries but preserve T . For k = 7, 8, we find a distinct
CSL with 2π/2k flux per plaquette.

Properties of CSL. The CSL is characterized by both
its broken symmetries and topological order. T and P
breaking is signaled by a nonzero spin chirality ⟨C123⟩ ≠
0. Here, C123 = i(P123 − P321) is the spin chirality of
lattice sites 1, 2, 3, and P123 the operator that cyclically
permutes the spin quantum numbers on those sites [6].

Understanding topological order requires going beyond
the mean-field description. It is important at this stage to
note that f †

rα does not create an atom. Instead it creates
a spinon, which carries the spin but not the conserved
atom number. The most important fluctuations about
the saddle point are in the phase of χrr

′ ≈ ⟨χrr
′ ⟩eia

rr
′ ,

where arr
′ is the spatial component of a fluctuating U(1)

gauge field coupled to the spinons. The time-component
of the gauge field arises from the fluctuations of µr.
The gapped spinons can be integrated out to obtain a
Chern-Simons (CS) effective action for the gauge field,
Seff = (N/4π)

∫
dtd2

r aµϵµνλ∂νaλ, where the coefficient
is determined by the mean-field Hall conductance. The
CS term is responsible for the topological properties of
the CSL [9]. It converts spinon excitations into anyons
with statistical angle π + π/N . Moreover, its presence
implies the spinons are deconfined and propagate freely,
and the CSL thus exhibits quantum number fractional-
ization. For a system with an edge, there are gapless
chiral edge modes. Finally, the ground state degeneracy
on a surface of genus g is 2Ng, where the factor of 2 arises
from the spontaneous T -breaking.

Experimental detection. The distinct features of the
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].

Specifically, we consider the large-U (insulating) limit
of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable for m not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.

It is convenient to define the model in terms of f †
rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr
′⟩

Sαβ(r)Sβα(r′), Sαβ(r) = f †
rαf

rβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †

rαf
rα = m. Study of correction terms arising away

from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a

2

quantum plaquette model [15].

Semiclassical limit. The semiclassical limit considered
here is a generalization of the large-S limit of SU(2) mag-
netism. We consider a generalized model where the spin
at each site transforms in the SU(N) irreducible represen-
tation labeled by the Young tableau with one row and nc

columns [11]. This representation is the symmetric com-
bination of nc fundamental representations, and in the
SU(2) case is a spin-S spin (S = nc/2).

We can define this model in terms of fermion opera-
tors f †

rαa, where a = 1, . . . , nc is a “color” index. On
every site we place nc fermions, and antisymmetrize over
their color indices. Defining Sαβ(r) =

∑
a f †

rαaf
rβa, the

Hamiltonian is identical in form to Eq. (1). We define
the coherent state |z⟩ = (zαf †

α1) . . . (zαf †
αnc

)|0⟩, which
is parametrized by the N -component complex spinor z
(z†z = 1) [11]. Since z → eiφz only changes |z⟩ by a
phase, the overall phase of z is unphysical and coher-
ent states are labeled by points in the manifold CPN−1,
which has dimension 2(N − 1). In the limit nc → ∞,
the state

∏
r
|zr⟩ is an eigenstate, and the energy is

E = Jn2
c

∑
⟨rr

′⟩ |z
†
r
z

r
′ |2 + O(nc).

The energy is minimized for z†
r
z

r
′ = 0 on nearest-

neighbor bonds. For N > 2, we immediately see a signif-
icant difference from SU(2) magnetism: knowing zr does
not uniquely determine the neighboring zr

′ that mini-
mizes the energy. This leads to an extensive degeneracy
of classical ground states. To see this, we estimate the di-
mension D of the ground state manifold [16]. Letting Ns

be the number of lattice sites, the total dimension of all
the CPN−1 spins is 2Ns(N−1). On every bond, z†

r
z

r
′ = 0

provides two constraints, for a total of 4Ns constraints.
Treating the constraints as independent leads to a lower
bound : D ≥ 2Ns(N − 3). For N = 3, where this bound
is not helpful, it can be shown by explicit construction of
ground states that D ∝ Ns.

Such extensive degeneracy is a hallmark of geometri-
cally frustrated systems, where underconstraint emerges
from the inability to simultaneously satisfy a set of com-
peting interactions. A crucial physical consequence is
a strong, even complete, suppression of magnetic order
[16]. The semiclassical limit is biased towards magnetic
order, and since it is suppressed even there, we expect
that the present models lack magnetic order altogether
for nc = 1, the case of interest for AEA Mott insulators.

Large-N limit. Returning to the model Eq. (1), mag-
netically disordered ground states can be be controllably
studied in the limit N → ∞, where m = N/k, J = J /N ,
and k and J are held fixed. This limit was studied for
k = 2 in [10], where the ground state is a valence-bond
solid (VBS) [17]. Here, we find the k = 3, 4 ground states
break lattice symmetry and are analogous to the VBS
(Fig. 1). For 5 ≤ k ≤ 10 we present evidence that the
ground state is the CSL, and also discuss low-lying com-
peting states. We conjecture that the CSL is the ground
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FIG. 1: Large-N dimer and plaquette ground states for k = 2
(a), k = 3 (b) and k = 4 (c). χrr

′ has constant magnitude on
the dark bonds and is zero on the others. For k = 3 (k = 4),
the phase of χrr

′ is chosen so that the flux through each
plaquette is π (zero). The patterns shown are not necessarily
those selected by 1/N corrections.

state for all k ≥ 5.
The mathematical structure of the large-N limit is the

same as for the k = 2 case already studied. The prob-
lem reduces to finding the ground state of the mean-
field Hamiltonian HMFT = H̃MFT +

∑
r
µr(m− f †

rαf
rα),

where H̃MFT = (N/J )
∑

⟨rr
′⟩ |χrr

′ |2 + HK and HK =
∑

⟨rr
′⟩(χrr

′f †
rαf

r
′α + H.c.). This is required to satisfy

the self-consistency conditions

χrr
′ = −

J

N
⟨f †

r
′αf

rα⟩ (a), m = ⟨f †
rαf

rα⟩ (b). (2)

The field χrr
′ arises from decoupling the exchange inter-

action on each bond, and µr arises from a Lagrange mul-
tiplier field implementing the constraint of m fermions
per site. Without loss of generality, we assume

∑
r
µr =

0. A set of (χrr
′ , µr) satisfying Eq. (2) is a mean-field

saddle point. The saddle-point energy EMFT is an ex-
tremum with respect to variations of the fields, but not
necessarily the global minimum. The task at hand is to
find the lowest energy saddle point as a function of k.

For k = 2, Rokhsar established a lower bound on
EMFT, and showed that, on any lattice where a dimer
covering is possible, any dimer state such as that shown
in Fig. 1a saturates the bound [17]. The leading correc-
tions in the 1/N expansion then select an ordered VBS
configuration from among the various dimer states [11].
It is straightforward to extend Rokhsar’s bound to gen-
eral k. First, for a given saddle point, using Eq. (2b),
EMFT = ⟨H̃MFT⟩ ≥ ẼMFT, the ground state energy of
H̃MFT. A lower bound on ẼMFT is easily obtained fol-
lowing Ref. [17]. For k = 2, one divides the spectrum
of HK in half; in general, one divides the spectrum into
occupied and unoccupied levels. On the square lattice,
one finds EMFT ≥ −[(k − 1)NJNs]/2k2.

A stricter lower bound can be established for bipartite
lattices, where the spectrum of HK is symmetric about
zero energy. We divide the spectrum into the sets L
(occupied levels), U (image of L under ϵ → −ϵ), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

EMFT ≥ −NJNs/4k. (3)

2

quantum plaquette model [15].

Semiclassical limit. The semiclassical limit considered
here is a generalization of the large-S limit of SU(2) mag-
netism. We consider a generalized model where the spin
at each site transforms in the SU(N) irreducible represen-
tation labeled by the Young tableau with one row and nc

columns [11]. This representation is the symmetric com-
bination of nc fundamental representations, and in the
SU(2) case is a spin-S spin (S = nc/2).

We can define this model in terms of fermion opera-
tors f †

rαa, where a = 1, . . . , nc is a “color” index. On
every site we place nc fermions, and antisymmetrize over
their color indices. Defining Sαβ(r) =

∑
a f †

rαaf
rβa, the

Hamiltonian is identical in form to Eq. (1). We define
the coherent state |z⟩ = (zαf †

α1) . . . (zαf †
αnc

)|0⟩, which
is parametrized by the N -component complex spinor z
(z†z = 1) [11]. Since z → eiφz only changes |z⟩ by a
phase, the overall phase of z is unphysical and coher-
ent states are labeled by points in the manifold CPN−1,
which has dimension 2(N − 1). In the limit nc → ∞,
the state

∏
r
|zr⟩ is an eigenstate, and the energy is

E = Jn2
c

∑
⟨rr

′⟩ |z
†
r
z

r
′ |2 + O(nc).

The energy is minimized for z†
r
z

r
′ = 0 on nearest-

neighbor bonds. For N > 2, we immediately see a signif-
icant difference from SU(2) magnetism: knowing zr does
not uniquely determine the neighboring zr

′ that mini-
mizes the energy. This leads to an extensive degeneracy
of classical ground states. To see this, we estimate the di-
mension D of the ground state manifold [16]. Letting Ns

be the number of lattice sites, the total dimension of all
the CPN−1 spins is 2Ns(N−1). On every bond, z†

r
z

r
′ = 0

provides two constraints, for a total of 4Ns constraints.
Treating the constraints as independent leads to a lower
bound : D ≥ 2Ns(N − 3). For N = 3, where this bound
is not helpful, it can be shown by explicit construction of
ground states that D ∝ Ns.

Such extensive degeneracy is a hallmark of geometri-
cally frustrated systems, where underconstraint emerges
from the inability to simultaneously satisfy a set of com-
peting interactions. A crucial physical consequence is
a strong, even complete, suppression of magnetic order
[16]. The semiclassical limit is biased towards magnetic
order, and since it is suppressed even there, we expect
that the present models lack magnetic order altogether
for nc = 1, the case of interest for AEA Mott insulators.

Large-N limit. Returning to the model Eq. (1), mag-
netically disordered ground states can be be controllably
studied in the limit N → ∞, where m = N/k, J = J /N ,
and k and J are held fixed. This limit was studied for
k = 2 in [10], where the ground state is a valence-bond
solid (VBS) [17]. Here, we find the k = 3, 4 ground states
break lattice symmetry and are analogous to the VBS
(Fig. 1). For 5 ≤ k ≤ 10 we present evidence that the
ground state is the CSL, and also discuss low-lying com-
peting states. We conjecture that the CSL is the ground

(b)(a) (c) 0

00

0π

π

FIG. 1: Large-N dimer and plaquette ground states for k = 2
(a), k = 3 (b) and k = 4 (c). χrr

′ has constant magnitude on
the dark bonds and is zero on the others. For k = 3 (k = 4),
the phase of χrr

′ is chosen so that the flux through each
plaquette is π (zero). The patterns shown are not necessarily
those selected by 1/N corrections.

state for all k ≥ 5.
The mathematical structure of the large-N limit is the

same as for the k = 2 case already studied. The prob-
lem reduces to finding the ground state of the mean-
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per site. Without loss of generality, we assume
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0. A set of (χrr
′ , µr) satisfying Eq. (2) is a mean-field

saddle point. The saddle-point energy EMFT is an ex-
tremum with respect to variations of the fields, but not
necessarily the global minimum. The task at hand is to
find the lowest energy saddle point as a function of k.

For k = 2, Rokhsar established a lower bound on
EMFT, and showed that, on any lattice where a dimer
covering is possible, any dimer state such as that shown
in Fig. 1a saturates the bound [17]. The leading correc-
tions in the 1/N expansion then select an ordered VBS
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EMFT = ⟨H̃MFT⟩ ≥ ẼMFT, the ground state energy of
H̃MFT. A lower bound on ẼMFT is easily obtained fol-
lowing Ref. [17]. For k = 2, one divides the spectrum
of HK in half; in general, one divides the spectrum into
occupied and unoccupied levels. On the square lattice,
one finds EMFT ≥ −[(k − 1)NJNs]/2k2.

A stricter lower bound can be established for bipartite
lattices, where the spectrum of HK is symmetric about
zero energy. We divide the spectrum into the sets L
(occupied levels), U (image of L under ϵ → −ϵ), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

EMFT ≥ −NJNs/4k. (3)
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lem reduces to finding the ground state of the mean-
field Hamiltonian HMFT = H̃MFT +

∑
r
µr(m− f †

rαf
rα),
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0. A set of (χrr
′ , µr) satisfying Eq. (2) is a mean-field

saddle point. The saddle-point energy EMFT is an ex-
tremum with respect to variations of the fields, but not
necessarily the global minimum. The task at hand is to
find the lowest energy saddle point as a function of k.

For k = 2, Rokhsar established a lower bound on
EMFT, and showed that, on any lattice where a dimer
covering is possible, any dimer state such as that shown
in Fig. 1a saturates the bound [17]. The leading correc-
tions in the 1/N expansion then select an ordered VBS
configuration from among the various dimer states [11].
It is straightforward to extend Rokhsar’s bound to gen-
eral k. First, for a given saddle point, using Eq. (2b),
EMFT = ⟨H̃MFT⟩ ≥ ẼMFT, the ground state energy of
H̃MFT. A lower bound on ẼMFT is easily obtained fol-
lowing Ref. [17]. For k = 2, one divides the spectrum
of HK in half; in general, one divides the spectrum into
occupied and unoccupied levels. On the square lattice,
one finds EMFT ≥ −[(k − 1)NJNs]/2k2.

A stricter lower bound can be established for bipartite
lattices, where the spectrum of HK is symmetric about
zero energy. We divide the spectrum into the sets L
(occupied levels), U (image of L under ϵ → −ϵ), and M
(remaining levels). An analysis similar to that of Ref. [17]
shows that, on the square lattice,

EMFT ≥ −NJNs/4k. (3)

“Break” the spin into halves, and glue them back by gauge field, 
this is exact in the large-N limit. 

Hermele, etc PRL 2010, XG Wen 1990,  
Affleck, Baskaran, Anderson 1988.
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=1

Gang Chen’s theory group 

Gang Chen’s theory group



Chiral spin liquid of the SU(N) Heisenberg model

N>4, there will be Chiral spin liquid.

2pi/N 2pi/N 2pi/N
1. Spontaneously break T by developing flux for spinons. 

2. At MFT, spinon experience flux and form Landau level,  
actually fill the lowest Landau level. 

3. The system is fully gapped, supporting anyonic excitation  
with fractional statistics. There are topologically  
protected edge states.

2pi/N

Experimental issue:  

1. cooling to spin liquid regime 
2. How to do braiding? 
3. How to measure edge states?
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Extension to the SU(N) Hubbard model

Synthetic gauge fields stabilize a chiral spin liquid phase
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We calculate the phase diagram of the SU(N) Hubbard model describing fermionic alkaline earth
atoms in a square optical lattice with on-average one atom per site, using a slave-rotor mean-field
approximation. We find that the chiral spin liquid predicted for N � 5 and large interactions passes
through a fractionalized state with a spinon Fermi surface as interactions are decreased before
transitioning to a weakly interacting metal. We also show that by adding an artificial uniform
magnetic field with flux per plaquette 2⇡/N , the chiral spin liquid becomes the ground state for all
N � 3 at large interactions, persists to weaker interactions, and its spin gap increases, suggesting
that the spin liquid physics will persist to higher temperatures. We discuss potential methods to
realize the artificial gauge fields and detect the predicted phases.

Introduction.—The experimental realization of a topo-
logically ordered phase of matter other than the frac-
tional quantum Hall e↵ect that occurs in two-dimensional
electron gases is a major goal in both condensed matter
and atomic physics. Phases with intrinsic topological or-
der [1] are of fundamental interest, as they exist outside
of the standard symmetry-breaking framework for clas-
sifying phases of matter and display exotic phenomena
such as fractionalized excitations and edge states that
are robust to local perturbations [2]; in some cases these
phases have been predicted to be useful for topological
quantum computation [3, 4]. Ultracold atomic systems
are uniquely tunable and clean systems that o↵er a plat-
form to realize exotic phases. However, so far, reach-
ing the required low temperatures remains a challenge.
Previous work predicted a topologically ordered chiral
spin liquid (CSL) ground state in fermionic alkaline earth
atoms (AEA) in a deep square optical lattice [5, 6]. In
this Letter we show, within a slave-rotor approximation,
that by applying a synthetic gauge field to this system
it is possible to enhance the parameter space where the
CSL exists, to increase the corresponding spin gap, and in
turn to increase the temperatures at which CSL physics
manifests. In addition, without a synthetic gauge field,
away from the strongly insulating limit we find a gapless
quantum spin liquid with a spinon Fermi surface.

Recently, experiments have trapped and cooled AEA
to quantum degeneracy and loaded them in an optical
lattice [7–17]. Moreover, experiments [18–20] have con-
firmed the predicted SU(N) spin symmetry in the colli-
sional properties of fermionic AEA [21–23]. This SU(N)
symmetry generalizes the usual SU(2) symmetry, and N
can be controllably varied by initial state preparation up
to 2I + 1, with I the nuclear spin (as large as N = 10
for 87Sr with I = 9/2). The low temperatures reached in
recent experiments [24–26], at which short range spin cor-
relations should begin to develop, makes it particularly
timely to study quantum magnetism in these systems.

Several theory works have addressed questions related to
the expected SU(N) magnetic phases in the strongly in-
teracting limit [5, 6, 27–43].
In parallel, other ultracold atom experiments have real-

ized synthetic gauge fields [44–51]. In these experiments,
the atoms behave as if they were charged particles in ex-
ternal electromagnetic fields despite their neutrality. Al-
though many schemes in principle can create the gauge
field that we study in this paper, we focus on methods
utilizing laser-induced tunneling [52–54].
AEA in optical lattices with synthetic gauge fields.—

AEA in a su�ciently deep optical lattice are described by
an SU(N) generalization of the usual (N = 2) Hubbard
model,

H = �t
X

hi,ji,↵

ei�ijc†
↵,i

c
↵,j

+
U

2

X

i

(n
i

� 1)2 (1)

where c
↵,i

is the fermionic annihilation operator for nu-
clear spin state ↵ at lattice site i,

P
hi,ji indicates a

sum over nearest neighbors i and j; �
ij

= ��
ji

is
the (externally imposed) lattice gauge field. We define
n
i

=
P

↵

c†
↵,i

c
↵,i

, and t and U are the hopping energy
and on-site interaction energy, whose ratio can be tuned
by modifying the optical lattice depth. In this Letter, we
take the average fermion number per site to be one.
The gauge field �

ij

depends both on the artificial elec-
tromagnetic field as well as the gauge choice. We are
interested in the physics of a two-dimensional square lat-
tice with a spatially uniform, time-independent artificial
magnetic field, and use the Landau gauge where

�
ij

=

(
�x

j

�
yj�1,yi if {i, j} bond is vertical

0 otherwise,
(2)

x
j

is the x coordinate of site j measured in lattice units,
and � is the flux penetrating a single square plaquette of
the lattice [55]. We focus on the case � = 2⇡/N , because
this choice of � is favorable for the existence of the chiral
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We calculate the phase diagram of the SU(N) Hubbard model describing fermionic alkaline earth
atoms in a square optical lattice with on-average one atom per site, using a slave-rotor mean-field
approximation. We find that the chiral spin liquid predicted for N � 5 and large interactions passes
through a fractionalized state with a spinon Fermi surface as interactions are decreased before
transitioning to a weakly interacting metal. We also show that by adding an artificial uniform
magnetic field with flux per plaquette 2⇡/N , the chiral spin liquid becomes the ground state for all
N � 3 at large interactions, persists to weaker interactions, and its spin gap increases, suggesting
that the spin liquid physics will persist to higher temperatures. We discuss potential methods to
realize the artificial gauge fields and detect the predicted phases.

Introduction.—The experimental realization of a topo-
logically ordered phase of matter other than the frac-
tional quantum Hall e↵ect that occurs in two-dimensional
electron gases is a major goal in both condensed matter
and atomic physics. Phases with intrinsic topological or-
der [1] are of fundamental interest, as they exist outside
of the standard symmetry-breaking framework for clas-
sifying phases of matter and display exotic phenomena
such as fractionalized excitations and edge states that
are robust to local perturbations [2]; in some cases these
phases have been predicted to be useful for topological
quantum computation [3, 4]. Ultracold atomic systems
are uniquely tunable and clean systems that o↵er a plat-
form to realize exotic phases. However, so far, reach-
ing the required low temperatures remains a challenge.
Previous work predicted a topologically ordered chiral
spin liquid (CSL) ground state in fermionic alkaline earth
atoms (AEA) in a deep square optical lattice [5, 6]. In
this Letter we show, within a slave-rotor approximation,
that by applying a synthetic gauge field to this system
it is possible to enhance the parameter space where the
CSL exists, to increase the corresponding spin gap, and in
turn to increase the temperatures at which CSL physics
manifests. In addition, without a synthetic gauge field,
away from the strongly insulating limit we find a gapless
quantum spin liquid with a spinon Fermi surface.
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relations should begin to develop, makes it particularly
timely to study quantum magnetism in these systems.

Several theory works have addressed questions related to
the expected SU(N) magnetic phases in the strongly in-
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In parallel, other ultracold atom experiments have real-

ized synthetic gauge fields [44–51]. In these experiments,
the atoms behave as if they were charged particles in ex-
ternal electromagnetic fields despite their neutrality. Al-
though many schemes in principle can create the gauge
field that we study in this paper, we focus on methods
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Slave rotor approach 

This approach is designed to be smoothly connected to  
the parton-gauge construction in the Heisenberg limit.

c
↵,j

= e�i✓jf
↵,j

. (3)

In order to reproduce the original Hilbert space, we must
impose the constraint

L
j

=
X

↵

f†
↵,j

f
↵,j

� 1 (4)

that the rotor angular momentum L
j

is uniquely de-
termined by the particle number. Here, L

j

satisfies
[✓

j

, L
j

] = i. We rewrite the Hamiltonian in terms of

these new degrees of freedom, giving

H = �t
X
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(L
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↵,i

, (7)

where h
i

is a Lagrange multiplier that enforces on aver-
age the constraint Eq. (4), t̃

ij

⌘ thei✓i�i✓j i
r

, and J
ij

⌘
tei�ij

P
↵

hf†
↵,i

f
↵,j

i
f

. Here the sub-index r (f) refers
to taking the expectation value in the rotor (spinon)
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Phase diagram of Hubbard model with no gauge flux
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Phase diagram of Hubbard model with gauge flux
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FIG. 2. The excitation gap of the CSL phase, �, as a function
of interaction strength, U , both in units of the tunnelling t .
The curves illustrate the N - and magnetic flux �-dependence.
From bottom to top, we show (N = 10,� = 0); (N = 10,� =
2⇡/10); (N = 5,� = 2⇡/5); and (N = 5,� = 2⇡/5). The
turning points at U/t ⇡ 4 are the locations below which the
rotor gap becomes smaller than the spin gap.

gap. In the slave-rotor mean-field approximation, the
spin gap is simply the band gap of the spinon spectrum,
and the rotor gap is set by the Hubbard U interaction
and thus stays much larger than the spin gap in the Mott
insulating regime except near the Mott transition. For
a given U/t, the spin gap slightly increases when the
gauge field is turned on. An even more favorable e↵ect
of the gauge field for the spin gap occurs because the
CSL persists to lower U/t. Since � increases as U/t
decreases, the gauge field increases the maximum � by
about a factor of 1.5. Because � sets the temperature
to which the CSL’s characteristics remain, we therefore
expect the gauge field to increase the temperature range
over which the CSL behavior is accessible.

Gauge field implementation.—Many proposals to im-
plement artificial gauge fields exist. Here we suggest one
scheme, which uses Raman-induced tunneling in deep lat-
tices subject to a uniform potential gradient [49, 50]. A
Raman process is on resonant with the energy splitting
between adjacent lattice sites, and the atoms acquire a
phase kick each time they hop, imprinting the phase �

ij

in Eq. (1). This scheme is natural for our current consid-
erations, since it utilizes the optical lattice and generates
the Hamiltonian Eq. (1) with strong gauge fluxes. Gauge
fields have been recently demonstrated in bosonic alkali
atoms using this technique [49, 50], although we note
that these experiments have observed unexplained heat-
ing, which could be problematic for realizing low temper-
ature phases.

We also mention the alternative scheme proposed in
Ref. [54] that seems natural for the present work with
AEA: rather than using Raman lasers, one traps the 1S0
ground (g) and 3P0 excited (e) states in, for example,
a checkboard pattern in an optical lattice by using an
appropriate, “anti-magic,” wavelength [68]. The e state

has a ⇠ 100s natural lifetime, and is therefore stable on
the timescale of the system. Because a single laser can
directly drive tunneling of a g atom to an e atom at an
adjacent lattice site while imprinting a phase �

ij

, one
avoids the complexity of driving Raman processes. How-
ever, when this proposal is implemented in the context
of interacting quantum phases additional considerations
arise that were not accounted for in the prior analysis.
First, two e-state atoms on the same site can inelasti-
cally collide and be lost from the trap. We have found
that this problem can be largely mitigated when using a
checkerboard g-e pattern [69]. Second, the interactions
are inhomogeneous, being di↵erent for the sites occupied
by g atoms and e atoms. This issue can modify the dis-
cussed phase diagram. Third, the flux generated in the
simplest implementation of this proposal is staggered and
thus requires rectification techniques to make it homoge-
neous.
Preparation and detection.—Reaching the temperature

regimes to observe the phase diagram Figure 1 is chal-
lenging. However, the expected advantage of the SU(N)
symmetry for cooling [24, 33, 39, 70] together with the
less stringent temperature requirements to observe CSL
phases in the presence of the synthetic gauge field might
help achieve the required conditions. Other potentially
favorable aspects of the gauge field are the absence of
an intermediate SFS phase and that all transitions are
second order in the mean-field analysis. Consequently,
adiabatically going from weak to strong interactions may
be easier than in the absence of the gauge field. On the
other hand, the gauge field itself introduces further con-
straints such as the requirement to use a deep lattice po-
tential and a complex band structure even in the weakly
interacting regime. Consequently, determining optimal
preparation is beyond the scope of this work.
To conclude, we briefly outline methods to detect the

CSL and SFS. Although it is premature to analyze pro-
tocols in detail, as these will depend substantially on the
specific experimental implementation, it is useful to de-
scribe the basic ingredients that would be required. To
detect the CSL Ref. [6] suggests methods to probe two
characteristic properties of topological phases: looking
for topologically protected, chiral edge currents and in-
troducing a weak attractive optical potential that is lo-
calized to a few lattice sites, which should bind the any-
onic quasiparticles. Braiding or interfering these quasi-
particles can manifest their anyonic nature. To detect
the SFS state, one can perform spin-dependent Bragg
spectroscopy to detect the 2-spinon continuum in the dy-
namic spin structure factor; the most basic signature of
the exotic nature of this phase is the lack of order and
existence of gapless excitations. More details of the state
and its excitations could be revealed by considering more
structure of the spectrum, similar to that considered in
Refs. 71 and 72.
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where H is given by Eq. (5) and | i ⌘ | i
r

| i
f

is the
mean-field state.

Results.— Figure 1(a, b) shows the slave-rotor mean-
field phase diagram as a function of U/t and N ; the top
panel shows the phase diagram in the absence of a gauge
field and the bottom shows the phase diagram for a gauge
field with flux � = 2⇡/N . We find five phases: Fermi
liquid (FL), integer quantum Hall (IQH), valence bond
solids (VBS), a gapless spin liquid with a spinon Fermi
surface (SFS) [59], and a chiral spin liquid (CSL) [60, 61].
Thin black lines indicate second order transitions and
thick black lines indicate first order phase transitions.
Generically, the role of the Hubbard U interaction is to
localize the atom on lattice sites. Such Mott localization
is signalled in the rotor sector; when the bosonic rotor is
gapped and uncondensed with hei✓i = 0, the system is in
a Mott insulating state. The mean-field parameters and
some key properties of the di↵erent phases are listed in
Table I. As we show in the table, the rotor and the spinon
may experience di↵erent, even opposite, gauge fluxes in
their mean-field Hamiltonians for di↵erent phases. Since
the rotor and the spinon must form a whole atom, the
total gauge flux experienced by the rotor and the spinon
should be equal to the synthetic gauge flux that is exter-
nally imposed on the atom.

The FL phase is very similar to the usual SU(2) Fermi
liquid, and its structure and instabilities are essentially
those described in the absence of a lattice [22]. The VBS
are translation-symmetry breaking phases with repeating
units of SU(N) singlets spread across multiple sites. In
particular, as we plot in Figure 1(c), the system is decou-
pled into 6-site rectangular (4-site square) clusters in the
SU(3)-VBS [SU(4)-VBS] state. The SFS spin liquid state
is characterized by a gapless spinon Fermi surface with a
gapped bosonic rotor in the mean-field theory. Going be-
yond the mean-field description, we need to include the
U(1) phase fluctuation of the spinon hopping t̃

ij

. This is
the internal gauge fluctuation [57]; it is dynamically gen-
erated and is unrelated to the synthetic gauge field that
is imposed externally. At low energies, the SFS spin liq-
uid is described by the spinon Fermi surface coupled by a
fluctuating internal U(1) gauge field [57, 62–66]. Due to
the spinon-gauge coupling, the overdamped U(1) gauge
fluctuation scatters the spinons on the Fermi surface and
destroys the coherence of the spinon quasi-particles. The
resulting state is a non-Fermi liquid of fermionic spinons.
The CSL is distinct from the SFS in that the spinons
form an integer quantum Hall state in the CSL. Upon
coupling to U(1) gauge fluctuations, this leads to a chiral
topologically ordered phase with anyon excitations, and
gapless chiral edge states that carry spin but no charge
[60].

To understand the global structure of the phase dia-
gram, it is useful to consider the two limits U/t = 0 and
U/t ! 1. The FL and IQH states are simply the non-
interacting ground states occurring at U/t = 0. In the

Phases hei✓i rotor flux spinon gap spinon flux

FL 6= 0 0 0 0

SFS 0 0 0 0

CSL 0 �2⇡/N 6= 0 2⇡/N

SU(3)-VBS 0 �⇡ 6= 0 ⇡

SU(4)-VBS 0 0 6= 0 0

IQH 6= 0 0 6= 0 2⇡/N

CSL 0 0 6= 0 2⇡/N

SU(3)-VBS 0 ⇡/3 6= 0 ⇡

SU(4)-VBS 0 ⇡/2 6= 0 0

TABLE I. Parameters that characterize the obtained phases.
The upper five (lower four) rows describe phases in the ab-
sence (presence) of the synthetic gauge field. The rotor
(spinon) flux refers to the flux that is experienced by the rotor
(spinon) in the mean-field Hamiltonian Hr (Hf ). For the FL,
SFS, IQH, and CSL states, the flux is defined for the elemen-
tary square plaquette. For SU(3)-VBS [SU(4)-VBS] state, the
flux is defined through the 6-site [4-site] cluster [58].

strongly interacting limit, the Hubbard model reduces
to an SU(N) Heisenberg model, and the phase diagram
coincides with previous slave-fermion mean-field calcu-
lations of the Heisenberg model [5]: for N = 3, 4 the
ground state is a VBS, while for N � 5 the ground state
is a CSL. This is true both with and without a synthetic
gauge field, as in the the U/t ! 1 limit the physics
is governed by two-site nearest neighbor superexchange,
which is insensitive to the gauge flux.
In the intermediate U/t regime, the gauge field causes

more significant di↵erences. Without a gauge field, we
find that an SFS phase intervenes between the non-
interacting FL and Heisenberg-limit CSL or VBS for all
N except N = 4, in which case there is a direct transi-
tion between the FL and VBS ground states. The FL-
SFS transition is second order and is expected to remain
continuous beyond mean-field theory [67], while the SFS-
CSL and FL-VBS are first order phase transitions. In
contrast, in the presence of the � = 2⇡/N gauge flux,
a direct second order transition occurs between the non-
interacting IQH phase and the CSL phase within our
mean-field theory, and the CSL exists at intermediate
U/t even for N = 3 and 4.
The gauge field increases the parameter space for which

the CSL occurs: in addition to persisting down to N =
3, 4, the CSL occurs for a broader range of U/t values.
In particular, the minimum U/t for which the CSL exists
decreases from about U/t ⇡ 5.5 to U/t ⇡ 3.5 (the exact
values depend on N).
In the CSL, both the spinon sector and the rotor sector

are gapped. Figure 2 illustrates the excitation gap �’s
dependence on U/t, N , and the gauge flux in the CSL
where � is the smaller of the spin gap and the rotor

Different phases
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Open theoretical questions

1. Direct transition between the CSL to magnetic ordered states.  
(Gang Chen, unpublished)

destroy the Chiral Abelian topological order  
and induce magnetic order at the same time?

2. Direct transition between the SU(3) VBS to magnetic ordered states. 
(Gang Chen, unpublished)

15

FIG. 10. Z4 vortex in the 6-site cluster state.
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Three-sublattice ordering of the SU(3) Heisenberg model of three-flavor fermions
on the square and cubic lattices

Tamás A. Tóth,1 Andreas M. Läuchli,2 Frédéric Mila,1 and Karlo Penc3
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Combining a semi-classical analysis with exact diagonalizations, we show that the ground state of the SU(3)
Heisenberg model on the square lattice develops three-sublattice long-range order. This surprising pattern for
a bipartite lattice with only nearest-neighbor interactions is shown to be the consequence of a subtle quantum
order-by-disorder mechanism. By contrast, thermal fluctuations favor two-sublattice configurations via entropic
selection. These results are shown to extend to the cubic lattice, and experimental implications for the Mott-
insulating states of three-flavor fermionic atoms in optical lattices are discussed.

PACS numbers: 67.85.-d, 71.10.Fd, 75.10.-b, 75.10.Jm

Mott transitions, i.e. metal–insulator transitions driven by
correlations, and the nature of the associated Mott insulating
phases represent one of the central themes of contemporary
condensed matter physics [1], and more recently also of the
field of ultracold atomic gases [2]. Theoretically, the canoni-
cal case of two-flavor fermions on hypercubic lattices is thor-
oughly understood. For strong interactions an antiferromag-
netically ordered two–sublattice Néel state is realized. Ongo-
ing experimental efforts using ultracold fermionic gases are
focused on reaching this state coming from higher tempera-
tures [3].

In an exciting parallel development, recent experimental
advances using multi-flavor atomic gases [4, 5] have paved the
way to the investigation of Mott insulating states with more
than two flavors in optical lattices [6, 7]. While it is intu-
itively clear that Mott insulating states will exist at particular
commensurate fillings – as suggested by atomic limit consid-
erations and single site DMFT simulations [8, 9] –, the nature
and the spatial structure of multi-flavor Mott insulating states
are in general not well understood. For instance, on the square
lattice geometry, many different proposals for insulating states
have been put forward, ranging from SU(N ) symmetry break-
ing ”magnetic” states to dimerized or plaquette states, chiral
spin liquids and staggered flux phases [6, 10–13].

In this Letter, we present a strong case in favor of a three-
sublattice long-range ordered ground state for the Mott insu-
lating state of three-flavor (N = 3) fermions with one particle
per site (1/3–filling) on the square lattice. This is based on an-
alytical and numerical investigations of the strong coupling
limit U ≫ t of the SU(3) symmetric Hubbard model defined
by the Hamiltonian

H = −t
∑

⟨i,j⟩,α

(c†i,αcj,α + h.c.) + U
∑

i,α<β

ni,αni,β . (1)

Here c†i,α and ci,α create and annihilate a fermion at site i with
flavor α, respectively, and ni,α = c†i,αci,α. To second order in
t/U , the low-energy physics is captured by the SU(3) antifer-

(b)(a)

FIG. 1: (Color online) Sketch of the (a) three-sublattice and (b) two-
sublattice phases of the SU(3) antiferromagnetic Heisenberg model.

romagnetic Heisenberg model with coupling J = 2t2/U :

H = J
∑

⟨i,j⟩

Pij , (2)

where Pij is a transposition operator that exchanges SU(3)
spins on site i and j: Pij |αiβj⟩ = |βiαj⟩. The spins on a site
form the 3-dimensional fundamental irreducible representa-
tion of the SU(3) algebra. In the following, the basis states
will be denoted by |A⟩, |B⟩ and |C⟩. Note that this model can
also be seen as a special high–symmetry point of the SU(2)
spin–1 bilinear–biquadratic exchange Hamiltonian when bi-
linear and biquadratic couplings are equal.

Let us start by briefly reviewing what is known about this
model in various geometries. In one dimension, the model
has a Bethe Ansatz solution [14]. It has gapless excitations at
q = 0 and q = ±2π/3 [15], and the correlations decay al-
gebraically with period 3. In higher dimensions, much less is
known, and most of it relies on the pioneering work of Papan-
icolaou [16] who has investigated this question in the context
of spin–1 models with the help of a variational approach, us-
ing a site–factorized wavefunction of the form

|Ψ⟩ =
NΛ
∏

i=1

(dA,i|A⟩i + dB,i|B⟩i + dC,i|C⟩i) , (3)

where NΛ is the number of sites. Grouping the variational
parameters into (complex) vectors di = (dA,i, dB,i, dC,i) and
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FIG. 4. Cluster states (nc = 1) with energies saturating the lower
bound (94) on the square lattice for (a) k = 2, (b) k = 3, and (c) k = 4.
χr r ′ has constant magnitude on the dark bonds and is zero on the
others. In the k = 3 state, the flux through each six-site plaquette is
π , while it is zero for each four-site plaquette in the k = 4 state. For
each value of k, in the N = ∞ limit, every tiling of the square lattice
by the type of clusters shown is a ground state. This large degeneracy
is expected to be lifted upon computing perturbative 1/N corrections
to the ground-state energy (Ref. 34).

is trivial to see that E′
MFT = Ebound if and only if condition (1)

holds.
As before, saturation of the bipartite bound is impossible

for large enough k. Again, we consider a lattice where either
Jr r ′ = Jmax or Jr r ′ = 0, and let Nb be the total number of
bonds in the lattice with nonzero exchange. For k > 4Nb/Ns ,
the bound (87) is stricter than Eq. (94), so saturation is
impossible for such values of k.

Since a flat energy spectrum of the mean-field Hamiltonian
is necessary to saturate the bipartite bound, we expect that it
will only be saturated by VCS states. VCS states saturating
the bound on the square lattice for nc = 1 are shown in Fig. 4
and were also reported in Ref. 35. For k = 2, the bound is
saturated by any dimer state, and for k = 4 it is saturated by
four-cluster states of the type shown. For k = 3, the bound is
actually saturated by a class of six-cluster states.

Whenever a given lattice admits a nc = 1 cluster state
saturating the bound, it is easy to see that the same lattice
(i.e., same set of exchange couplings Jr r ′) also admits nc > 1
cluster states saturating the bound. These nc > 1 states have
diagonal χab

r r ′ as in Eq. (83), and each χa
r r ′ is chosen to give a

cluster decomposition of the type that saturates the bound for
nc = 1. Examples of such states (for k = 4 and nc = 2) are
illustrated for the square lattice in Fig. 5.

VI. LARGE-N RESULTS ON SQUARE LATTICE AND
NUMERICAL GROUND-STATE SEARCH

In this section, we focus on the square lattice and, in
particular, on the case k ! 5. The discussion of Sec. V B above
establishes that, for k = 2,3,4, the large-N ground states on the
square lattice are VCS states of the type shown in Figs. 4 and 5.

(b)
(a)

FIG. 5. (Color online) Illustration of two N = ∞ cluster ground
states on the square lattice for nc = 2 and k = 4, which saturate the
lower bound (94). Square clusters of one color are marked with solid
lines (red online), while those of the other color are marked with
dashed lines (blue online). Any configuration where clusters of the
two colors separately tile the lattice is a N = ∞ ground state; as in the
nc = 1 case, the degeneracy among these states is expected to be lifted
upon computing perturbative 1/N corrections to the ground-state
energy.

We know of no cluster states that can saturate the bound for
k ! 5 on the square lattice, and we conjecture that saturation
is impossible for such values of k. In this situation, it is very
challenging to rigorously determine the large-N ground state,
a problem we do not currently know how to solve. Instead,
we employ a systematic numerical search for ground states,
which, while not foolproof, allows us to determine the ground
state with some confidence.

Here, we first describe our numerical self-consistent
minimization (SCM) procedure, which we developed and
employed in Ref. 35 for the case nc = 1. A very similar
procedure was later used by Foss-Feig and Rey to study
the Kondo lattice model, in collaboration with one of us
(M.H.),101 and subsequently with both of us.102 Due to the
local constraint, the SCM procedure is not simply a trivial
iteration of a self-consistent equation, and to our knowledge
it has not been used previously by others; therefore, we shall
describe the SCM procedure here in some detail. Following
this discussion, we shall describe the results of SCM on the
square lattice for nc = 1,2.

A. Self-consistent minimization procedure

We first describe the SCM algorithm in the simpler case
of nc = 1; modifications in the nc = 2 case are described
below. The basic idea is simply to iterate the self-consistency
condition (13). However, if this is all one does, then the fermion
density will be nonuniform and Eq. (14) will be violated.
Instead, the idea is to iterate Eq. (13) within a constrained
set of χr r ′ and µr , so that Eq. (14) is always satisfied. To
accomplish this, the algorithm proceeds as follows: (1) An
initial χr r ′ is chosen randomly. In our calculations, we chose
χr r ′ = |χr r ′ |eiφr r′ , where |χ | was chosen in the interval [0.03,
0.18] and φ in the interval [0,2π ], both with a uniform
distribution. (2) Given χr r ′ , the potential µr is chosen so that
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Summary of this part

1. SU(N) Hubbard model is more realistic than SU(N) Heisenberg model. 

2. SU(N) Hubbard model with and without gauge flux could stabilize the  
   Chiral spin liquid in a much larger parameter space, and provide a  
   larger energy gap for experimental observation. 
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2. Quantum Paramagnet and frustrated quantum  
    criticality on a diamond lattice

GC,   PRB(R), 96, 020412 (2017)
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Spin-one Haldane chain

Duncan Haldane

AKLT state

S=1 chain

Due to Berry phase effect, spin-1/2 chain is  
gapless, spin-1 Heisenberg chain is gapped.

Building degree of freedom is S=1, but at there is S=1/2 edge state.
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Symmetry Protected Topological Phase

Xiao-Gang Wen

Symmetry-Protected Topological
Orders in Interacting Bosonic Systems
Xie Chen,1,2 Zheng-Cheng Gu,3 Zheng-Xin Liu,4,2 Xiao-Gang Wen5,2,4*

Symmetry-protected topological (SPT) phases are bulk-gapped quantum phases with symmetries,
which have gapless or degenerate boundary states as long as the symmetries are not broken.
The SPT phases in free fermion systems, such as topological insulators, can be classified; however,
it is not known what SPT phases exist in general interacting systems. We present a systematic
way to construct SPT phases in interacting bosonic systems. Just as group theory allows us to
construct 230 crystal structures in three-dimensional space, we use group cohomology theory
to systematically construct different interacting bosonic SPT phases in any dimension and with
any symmetry, leading to the discovery of bosonic topological insulators and superconductors.

For many years, the defining characteristic
of a phase of matter was thought to be its
symmetry, with different phases necessarily

having different symmetries (1). However, through
the study of high-temperature superconductors
and the fractional quantum Hall (FQH) effect,
it was discovered that there can be distinct quan-
tum phases—topologically ordered phases—that
cannot be distinguished by symmetry (2). A deep
connection between quantum phases and quantum
entanglement (3–5) indicates that topological or-
ders are characterized by patterns of long-range
entanglement (5). Recently, it was discovered that
even short-range entangled states with the same
symmetry can belong to different phases. These
symmetric short-range entangled states are said
to contain a new kind of order called symmetry-
protected topological (SPT) order, (6) which is
characterized by symmetry-protected gapless or
degenerate edge states despite the bulk gap. Just
like symmetry-breaking orders are described by
group theory, we show here that SPT orders are
described by group cohomology theory. This dis-
covery expands our original understanding of pos-
sible phases in many-body systems.

A central issue is to understand what SPT
phases exist. The first system known to have
SPT order was the spin-1 chain with antiferro-
magnetic Heisenberg interactions (the so-called
Haldane chains) (7, 8). This model has been gen-
eralized, leading to a complete classification of
SPT orders in one-dimensional (1D) bosonic/
fermionic systems (9–12). Topological insula-
tors (13–17) with gapless edge modes protected
by time-reversal symmetry and particle-number

conservation provided the first example of an
SPT order in higher dimensions. The noninter-
acting nature of fermions in these systems allows
a classification of this kind of SPT order (18, 19),
whereas no SPT order exists in noninteracting
bosonic systems.

However, understanding SPT orders in non-
interacting systems is not sufficient, because par-
ticles in real materials do interact. In this paper,
we present a systematic construction of SPT phases
for interacting bosonic systems in any dimen-
sion and with any symmetry. Our construction
leads to the discovery of many SPT phases in 2
and higher dimensions (see Table 1). For sim-
plicity, we are going to first present in detail the
case of the 1D Haldane chain and demonstrate
the emergence of its SPT order using the group
cohomology theory for time reversal symmetry.
The group cohomology approach allows us to
generalize the construction to higher dimensions
and to all other symmetries.

The fixed-point ground-state wave function of
the Haldane chain (6) takes a simple dimer form
(Fig. 1), where each site contains two spin 1/2’s
connected into singlet pairs j↑ri ↓liþ1〉 − j↓ri↑liþ1〉
between neighboring sites (20). Time-reversal

symmetry acts asM(T ) = isyK on each spin 1/2,
where K is complex conjugation and sy is the y
component of the spin operator. The wave func-
tion is invariant under the symmetry action. For
each spin 1/2, M(T )2 = −I, whereas on each site
with two spins, [M(T ) ⊗ M(T )]2 = I. So the
states on each site form a representation of ZT

2 ,
the symmetry group generated by time reversal
symmetry.

The wave function on a closed chain is the
gapped ground state of the Hamiltonian H ¼
∑is r

i ⋅ sl
iþ1, with antiferromagnetic Heisenberg

interactions between each pair of spin 1/2’s on
neighboring sites where s l

i and s r
i are spin op-

erators for the left and right spin 1/2 on each
site, respectively. The Hamiltonian is invariant
under time-reversal symmetry; the ground state
does not break any symmetry of the system, yet
the system is far from a trivial phase, which be-
comes evident when we put the system on an open
chain. When the chain is open, the dangling
spin 1/2 at each end forms a nontrivial projec-
tive representation of ZT

2 with M(T)2 = −I,
which does not allow a 1D representation (21).
Therefore, the degeneracy of the edge state is
robust under any perturbation as long as time-
reversal symmetry is preserved.

The ground-state structure giving rise to SPT
order in the Haldane chain can be generalized to
an arbitrary symmetry group after we relabel the
spin states with group elements and express sym-
metry actions using group cocycles. The time-
reversal symmetry group contains two elements:
ZT
2 ¼ fE,Tg with T ◦ T = E. For the left spin 1/2

on each site, label j↑〉=j↓〉 as jE 〉=jT 〉 , and for the
right one, label j↑〉=j↓〉 as jE〉= − jT 〉. The total
wave function becomes

jF〉 ¼ ∏
i
(jTr

i T
l
iþ1〉 þ jEr

i E
l
iþ1〉)

¼ ∏
i
∑
gi
jgri ¼ gi, gliþ1 ¼ gi〉 ð1Þ

wheregi ∈ ZT
2 . Time-reversal symmetry then acts

on the right/left spins on each site as M (T )jE〉 ¼
−jT 〉 and M (T )jT 〉 ¼ jE〉, which takes the form
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Table 1. SPT phases in d spatial dimensions protected by some simple symmetries (represented by the
symmetry groups). Z1 means that our construction only gives rise to the trivial phase. Zmn means that the
constructed nontrivial SPT phases plus the trivial phase are labeled by m elements in Zn. Z means that
the constructed nontrivial SPT phases are labeled by nonzero integers, whereas the trivial one is labeled
by 0. ZT2 represents time-reversal symmetry, U (1) represents boson number–conservation symmetry, SO(3)
represents rotation symmetry, Zn represents cyclic symmetry of order n, and D2 represents the Klein
four-group symmetry. The first row corresponds to bosonic topological insulators and the second row to
bosonic topological superconductors.

Symmetry d = 0 d = 1 d = 2 d = 3
U(1) ⋊ ZT2 Z Z2 Z2 Z22
ZT2 Z1 Z2 Z1 Z2
U(1) Z Z1 Z Z1
SO(3) Z1 Z2 Z Z1
SO(3) % ZT2 Z1 Z22 Z2 Z32
Zn Zn Z1 Zn Z1
ZT2 % D2 ¼ D2h Z22 Z42 Z62 Z92
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Table for boson SPTs
classified with group cohomology from symmetry and dimension.

It turns out, the well-known topological insulator is a fermion SPT that is protected  
by time reversal symmetry. Boson SPT must be stabilized by interaction. 

重要的问题：理解导致SPT的物理机制，以及在什么物理体系中可以找到。

Gang Chen’s theory group 
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Topological Paramagnetism in Frustrated Spin-One Mott Insulators

Chong Wang, Adam Nahum, and T. Senthil
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(Dated: January 7, 2015)

Time reversal protected three dimensional (3D) topological paramagnets are magnetic analogs of
the celebrated 3D topological insulators. Such paramagnets have a bulk gap, no exotic bulk exci-
tations, but non-trivial surface states protected by symmetry. We propose that frustrated spin-1
quantum magnets are a natural setting for realising such states in 3D. We describe a physical picture
of the ground state wavefunction for such a spin-1 topological paramagnet in terms of loops of fluc-
tuating Haldane chains with non-trivial linking phases. We illustrate some aspects of such loop gases
with simple exactly solvable models. We also show how 3D topological paramagnets can be very
naturally accessed within a slave particle description of a spin-1 magnet. Specifically we construct
slave particle mean field states which are naturally driven into the topological paramagnet upon
including fluctuations. We propose bulk projected wave functions for the topological paramagnet
based on this slave particle description. An alternate slave particle construction leads to a stable
U(1) quantum spin liquid from which a topological paramagnet may be accessed by condensing the
emergent magnetic monopole excitation of the spin liquid.

Frustrated quantum magnets display a rich variety of
many–body phenomena. Some such magnets show long–
range magnetic order at low temperature, often selected
out of a manifold of degenerate classical ground states
by quantum fluctuations. A very interesting alternative
possibility — known as quantum paramagnetism — is
the avoidance of such ordering even at zero tempera-
ture. Quantum paramagnets may be of various types.
A fascinating and intensely–studied class is the quan-
tum spin liquids: these display many novel phenomena,
for instance fractionalization of quantum numbers and
topological order, or gapless excitations that are robust
despite the absence of broken symmetries [1–3].

Recently there has been much progress in understand-
ing a di↵erent type of remarkable quantum paramagnet.
These are phases which have a bulk gap and no fractional
quantum numbers or topological order. Despite this,
they have nontrivial surface states that are protected
by global symmetries. These properties are reminiscent
of the celebrated electronic topological band insulators.
Hence they have been called topological paramagnets [4].
Topological paramagnets and topological band insulators
are both examples of what are known as Symmetry Pro-
tected Topological (SPT) phases [5–7]. A classic example
of a topological paramagnet is the Haldane/AKLT spin-1
chain: though this has a bulk gap and no bulk fraction-
alization, it has dangling spin-1/2 moments at the edge
which are protected by symmetry, for instance time re-
versal. In the last few years tremendous progress has
been made in understanding such SPT phases and their
physical properties in diverse dimensions (for reviews, see
Refs. 8 and 9).

The main focus of the present paper is on three-
dimensional topological paramagnets that are protected
by time reversal (we also briefly discuss topological para-
magnets protected by other symmetries, notably conser-
vation of at least one spin component). These are inter-
esting for a number of reasons. First, time reversal is a
robust symmetry of typical physical spin Hamiltonians.

In 1D the familiar Haldane/AKLT chain is the only time
reversal protected topological paramagnet while in 2D
there are no time reversal protected topological param-
agnets. In 3D however there are three distinct non-trivial
phases [4, 10, 11] (corresponding to a classification by
the group Z 2

2

). Second, regarded as an electronic insu-
lator, unlike the 1D Haldane chain [12], these 3D topo-
logical paramagnets survive as distinct interacting SPT
insulators [13]. The properties and experimental finger-
prints of such topological paramagnets were described in
Refs. [4, 10, 11, 13]. However there is currently very lit-
tle understanding of where such phases might actually be
found. In this paper we propose that frustrated spin-1
Mott insulators may be good places to look for an exam-
ple of such phases.

Already in the familiar 1D example it is the spin-1 anti-
ferromagnetic chain, rather than the spin-1/2 chain, that
naturally becomes a topological paramagnet. In 3D for
one of the topological paramagnets we provide a phys-
ical picture and a parton construction which are both
very natural for the spin-1 case. We hope that our ob-
servations inspire experimental and numerical studies of
frustrated spin-1 quantum magnetism in the future. To-
wards the end of the paper we remark on materials that
may form such interesting frustrated magnets.

The three 3D topological paramagnets that are pro-
tected by time reversal symmetry alone [4, 10, 11] all
allow for a gapped surface with Z

2

topological order (i.e.
a gapped surface Z

2

quantum spin liquid) even though
the bulk itself is not topologically ordered. The prop-
erties of this surface theory give a useful way to label
the bulk phases. The surface has gapped quasiparticle
excitations — labelled ‘e’ and ‘m’ — which are mutual
semions. These may be thought of as the electric charge
and magnetic flux of a deconfined Z

2

gauge theory (like
the vertex and plaquette defects of Kitaev’s toric code
[14]). At the SPT surfaces these particles have properties
— self-statistics or time reversal transformation proper-
ties — that are impossible in a strictly 2D system, and
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Section III C 2 suggests (at leading order of the strong
coupling expansion in the resulting U(1) gauge theory)
an interesting frustrated spin-1 model: the “J

1

–J
2

” an-
tiferromagnet on the diamond lattice9:

H = J
1

X

hrr0i

~S
r

· ~S
r

0 + J
2

X

hhrr0ii

~S
r

· ~S
r

0 (51)

The next-nearest neighbour coupling J
2

introduces frus-
tration. Indeed classically once J

2

> J1
8

there are an
infinite number of degenerate ground states [56] that are
not related by global spin rotation. For large spin, it
has been argued that the ground state is magnetically
ordered as a result of quantum order by disorder [57].
The ground state for S = 1 (or S = 1/2) is not known.
The SPT paramagnet discussed in this paper is a candi-
date. The various descriptions we have provided should
be a useful guide in future numerical studies should a
paramagnetic ground state be found for this model.

It is interesting to note that since the diamond lat-
tice is 4–fold coordinated classical 2-sublattice Neel or-
der is likely to be more easily destabilized by frus-
tration/quantum fluctuations than in the cubic lattice.
Thus the J

1

–J
2

diamond magnet for low spin (S = 1/2
or 1) may be an excellent candidate to find an interesting
quantum paramagnetic ground state.

The frustrated diamond lattice model appears to de-
scribe well [56] the physics of the spinel oxide materials
MnAl

2

O
4

and CoAl
2

O
4

[58] which belong to a general
family of materials of the form AB

2

O
4

. The A site forms

the diamond lattice and is magnetic. The Mn and Co
compounds have S = 5

2

and S = 3

2

respectively. In
searching for a material that realizes the S = 1 model
it is natural then to consider NiAl

2

O
4

. Here Ni is ex-
pected to be in a d8 Ni2+ configuration and have spin-1.
However the A site is tetrahedrally coordinated, and in
the resulting crystal field, the Ni2+ ion will have orbital
degeneracy in addition to spin-1. Further spin-orbit cou-
pling will split the resulting spin-orbital Hilbert space
and the physics of the lattice will be determined by its
competition with inter-site spin/orbital exchange. Thus
NiAl

2

O
4

will not be simply described by a spin-1 dia-
mond lattice model. Work toward obtaining an appro-
priate ‘spin-orbital’ model for NiAl

2

O
4

is currently in
progress [59]. It remains to be seen whether the pres-
ence of the orbital degrees of freedom aids or hinders the
formation of paramagnetic states.

In any case we hope that these considerations motivate
an experimental search for and study of frustrated spin-1
magnets.
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Motivated by the very recent proposal of topological quantum paramagnet in the diamond lattice
antiferromagnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and
properties of the diamond material with the spin-one local moments. The minimal model includes
the first and second neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that
is allowed by the spin-one nature of the local moment and the tetragonal symmetry of NiRh

2

O
4

below 380K. We point out that there exists a quantum phase transition from a trivial quantum

paramagnet when the single-ion spin anisotropy is dominant to the magnetic ordered states when the
exchange is dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum
paramagnetic state supports extensively degenerate band minima in the spectra. As the system
approaches the transition, extensively degenerate bosonic modes become critical at the criticality,
giving rise to unusual magnetic properties. Our phase diagram and experimental predictions for
di↵erent phases provide a guildline for the identification of the ground state for NiRh

2

O
4

. Although
our results are fundamentally di↵erent from the proposal of topological quantum paramagnet for
NiRh

2

O
4

, it represents interesting possibilities for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community [1–
25]. The well-known topological insulator, that was pro-
posed and discovered earlier, is a non-interacting fermion
SPT protected by time reversal symmetry [26, 27]. In
contrast, the SPTs in bosonic systems must be stabilized
by the interactions [11]. The spin degrees of freedom with
exchange interactions seem to be a natural candidate for
realizing the boson SPTs [10]. In fact, the Haldane spin-
one chain is a 1D boson SPT and is protected by the
SO(3) spin rotational symmetry [1, 2, 28]. The realiza-
tion of boson SPTs in high dimensions is still missing.
It was suggested that, the spin-one diamond lattice anti-
ferromagnet with frustrated spin interactions may host a
topological quantum paramagnet that is a spin analogue
of topological insulator and protected by time reversal
symmetry [29]. Quite recently, a diamond lattice anti-
ferromagnet NiRh

2

O
4

with Ni2+ spin-one local moments
was proposed to fit into the early suggestion [30].

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K [30]. As we show in Fig. 1, the magnetic ion
Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Letter, we pro-
pose a minimal spin model for NiRh

2

O
4

and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As

FIG. 1. (Color online.) The diamond lattice formed by the
Ni2+ ions. The J

1

and J
2

interactions are indicated by (red)
dashed arrows. Due to the tetragonal symmetry of the lattice,
the a and b directions are not equivalent to the c direction.
The Ni2+ ion is in a tetrahedral environment, so the e

g

or-
bitals are lower in energy than the t

2g

levels. The tetragonal
distortion further splits the two e

g

orbitals and the three t
2g

orbitals. But the degeneracy of the xz and yz orbitals re-
mains intact under the tetragonal distortion. To avoid the
orbital degree of freedom, we here place the xz and yz or-
bitals above the xy orbitals. The opposite case is discussed
in the Supplementary information.

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]

⇥z

CW

= �D
z

3
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (2)

⇥?
CW

= +
D

z

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Spinel AB2O4

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh
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, we propose the following
microscopic spin model,

H = J
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X

hrr0i

Sr ·Sr0+J
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X
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Sr ·Sr0+D
z

X
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(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J
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model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J
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model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2
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.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
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prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder
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= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Immediate experimental consequence
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The phase diagram
2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW
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) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ
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(gµ
B
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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induced by quantum fluctuations via quantum order by
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and J
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are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J
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interaction would cause a spin
frustration even when it is small compared to J
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. Pre-
vious classical treatment of the J
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spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J
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an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J
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model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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prediction can be used to extract the single-ion spin
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temperature is ⇥Powder
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2
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, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Deep in quantum paramagnet, the ground state is a trivial product state.   
The state is trivial, but excitation and phase transition out of it can be non-trivial.

Gang Chen’s theory group 

Gang Chen’s theory group



Rotor representation for spin-1 moment

3

would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
netic phase, we substitute the spin operators with the
rotor variables such that [39]

Sz

r = nr, S±
r =

p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
1

-J
2

-D
z

spin model
takes the form

H = J
1

X

hrr0i

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ J
2

X

hhrr0ii

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ D
z

X

r

n2

r. (6)

From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [40].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
The resulting partition function is

Z =

Z
D�rD�r exp

⇥
�S � i

X

r

�r(|�r|2 � 1)
⇤
, (7)

where the e↵ective action for the rotor variable is

S =

Z
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ij
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2
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FIG. 3. (Color online.) The magnetic excitation !
2,k in

the k
x

-k
y

plane of the quantum paramagnet. We have
chosen the following parameters (a) J

2

= 0.05J
1

, D
z

= 3J
1

;
(b) J

2

= 0.18J
1

, D
z

= 1.5J
1

; (c) J
2

= 0.4J
1

, D
z

= 1.5J
1

; (d)
J
2

= 0.8J
1

, D
z

= 2J
1

. In the figure, we set k
z

= 0, and an ex-
tended zone with k

x

2 [�4⇡, 4⇡], k
y

2 [�4⇡, 4⇡] is used. The
degenerate minima are marked with contours. One can ob-
serve the evolution of the band minima.

where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the
unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase

X

i=1,2

X

k2BZ

2D
z

+ ⇠
i,k

!
i,k

coth(
�!

i,k

2
) = 2, (9)

where !
1,k and !

2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

!
i,k =

⇥
(4D

z

+ 2⇠
i,k)(�(T ) + ⇠

i,k)
⇤ 1

2 , (10)

and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [31]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
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impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the
unimodular condition |�r| = 1 in Eq. (7). To solve for
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2,k are the two eigenvalues of the exchange
matrix Jk [31]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
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minima in the spectrum. As the quantum paramagnet
approaches the phase transition to the proximate ordered
state, the extensively degenerate low-energy modes be-
come gapless and are responsible for the unusual mag-
netic properties such as the linear-T heat capacity at low
temperatures in the vicinity of the transition. In the
proximate ordered phases, we further show that the spin
spiral orders are actually induced by quantum fluctua-
tions via quantum order by disorder.

The microscopic spin model.—We here propose the fol-
lowing microscopic spin model that describes the inter-
action between the spin-1 local moments with the tetrag-
onal symmetry,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [33], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. More-
over, an additional single-ion spin anisotropy is further
introduced on top of the spin exchange interactions for
NiRh

2

O
4

, and is not included in the model in Ref. 33.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion. Previous classical treatment of the J

1

-J
2

spin
model on a diamond lattice and the analysis of thermal
fluctuation have led to the interesting discovery of the
spiral spin liquid [34–37]. A quantum treatment of J

1

-J
2

model used an exotic SP(N) parton construction for the
spins [38] and again worked in the ordered regime. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [31]
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where z
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= 4 and z
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= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above
prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder
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thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1
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-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �
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(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
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minima in the spectrum. As the quantum paramagnet
approaches the phase transition to the proximate ordered
state, the extensively degenerate low-energy modes be-
come gapless and are responsible for the unusual mag-
netic properties such as the linear-T heat capacity at low
temperatures in the vicinity of the transition. In the
proximate ordered phases, we further show that the spin
spiral orders are actually induced by quantum fluctua-
tions via quantum order by disorder.

The microscopic spin model.—We here propose the fol-
lowing microscopic spin model that describes the inter-
action between the spin-1 local moments with the tetrag-
onal symmetry,
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where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [33], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. More-
over, an additional single-ion spin anisotropy is further
introduced on top of the spin exchange interactions for
NiRh

2

O
4

, and is not included in the model in Ref. 33.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion. Previous classical treatment of the J

1

-J
2

spin
model on a diamond lattice and the analysis of thermal
fluctuation have led to the interesting discovery of the
spiral spin liquid [34–37]. A quantum treatment of J

1

-J
2

model used an exotic SP(N) parton construction for the
spins [38] and again worked in the ordered regime. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [31]
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FIG. 2. (Color online.) The phase diagram of the J
1
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-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above
prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder
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) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-
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model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D
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> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D
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limit,
the ground state is a trivial quantum paramagnet with
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Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �
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However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
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would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
netic phase, we substitute the spin operators with the
rotor variables such that [39]

Sz

r = nr, S±
r =

p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
1

-J
2

-D
z

spin model
takes the form
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From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [40].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
The resulting partition function is

Z =

Z
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FIG. 3. (Color online.) The magnetic excitation !
2,k in

the k
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plane of the quantum paramagnet. We have
chosen the following parameters (a) J

2

= 0.05J
1

, D
z

= 3J
1

;
(b) J

2

= 0.18J
1

, D
z

= 1.5J
1

; (c) J
2

= 0.4J
1

, D
z

= 1.5J
1

; (d)
J
2

= 0.8J
1

, D
z

= 2J
1

. In the figure, we set k
z

= 0, and an ex-
tended zone with k

x

2 [�4⇡, 4⇡], k
y

2 [�4⇡, 4⇡] is used. The
degenerate minima are marked with contours. One can ob-
serve the evolution of the band minima.

where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the
unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase
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where !
1,k and !

2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

!
i,k =

⇥
(4D

z

+ 2⇠
i,k)(�(T ) + ⇠

i,k)
⇤ 1

2 , (10)

and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [31]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
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beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
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the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
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is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [40].

The primary operators that are responsible for the
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where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the
unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k
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T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase
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and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [31]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
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netic phase, we substitute the spin operators with the
rotor variables such that [38]
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where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
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From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [39].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
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where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the
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unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase
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where !
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and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [37]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
Frustrated quantum criticality.—Here we point out the

nontrivial magnetic excitation in the quantum paramag-
netic state and the resulting frustrated quantum critical-

4

ity. When J
2

< J
1

/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
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0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

These are bosonic excitations. What is relevant for bosons is the lowest energy mode. 
Usually, the lowest energy modes occur at certain discrete momenta. But here, the lowest 
energy modes occur at a surface in the reciprocal space. 
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Frustrated Quantum Criticality: collapse of boson surface 
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ity. When J
2

< J
1

/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

These degenerate surfaces are NOT Fermi surface !  

But at low temperature, the fluctuation of the system is governed by 
the surface, i.e. low-energy fluctuations are near the 2D surface.  
We obtain a linear-T heat capacity Cv ~ T, which is like a Fermi surface. 
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J
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model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
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plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J
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< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C
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/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J
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> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to
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where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
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2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J
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= 0.18J
1

and (b) J
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= J
1

/3. The (k
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are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following
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Degeneracy breaking in the ordered side
2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]

⇥z
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z

3
� S(S + 1)

3
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1

J
1

+ z
2

J
2

), (2)

⇥?
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= +
D

z

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Here, because infinite number of 
boson modes are condensed, the 
system does not know which order  
to select. 

So quantum fluctuation will pick 
up the order that gives the lowest  
quantum zero-point energy. 
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Summary

1. We point out that NiRh2O4 spin-1 diamond lattice antiferromagnet  
is NOT the topological quantum paramagnet.  
 

2. Through a minimal model, we find that the ground state can be a  
trivial quantum paramagnet. But due to the frustrated interaction,  
the excitations with respect to this trivial state develop an extensively  
degenerate minima in the reciprocal space.  
 

3. Moreover, as the system approaches the phase transition to a  
magnetic order, these extensively degenerate low-energy bosonic  
modes condense at the same time, leading to an unusual critical  
behavior.  
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Motivated by the very recent proposal of topological quantum paramagnet in the diamond lattice
antiferromagnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and
properties of the diamond material with the spin-one local moments. The minimal model includes
the first and second neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that
is allowed by the spin-one nature of the local moment and the tetragonal symmetry of NiRh

2

O
4

below 380K. We point out that there exists a quantum phase transition from a trivial quantum

paramagnet when the single-ion spin anisotropy is dominant to the magnetic ordered states when the
exchange is dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum
paramagnetic state supports extensively degenerate band minima in the spectra. As the system
approaches the transition, extensively degenerate bosonic modes become critical at the criticality,
giving rise to unusual magnetic properties. Our phase diagram and experimental predictions for
di↵erent phases provide a guildline for the identification of the ground state for NiRh

2

O
4

. Although
our results are fundamentally di↵erent from the proposal of topological quantum paramagnet for
NiRh

2

O
4

, it represents interesting possibilities for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community [1–
25]. The well-known topological insulator, that was pro-
posed and discovered earlier, is a non-interacting fermion
SPT protected by time reversal symmetry [26, 27]. In
contrast, the SPTs in bosonic systems must be stabilized
by the interactions [11]. The spin degrees of freedom with
exchange interactions seem to be a natural candidate for
realizing the boson SPTs [10]. In fact, the Haldane spin-
one chain is a 1D boson SPT and is protected by the
SO(3) spin rotational symmetry [1, 2, 28]. The realiza-
tion of boson SPTs in high dimensions is still missing.
It was suggested that, the spin-one diamond lattice anti-
ferromagnet with frustrated spin interactions may host a
topological quantum paramagnet that is a spin analogue
of topological insulator and protected by time reversal
symmetry [29]. Quite recently, a diamond lattice anti-
ferromagnet NiRh

2

O
4

with Ni2+ spin-one local moments
was proposed to fit into the early suggestion [30].

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K [30]. As we show in Fig. 1, the magnetic ion
Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Letter, we pro-
pose a minimal spin model for NiRh

2

O
4

and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As

FIG. 1. (Color online.) The diamond lattice formed by the
Ni2+ ions. The J

1

and J
2

interactions are indicated by (red)
dashed arrows. Due to the tetragonal symmetry of the lattice,
the a and b directions are not equivalent to the c direction.
The Ni2+ ion is in a tetrahedral environment, so the e

g

or-
bitals are lower in energy than the t

2g

levels. The tetragonal
distortion further splits the two e

g

orbitals and the three t
2g

orbitals. But the degeneracy of the xz and yz orbitals re-
mains intact under the tetragonal distortion. To avoid the
orbital degree of freedom, we here place the xz and yz or-
bitals above the xy orbitals. The opposite case is discussed
in the Supplementary information.
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/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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)/3, we set the energy unit
of the spin anisotropy D
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+ 3J
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in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder
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) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
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-D
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model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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2µ
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Phase diagram
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netic phase, we substitute the spin operators with the
rotor variables such that [38]

Sz

r = nr, S±
r =

p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
1

-J
2

-D
z

spin model
takes the form

H = J
1

X

hrr0i

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ J
2

X

hhrr0ii

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ D
z

X

r

n2

r. (6)

From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [39].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
The resulting partition function is

Z =

Z
D�rD�r exp

⇥
�S � i

X

r

�r(|�r|2 � 1)
⇤
, (7)

where the e↵ective action for the rotor variable is

S =

Z
d⌧

X

k2BZ

(2D
z

1
2⇥2

+ Jk)
�1

ij

@
⌧

�†
i,k@⌧�j,k

+
X

hrr0i

J
1

�†
r�r0 +

X

hhrr0ii

J
2

�†
r�r0 , (8)

where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the

FIG. 3. (Color online.) The magnetic excitation !
2,k in

the k
x

-k
y

plane of in the quantum paramagnet. We have
chosen the following parameters (a) J

2

= 0.05J
1

, D
z

= 3J
1

;
(b) J

2

= 0.18J
1

, D
z

= 1.5J
1

; (c) J
2

= 0.4J
1

, D
z

= 1.5J
1

; (d)
J
2

= 0.8J
1

, D
z

= 2J
1

. In the figure, we set k
z

= 0, and an ex-
tended zone with k

x

2 [�4⇡, 4⇡], k
y

2 [�4⇡, 4⇡] is used. The
degenerate minima are marked with contours. One can ob-
serve the evolution of the band minima.

unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase

X

i=1,2

X

k2BZ

2D
z

+ ⇠
i,k

!
i,k

coth(
�!

i,k

2
) = 2, (9)

where !
1,k and !

2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

!
i,k =

⇥
(4D

z

+ 2⇠
i,k)(�(T ) + ⇠

i,k)
⇤ 1

2 , (10)

and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [37]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
Frustrated quantum criticality.—Here we point out the

nontrivial magnetic excitation in the quantum paramag-
netic state and the resulting frustrated quantum critical-

degenerate minima of the excitations  
in quantum paramagnet

Magnetic excitation in the kx-ky plane
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