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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. (needs comment.) 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We think it is a spinon Fermi surface U(1) QSL.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Qingming Zhang 
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Inelastic neutron scattering

A consequence of fractionalization is the broad continuum  
in the inelastic neutron scattering.

neutron

spinon (half-integer spin excitation)

spinon

P = q1 + q2

E = !(q1) + !(q2)Gang Chen’s theory group 
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Figure 3: Intensity contour plot of spin excitation spectrum along the high-symmetry momentum directions. a, Intensity contour plot

along the (1/2-K/2, K, 0) and (1, K, 0) directions as illustrated in b. Vertical dashed lines represent the high-symmetry points, and dotted lines

indicate the upper bounds of spin excitation energy. b, Sketch of reciprocal space. Dashed lines indicate the Brillouin zone boundaries.
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Figure 4: Constant energy scans along the symmetry directions and constant Q scans at the high-symmetry points. a,b, Constant

energy scans along the (1/2-K/2, K, 0) and (1, K, 0) directions. The solid lines are guides to the eye. c, Constant Q scans at M, K, and �

points with the final energy fixed at E f = 3, 3.5 and 4 meV. The sharp upturn of the scattering below ⇠ 0.1 meV is due to contamination from

incoherent elastic scattering at E = 0 meV (dashed line). Error bars, 1 s.d.

Inelastic neutron scattering

Consistent neutron results from Martin Mourigal’s group, Nature Physics
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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Spinon Fermi surface state
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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METHODS
Sample growth and characterizations. High-quality YbMgGaO4 single crystals 
were synthesized using the optical floating zone technique19. A representative  
single crystal, which is optically transparent with mirror-like cleaved surfaces, is 
shown in Extended Data Fig. 1a. Our X-ray diffraction (XRD) measurements 
revealed that all of the reflections from the cleaved surface could be indexed by 
(0, 0, L) peaks of triangular YbMgGaO4; no impurity phases were observed 
(Extended Data Fig. 1b). The full-width at half-maximum (FWHM) of the rocking 
curve of the (0, 0, 18) peak was about 0.009°, indicating an extremely high crystal-
lization quality (Extended Data Fig. 1c). This was confirmed by the sharp and clear 
diffraction spots in the X-ray Laue pattern (Extended Data Fig. 1d). Powder XRD 
patterns on ground single crystals also revealed no indication of impurity phases 
(Extended Data Fig. 1e). The Rietveld refinements31 confirm that the XRD pattern 
can be described by the R m3  space group. The refined structural parameters are 
given in Extended Data Table 1. These results suggested that the YbMgGaO4 single 
crystal possessed a perfect triangular lattice with no detectable impurities. This is 
consistent with previous measurements that have demonstrated that the impurity/
isolated spins are less than 0.04% in similar samples18,19. Although the Mg/Ga site 
disorder in the non-magnetic layers does not directly affect the exchange interac-
tion between the Yb local moments, it may have an indirect effect and could lead 
to some exchange disorder. It seems that this disorder is not significant, because 
no signs of spin freezing were observed. A QSL is often stable against weak local 
perturbations, provided that the perturbation is irrelevant or not significant. 
Therefore, if a QSL is realized as the ground state for YbMgGaO4, then the possible 
exchange disorder will not destabilize this state if the disorder strength is not  
significant.

In addition, the field dependence of magnetization in our single  crystal 
 displayed a linear behaviour above 12 T (Extended Data Fig. 1f),  indicative 
of a fully  polarized state. The Van Vleck susceptibility extracted from the 
 linear-field-dependent magnetization data was subtracted in the inset of Fig. 1c.
Neutron scattering experiments. INS measurements were carried out on the 
ThALES cold triple-axis spectrometer at the Institut Laue-Langevin, Grenoble, 
France, and at the FLEXX cold triple-axis spectrometer in the BER-II reactor at 
Helmholtz-Zentrum Berlin, Germany32. For the ThALES experiment, silicon (111) 
was used as a monochromator and analyser; the final neutron energies were fixed at 
Ef =  3 meV (energy resolution of about 0.05 meV), Ef =  3.5 meV (energy resolution 
of about 0.08 meV) or Ef =  4 meV (energy resolution of about 0.1 meV). For the 
FLEXX experiment, pyrolythic graphite (002) was used as a monochromator and 
analyser. Contamination from higher-order neutrons was eliminated through a 
velocity selector installed in the front of the monochromator. The final neutron 
energy was fixed at Ef =  3.5 meV (energy resolution of about 0.09 meV). Three (six) 
pieces of single crystals with total a mass of about 5 g (19 g) were coaligned in the 
(HK0) scattering plane for the ThALES (FLEXX) experiment. The FWHM of the 
rocking curve of the coaligned crystals for the ThALES and FLEXX experiments 
were approximately 0.95° and 0.92°, respectively. The elastic neutron scattering 
experiment was carried out at the WAND neutron diffractometer at the High 
Flux Isotope Reactor, Oak Ridge National Laboratory, USA; one single crystal was 
used for the experiment, with the incident wavelength λ =  1.488 Å (Extended Data  
Fig. 2). For the low-temperature experiments, a dilution insert for the standard 4He 
cryostat was used to reach temperatures down to around 30–70 mK.

Because of the non-uniform shape of the single crystal, the relatively large 
sample volume and the extremely broad spin-excitation spectrum, the neutron 
beam self-attenuation (by the sample) may require consideration. In most cases 
the self-attenuation is dependent on only the distance traversed by the  neutrons 
through the sample. We observed the self-attenuation effect in an elastic  incoherent 
scattering image of our sample at 20 K, which exhibited an anisotropic intensity 
distribution (Extended Data Fig. 3a). The self-attenuation effect was also observed 
in the raw constant-energy images (Extended Data Fig. 3b–f), which were shown 
to be anisotropic, with slightly higher intensities occurring at approximately 
the same direction as that observed in the elastic incoherent scattering images. 
The self- attenuation can be corrected by normalizing the data with the elastic 
 incoherent scattering image; that is, the elastic incoherent scattering intensity, 
which is dependent on the sample position (ω) and scattering angle (2θ), is  
converted to a linear attenuation correction factor for the scattering images 
 measured at different energies. The normalized constant-energy images are 
 presented in Fig. 2a–e, revealing a nearly isotropic intensity distribution.

Extended Data Fig. 4 shows the spin excitation spectrum at 20 K, which is 
 broadened and weakened compared with that at 70 mK (discussed below).
Spinon Fermi surface and dynamic spin structure factor. Here we explain the 
spinon mean-field state that is used to explain the dynamic spin structure factor 
of the neutron scattering experiments. As we proposed in the main text, a QSL 
with a spinon Fermi surface gives a compatible explanation for the INS results 
for YbMgGaO4.

To describe the candidate spinon-Fermi-surface QSL state in YbMgGaO4, we 
formally express the Yb3+ effective spin as the bilinear combination of the 
 fermionic spinon with spin †σ=∑αβ α αβ βS f fi i i

1
2

 and a Hilbert space constraint  
†∑ =α α αf f 1i i , where σαβ is a vector whose three components are the Pauli matrices 

and †
αfi  ( fiα) creates (annihilates) a spinon with spin α =  ↑ , ↓  at site i. For the QSL 

with a spinon Fermi surface, we propose a minimal mean-field Hamiltonian HMFT 
for the spinons on the  triangular lattice. We consider a uniform spinon hopping 
with a zero background flux:

† †∑ ∑µ=− + . . −α α α α
〈 〉

H t f f f f( h c ) (1)
ij

i j
i

i iMFT

where t is the mean-field parameter, which represents the hopping amplitude 
between nearest-neighbour sites. The chemical potential µ is included to impose 
the Hilbert space constraint on average. Here, we have treated the spinons freely 
by neglecting the gauge fluctuations. This mean-field state gives a single spinon 
dispersion

∑ω µ=− ⋅ −k at cos( )k
a

i
{ }i

where {ai} are six nearest-neighbour vectors of the triangular lattice. Owing to the 
Hilbert space constraint, the spinon band is half-filled, leading to a large Fermi 
surface in the Brioullin zone (Extended Data Fig. 5a).

INS measures the dynamic spin structure factor

∫∑
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where N is total number of lattice sites, the summation goes over all eigenstates, 
| Ω〉  refers to the spinon ground state with the spinons filling the Fermi sea, E0 is 
the energy of the ground state and En(p) is the energy of the nth excited state with 
momentum p. In the actual calculation, owing to the energy resolution of the 
experiments, the δ function is taken to have a broadening: 

δ η
η

− =
/π

− +
ε

ε
E

E
( )

( )2 2

where η is the broadening and ε is the measured energy. Because †=∑+
+ ↑ ↓S f fp k k p k , 

the summation in equation (2) would be over all possible spin-1 excited states that 
are characterized by one spinon particle–hole pair crossing the spinon Fermi 
 surface (Fig. 2g) with a total momentum p and a total energy E. As we show in  
Fig. 2f and Extended Data Fig. 5b, and discuss in the main text, this spinon- Fermi-
surface QSL state gives the three crucial features of the INS results: (1) the broad 
continuum that covers the large portion of the Brioullin zone; (2) the broad 
 continuum persisting from the lowest energy transfer to the highest energy 
 transfer; and (3) the clear upper excitation edge near the Γ  point.

In our calculation of Fig. 2f and Extended Data Fig. 5b, we choose the lattice 
size to be 40 ×  40 and η =  1.2t, in accordance with the energy and momentum 
resolution of the instruments. The energy scale of Fig. 2f is set to be 7.5t.

Here we explain the details of the dynamic spin structure factor in Fig. 2f and 
Extended Data Fig. 5b, based on the particle–hole excitation of the spinon Fermi 
surface. For an infinitesimal energy transfer, the neutrons simply probe the spinon 
Fermi surface. Because the spinon particle and hole can be excited anywhere near 
the Fermi surface, the neutron spectral intensity appears from p =  0 to p =  2kF, 
where kF is the Fermi wavevector. Because | 2kF|  already exceeds the first Brillouin 
zone, the neutron spectral intensity then covers the whole Brillouin zone  including 
the Γ  point. For a small but finite E, as we explain in the main text, a minimal 
momentum transfer pmin ≈  E/vF is required to excite the spinon particle–hole 
pairs. Therefore, the spectral intensity gradually moves away from the Γ  point as 
E increases. Because it is always possible to excite the spinon particle–hole pair with 
the momenta near the zone boundary, the spectral intensity is not greatly affected 
at the zone boundary as E increases. Thus, the broad continuum continues to cover 
a large portion of the Brillouin zone at a finite E.

With the free spinon mean-field model HMFT, we further calculate the spectral 
weight along the energy direction for fixed momenta. The discrepancy between the 
theoretical results in Extended Data Fig. 5d and the experimental results in Extended 
Data Fig. 5e occurs at low energies. We attribute this low-energy  discrepancy to 
the fact that the free spinon theory ignores the gauge fluctuations. The enhance-
ment of the low-energy spectral weight compared to the free spinon results is 
then identified as possible evidence of strong gauge fluctuations in the system;  
we elaborate on this in the following discussion of the heat capacity  behaviour.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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Extended Data Figure 5 | Calculation of the zero-flux Hamiltonian.  
a, Spinon dispersion ωk of the zero-flux Hamiltonian. The grey plane 
marks the Fermi level at ω =  0; its intersection with the band gives the 
Fermi surface. The light orange hexagon represents the projection of the 
first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
along high-symmetry directions. A reciprocal lattice unit (r.l.u.) is used 

here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
indicated momenta (marked by arrows in b). e, Measured constant-Q 
scans at the indicated momenta. The dashed line is the incoherent elastic 
line for Ef =  4 meV.
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An idea: explore the weak field regime
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Realizable and Predictable.

1. Under a weak field, the spin liquid state would be preserved, and the fractionalized 
    spinon remains to be a good description of the magnetic excitations. 
 
2. Due to the small energy scale of rare-earth moments, this proposal can be realized. 
 
3. We can predict the spectral weight shift under the field and predict the evolution 
    of the continuum. 

The experiments are inconsistent with a Dirac QSL nor a Z2 QSL. 
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1D spin liquid is simple Luttinger liquid, and  
1D spinons are simply domain walls, cannot extend to high dims.
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We introduce the Abrikosov fermion representation for the spin operator such that Si =
P
↵� f †i↵

�↵�
2 fi� with the Hilbert space

constraint
P
↵ f †i↵ fi↵ = 1. We start with the mean-field Hamiltonian for the spinons,

HMFT = �t1
X

hi ji,↵
f †i↵ f j↵ � t2

X

hhi jii,↵
f †i↵ f j↵ � µ

X

i

f †i↵ fi↵ � gzµBH
X

i

f †i↵
�z
↵�

2
fi� (1)

where t1 and t2 are the nearest and next-nearest neighbour spinon hoppings, respectively. The chemical potential µ is introduced

to impose the Hilbert space constraint, and the last Zeeman terms accounts for e↵ects of the external magnetic field along the

c axis. Since the system is in the strong Mott regime, the charge fluctuation is strongly suppressed, the Lorentz coupling due

to charge fluctuation in the weak Mott regime does not apply here39. We only need to consider the Zeeman coupling to the

magnetic field30 We choose the hopping term in HMFT to be spatially uniform, since it was shown to be the only symmetric

mean-field state that is compatible with the existing experiments28. Moreover, the nearest and next-nearest neighbor spinon

hoppings ofHMFT already capture the key properties of this state, so we restrict our analysis to this simple model. We remark on

the SU(2) spin rotational symmetry of the spinon mean-field Hamiltonian HMFT. This SU(2) spin symmetry at the mean-field

level is protected by the projective symmetry group28. This symmetry is clearly absent in the microscopic spin model25. It is

then pointed out28,30 that the anisotropic spin interaction enters as SU(2) symmetry breaking interactions between the spinons. A

random phase approximation was then introduced to capture the anisotropic interaction and compute the dynamic spin structure

factor. It was found that the spectral weight of the spinon continuum is redistributed and the qualitative features of the continuum

persist. More detailed mean-field theory and the random phase approximation have been discussed in the previous theoretical

works28,30.

Without the magnetic field, the ground state of Eq. 1 is a filled Fermi sea of degenerate spin-" and spin-# spinons with a

large Fermi surface. It has already been shown that, the particle-hole continuum of the spinon Fermi surface gives a consistent

explanation for the excitation continuum in the inelastic neutron scattering measurement with the zero field1,27. Moreover,

due to the spin rotational invariance and the degenerate spin-up and spin-down spinon bands, the spin-flipping process and the

spin-preserving process in the neutron scattering, that correspond to the inter-band particle-hole excitation and the intra-band

particle-hole excitation respectively, give the same momentum-energy relation for the inelastic neutron scattering spectrum.

Therefore, in the previous calculations1,28, considering the inter-band particle-hole excitation is su�cient.

In the presence of a weak magnetic field H, such that the Zeeman coupling would only have a perturbative e↵ect on the

QSL ground state and the spinon remains to be a valid description of the magnetic excitation, the previously degenerate spin-"

and spin-# bands are now split by an energy separation set by the Zeeman energy � ⌘ gzµBH (ref. 30). The inelastic neutron

scattering measures the correlation function of the spin component that is transverse to the momentum transfer. The dynamic
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Summary

We study both zero and weak field regimes to understand the  
signatures of fractionalization in a spin liquid candidate.  

 
Further directions:  
1. how to detect spinon-gauge coupling?  
2. confirm 2kF effect?   
3. how to detect gauge field?  
4. any other rare-earth magnets with similar properties? 
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Use new materials to support materials
YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Abstract 

 We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE= Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare 

earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-

3m. Physical property measurements indicate the compounds display predominantly 

antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 

K. The ideal 2D rare earth triangular layers in this structure type make it a potential model 

system for investigating magnetic frustration in rare-earth-based materials.  
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many ternary chalcogenides NaRES2 , NaRESe2 , KRES2 , KRESe2 ,  
KRETe2 , RbRES2 , RbRESe2 , RbRETe2 , CsRES2 , CsRESe2, etc.) 
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