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We investigate novel phases that emerge from the interplay of electron correlations and strong spin-orbit
interactions. We focus on describing the topological semimetal, a three-dimensional phase of a magnetic solid,
and argue that it may be realized in a class of pyrochlore iridates (such as Y2Ir2O7) based on calculations using
the LDA + U method. This state is a three-dimensional analog of graphene with linearly dispersing excitations
and provides a condensed-matter realization of Weyl fermions that obeys a two-component Dirac equation. It
also exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which
are impossible to realize in purely two-dimensional band structures. For intermediate correlation strengths, we
find this to be the ground state of the pyrochlore iridates, coexisting with noncollinear magnetic order. A narrow
window of magnetic “axion” insulator may also be present. An applied magnetic field is found to induce a
metallic ground state.
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Previously, some of the most striking phenomena in solids,
such as high-temperature superconductivity1 and colossal
magnetoresistance,2 were found in transition-metal systems
involving 3d orbitals with strong electron correlations. Now
it has been realized that in 4d and 5d systems, whose orbitals
are spatially more extended, a regime of intermediate corre-
lation appears. Moreover, they display significant spin-orbit
coupling, which modifies their electronic structure as recently
verified in Sr2IrO4 (Ref. 3). This is a largely unexplored
domain, but already tantalizing new phenomena have been
glimpsed. For example, in the 5d iridium-based magnetic
insulator, Na4Ir3O8 (Ref. 4), a disordered ground state persists
down to the lowest measured temperatures, making it a prime
candidate for a quantum spin liquid.5

It is known that strong spin-orbit interactions can lead to a
novel phase of matter, the topological insulator.6 However, the
bismuth-based experimental realizations uncovered so far have
weak electron correlations. Recently, it was pointed out that
the iridium oxides (iridates) are promising candidates to realize
topological insulators7 and that iridium-based pyrochlores in
particular8 provide a unique opportunity to study the interplay
of Coulomb interactions, spin-orbit coupling, and the band
topology of solids.

The main focus of our work is the pyrochlore iridates,
which have the general formula A2Ir2O7, where A = yttrium
or a lanthanide element. Experiments on these materials
indicate magnetic order.9,10 Thus, the possible phases have
not been treated in the theory of topological insulators, which
assumes time-reversal symmetry. A rather different, but also
unusual phase, the topological semimetal is predicted by our
LSDA + U + SO (where LSDA stands for local-spin-density
approximation and SO stands for spin orbit) calculations in
a range of parameters appropriate to the iridates. This phase
has linearly dispersing excitations at the chemical potential,
analogous to graphene,11 but occurs inside a fully three-
dimensional magnetic solid. The small density of states leads
to a vanishing conductivity at low temperatures. Each mode

in this metal is described by a two-component wave-function
(described by the “Weyl equation,” the two-component analog
of the Dirac equation), describing a point where two bands
touch. The Weyl equation is used in particle physics to describe
the chiral and massless behavior of neutrinos (in limits where
their small mass can be neglected). Hence, we also call it the
“Weyl semimetal.”

Weyl fermions can be assigned a chirality; that is, they are
either left or right handed. These modes cannot be gapped
unless they mix with a fermion of opposite handedness, which
is located at a different point in the Brillouin zone. Thus the
gaplessness of Weyl fermions is absolute provided momentum
is conserved;12 it does not require any fine-tuning or symmetry.
These modes are most robust in systems with magnetic order.
They do not exist at all if both time reversal and inversion
symmetry are present, for example, in bismuth. There, in
contrast, Dirac fermions with four-component wave functions
appear, which are typically gapped.

A key property of the Weyl semimetal phase studied in this
work is its unusual surface states, reminiscent of topological
insulators. Since the bulk fermi surface only consists of a set
of momentum points, surface states can be defined for nearly
every surface momentum and take the shape of “Fermi arcs”
in the surface Brillouin zone that stretch between Weyl points.

The “axion insulator” phase can emerge when the Weyl
points annihilate in pairs as the correlations are reduced. This
phase shows a topological magnetoelectric effect,13 captured
by the magnetoelectric parameter θ = π , whose value is
protected by the inversion symmetry, which is respected in
our system. The name axion insulator refers to the analogy
with the axion vacuum in particle physics.14

In the pyrochlore iridates both the A and the Ir atoms
are located on a network of corner-sharing tetrahedra.15,16

Pioneering experiments17 revealed an evolution of ground-
state properties with increasing radius of the A ion, which is
believed to tune electron correlations. While A = Pr is metal-
lic, A = Y is an insulator at low temperatures. Subsequently,
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Topology, the mathematical description of the robust-
ness of form, appears throughout physics, and provides
strong constraints on many physical systems. It has long
been known that it plays a key role in understanding the
exotic phenomena of the quantum Hall e�ect. Recently,
it has been found to generate robust and interesting bulk
and surface phenomena in “ordinary” band insulators de-
scribed by the old Bloch theory of solids. Such “topolog-
ical insulators,” insulating in the bulk and metallic on
the surface, occur in the presence of strong spin-orbit
coupling in certain crystals, with unbroken time-reversal
symmetry [1].

It is usually believed that such topological physics is
obliterated in materials where magnetic ordering breaks
time-reversal symmetry. This is by far the most com-
mon fate for transition-metal compounds that manage
to be insulators—so called “Mott insulators,” which owe
their lack of conduction to the strong Coulomb repul-
sion between electrons. In an article appearing in Phys-

ical Review B, Xiangang Wan from Nanjing University,
China, and collaborators from the University of Califor-
nia and the Lawrence Berkeley National Laboratory, US,
show that this is not necessarily the case, and describe a
remarkable electronic structure with topological aspects
that is unique to such (antiferro-)magnetic materials [2].
The state they describe is remarkable in possessing in-
teresting low-energy electron states in the bulk and at
the surface, linked by topology. In contrast, topological
insulators, like quantum Hall states, possess low-energy
electronic states only at the surface.

The theory of Wan et al., which uses the LDA+U nu-
merical method, is a type of mean field theory. As such,
the low-energy quasiparticle excitations are described
simply by noninteracting electrons in a background elec-
trostatic potential and, in the case of a magnetically or-
dered phase, by a spatially periodic exchange field. It is
possible to follow the evolution of the electronic states as

a function of the U parameter, which is used to model
the strength of Coulomb correlations. They apply the
technique to iridium pyrochlores, R2Ir2O7, where R is
a rare earth element. These materials are known to ex-
hibit metal-insulator transitions (see, e.g., Ref. [3]), in-
dicating substantial correlations, and are characterized
by strong spin-orbit coupling due to the heavy element
Ir (iridium). In the intermediate range of U, which they
suggest is relevant for these compounds, Wan et al. find
an antiferromagnetic ground state with the band struc-
ture of a “zero-gap semimetal,” in which the conduction
and valence bands “kiss” at a discrete number (24!) of
momenta. The dispersion of the bands approaching each
touching point is linear, reminiscent of massless Dirac
fermions such as those observed in graphene.

This would be interesting in itself, but there are im-
portant di�erences from graphene. Because of the anti-
ferromagnetism, time-reversal symmetry is broken, and
as a consequence, despite the centrosymmetric nature of
the crystals in question, the bands are nondegenerate.
Thus two—and only two—states are degenerate at each
touching point, unlike in graphene where there are four.
In fact, the kissing bands found by Wan et al. are an
example of accidental degeneracy in quantum mechanics,
a subject discussed in the early days of quantum the-
ory by von Neumann and Wigner (1929), and applied
to band theory by Herring (1937). The phenomenon of
level repulsion in quantum mechanics tends to prevent
such band crossings. To force two levels to be degen-
erate, one must consider the 2 ◊ 2 Hamiltonian matrix
projected into this subspace: not only must the two di-
agonal elements be made equal, the two o�-diagonal ele-
ments must be made to vanish. This requires three real
parameters to be tuned to achieve degeneracy. Thus,
without additional symmetry constraints, such acciden-
tal degeneracies are vanishingly improbable in one and
two dimensions, but can occur as isolated points in mo-
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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FIG. 4. (Color online) Semimetallic nature of the state at U =
1.5 eV according to the LSDA + U + SO method. (a) Calculated
energy bands in the plane Kz = 0 with band parities shown; (b) energy
bands in the plane kz = 0.6π/a, where a Weyl point is predicted to
exist. The lighter-shaded plane is at the Fermi level. (c) Locations
of the Weyl points in the three-dimensional Brillouin zone (Ref. 29)
(nine are shown, indicated by the circled + or − signs).

the parity eigenvalues. Note that all the magnetic structures
considered above preserve inversion (or parity) symmetry. In
the Brillouin zone [see Fig. 4(c)] of the fcc lattice the TRIMs
correspond to the " = (0, 0, 0), and X, Y,Z [=2π/a(1, 0, 0)
and permutations] points and four L points [π/a(1, 1, 1) and
equivalent points]. The TRIM parities of the top four occupied
bands, in order of increasing energy, are shown in Table II.
Note that, although by symmetry all L points are equivalent,
the choice of inversion center at an iridium site singles out one
of them, L′. With that choice the parities at L′ and the other
three L points are the opposite of one another. The parities
of the all-in/all-out state remains unchanged above U > Uc ∼
1.8 eV and is shown in the top row under U = 2 eV. This
pattern of parities helps to understand the nature of the phase:
The parities are the same as for a site-localized picture of this
phase, where each site has an electron with a fixed moment
along the ordering direction. Due to the possibility of such a
local description of this magnetic insulator, we term it the Mott
phase.

Intermediate correlations. For the same all-in/all-out mag-
netic configuration, at smaller U = 1.5 eV, the band structure

TABLE II. Calculated parities of states at TRIMs for several
electronic phases of the iridates. Only the top four filled levels are
shown, in order of increasing energy.

Phase " X, Y,Z L′ L (×3)
U = 2.0, all-in (Mott) ++++ + − − + + − − − −+++
U = 1.5, all-in (Dirac) ++++ + − − + + − − + −++ −

along high-symmetry lines [see Fig. 3(b)] also appears to be
insulating, and at first sight one may conclude that this is
an extension of the Mott insulator. However, a closer look
using the parities reveals that a phase transition has occurred.
At the L points, an occupied level and an unoccupied level
with opposite parities have switched places. It can readily
be argued that only one of the two phases adjacent to the
U where this crossing happens can be insulating (see the
Appendix). Since the large U phase is found to be smoothly
connected to a gapped Mott phase, it is reasonable to assume
the smaller U phase is the noninsulating one. This is also
borne out by the LSDA + U + SO band structure. A detailed
analysis perturbing about this transition point (also in the k · p
subsection) allows us to show that this phase is expected to be
a Weyl semimetal with 24 Weyl nodes in all.

Indeed, in the LSDA + U + SO band structure at U =
1.5 eV, we find a three-dimensional Dirac crossing located
within the "-X-L plane of the Brillouin zone. This is illustrated
in Fig. 4 and corresponds to the k vector (0.52,0.52,0.3)2π/a.
There also are five additional Weyl points in the proximity of
the point L related by symmetry (three are just inside each of
the two opposite hexagonal faces of the Brillouin zone, which
are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L
point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π
insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl
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the point L related by symmetry (three are just inside each of
the two opposite hexagonal faces of the Brillouin zone, which
are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L
point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π
insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
e2

12h
|%|
v

. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
e2
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. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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Weyl semimetal discovered in TaAs

Experimental Discovery of Weyl Semimetal TaAs
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Weyl semimetals are a class of materials that can be regarded as three-dimensional analogs of graphene
upon breaking time-reversal or inversion symmetry. Electrons in a Weyl semimetal behave as Weyl
fermions, which have many exotic properties, such as chiral anomaly and magnetic monopoles in the
crystal momentum space. The surface state of a Weyl semimetal displays pairs of entangled Fermi arcs at
two opposite surfaces. However, the existence of Weyl semimetals has not yet been proved experimentally.
Here, we report the experimental realization of a Weyl semimetal in TaAs by observing Fermi arcs formed
by its surface states using angle-resolved photoemission spectroscopy. Our first-principles calculations,
which match remarkably well with the experimental results, further confirm that TaAs is a Weyl semimetal.

DOI: 10.1103/PhysRevX.5.031013 Subject Areas: Condensed Matter Physics

Although the subjects of high-energy physics and con-
densed-matter physics are very different, they sometimes
share the same ideas. The most famous examples are the
concepts of spontaneously broken symmetry and the Higgs
mechanism. Recently, the basic concepts of Dirac andWeyl
fermions [1,2] in quantum field theory have also been
applied to condensed-matter systems [3–7], in particular,
following recent progress in the field of topological
insulators [8,9]. From the Dirac equation, massless Dirac
fermions are described by the crossing of two spin-
degenerate bands. A Dirac semimetal possesses such
fourfold degenerate Dirac nodes at the Fermi level (EF)
and has been realized recently [10–16]. Weyl fermions,
which have not yet been discovered in high-energy physics,
can be realized as an emergent phenomenon by breaking
either time-reversal symmetry or inversion symmetry in
Dirac semimetals, where a Dirac node can be regarded as
two Weyl nodes with opposite chirality overlapping each
other [Fig. 1(a)]. A material with separated Weyl nodes is
called a Weyl semimetal (WSM) [3–7].
Because of the no-go theorem [17,18], the Weyl nodes

in a WSM must come in pairs with opposite chirality.
Separated Weyl nodes are topologically stable [19,20]

because any perturbation respecting the translational
symmetry can shift but not annihilate them [21,22].
This case is different from the case of topological
insulators whose topological properties are protected by
the energy gap in the bulk state. Therefore, a WSM can
be viewed as a new type of topological nontrivial phase
other than the Z2 topological insulators, making WSMs a
good platform for studying and manipulating novel
topological quantum states with a promising application
potential.
A hallmark of a WSM is the existence of Fermi arcs

on the surface [3–5], which is a direct consequence of
separated Weyl nodes with opposite chirality, with the two
ending points of the Fermi arc coinciding with the Weyl-
node projections on the surface [Fig. 1(b)]. Another unique
property of a WSM is the chiral anomaly [23–25], which
implies the apparent violation of charge conservation and
leads to interesting transport properties, such as negative
magneto-resistance, chiral magnetic effects, and the
anomalous Hall effect [26–28].
In this work, we report the observation of Fermi arcs on

the surface of the noncentrosymmetric and nonmagnetic
material TaAs using angle-resolved photoemission spec-
troscopy (ARPES). Unlike the previously proposed WSMs
which are usually complex materials tailored by fine-tuning
methods [29–34], TaAs is predicted to be a WSM in its
natural state [35,36]. The removal of the spin degeneracy of
the bands is induced by the lack of inversion symmetry in
the crystal structure rather than by the breaking of the time-
reversal symmetry. Such realization of the WSM phase in
nonmagnetic materials allows direct observation of the
Fermi arcs by ARPES because the complexity caused by a
magnetic domain structure is absent.
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TOPOLOGICAL MATTER

Discovery of a Weyl fermion
semimetal and topological Fermi arcs
Su-Yang Xu,1,2* Ilya Belopolski,1* Nasser Alidoust,1,2* Madhab Neupane,1,3*
Guang Bian,1 Chenglong Zhang,4 Raman Sankar,5 Guoqing Chang,6,7 Zhujun Yuan,4
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A Weyl semimetal is a new state of matter that hosts Weyl fermions as emergent
quasiparticles and admits a topological classification that protects Fermi arc surface
states on the boundary of a bulk sample. This unusual electronic structure has deep
analogies with particle physics and leads to unique topological properties. We report the
experimental discovery of a Weyl semimetal, tantalum arsenide (TaAs). Using photoemission
spectroscopy, we directly observe Fermi arcs on the surface, as well as the Weyl fermion
cones and Weyl nodes in the bulk of TaAs single crystals. We find that Fermi arcs terminate
on the Weyl fermion nodes, consistent with their topological character. Our work opens the
field for the experimental study of Weyl fermions in physics and materials science.

W
eyl fermions have long been known in
quantum field theory, but have not been
observed as a fundamental particle in
nature (1–3). Recently, it was understood
that a Weyl fermion can emerge as a

quasiparticle in certain crystals, Weyl fermion
semimetals (1–22). Despite being a gaplessmetal,
a Weyl semimetal is characterized by topological
invariants, broadening the classification of topo-
logical phases of matter beyond insulators. Specif-
ically, Weyl fermions at zero energy correspond

to points of bulk band degeneracy, Weyl nodes,
which are associated with a chiral charge that
protects gapless surface states on the boundary
of a bulk sample. These surface states take the
form of Fermi arcs connecting the projection of
bulk Weyl nodes in the surface Brillouin zone
(BZ) (6). A band structure like the Fermi arc sur-
face states would violate basic band theory in an
isolated two-dimensional (2D) system and can
only arise on the boundary of a 3D sample,
providing adramatic example of the bulk-boundary
correspondence in a topological phase. In con-
trast to topological insulators where only the
surface states are interesting (21, 22), a Weyl
semimetal features unusual band structure in
the bulk and on the surface. The Weyl fermions
in the bulk are predicted to provide a condensed-
matter realization of the chiral anomaly, giving
rise to a negativemagnetoresistance under paral-
lel electric and magnetic fields, unusual optical
conductivity, nonlocal transport, and local non-
conservation of ordinary current (5, 12–16). At
the same time, the Fermi arc surface states are
predicted to show unconventional quantum os-
cillations in magneto-transport, as well as un-
usual quantum interference effects in tunneling
spectroscopy (17–19). The prospect of the real-
ization of these phenomena has inspired much
experimental and theoretical work (1–22).
Here we report the experimental realization of

aWeyl semimetal in a single crystallinematerial,

tantalum arsenide (TaAs). Using the combina-
tionof the vacuumultraviolet (low–photon-energy)
and soft x-ray (SX) angle-resolved photoemission
spectroscopy (ARPES), we systematically and dif-
ferentially study the surface and bulk electronic
structure of TaAs. Our ultraviolet (low–photon-
energy) ARPES measurements, which are highly
surface sensitive, demonstrate the existence of
the Fermi arc surface states, consistent with our
band calculations presented here. Moreover, our
SX-ARPES measurements, which are reasonably
bulk sensitive, reveal the 3D linearly dispersive
bulk Weyl cones and Weyl nodes. Furthermore,
by combining the low–photon-energy and SX-
ARPES data, we show that the locations of the
projected bulk Weyl nodes correspond to the
terminations of the Fermi arcs within our exper-
imental resolution. These systematic measure-
ments demonstrate TaAs as a Weyl semimetal.

The material system and
theoretical considerations

Tantalum arsenide is a semimetallic material
that crystallizes in a body-centered tetragonal
lattice system (Fig. 1A) (23). The lattice constants
are a = 3.437 Å and c = 11.656 Å, and the space
group is I41md (#109, C4v), as consistently re-
ported in previous structural studies (23–25).
The crystal consists of interpenetrating Ta and
As sublattices, where the two sublattices are
shifted by ða2 ;

a
2 ; dÞ, d≈

c
12 . Our diffraction data

match well with the lattice parameters and the
space group I41md (26). The scanning tunneling
microscopic (STM) topography (Fig. 1B) clearly
resolves the (001) square lattice without any ob-
vious defect. From the topography, we obtain a
lattice constant a = 3.45 Å. Electrical transport
measurements onTaAs confirmed its semimetallic
transport properties and reported negative mag-
netoresistance, suggesting the anomalies due to
Weyl fermions (23).
We discuss the essential aspects of the theo-

retically calculated bulk band structure (9, 10)
that predicts TaAs as a Weyl semimetal candi-
date. Without spin-orbit coupling, calculations
(9, 10) show that the conduction and valence bands
interpenetrate (dip into) eachother to form four 1D
line nodes (closed loops) located on the kx and ky
planes (shaded blue in Fig. 1, C and E). Upon the
inclusion of spin-orbit coupling, each line node
loop is gapped out and shrinks into sixWeyl nodes
that are away from the kx ¼ 0 and ky ¼ 0 mirror
planes (Fig. 1E, small filled circles). In our calcu-
lation, in total there are 24 bulkWeyl cones (9, 10),
all of which are linearly dispersive and are associated
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with a single chiral charge of T1 (Fig. 1E). We denote
the 8 Weyl nodes that are located on the brown
plane (kz ¼ 2p

c ) as W1 and the other 16 nodes that
are away from this plane as W2. At the (001)
surface BZ (Fig. 1F), the eight W1 Weyl nodes are
projected in the vicinity of the surface BZ edges,
X and Y . More interestingly, pairs of W2 Weyl
nodes with the same chiral charge are projected
onto the same point on the surface BZ. There-
fore, in total there are eight projected W2 Weyl
nodes with a projected chiral charge of T2,
which are located near the midpoints of the
G − X and the G − Y lines. Because the T2 chiral
charge is a projected value, the Weyl cone is still
linear (9). The number of Fermi arcs terminat-
ing on a projected Weyl node must equal its
projected chiral charge. Therefore, in TaAs, two
Fermi arc surface statesmust terminate on each
projected W2 Weyl node.

Surface electronic structure of TaAs

We carried out low–photon-energy ARPES mea-
surements to explore the surface electronic
structure of TaAs. Figure 1H presents an over-
view of the (001) Fermi surface map. We observe
three types of dominant features, namely a
crescent-shaped feature in the vicinity of the
midpoint of each G − X or G − Y line, a bowtie-
like feature centered at the X point, and an
extended feature centered at the Y point. We
find that the Fermi surface and the constant-
energy contours at shallow binding energies
(Fig. 2A) violate the C4 symmetry, considering
the features at X and Y points. In the crystal
structure of TaAs, where the rotational symmetry

is implemented as a screw axis that sends the
crystal back into itself after a C4 rotation and a
translation by c

2 along the rotation axis, such an
asymmetry is expected in calculation. The crys-
tallinity of the (001) surface in fact breaks the
rotational symmetry. We now focus on the
crescent-shaped features. Their peculiar shape
suggests the existence of two arcs, and their
termination points in k-space seem to coincide
with the surface projection of the W2 Weyl
nodes. Because the crescent feature consists of
two nonclosed curves, it can either arise from
two Fermi arcs or a closed contour; however,
the decisive property that clearly distinguishes
one case from the other is the way in which the
constant-energy contour evolves as a function
of energy. As shown in Fig. 2F, in order for the
crescent feature to be Fermi arcs, the two non-
closed curves have to move (disperse) in the
same direction as one varies the energy (26).
We now provide ARPES data to show that the
crescent features in TaAs indeed exhibit this
“copropagating” property. To do so, we single
out a crescent feature, as shown in Fig. 2, B and
E, and show the band dispersions at represent-
ative momentum space cuts, cut I and cut II,
as defined in Fig. 2E. The corresponding E−k
dispersions are shown in Fig. 2, C and D. The
evolution (dispersive “movement”) of the bands
as a function of binding energy can be clearly
read from the slope of the bands in the dis-
persion maps and is indicated in Fig. 2E by the
white arrows. It can be seen that the evolution
of the two nonclosed curves is consistent with
the copropagating property. To further visual-

ize the evolution of the constant-energy con-
tour throughout kx; ky space, we use surface
state constant-energy contours at two slightly
different binding energies, namely EB ¼ 0 ¼ EF

andEB ¼ 20 meV. Figure 2G shows the difference
between these two constant-energy contours,
namely DIðkx; kyÞ ¼ IðEB ¼ 20 meV; kx; kyÞ−
IðEB ¼ 0 meV; kx; kyÞ, where I is the ARPES
intensity. The k-space regions in Fig. 2G that
have negative spectral weight (red) correspond
to the constant-energy contour at EB ¼ 0 meV,
whereas those regions with positive spectral
weight (blue) correspond to the contour at
EB ¼ 20 meV. Thus, one can visualize the two
contours in a single kx; ky map. The alternating
“red-blue-red-blue” sequence for each crescent
feature inFig. 2Gshows the copropagatingproperty,
consistent with Fig. 2F. Furthermore, we note that
there are two crescent features, one located near the
kx ¼ 0 axis and the other near the ky ¼ 0 axis, in
Fig. 2G. The fact that we observe the copropagating
property for two independent crescent features
that are 90° rotated with respect to each other
further shows that this observation is not due to
artifacts, such as a kmisalignment while perform-
ing the subtraction. The above systematic data
reveal the existence of Fermi arcs on the (001)
surface of TaAs. Just as one can identify a crystal
as a topological insulator by observing an odd
number of Dirac cone surface states, we empha-
size that our data here are sufficient to identify
TaAs as a Weyl semimetal because of bulk-
boundary correspondence in topology.
Theoretically, the copropagating property of

the Fermi arcs is unique to Weyl semimetals
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Fig. 1. Topology and electronic structure of TaAs.
(A) Body-centered tetragonal structure of TaAs,
shown as stacked Ta and As layers. The lattice of
TaAs does not have space inversion symmetry.
(B) STM topographic image of TaAs’s (001) surface
taken at the bias voltage –300 mV, revealing the
surface lattice constant. (C) First-principles band
structure calculations of TaAs without spin-orbit
coupling.The blue box highlights the locations where
bulk bands touch in the BZ. (D) Illustration of the
simplest Weyl semimetal state that has two single
Weyl nodes with the opposite (T1) chiral charges in
the bulk. (E) In the absence of spin-orbit coupling,
there are two line nodes on the kx mirror plane and
two line nodes on the ky mirror plane (red loops). In
the presence of spin-orbit coupling, each line
node reduces into six Weyl nodes (small black and
white circles). Black and white show the opposite
chiral charges of the Weyl nodes. (F) A schematic
(not to scale) showing the projected Weyl nodes
and their projected chiral charges. (G) Theoretically
calculated band structure (26) of the Fermi surface
on the (001) surface of TaAs. (H) The ARPES-
measured Fermi surface of the (001) cleaving plane
of TaAs.The high-symmetry points of the surface BZ
are noted.

RESEARCH | RESEARCH ARTICLES

on N
ovem

ber 29, 2018
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



Extensions

Type-II Weyl semimetal

Hybrid Weyl semimetal

Dirac fermion, type-II Dirac nodes

hourglass fermion

nodal line semimetal

new fermion…….



Part 1  Topological magnons: the case of Weyl magnon

2. Antiferromagnets and spin wave excitations
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range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.
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Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations

and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,

giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the

pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian

parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in

Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.

DOI: 10.1103/PhysRevX.1.021002 Subject Areas: Magnetism, Strongly Correlated Materials

Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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Part 1  Topological magnons: the case of Weyl magnon

3. Weyl magnons: uniqueness and extension



Weyl band touching is a topological property of the band 
structure, and is thus independent from the particle statistics.  

It can be fermion, e.g. electron, can also be boson, e.g. photon.

Remark
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.
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Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin
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FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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FIG. 1. (Color online) (a) The breathing pyrochlore lattice. The
magnitude of the breathing has been exaggerated for visual effect.
(b) The breathing pyrochlore lattice interpolates between isolated
tetrahedra and the isotropic pyrochlore lattice. LiInCr4O8 is found at
Bf ∼ 0.1 while the related compound LiGaCr4O8 has Bf ∼ 0.6.

excitation at an energy consistent with those found in prior
measurements, with a linewidth that exceeds the excitation
energy. This implies that the spin gap is in fact filled with
magnetic states, and is thus only a pseudogap. The energy of
the inelastic excitation decreases upon cooling, but it does not
soften completely as T → Tp, immediately below which the
system exhibits dispersive excitations which may arise from
a nematic state. The overall behavior is ascribed to the action
of the two dominant perturbing terms present in the system,
the spin-lattice coupling and the breathing distortion, on the
highly degenerate manifold of states of the frustrated breathing
pyrochlore lattice.

I. SAMPLE SYNTHESIS AND EXPERIMENTAL

Powder samples of LiInCr4O8 were prepared by the solid-
state route reported in Ref. [8]. The samples were enriched
with 7Li to reduce neutron absorption. For the diffraction
experiments, performed on the D2B diffractometer at the
Institut Laue-Langevin (ILL), approximately 7 g of powder
were packed in a V can of diameter 9 mm. A neutron
wavelength λ = 1.59 Å was selected using the (335) reflection
of a Ge monochromator. To observe the structural changes on
passing through the phase transitions as clearly as possible, the
resolution was optimized by placing 10′ of collimation before
the monochromator, and by summing only the central pixels of
the 25-cm-high position-sensitive detectors preceding Rietveld
analysis. Measurements were carried out in the range 2–20 K,
spanning both transitions. All diffraction data were analyzed
using the programs of the FULLPROF suite [13].2 The high-
resolution diffraction measurements were supplemented by
lower-resolution polarized diffraction experiments performed
on the D7 spectrometer, also at the ILL. The same sample
was loaded in an Al can, and measured using λ = 4.8 Å
neutrons from the (002) reflection of a pyrolytic graphite
(PG) monochromator. The XYZ polarization analysis [14,15]
method was employed to separate the magnetic scattering from
the other components of the scattering cross section.

For the inelastic time-of-flight experiment, which was
carried out on the IN4 spectrometer (ILL), approximately 13
g of LiInCr4O8 powder were packed to a thickness of ∼2.5

2All the programs of the FULLPROF suite can be obtained at
http://www.ill.eu/sites/fullprof

mm in an Al sachet, which was mounted in a flat Cd frame
with a 23 × 40 mm opening. Wavelengths of λ = 2.2 Å (Ei =
16.9 meV) and λ = 1.59 Å (Ei = 32.4 meV) from, respec-
tively, the (002) and (004) reflections of a PG monochromator
were used to probe the excitation spectrum in the temperature
range 2–200 K. Background subtraction of the raw spectra was
performed assuming a transmission of approximately 70%.

II. STRUCTURE AND PHASE TRANSITIONS

We begin by discussing the structure LiInCr4O8 in its
high-temperature cubic phase. At T = 20 K, slightly above
both Tp and Tm, the diffraction pattern is indexed in the space
group F43̄m, consistent with previous work [8] [Fig. 2(a)].
The Rietveld refined lattice parameter is 8.403 47(3) Å and
the Cr x-position parameter is 0.3732(3). While a is smaller
than at room temperature [art = 8.4205(5) Å], x is larger
[xrt = 0.3719(3)], which translates into a slight reduction
in r ′/r = 1.047 versus (r ′/r)rt = 1.0515, and a consequent
increase in Bf . Another feature of the 20-K diffraction pattern
is the systematic broadening of the (00l) and (hk0) peaks with
respect to the (hhh) peaks, especially at large scattering angle
[Figs. 2(c) and 2(d)]. This anisotropic broadening is unlikely
to originate from particle size, given the cubic symmetry of
the material and angle dependence of the broadening, and is
hence probably related to the buildup of strain on approaching
the structural phase transition.

In order to model the strain, we employ the approach first
introduced in Ref. [16], and further developed in Ref. [17].
This assumes that the strains are described by Gaussian
fluctuations in the metric parameters of the lattice, permitting
their correlation to be described by a variance-covariance
matrix. The broadening of the Bragg peaks is then expressed as
a sum of quartic polynomials with coefficients SHKL, of which
only S400 and S220 are symmetry allowed for the m3̄m Laue
class. The anisotropic strain coefficients at 20 K are found to
be S400 = 0.056(2) and S220 = −0.054(2). Cooling to 18 K,
the SHKL increase to S400 = 0.088(3) and S220 = −0.082(3),
respectively. At 16 K∼ Tp, however, the diffraction pattern
is no longer indexed by the cubic F 4̄3m space group, as
evidenced by a large splitting of the (00l) and (hk0) peaks
[Fig. 2(c)].

From the lack of either splitting or broadening of the
(hhh) peaks in the T < Tp phase [Fig. 2(d)], the crystal
system of the low-temperature structure can be inferred to be
either orthorhombic or tetragonal. Furthermore, the complete
absence of shifts in these peaks remarkably implies that the
unit-cell volume is conserved in the transition, although the
statistics of the data do no allow us to exclude satellites
resulting from multiplication of the unit cell. At lower T , the
(00l) and (hk0) peak splittings increase continuously through
Tm, saturating towards the lowest measured temperature T = 2
K [Figs. 2(b) and 2(e)]. This implies that the phases at
Tm < T < Tp and T < Tm possess the same symmetry.

The splitting of the cubic (008) peak at 2 K [Fig. 2(b)]
reveals several interesting features of the low-T structure:
(i) the intensity is concentrated in two peaks, implying a
tetragonal crystal system, but (ii) some intensity persists
between the Bragg peaks and (iii) the widths remain con-
siderably larger than resolution. Observations (i) and (ii) can
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.

DOI: 10.1103/PhysRevLett.110.097203 PACS numbers: 75.47.Lx, 75.25.#j

Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin

Cr
Ga/In

Li

J

O

(a) (b)

Cr J'

d
d'

FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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the inversion center, and the whole lattice breaks into un-
equivalent upper-pointing and down-pointing tetrahedral
units (see Fig.X). In the recent experiments on the Cr-
based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as

H = J
X

hiji2u

Si · Sj + J 0
X

hiji2d

Si · Sj

+D
X

i

(Si · ẑi)2 , (1)

where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
(spins point to local ŷ). (d) The ground state with ✓ = 0
(spins point to local x̂).

obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as

S

cl
i ⌘ Sm̂i = S(cos ✓ x̂i + sin ✓ ŷi), (2)

where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the

Treating spins as classical vectors, simple algebra gives some rules for ground states
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Phase diagram

I,II have the same order, 
but are distinct topologically!

It is commonly thought that the spin ordering pattern of a
magnetic insulator uniquely specifies the state of the system1,
and indeed the ground state of such materials is usually

well-described by a simple product state of little fundamental
interest. However, in view of recent developments in the study of
topological properties of periodic media2,3, it is possible that
even such a product-like ground state can support topologically
non-trivial excited state band structure. Topological properties of
bands have been studied previously for electrons in solids
governed by Schrödinger’s equations2,3, for photons in dielectric
superlattices governed by Maxwell’s equations4,5, for phonons
governed by Newton’s equations4, and even for fractionalized
spinon excitation in spin liquids6,7. Here we apply these ideas to
magnons governed by the equations for spin waves in an ordered
antiferromagnet. We consider a concrete magnetic system,
namely, the Cr-based breathing pyrochlore, and explicitly
demonstrate that it supports Weyl magnon excitations with a
linear band touching in the spin-wave spectrum of the magnetic
ordered phase. The Weyl magnon is analogous to a Weyl
fermion8–11 in electronic systems, but has bosonic rather than
fermionic statistics, similar to Weyl points in photonic systems5.
In contrast to the other three categories of systems, the band
structure of magnons in antiferromagnets is highly tunable in situ
by application of readily available magnetic fields, which is a
consequence of the spontaneous symmetry breaking of the
antiferromagnet ground state and the relatively low-energy scale
for magnetic interactions in most solids. Thus one can envision
moving, creating and annihilating Weyl points in the laboratory
in a single experiment.

To explore Weyl magnons, we focus on a concrete and physical
model system, the breathing pyrochlore antiferromagnet. This is a
generalization of the common pyrochlore structure, which
consists of a network of corner sharing tetrahedra, with magnetic
ions at the corners. In the breathing pyrochlore, alternate
tetrahedra are uniformly expanded and contracted in size12–16.
As a result, the structure lacks an inversion center, and in
general up-pointing and down-pointing tetrahedral units are
inequivalent. We consider below a spin model for the breathing
pyrochlore, which generalizes and includes the uniform limit, and
displays Weyl points even in the uniform case. We obtain the full
phase diagram of this spin model and the magnetic excitations
in different phases. The experimental consequences of Weyl
magnons and the general conditions for their occurrence in spin
systems are predicted and discussed.

Results
Spin model. We consider Cr3þ ions in the breathing pyrochlore
lattice. There are several compounds with this structure,
including LiGaCr4O8 and LiInCr4O8, which have been recently
studied13,14. In this 3d3 electron configuration the orbital angular
momentum is fully quenched and the local moment is
well-described by the isotropic Heisenberg exchange and a total
spin S¼ 3/2 according to Hund’s rules. The minimal spin model
is given as

H ¼ J
X

ijh i2u

Si # Sjþ J 0
X

ijh i2d

Si # SjþD
X

i

Si # ẑið Þ2; ð1Þ

Since spin-orbit coupling is weak, the interaction between the
local moments is primarily where we have supplemented the
Heisenberg model with a local spin anisotropy17, which is
generically allowed by the D3d point group symmetry at the Cr
site. The anisotropic direction ẑi is the local [111] direction that
points into the center of each tetrahedron and is specified for each
sublattice (Methods). Here J and J0 are the exchange couplings
between the nearest-neighbour spins on the up-pointing and

down-pointing tetrahedra (Fig. 1), respectively. The large and
negative Curie–Weiss temperatures of the Cr-based breathing
pyrochlores indicate the strong atomic force microscopy
interactions, hence we take J40, J040. Because the up-pointing
and down-pointing tetrahedra have different sizes, one thus
expects JaJ0. In this work, however, we will study this model in a
general parameter setting. The atomic force microscopy exchange
interactions favour zero total spin on each up-pointing
(down-pointing) tetrahedron, that is,

P
i2u Si¼0 ð

P
i2d Si¼0Þ.

As for the regular pyrochlore lattice18, the classical ground state
of the exchange part of the Hamiltonian is extensively degenerate.

Ground states and quantum order by disorder. We first
consider easy-axis spin anisotropy with Do0. This favours the
spin to be aligned with its local [111] axis. It turns out that this
condition can be satisfied while simultaneously optimizing the
exchange interaction. This gives a unique classical ground state
(up to a 2-fold degeneracy from the time-reversal operation) that
has an all-in all-out magnetic order. The magnetic excitation of
this ordered state is fully gapped and the energy gap (D) is simply
set by the easy-axis spin anisotropy with D¼ 3|D| (Methods).

With the easy-plane anisotropy, D40, the spin prefers to
orient in the xy plane of the local coordinate system at each
sublattice. This requirement can also be satisfied while simulta-
neously optimizing the exchange. Moreover, there exists an
accidental U(1) degeneracy of the classical ground state that we
parametrize as

Scl
i & Sm̂i ¼ S cos y x̂iþ sin y ŷi

! "
; ð2Þ

where x̂i (ŷi) is the unit vector along the local x (y) axis in the
local coordinate system at site i (Methods), the unit vector m̂i
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Figure 1 | The breathing pyrochlore and the phase diagram.
(a) The breathing pyrochlore. The letter u(d) refers to the up-pointing
(down-pointing) tetrahedra and J(J0) indicates the nearest-neighbour
exchange couplings on the up-pointing (down-pointing) tetrahedra. (b) The
phase diagram. Regions I and II have the same magnetic order and belong
to the same phase, but the magnetic excitations of the two regions are
topologically distinct. Region III has a different magnetic order. The details
of the phase diagram are discussed in the main text.
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points in the local xy plane, and the angular variable y captures
the U(1) degeneracy. This is the same form of degeneracy found
for the S¼ 1/2 pyrochlore Er2Ti2O7 in ref. 19, where it was noted
that the degeneracy is accidental, that is, not protected by any
symmetry, and hence will be lifted by quantum fluctuations. The
same holds for the breathing pyrochlore, as we show now using
linear spin-wave theory. We introduce the Holstein–Primakoff
bosons to express the spin operators as Si " m̂i¼S# awi ai,
Si " ẑi¼ 2Sð Þ1=2ðaiþ awi Þ=2, and Si " m̂i'ẑið Þ¼ 2Sð Þ1=2ðai#awi Þ= 2ið Þ.
Keeping terms in the spin Hamiltonian H up to the quadratic
order in the Holstein–Primakoff bosons, one can readily write
down the spin-wave Hamiltonian as

Hsw ¼
P

k

P
m;n

Amn kð Þayk;mak;nþBmn kð Þa# k;mak;n

h

þ B(mn # kð Þayk;may# k;n

i
þEcl;

ð3Þ

where Ecl is the classical ground state energy, and Amn, Bmn satisfy
Amn kð Þ¼A(nm kð Þ, Bmn kð Þ¼Bnm # kð Þ and depend on the angular
variable y. Although the classical energy Ecl is independent of y
due to the U(1) degeneracy, the quantum zero point energy DE of
the spin-wave modes depends on y, and is given by
DE¼

P
k

P
m

1
2 om kð Þ#Amm kð Þ
! "

, where om(k) is the excitation
energy of the m-th spin-wave mode at momentum k and is
determined for every classical spin ground state. The minimum of
DE occurs at y¼p/6þ np/3 (np/3) with n 2 Z in regions I and II
(region III). The discrete minima and the corresponding
magnetic orders are equivalent under space group symmetry
operations. The U(1) degeneracy of the classical ground states is
thus broken by quantum fluctuations. This is the well-known
phenomenon known as quantum order by disorder19–22. The
resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1!10]) lattice direction in regions I
and II (region III), see Fig. 2.

To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
within linear spin-wave theory. This treatment may under-
estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
likely to be non-magnetic and will be addressed in the future
work. For the purpose of the current work, we will focus on the
ordered ground states in Figs 1 and 2.

Magnon Weyl nodes and surface states. Regions I and II have
the same magnetically ordered structure with the same order
parameter and belong to the same phase. Although the ground
states are characterized by the same order parameter, the
magnetic excitations of the two regions are topologically distinct.
The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
y¼p/2 and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using linear spin-wave
theory, we obtain the magnetic excitation spectrum with respect
to this magnetic state for regions I and II. In Fig. 3a, we depict a
representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
curvature and are characterized by a discrete chirality taking
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Quantum order by disorder

2

the inversion center, and the whole lattice breaks into un-
equivalent upper-pointing and down-pointing tetrahedral
units (see Fig.X). In the recent experiments on the Cr-
based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as

H = J
X

hiji2u

Si · Sj + J 0
X

hiji2d

Si · Sj

+D
X

i

(Si · ẑi)2 , (1)

where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
(spins point to local ŷ). (d) The ground state with ✓ = 0
(spins point to local x̂).

obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as

S

cl
i ⌘ Sm̂i = S(cos ✓ x̂i + sin ✓ ŷi), (2)

where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the
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obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as

S

cl
i ⌘ Sm̂i = S(cos ✓ x̂i + sin ✓ ŷi), (2)

where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the

points in the local xy plane, and the angular variable y captures
the U(1) degeneracy. This is the same form of degeneracy found
for the S¼ 1/2 pyrochlore Er2Ti2O7 in ref. 19, where it was noted
that the degeneracy is accidental, that is, not protected by any
symmetry, and hence will be lifted by quantum fluctuations. The
same holds for the breathing pyrochlore, as we show now using
linear spin-wave theory. We introduce the Holstein–Primakoff
bosons to express the spin operators as Si " m̂i¼S# awi ai,
Si " ẑi¼ 2Sð Þ1=2ðaiþ awi Þ=2, and Si " m̂i'ẑið Þ¼ 2Sð Þ1=2ðai#awi Þ= 2ið Þ.
Keeping terms in the spin Hamiltonian H up to the quadratic
order in the Holstein–Primakoff bosons, one can readily write
down the spin-wave Hamiltonian as

Hsw ¼
P

k

P
m;n

Amn kð Þayk;mak;nþBmn kð Þa# k;mak;n

h

þ B(mn # kð Þayk;may# k;n

i
þEcl;

ð3Þ

where Ecl is the classical ground state energy, and Amn, Bmn satisfy
Amn kð Þ¼A(nm kð Þ, Bmn kð Þ¼Bnm # kð Þ and depend on the angular
variable y. Although the classical energy Ecl is independent of y
due to the U(1) degeneracy, the quantum zero point energy DE of
the spin-wave modes depends on y, and is given by
DE¼

P
k

P
m

1
2 om kð Þ#Amm kð Þ
! "

, where om(k) is the excitation
energy of the m-th spin-wave mode at momentum k and is
determined for every classical spin ground state. The minimum of
DE occurs at y¼p/6þ np/3 (np/3) with n 2 Z in regions I and II
(region III). The discrete minima and the corresponding
magnetic orders are equivalent under space group symmetry
operations. The U(1) degeneracy of the classical ground states is
thus broken by quantum fluctuations. This is the well-known
phenomenon known as quantum order by disorder19–22. The
resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1!10]) lattice direction in regions I
and II (region III), see Fig. 2.

To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
within linear spin-wave theory. This treatment may under-
estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
likely to be non-magnetic and will be addressed in the future
work. For the purpose of the current work, we will focus on the
ordered ground states in Figs 1 and 2.

Magnon Weyl nodes and surface states. Regions I and II have
the same magnetically ordered structure with the same order
parameter and belong to the same phase. Although the ground
states are characterized by the same order parameter, the
magnetic excitations of the two regions are topologically distinct.
The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
y¼p/2 and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using linear spin-wave
theory, we obtain the magnetic excitation spectrum with respect
to this magnetic state for regions I and II. In Fig. 3a, we depict a
representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
curvature and are characterized by a discrete chirality taking
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Figure 2 | Quantum zero point energy and the magnetic order. We have chosen the representative parameters in regions I and III with D¼0.2J,
J0¼0.6J in (a) and D¼0.05J, J0¼0.6J in (c), respectively. (b) The magnetic order in regions I and II with y¼ p/2 and the spins pointing along the local ŷ.
(d) The magnetic order in region III with y¼0 and the spins pointing along the local x̂.
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resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1!10]) lattice direction in regions I
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To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
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estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
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The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
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representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
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Weyl magnons
3

Holstein-Primarko↵ bosons, one can readily write down
the spin wave Hamiltonian as

Hsw =
P

k

P
µ,⌫ [Aµ⌫(k)a

†
k,µak,⌫ +Bµ⌫(k)a�k,µak,⌫

+B⇤
µ⌫(�k)a†k,µa

†
�k,⌫ ] + Ecl, (3)

where Ecl is the classical ground state energy, and Aµ⌫ ,
Bµ⌫ satisfy Aµ⌫(k) = A⇤

µ⌫(k), Bµ⌫(k) = Bµ⌫(�k) and
depend on the angular variable ✓. Although the clas-
sical energy Ecl is independent of ✓ due to the U(1)
degeneracy, the quantum zero point energy �E of the
spin wave modes depends on ✓ and is given by �E =P

k

P
µ

1
2 [!µ(k) � Aµµ(k)], where !µ(k) is the excita-

tion energy of the µ-th spin wave mode at momentum k

and is determined for every classical spin ground state.
The minimum of �E occurs at ✓ = ⇡/6 + n⇡/3 (n⇡/3)
with n 2 Z in region I and III (region II). The U(1)
degeneracy of the classical ground states is thus broken
by quantum fluctuations. This is the well-known phe-
nomenon known as “quantum order by disorder” [11–13].
The resulting state is a non-collinear state and the spin
is pointing along the local h112i (h11̄0i) lattice direction
at each sublattice in region I and III (region II).

To obtain the phase diagram in Fig.X, we have im-
plemented the semiclassical approach and included the
quantum fluctuation within the linear spin wave anal-
ysis. This treatment may underestimate the quantum
fluctuation in the parameter regimes when J � J 0, D or
J 0 � J,D. In these regimes, one may first consider the
tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these
regimes might be non-magnetic and will be addressed in
the future work. For the purpose of the current work, we
will focus on the ordered ground states in Fig.X.

Magnon Weyl nodes and surface states.

Although region I and III of the phase diagram have the
same magnetic ordering structure, the magnetic excita-
tions of the two regions are distinct in a topological man-
ner. Without losing any generality, we choose ✓ = ⇡/2
and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using the lin-
ear spin-wave theory, we obtain the magnetic excitation
spectrum with respect to this magnetic state in region I
and III. In Fig.X, we depict a representative excitation
spectrum along the high symmetry lines in the Brillouin
zone for region I.

Here we comment on the magnon spectrum in Fig.X.
First of all, the gapless mode of the spectrum is simply an
artifact of the linear spin-wave approximation. Because
there is no symmetry that protects the gapless mode, a
small gap would eventually be created when the inter-
action between the Holstein-Primarko↵ bosons is taken
into account. Secondly, the spectrum in Fig.X has a lin-
ear band touching at the momentum point from � to X.
In fact, as we show in Fig.X, there are in total four such

FIG. 3. (Color Online.) (a) The spin wave spectrum along
high symmetry momentum lines. (b) Four Weyl nodes are
located at (±k0, 0, 0), (0,±k0, 0) with k0 = 1.072⇡. Red and
blue indicate the opposite chirality. We have set D = 0.2J ,
J

0 = 0.6J and ✓ = ⇡/2 in the plots.

linear band touchings. These linear band touchings occur
at a finite energy and are the Weyl nodes of the magnon
spectrum. Just like the Weyl nodes in the electronic band
structure of Weyl semimetals [2], the magnon Weyl nodes
are sources and sinks of Berry curvatures and are char-
acterized by the chirality number that takes ±1. Unlike
the Weyl semimetal in the electron systems where one
can tune the Fermi energy to the Weyl nodes by varying
the electron density, the magnon Weyl nodes of our sys-
tem must appear at finite energies because of the bosonic
nature of magnons. Likewise, due to the bulk-edge cor-
respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
Once the magnon Weyl nodes emerge in the magnon

spectrum, they are robust and thus exist over a finite
regime in the parameter space. We find that the magnon
Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....

Discussion.
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The minimum of �E occurs at ✓ = ⇡/6 + n⇡/3 (n⇡/3)
with n 2 Z in region I and III (region II). The U(1)
degeneracy of the classical ground states is thus broken
by quantum fluctuations. This is the well-known phe-
nomenon known as “quantum order by disorder” [11–13].
The resulting state is a non-collinear state and the spin
is pointing along the local h112i (h11̄0i) lattice direction
at each sublattice in region I and III (region II).

To obtain the phase diagram in Fig.X, we have im-
plemented the semiclassical approach and included the
quantum fluctuation within the linear spin wave anal-
ysis. This treatment may underestimate the quantum
fluctuation in the parameter regimes when J � J 0, D or
J 0 � J,D. In these regimes, one may first consider the
tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these
regimes might be non-magnetic and will be addressed in
the future work. For the purpose of the current work, we
will focus on the ordered ground states in Fig.X.

Magnon Weyl nodes and surface states.

Although region I and III of the phase diagram have the
same magnetic ordering structure, the magnetic excita-
tions of the two regions are distinct in a topological man-
ner. Without losing any generality, we choose ✓ = ⇡/2
and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using the lin-
ear spin-wave theory, we obtain the magnetic excitation
spectrum with respect to this magnetic state in region I
and III. In Fig.X, we depict a representative excitation
spectrum along the high symmetry lines in the Brillouin
zone for region I.

Here we comment on the magnon spectrum in Fig.X.
First of all, the gapless mode of the spectrum is simply an
artifact of the linear spin-wave approximation. Because
there is no symmetry that protects the gapless mode, a
small gap would eventually be created when the inter-
action between the Holstein-Primarko↵ bosons is taken
into account. Secondly, the spectrum in Fig.X has a lin-
ear band touching at the momentum point from � to X.
In fact, as we show in Fig.X, there are in total four such

FIG. 3. (Color Online.) (a) The spin wave spectrum along
high symmetry momentum lines. (b) Four Weyl nodes are
located at (±k0, 0, 0), (0,±k0, 0) with k0 = 1.072⇡. Red and
blue indicate the opposite chirality. We have set D = 0.2J ,
J

0 = 0.6J and ✓ = ⇡/2 in the plots.

linear band touchings. These linear band touchings occur
at a finite energy and are the Weyl nodes of the magnon
spectrum. Just like the Weyl nodes in the electronic band
structure of Weyl semimetals [2], the magnon Weyl nodes
are sources and sinks of Berry curvatures and are char-
acterized by the chirality number that takes ±1. Unlike
the Weyl semimetal in the electron systems where one
can tune the Fermi energy to the Weyl nodes by varying
the electron density, the magnon Weyl nodes of our sys-
tem must appear at finite energies because of the bosonic
nature of magnons. Likewise, due to the bulk-edge cor-
respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
Once the magnon Weyl nodes emerge in the magnon

spectrum, they are robust and thus exist over a finite
regime in the parameter space. We find that the magnon
Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....

Discussion.

4

FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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Tune Weyl nodes with magnetic field

However, there are some conditions under which Weyl points
are prohibited. In particular, many magnetically ordered systems
possess not time-reversal but a complex conjugation symmetry C.
This is the case for any Heisenberg Hamiltonian with a collinear
ordered ground state, but it can occur more generally. If, in
addition, the system possesses inversion symmetry P, then Weyl
points are prohibited. This can be understood from the Berry
curvature24,25, Om kð Þ¼iEmnl @nk @lkjh i, defined in terms of the
exact magnon eigenstates |ki of a given magnon band. The Berry
curvature is an effective magnetic field in momentum space, and a
Weyl point is defined as a delta-function source (divergence) of
this curvature. If P is valid, one has Om(k)¼Om($ k), while C
implies Om(k)¼ $Om($ k). Hence the combination requires
Om(k)¼ 0, prohibiting any Berry curvature at all, and also
obviously Weyl points.

This shows that in the simplest magnetically ordered systems,
Weyl points are not allowed. There may be other conditions
prohibiting Weyl points, or constraining them. A trivial condition
is that one needs at least two magnon bands to form Weyl points,
which prohibits them in some simple ferromagnets. In the case
studied in this paper a two-fold rotation axis locks the Weyl
points along the G–X axes. A full treatment of the necessary and
sufficient conditions for Weyl points may be part of a topological
spin-wave theory26,27, to be developed in the future.

Now we turn to experimental implications. The most natural
probe of the bulk magnon Weyl nodes as well as the surface
magnon arc states is inelastic neutron scattering. Because of the
surface dependence of the magnon arc states, one could study the
system with different slab geometries and surface orientations.
For example, for the [11!1] surfaces, one would observe two
disconnected arcs on both up and down surfaces (Fig. 4). In
contrast, one would observe two loops across the surface Brillouin
zone for the [110] surfaces because two pairs of Weyl nodes with
different chiralities are projected onto the same points (Methods).

The Weyl magnon can be potentially detected optically. Close
to the Weyl nodes, a vertical transition can occur with arbitrarily
small energy. Because the lower state is empty at zero temperature
in equilibrium, it may be beneficial to use a pump-probe
approach to measure the optical absorption. Then one may be
able to observe optical absorption at low frequency28, when the

lower magnon bands have enough population. In addition to the
spectroscopic property, the presence of the Weyl magnon
spectrum may lead to a thermal Hall effect, just like the Weyl
fermion that gives rise to the anomalous Hall current in electronic
systems29,30. Furthermore, one could use magnetic field to
control thermal Hall signal31–33 despite the absence of the
Lorentz coupling of the spin to the external magnetic field. Again
due to population effects, the thermal Hall signal from Weyl
magnons will be suppressed at low temperature, but could be
enhanced by optical pumping.

Although the existing experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop the antiferromagnetic
long-range orders at low temperature13,14, the precise structures
of the magnetic order in these two systems are not yet clear at this
stage. Therefore, it is certainly of interest to confirm the magnetic
order and detect possible Weyl magnon excitations in these
systems and other three dimensional Mott insulators with
long-range magnetic orders.

To summarize, we have studied a realistic spin model on
the Cr-based breathing pyrochlore lattice. We show that
the combination of the single-ion spin anisotropy and the
superexchange interaction leads to novel magnetically ordered
ground states. Remarkably, the magnetic excitations in a large
parameter regime develops magnon Weyl nodes in the magnon
spectrum. We expect that Weyl magnons may exist broadly in
many ordered magnets. We propose a number of experiments
that can test the presence of the Weyl magnons.

a

d e f

b c

Figure 5 | The evolution of Weyl nodes under the magnetic field. Applying a magnetic field along the global z direction, B¼Bẑ, Weyl nodes are shifted
but still in kz¼0 plane. They are annihilated at G when magnetic field is strong enough. Red and blue indicate the opposite chirality. (a,f): B¼0, 0.1J,
0.5J, 0.9J, 1.0J, 1.1J. We have set D¼0.2J, J0¼0.6J and y¼p/2.

Table 1 | The local axis for the four sublattices of the
breathing pyrochlore lattice.

l x̂l ŷl ẑl

1 1ffiffi
2
p !110½ & 1ffiffi

6
p !1!12½ & 1ffiffi

3
p 111½ &

2 1ffiffi
2
p !1!10½ & 1ffiffi

6
p !11!2
" #

1ffiffi
3
p 1!1!1½ &

3 1ffiffi
2
p 110½ & 1ffiffi

6
p 1!1!2
" #

1ffiffi
3
p !11!1½ &

4 1ffiffi
2
p 1!10½ & 1ffiffi

6
p 112½ & 1ffiffi

3
p !1!11½ &

The letter m refers to the sublattice, and x̂m ; ŷm ; ẑm
$ %

defines the local coordinate system at the
m-th sublattice.
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How to probe in a REAL experiment?

1. Neutron scattering: detect the Weyl nodes as well as the consequence  
(the surface arc states that connect the Weyl nodes).   

2.   Thermal Hall effect: magnon Weyl nodes contribute the thermal  
      currents that are tunable by external magnetic field.   

3.   Optically: as Weyl node must appear at finite energy, one needs to use  
      pump-probe measurement.  

COMPARE TO Weyl fermion in the electron system



Extension

Dirac magnons (Yuan Li, Chen Fang, Jingsheng Wen)  
vs  
Dirac electron 

nodal line magnon (??)  
vs  
nodal line semimetal 

Magnon topological insulator (Schnyder, Katsura)  
vs  
electron topological insulator 



Summary
Band topology of magnon can be another interesting thing  
to look at among these magnetically ordered systems.

Fei-Ye Li, Yao-dong Li, YB Kim, L Balents, Yue Yu, Gang Chen*, Nature Comms. 7, 12691 (2018) 
Fei-Ye Li, Yao-dong Li, Yue Yu, A Paramekanti, Gang Chen*, Phys. Rev. B, 95, 085132 (2017)
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Part 2  Detecting hidden multipolar orders in quantum magnets

1. Hidden orders in condensed matter physics



we undertand the order/structure,


we know how thing work, function,

make prediction 
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Hidden order in condensed matter

U


Si

Ru


• Hidden&order:&“dark&ma.er”&in&CMT&
• URu2Si2 

•  Second&order&transi;on&at&~17K,&Δ!�0.42&R ​ln ⁠2 &
•  Order&parameters&unknown&aDer&decades 
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Part 2  Detecting hidden multipolar orders in quantum magnets

2. Hidden orders with intertwined multipolar structure  
in rare-earth magnets



Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. (needs comment.) 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We think it is a spinon Fermi surface U(1) QSL.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Qingming Zhang 
(Renmin)

Inelastic neutron scattering performed by Jun Zhao’s group and M Mourigal’s group 

collaboration with QM Zhang, Jun Zhao, Yuesheng Li, Yaodong Li
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TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Magnetism in the KBaRE(BO3)2 (RE=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, 
Yb, Lu) series: materials with a triangular rare earth lattice  
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Abstract 

 We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE= Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare 

earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-

3m. Physical property measurements indicate the compounds display predominantly 

antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 

K. The ideal 2D rare earth triangular layers in this structure type make it a potential model 

system for investigating magnetic frustration in rare-earth-based materials.  
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TABLE I. The relevant spin Hamiltonians for three different doublets on the triangular lattice. The models for the usual Kramers doublet
and the dipole-octupole doublet have been obtained in the previous works.

Local doublets The nearest-neighbor spin Hamiltonians on the triangular lattice Reference

Usual Kramers doublet H =
∑

⟨ij ⟩ JzzS
z
i S

z
j + J±(S+

i S−
j + S−

i S+
j ) + J±±(γij S

+
i S+

j + γ ∗
ij S

−
i S−

j )− iJz±
2 Refs. [3,4]

[(γ ∗
ij S

+
i − γij S

−
i )Sz

j + Sz
i (γ ∗

ij S
+
j − γij S

−
j )]

Dipole-octupole doublet H =
∑

⟨ij ⟩ JzS
z
i S

z
j + JxS

x
i Sx

j + JyS
y
i S

y
j + Jyz(Sz

i S
y
j + S

y
i Sz

j ) Ref. [10]
Non-Kramers doublet H =

∑
⟨ij ⟩ JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j ) + J±±(γij S

+
i S+

j + γ ∗
ij S

−
i S−

j ) This paper

relevant for the spin liquid candidate YbMgGaO4 and many
other rare-earth triangular lattice magnets with Kramers ion.
In this paper, we turn our attention to the non-Kramers doublet
on the triangular lattice that has been advocated in the end
of Ref. [4], and complete the full list of the microscopic spin
models for the triangular lattice rare-earth magnets. Unlike the
usual Kramers doublets, the mixed multipolar natures of spin
components for the non-Kramers doublets greatly simplify
the spin Hamiltonian. For the non-Kramers doublets [33–35],
the longitudinal spin component behaves as the magnetic
dipole moment, while the transverse spin components behave
as the magnetic quadrupole moment. Therefore, the time-
reversal symmetry and the hermiticity condition forbid the cou-
pling between the longitudinal and the transverse components.
Moreover, the ordering in the longitudinal spin components
and the ordering in the transverse components have to be
distinct and necessarily correspond to different phases and
phase transitions. The purpose of this paper is to understand
the intertwined multipolar ordering structures and the relevant
experimental phenomena for the non-Kramers doublets on the
triangular lattice.

The magnetic dipolar order can be directly visible through
the conventional magnetic measurements such as the NMR and
neutron diffraction experiments. The magnetic quadrupolar
order (or, equivalently, spin nematicity) preserves the time-
reversal symmetry and is often not quite visible in such
conventional measurements. However, the dipole component
that is orthogonal to the quadrupole component could then
create quantum fluctuations for the quadrupole component
and lead to coherent spin wave excitations. This orthogonal
effect allows the detection of the spin wave spectra via the
inelastic neutron scattering measurements. If the quadrupolar
order breaks the translation symmetry and enlarges the unit
cell, the symmetry-breaking pattern may not be quite visible
in the static measurement, but is clear in the dynamic mea-
surements. Thus, we study the magnetic excitations in the
multipolar ordered phases. We establish the key connections
between the underlying multipolar structure and the features
in the excitation spectra. The orthogonal effect of the dipole
component on the quadrupole component further lies in the
coupling to the external magnetic field. The magnetic field
only couples linearly to the dipole component and, thus,
the magnetization and the magnetic susceptibility indirectly
suggest the underlying quadrupolar order and transition.

The following part of the paper is organized as follows. In
Sec. II, we propose the relevant physical model for the non-
Kramers doublets on a triangular lattice and explain the phys-
ical significance of the spin operators. In Sec. III, we employ
several different methods to obtain the full phase diagram of

this model. Since many states have an emergentU (1) symmetry
at the mean-field level, in Sec. IV, we study the quantum order
by disorder phenomena for two representative states on our
phase diagram. In Sec. V, we study the dynamic properties of
the distinct phases that can serve as the experimental probes of
the underlying multipolar orders. In Sec. VI, we point out the
unique magnetization process due to the selective coupling
of the moments to the external magnetic field. Finally, in
Sec. VII, we discuss the experimental detection of various
phases and summarize with a materials’ survey. In Appendix A,
we explain the relevance of the model to the Kitaev interaction.
In Appendix B, we give the explanation of the non-Kramers
doublet for the case of the spin-1 moments. In Appendix C, we
show the complete spin wave dispersions for different phases.

II. MODEL HAMILTONIAN

Apart from YbMgGaO4, RCd3P3, RZn3P3, RCd3As3,
RZn3As3, KBaR(BO3)2, and many ternary chalcogenides
(LiRSe2, NaRS2, NaRSe2, KRS2, KRSe2, KRTe2, RbRS2,
RbRSe2, RbRTe2, CsRS2, CsRSe2, CsRTe2, etc.) are known
to have the rare-earth local moments on the triangular lattices,
where R is the rare-earth atom. These chemical properties
of the rare-earth atoms are quite similar, and thus it is often
possible to substitute one for the other. A rare-earth ion, such
as Yb3+ and Sm3+, that contains odd number of electrons is the
Kramers’ ion and forms a ground-state doublet whose twofold
degeneracy is protected by the time-reversal symmetry and the
Kramers’ theorem. A non-Kramers ion like Pr3+ and Tb3+

contains an even number of electrons per site (see Fig. 1). The
spin-orbit coupling of the 4f electrons entangles the total spin
moment and the orbital angular momentum, and leads to a total
moment J that is an integer. The crystal electric field then splits
the 2J + 1 fold degeneracy and sometimes leads to a twofold
degenerate ground-state doublet. Although both Kramers dou-
blet and non-Kramers doublet are two-dimensional irreducible
representations of the point group, the twofold degeneracy of
the Kramers doublets is further protected by the time-reversal
symmetry, and the degeneracy of the non-Kramers doublets
is merely protected by the lattice symmetry. For these non-
Kramers doublets, one then introduces an effective spin-1/2
operator, Si , that acts on the twofold degenerate ground-state
doublet at each lattice site (see Appendix B for a more detailed
discussion for a specific case.)

Although the effective spin-1/2 operator is introduced to
describe the non-Kramers doublet, the actual wave functions
of the non-Kramers doublets are still integer spins in nature.
As a result, the transformation of these effective spin-1/2
operators for the non-Kramers doublet is quite different from
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FIG. 2. (a) The triangular lattice with three distinct neighboring
bonds and interactions. The phase parameter γij depends on the bond
orientation, which reflects the spin-orbit-entangled nature of the local
moments. (b) The definition of the Brillouin zone for the triangular
lattice.

the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
y
i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
∑

⟨ij⟩
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γij S
+
i S+

j + γ ∗
ij S

−
i S−

j ), (1)

in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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orientation, which reflects the spin-orbit-entangled nature of the local
moments. (b) The definition of the Brillouin zone for the triangular
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the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
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i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
∑

⟨ij⟩
JzzS

z
i S

z
j + J±(S+

i S−
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in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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Motivated by the rapid experimental progress on the spin-orbit-coupled Mott insulators, we propose and study
a generic spin model that describes the interaction between the non-Kramers doublets on a triangular lattice and is
relevant for triangular lattice rare-earth magnets. We predict that the system supports both pure quadrupolar orders
and intertwined multipolar orders in the phase diagram. Besides the multipolar orders, we explore the magnetic
excitations to reveal the dynamic properties of the systems. Due to the peculiar properties of the non-Kramers
doublets and the selective coupling to the magnetic field, we further study the magnetization process of the
system in the magnetic field. We point out the selective measurements of the static and dynamic properties of
the intertwined multipolarness in the neutron scattering, NMR, and µSR probes and predict the experimental
consequences. The relevance to the existing materials such as TmMgGaO4, Pr-based, and Tb-based magnets,
and many ternary chalcogenides is discussed. Our results not only illustrate the rich physics and the promising
direction in the interplay between strong spin-orbit-entangled multipole moments and the geometrical frustration,
but also provide a general idea to use noncommutative observables to reveal the dynamics of the hidden orders.

DOI: 10.1103/PhysRevB.98.045119

I. INTRODUCTION

There has been intensive activity and interest in correlated
matters with strong spin-orbit coupling [1]. Various interesting
quantum phases have been proposed, and the emergence of
these rich phases is impossible in the absence of the strong spin-
orbit coupling. More substantially, the abundance of candidate
materials allows a rapid experimental progress of this field. In
fact, the physical models for many relevant physical systems
have not yet been constructed and thus not been explored
carefully. This requires the knowledge of the microscopic
nature of the relevant degrees of freedom. To establish the
connection with the experimental observables, one needs to
further understand the appearance of the physical properties
for different phases of these newly constructed models. In
this paper, we carry out these thoughts and study the spin-
orbit-coupled Mott insulators with non-Kramers doublets on a
triangular lattice.

Since the discovery and the proposal of the spin liquid
candidate material YbMgGaO4 [2–9], the triangular lattice
rare-earth magnets have received more attention recently
[4,10–24]. Many isostructural rare-earth magnets such as
RCd3P3, RZn3P3, RCd3As3, RZn3As3 [25–27], KBaR(BO3)2
[28] (R is a rare-earth atom), and many ternary chalcogenides
[29,30] are now proposed. In these systems, the rare-earth
atoms form a perfect triangular lattice. The combination of the
spin-orbit coupling of the 4f electrons and the crystal electric
field creates a local ground-state doublet that is described

*gangchen.physics@gmail.com

by an effective spin-1/2 local moment at each rare-earth
site. These rare-earth local moments then interact with each
other and describe the low-temperature magnetic properties
of the system. In most cases, the superexchange interaction is
short-ranged, and nearest-neighbor exchange interaction with
further neighbor dipolar interaction is sufficient due to the
strong spatial localization of the 4f electron wave function.
These materials provide a natural setting to study the inter-
play between strong spin-orbit entanglement and geometrical
frustration in both theory and experiments.

In the list of relevant physical models for the rare-earth
triangular lattice magnets, we have explored the usual Kramers
doublets and the dipole-octupole doublets [31,32] in the
previous works [4,10]. In particular, the anisotropic spin model
[4,7] for the usual Kramers doublets was suggested to be

FIG. 1. The combination of spin-orbit coupling and the D3d

crystal electric field generates a non-Kramers doublet ground state
for the Pr3+ ion. Here SOC refers to spin-orbit coupling, and CEF
refers to crystal electric field. Other ions such as Tm3+ and Tb3+

could potentially support non-Kramers doublets.
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FIG. 2. (a) The triangular lattice with three distinct neighboring
bonds and interactions. The phase parameter γij depends on the bond
orientation, which reflects the spin-orbit-entangled nature of the local
moments. (b) The definition of the Brillouin zone for the triangular
lattice.

the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
y
i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
∑

⟨ij⟩
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γij S
+
i S+

j + γ ∗
ij S

−
i S−

j ), (1)

in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
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i and S
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i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]
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in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.
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In this section, we carry out several complementary ap-
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agram of the spin model defined in Eq. (1). The model is
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We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as
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Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.
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transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
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A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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TABLE II. The list of ordered phases in the phase diagram of Fig. 3.

States Order types Elastic neutron

Fxy pure quadrupolar no Bragg peak
120◦ Néel pure quadrupolar no Bragg peak
Stripey pure quadrupolar no Bragg peak
AFzFxy intertwined multipolar Bragg peak at K
AFzAFxy intertwined multipolar Bragg peak at K
AFzStripey intertwined multipolar Bragg peak at K

(1) Fxy state when J± is large and negative. The ordering
wave vector is at ! point. In this state, the quadrupole
components Sx and Sy align in the same direction in xy
plane. At the mean-field level, this state has an emergent U (1)
degeneracy under the global rotation of an arbitrary angle
about Sz. This is a bit surprising here since the microscopic
model only has a discrete lattice symmetry due to the spin-orbit
coupling. Thus, the emergent continuous degeneracy here
and below is completely accidental, and quantum fluctuation
beyond the mean-field theory should lift this degeneracy. This
is the well-known order by quantum disorder. Moreover, due to
this emergent continuous degeneracy, the excitation spectrum
with respect to the quadrupolar order would have a pseudo-
Goldstone mode that is nearly gapless. In Sec. IV, we carry
out an explicit calculation to discuss this order by quantum
disorder in this regime.
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FIG. 4. Real-space spin configurations of the mean-field ground
states found in Fig. 3. (a) The ferromagnetic quadrupolar order with
spins aligned in xy plane, which we name the Fxy order. There is a
global U (1) degeneracy in the xy plane. (b) The antiferromagnetic
quadrupolar stripe order with spins aligned in y direction, which we
dub Stripey. (c), (d) The AFzFxy and AFzAFxy orders in Fig. 3 for
small J±± and small J±. Both orders have a three-sublattice structure,
consistent with results from Refs. [37–39]. As in (b), the component
in xy plane has a global U (1) degeneracy for reasons explained in
the text. (e) The 120◦-Néel order stabilized by a large positive J±. In
all figures, we draw the coordinate system of the spin space to help
visualization. The coordinate system of the real space always takes
the same convention in Fig. 2.

(2) Stripey order when J±± is large. In this state, the
quadrupolar component Sy is aligned in alternating directions
for alternating rows of spins. The ordering wave vector is at M
point. The spin-wave excitation is in general fully gapped.

(3) 120◦ Néel state with pure quadrupolar orders appears
as the ground-state in the large J± regime. In this state, spins
lie in the xy plane and each spin is arranged 120◦ to its
nearest neighbor, thus the ordering wave vector occurs at the
K point. The state has nonvanishing quadrupolar components
Sx and Sy . We find that this state has degenerate energies under
effective spin rotation of arbitrary angle about Sz, so this state
has emergent U (1) degeneracy. For the same reason as the Fxy
state, there would be a pseudo-Goldstone mode at ! point.

The Néel and Fxy orders can be understood in the XXZ limit,
where a large antiferromagnetic J± induces the Néel order with
the three-sublattice structure, and a large ferromagnetic J±
stabilizes the ferromagnetic order. The somewhat surprising
emergent U (1) symmetry is due to the canceling γij phase
factors of the anisotropic spin coupling term J±±. The above
three phases are purely quadrupolar orders, and are completely
hidden in the magnetization measurements. Since they are
absent of dipolar orders, even the elastic neutron scattering
measurement cannot resolve these states. The dipolar spin
component Sz, however, can create a coherent spin-wave ex-
citation with respect to the quadrupolar ordered phases. Thus,
despite the seemingly absence in the conventional magnetiza-
tion measurements, the quadrupolar orders can nevertheless be
detected via the inelastic neutron scattering experiments. We
will explore this in Sec. IV.

B. Intertwined multipolar orders

Next we focus on the case with dominant Jzz that is
presumably the most frustrated regime and thus supports strong
quantum fluctuations. We here implement a traditional self-
consistent Weiss mean-field theory by replacing the generic
pair-wise spin interactions as

S
µ
i Sν

j →
〈
S

µ
i

〉
Sν

j + S
µ
i

〈
Sν

j

〉
−

〈
S

µ
i

〉〈
Sν

j

〉
, (3)

where ⟨Sµ
i ⟩ is the order parameter of the mean-field state and

should be solved self-consistently. For this purpose, one first
needs to set up a mean-field ansatz for the order parameters.
From the experience of the XXZ model, one should at least
choose a three-sublattice mean-field ansatz. Here, to be a bit
more general, we choose a six-sublattice mean-field ansatz for
some parameter regime. The local stability of the ground state
is examined by the spin wave calculation. If the mean-field
ground state is locally unstable, the spin wave spectra will no
longer be real and positive.

Within this self-consistent mean-field approach, we find
three types of intertwined multipolar long-range orders that
are depicted in Figs. 3 and 4 and listed below,

(1) AFzFxy for negative J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and ferromagnetically ordered quadrupolar Sx,y

components. There is an emergent U (1) degeneracy generated
by the spin rotation about tne Sz direction.
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TABLE II. The list of ordered phases in the phase diagram of Fig. 3.
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AFzFxy intertwined multipolar Bragg peak at K
AFzAFxy intertwined multipolar Bragg peak at K
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(1) Fxy state when J± is large and negative. The ordering
wave vector is at ! point. In this state, the quadrupole
components Sx and Sy align in the same direction in xy
plane. At the mean-field level, this state has an emergent U (1)
degeneracy under the global rotation of an arbitrary angle
about Sz. This is a bit surprising here since the microscopic
model only has a discrete lattice symmetry due to the spin-orbit
coupling. Thus, the emergent continuous degeneracy here
and below is completely accidental, and quantum fluctuation
beyond the mean-field theory should lift this degeneracy. This
is the well-known order by quantum disorder. Moreover, due to
this emergent continuous degeneracy, the excitation spectrum
with respect to the quadrupolar order would have a pseudo-
Goldstone mode that is nearly gapless. In Sec. IV, we carry
out an explicit calculation to discuss this order by quantum
disorder in this regime.
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FIG. 4. Real-space spin configurations of the mean-field ground
states found in Fig. 3. (a) The ferromagnetic quadrupolar order with
spins aligned in xy plane, which we name the Fxy order. There is a
global U (1) degeneracy in the xy plane. (b) The antiferromagnetic
quadrupolar stripe order with spins aligned in y direction, which we
dub Stripey. (c), (d) The AFzFxy and AFzAFxy orders in Fig. 3 for
small J±± and small J±. Both orders have a three-sublattice structure,
consistent with results from Refs. [37–39]. As in (b), the component
in xy plane has a global U (1) degeneracy for reasons explained in
the text. (e) The 120◦-Néel order stabilized by a large positive J±. In
all figures, we draw the coordinate system of the spin space to help
visualization. The coordinate system of the real space always takes
the same convention in Fig. 2.

(2) Stripey order when J±± is large. In this state, the
quadrupolar component Sy is aligned in alternating directions
for alternating rows of spins. The ordering wave vector is at M
point. The spin-wave excitation is in general fully gapped.

(3) 120◦ Néel state with pure quadrupolar orders appears
as the ground-state in the large J± regime. In this state, spins
lie in the xy plane and each spin is arranged 120◦ to its
nearest neighbor, thus the ordering wave vector occurs at the
K point. The state has nonvanishing quadrupolar components
Sx and Sy . We find that this state has degenerate energies under
effective spin rotation of arbitrary angle about Sz, so this state
has emergent U (1) degeneracy. For the same reason as the Fxy
state, there would be a pseudo-Goldstone mode at ! point.

The Néel and Fxy orders can be understood in the XXZ limit,
where a large antiferromagnetic J± induces the Néel order with
the three-sublattice structure, and a large ferromagnetic J±
stabilizes the ferromagnetic order. The somewhat surprising
emergent U (1) symmetry is due to the canceling γij phase
factors of the anisotropic spin coupling term J±±. The above
three phases are purely quadrupolar orders, and are completely
hidden in the magnetization measurements. Since they are
absent of dipolar orders, even the elastic neutron scattering
measurement cannot resolve these states. The dipolar spin
component Sz, however, can create a coherent spin-wave ex-
citation with respect to the quadrupolar ordered phases. Thus,
despite the seemingly absence in the conventional magnetiza-
tion measurements, the quadrupolar orders can nevertheless be
detected via the inelastic neutron scattering experiments. We
will explore this in Sec. IV.

B. Intertwined multipolar orders

Next we focus on the case with dominant Jzz that is
presumably the most frustrated regime and thus supports strong
quantum fluctuations. We here implement a traditional self-
consistent Weiss mean-field theory by replacing the generic
pair-wise spin interactions as
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where ⟨Sµ
i ⟩ is the order parameter of the mean-field state and

should be solved self-consistently. For this purpose, one first
needs to set up a mean-field ansatz for the order parameters.
From the experience of the XXZ model, one should at least
choose a three-sublattice mean-field ansatz. Here, to be a bit
more general, we choose a six-sublattice mean-field ansatz for
some parameter regime. The local stability of the ground state
is examined by the spin wave calculation. If the mean-field
ground state is locally unstable, the spin wave spectra will no
longer be real and positive.

Within this self-consistent mean-field approach, we find
three types of intertwined multipolar long-range orders that
are depicted in Figs. 3 and 4 and listed below,

(1) AFzFxy for negative J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and ferromagnetically ordered quadrupolar Sx,y

components. There is an emergent U (1) degeneracy generated
by the spin rotation about tne Sz direction.
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Here we present our linear spin-wave method that applies
to multisublattice configurations [40–42]. Let us assume that
the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
Primakoff transformation for the spin operator Srs ,

ns · Srs = S − b†
rsbrs , (4)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs , (5)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (6)

After performing Fourier transformation

brs =
√

M

N

∑

k∈BZ

bkse
iRrs ·k, (7)

the spin Hamiltonian can be rewritten in terms of boson
bilinears as

Hsw = E0 + 1
2

∑

k∈BZ

[
!(k)†h(k)!(k) − 1

2
tr h(k)

]
, (8)

where E0 is the mean-field energy,

!(k) = [bk1, . . . ,bkM,b
†
−k1, . . . ,b

†
−kM ]T , (9)

and h(k) is a 2M × 2M Hermitian matrix, and BZ is the
magnetic Brillouin zone. Hsw can be diagonalized via a
standard Bogoliubov transformation !(k) = Tk"(k) where

"(k) = [βk1, . . . ,βkM,β
†
−k1, . . . ,β

†
−kM ]T , (10)

and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]

SU (M,M) = {g ∈ C2M×2M : g†$g = $, det g = 1}, (11)

where $ is the metric tensor and given as

$ =
(

IM×M 0
0 −IM×M

)
. (12)

It is straightforward to prove that such transformation preserves
the boson commutation rules. The diagonalized Hamiltonian
reads

Hsw = E0 + 1
2

∑

k∈BZ

[
"(k)†E(k)"(k) − 1

2
tr h(k)

]

= E0 + Er +
∑

k∈BZ

ωksβ
†
ksβks , (13)

where E(k) = diag[ωk1, . . . ,ωkM,ω−k1, . . . ,ω−kM ] and

Er = 1
4

∑

k∈BZ

tr [E(k) − h(k)] (14)

is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞

−∞
dt eiq·(ri−rj )−iωt

〈
Sz

i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes
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quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,
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∑
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In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes
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(2) AFzAFxy for positive J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of
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FIG. 5. Energy per spin taking into account quantum zero-
point energy vs the azimuth angle θ of spins for (a) the Fxy

state and (b) the 120◦ Néelxy state. Here we take the param-
eter J± = 0.4Jzz, J±± = 0.4Jzz for the Fxy state and parameter
J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
is calculated within the linear spin-wave method.

the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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(2) AFzAFxy for positive J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of

0 3 2 3
0.8256

0.8255

0.8254

0 3 2 3

0.7580

0.7575

0.7570

(b)

(a)

E

θ

θ

E

FIG. 5. Energy per spin taking into account quantum zero-
point energy vs the azimuth angle θ of spins for (a) the Fxy

state and (b) the 120◦ Néelxy state. Here we take the param-
eter J± = 0.4Jzz, J±± = 0.4Jzz for the Fxy state and parameter
J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
is calculated within the linear spin-wave method.

the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of
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J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
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the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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To detect intertwined multipolar orders, one can combine  
both elastic and inelastic neutron scattering measurements.
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Here we present our linear spin-wave method that applies
to multisublattice configurations [40–42]. Let us assume that
the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
Primakoff transformation for the spin operator Srs ,

ns · Srs = S − b†
rsbrs , (4)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs , (5)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (6)

After performing Fourier transformation

brs =
√

M

N

∑

k∈BZ

bkse
iRrs ·k, (7)

the spin Hamiltonian can be rewritten in terms of boson
bilinears as

Hsw = E0 + 1
2

∑

k∈BZ

[
!(k)†h(k)!(k) − 1

2
tr h(k)

]
, (8)

where E0 is the mean-field energy,

!(k) = [bk1, . . . ,bkM,b
†
−k1, . . . ,b

†
−kM ]T , (9)

and h(k) is a 2M × 2M Hermitian matrix, and BZ is the
magnetic Brillouin zone. Hsw can be diagonalized via a
standard Bogoliubov transformation !(k) = Tk"(k) where

"(k) = [βk1, . . . ,βkM,β
†
−k1, . . . ,β

†
−kM ]T , (10)

and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]

SU (M,M) = {g ∈ C2M×2M : g†$g = $, det g = 1}, (11)

where $ is the metric tensor and given as

$ =
(

IM×M 0
0 −IM×M

)
. (12)

It is straightforward to prove that such transformation preserves
the boson commutation rules. The diagonalized Hamiltonian
reads

Hsw = E0 + 1
2

∑

k∈BZ

[
"(k)†E(k)"(k) − 1

2
tr h(k)

]

= E0 + Er +
∑

k∈BZ

ωksβ
†
ksβks , (13)

where E(k) = diag[ωk1, . . . ,ωkM,ω−k1, . . . ,ω−kM ] and

Er = 1
4

∑

k∈BZ

tr [E(k) − h(k)] (14)

is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞

−∞
dt eiq·(ri−rj )−iωt

〈
Sz

i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes

045119-6

as if one is doing polarized neutron scattering measurements.

The idea of non-commutative observables



CHANGLE LIU, YAO-DONG LI, AND GANG CHEN PHYSICAL REVIEW B 98, 045119 (2018)

0

2

4

6

E/
J z

z

K K

Fxy 0 1
[a.u.]

(a)

J±   = -1.00 Jzz 
J±± =  0.50 Jzz

10

E/
J z

z
K K

Stripey

J±   =  0.10 Jzz 
J±± =  1.00 Jzz

(b)

0

4

8

2

6

E/
J z

z

K K

xy
(c)

J±   =  0.60 Jzz 
J±± =  0.10 Jzz

0

2

1

E/
J z

z

K K

AFzFxy

J±   = -0.20 Jzz 
J±± =  0.00 Jzz

(d)

0

2

1

E/
J z

z

K K

AFzAFxy

J±   =  0.40 Jzz 
J±± =  0.00 Jzz

(e)

0

2

1

ΜΓ Γ

E/
J z

z

K Μ K Γ

AFzStripey
(f)

0

0.2

0.6

0.4

0.8

FIG. 6. Dynamic spin structure factors for the phases discussed in Sec. III, obtained from the linear spin-wave theory. The representative
parameters for different subfigures are given. The plots here are intensity plots. We also plot the full spin-wave dispersions in Appendix C.

components of the local moment, the magnetization is influ-
enced by the underlying quadrupolar order. The behavior of
the magnetization should provide information about the hidden
quadrupolar order that is otherwise not directly measurable. To
explore this idea, we first introduce the magnetic field to the
system so that we have

Hh = H − gµBh
∑

i

Sz
i

≡ H − B
∑

i

Sz
i . (26)

From the expression of the above Hamiltonian, one can
immediately read off the Curie-Weiss temperature. Because
the external magnetic field only couples to the Sz component
of the local moment, the Curie-Weiss temperature only reflects
the Jzz interaction, i.e.,

!CW = − 3
2Jzz. (27)

The impact of the underlying quadrupolar order on the
magnetization should be most clear for the pure quadrupolar
ordered phase. Here, we explore the physics on the Stripey
state. The field will polarize the dipolar moments and suppress
the quadrupolar ordering. In Fig. 7, we choose the coupling
constants deep in the antiferroquadrupolar Stripey phase, where
J± = 0.1Jzz and J±± = 1.0Jzz. The mean-field ansatz is cho-
sen to take care of the uniform Sz magnetization,

⟨Si⟩ ≡
[
mx

i ,m
y
i ,m

z
i

]T = [0,eiM·Ri my,mz]T , (28)

where M = (0,2π/
√

3) is the ordering wave vector for the
Stripey state, and my , mz real numbers subject to the constraint
|⟨Si⟩| = S for all sites i.

From the mean-field analysis, we plot the magnetization
at zero and finite temperatures for different strengths of

transverse fields. In addition, the magnetic susceptibility and
the dependence of the ordering temperature on the strength
of the magnetic field are shown together in Fig. 7. We first
discuss the zero field susceptibility χ zz [see Fig. 7(a)]. Because
of the lack of dipolar ordering, there is a constant χ zz below
Tc, and smoothly decays below Tc, obeying the Curie-Weiss
law. In particular, it does not develop a peak across the
finite-temperature transition at Tc, because the quadrupolar
order paramter is “hidden” to the magnetic field. This is to
be contrasted with the case of Kramers doublets, where the
susceptibily shows a critical behavior at Tc.

The magnetic field suppresses the antiferroquadrupolar
order. This is because the magnetization does not commute
with the quadrupolar order parameter Sy . When the field
polarizes the magnetization, the quantum fluctuation of the
quadrupolar orders is enhanced and thereby reducing the
ordering temperature. This physics has also been suggested for
the electronic multipolar orders in intermetallic compounds
TmAu2 and TmAg2, where the lattice strain is introduced
to control the electronic quadrupolar order [35]. Here we
introduce the magnetic field to control the magnetization. In
Figs. 7(b) and 7(c), we explicitly show this result from our
mean-field theory.

Above the critical field Bc, the quadrupolar order is com-
pletely suppressed, and the dipolar moments are polarized
by the field. The Z2 symmetry is generated by the rotation
operation

Û ≡ eiπSz

. (29)

It is spontaneously broken in the antiferroquadrupolar ground
states by ⟨Sy⟩ and is restored in the fully magnetized state.
Around Bc, we expect a quantum critical region and quantum
phase transition due to the breaking of the Z2 symmetry. Al-
though the order parameter Sy cannot be directly measured, the
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the form

Szz(k,ω > 0)

= S

2M

M∑

s=1

[T †
k Uz(Uz)†Tk]s+M,s+Mδ(ω − ωks), (16)

where the 2M-dimensional vector Uz is defined as

Uz =
[
uz

1 + ivz
1,u

z
2 + ivz

2, . . . ,u
z
M + ivz

M,

× uz
1 − ivz

1,u
z
2 − ivz

2, . . . ,u
z
M − ivz

M

]T
. (17)

Here, we have neglected the two-magnon process in the above
expression.

Our results are displayed in Fig. 6. The gapless modes in
the figures are pseudo-Goldstone modes that arise from the
emergent continuous degeneracy at the mean-field level and the
linear spin-wave treatment. High-order quantum fluctuations
would create a minigap for these modes. Despite that, we
expect a T 2 heat capacity behavior for the temperature regime
above the minigap energy scale in the ordered phase.

For our model that describes the spin-1/2 degrees of
freedom, the number of magnon branches should be equal to
the number of sublattices in the corresponding ordered phase.
However, surprisingly, we find that for two-sublattice Stripey
and six-sublattice AFzStripey structures, we can see only see
one and three bands, respectively, which implies that half of
the bands are completely invisible in the Sz-Sz correlator (see
Appendix C for a comparison). The underlying reason is the

selection rule associated with the symmetry generated by

Ŵ = T−a1+a2 ⊗ eiπ
∑

j Sz
j , (18)

where T−a1+a2 denotes the lattice translation by −a1 + a2. The
Hamiltonian stays invariant under Ŵ , [Ŵ ,H ] = 0.

From now on, we introduce the notation s and s̄ to denote
the sublattice pair that is interchanged under the action of Ŵ .
In the labeling of Fig. 4, we find that Ā = B,C̄ = D,Ē = F .

For the elementary excitations, the effect of Ŵ is such that

Stripey : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A,B, (19)

StripeyAFz : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A, . . . ,F, (20)

where φ(k) = −kx + ky .
The eigenmodes of Ŵ take bonding/antibonding form,

αk,s,± = bk,s ± bk,s̄ , (21)

whose eigenvalues are

Ŵαk,s,±Ŵ † = ±eiφ(k)αk,s,±. (22)

Since Ŵ is a symmetry of the Hamiltonian, the energy
eigenmodes are separate linear combinations of αk,s,±,

βk,t,± =
∑

s

ct,sαk,s,± + dt,sα
†
−k,s,±, (23)

and

Ŵβk,t,±Ŵ † = ±eiφ(k)βk,t,±. (24)

The±branches do not mix, since they have distinct eigenvalues
under Ŵ .

On the other hand, we can make a spectral representation
of Eq. (15) as follows:

Szz(q,ω > 0) =
∑

n

⟨0|
M∑

s=1

Sz
s (−q, − ω)|n⟩⟨n|

M∑

s=1

Sz
s (q,ω)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(bq,s + b
†
−q,s)|n⟩⟨n|

M∑

s=1

(b−q,s + b†
q,s)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(αq,s,+ + α
†
−q,s,+)|n⟩⟨n|

M∑

s=1

(α−q,s,+ + α
†
q,s,+)|0⟩. (25)

It is thus obvious that the contribution is nonzero if and only
if |n⟩ is created by the βk,t,+ operators. The βk,t,− states are
not accessible. As a result, the Sz-Sz correlation function only
measures coherent excitations with even parity. The odd parity
excitations, instead, are present in Sx-Sx and Sy-Sy correlation
functions.

The elastic neutron scattering measurement directly probes
the magnetic ground state of the Sz components. The ordering
wave vector of the dipolar moment Sz will be the magnetic
Bragg peak in the static spin structure factor. For states with
pure quadrupolar orders like Fxy, Stripey, and Néelxy, there
is no dipolar ordering and the ground state does not break
time-reversal symmetry, so there are no Bragg peaks in static

spin structure factors. For states with intertwined multipolar
orders such as AFzFxy, AFzAFxy, and AFzStripey, however, the
dipolar components order into a multisublattice pattern. The
unit cell for the dipolar order is effectively enlarged, and hence
one should observe the magnetic Bragg peaks at the K point
in the Brillouin zone.

VI. THE MAGNETIZATION PROCESS

The peculiar property of the quadrupolar order and the
non-Kramers doublets also lies in the magnetization process
of the system under the external magnetic field. Although
the magnetic field does not directly couple to the quadrupole
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Here, we have neglected the two-magnon process in the above
expression.

Our results are displayed in Fig. 6. The gapless modes in
the figures are pseudo-Goldstone modes that arise from the
emergent continuous degeneracy at the mean-field level and the
linear spin-wave treatment. High-order quantum fluctuations
would create a minigap for these modes. Despite that, we
expect a T 2 heat capacity behavior for the temperature regime
above the minigap energy scale in the ordered phase.

For our model that describes the spin-1/2 degrees of
freedom, the number of magnon branches should be equal to
the number of sublattices in the corresponding ordered phase.
However, surprisingly, we find that for two-sublattice Stripey
and six-sublattice AFzStripey structures, we can see only see
one and three bands, respectively, which implies that half of
the bands are completely invisible in the Sz-Sz correlator (see
Appendix C for a comparison). The underlying reason is the

selection rule associated with the symmetry generated by

Ŵ = T−a1+a2 ⊗ eiπ
∑

j Sz
j , (18)

where T−a1+a2 denotes the lattice translation by −a1 + a2. The
Hamiltonian stays invariant under Ŵ , [Ŵ ,H ] = 0.

From now on, we introduce the notation s and s̄ to denote
the sublattice pair that is interchanged under the action of Ŵ .
In the labeling of Fig. 4, we find that Ā = B,C̄ = D,Ē = F .

For the elementary excitations, the effect of Ŵ is such that

Stripey : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A,B, (19)

StripeyAFz : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A, . . . ,F, (20)

where φ(k) = −kx + ky .
The eigenmodes of Ŵ take bonding/antibonding form,

αk,s,± = bk,s ± bk,s̄ , (21)

whose eigenvalues are

Ŵαk,s,±Ŵ † = ±eiφ(k)αk,s,±. (22)

Since Ŵ is a symmetry of the Hamiltonian, the energy
eigenmodes are separate linear combinations of αk,s,±,

βk,t,± =
∑

s

ct,sαk,s,± + dt,sα
†
−k,s,±, (23)

and

Ŵβk,t,±Ŵ † = ±eiφ(k)βk,t,±. (24)

The±branches do not mix, since they have distinct eigenvalues
under Ŵ .

On the other hand, we can make a spectral representation
of Eq. (15) as follows:

Szz(q,ω > 0) =
∑

n

⟨0|
M∑

s=1

Sz
s (−q, − ω)|n⟩⟨n|

M∑

s=1

Sz
s (q,ω)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(bq,s + b
†
−q,s)|n⟩⟨n|
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s=1
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q,s)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(αq,s,+ + α
†
−q,s,+)|n⟩⟨n|

M∑

s=1

(α−q,s,+ + α
†
q,s,+)|0⟩. (25)

It is thus obvious that the contribution is nonzero if and only
if |n⟩ is created by the βk,t,+ operators. The βk,t,− states are
not accessible. As a result, the Sz-Sz correlation function only
measures coherent excitations with even parity. The odd parity
excitations, instead, are present in Sx-Sx and Sy-Sy correlation
functions.

The elastic neutron scattering measurement directly probes
the magnetic ground state of the Sz components. The ordering
wave vector of the dipolar moment Sz will be the magnetic
Bragg peak in the static spin structure factor. For states with
pure quadrupolar orders like Fxy, Stripey, and Néelxy, there
is no dipolar ordering and the ground state does not break
time-reversal symmetry, so there are no Bragg peaks in static

spin structure factors. For states with intertwined multipolar
orders such as AFzFxy, AFzAFxy, and AFzStripey, however, the
dipolar components order into a multisublattice pattern. The
unit cell for the dipolar order is effectively enlarged, and hence
one should observe the magnetic Bragg peaks at the K point
in the Brillouin zone.

VI. THE MAGNETIZATION PROCESS

The peculiar property of the quadrupolar order and the
non-Kramers doublets also lies in the magnetization process
of the system under the external magnetic field. Although
the magnetic field does not directly couple to the quadrupole

045119-7

SELECTIVE MEASUREMENTS OF INTERTWINED … PHYSICAL REVIEW B 98, 045119 (2018)

the form

Szz(k,ω > 0)

= S

2M

M∑

s=1

[T †
k Uz(Uz)†Tk]s+M,s+Mδ(ω − ωks), (16)

where the 2M-dimensional vector Uz is defined as

Uz =
[
uz

1 + ivz
1,u

z
2 + ivz

2, . . . ,u
z
M + ivz

M,

× uz
1 − ivz

1,u
z
2 − ivz

2, . . . ,u
z
M − ivz

M

]T
. (17)

Here, we have neglected the two-magnon process in the above
expression.

Our results are displayed in Fig. 6. The gapless modes in
the figures are pseudo-Goldstone modes that arise from the
emergent continuous degeneracy at the mean-field level and the
linear spin-wave treatment. High-order quantum fluctuations
would create a minigap for these modes. Despite that, we
expect a T 2 heat capacity behavior for the temperature regime
above the minigap energy scale in the ordered phase.

For our model that describes the spin-1/2 degrees of
freedom, the number of magnon branches should be equal to
the number of sublattices in the corresponding ordered phase.
However, surprisingly, we find that for two-sublattice Stripey
and six-sublattice AFzStripey structures, we can see only see
one and three bands, respectively, which implies that half of
the bands are completely invisible in the Sz-Sz correlator (see
Appendix C for a comparison). The underlying reason is the

selection rule associated with the symmetry generated by
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.

approximately thought as non-Kramers doublets
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The presence of well-defined spin wave indicates  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Figure 2. Measured and calculated momentum dependence of the spin excitations in TmMgGaO4 at the indicated energies and

T = 0.05 K. a-f, Contour plots of the constant energy slices in neutron experiments. Clear spin wave stemmed from K points can be seen. The

weak signals near Q = (0,0,0) in a are the elastic contamination from the sample environment close to the direct beam.g-l, Calculated spin

excitations using the model specified in the text. The dashed lines indicate the zone boundaries. The measurements were performed on LET

spectrometer with Ei = 4.8 meV. All the data are presented without background subtractions or symmetrizing.
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Figure 3. Observed and calculated spin wave dispersion in TmMgGaO4 at T = 0.05 K. a, Intensity of the spin-excitation spectra as a

function of momentum and energy transfer along the high-symmetry directions illustrated by the black solid lines in d with Ei = 4.8 meV. The

strong signal around the zero energy transfer comes from the elastic incoherent scattering. b, The spectral intensity calculated by LSW with

Jzz
1 = 0.57 meV, Jzz

2 = 0.026 meV and h = 0.776 meV [15]. The calculated result is convoluted with Gaussian distribution with width of 0.25

meV. c, Energy-momentum (E-k) slice along high-symmetry points illustrated by the grey lines in d with Ei = 1.7 meV. The white dashed

lines stand for the high-symmetry points. d, Sketch of the reciprocal space. Black dashed lines indicate the Brillouin zone boundaries.
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Summary

1.	
  The	
  interplay	
  between	
  geometrical	
  frustration	
  and	
  multipolar	
  local	
  
moments	
  leads	
  to	
  rich	
  phases	
  and	
  excitations.	
  	
  

2.	
  The	
  manifestation	
  of	
  the	
  hidden	
  multipolar	
  orders	
  is	
  rather	
  non-­‐
trivial,	
  both	
  in	
  the	
  static	
  and	
  dynamic	
  measurements.	
  

3.	
  The	
  non-­‐commutative	
  observables/operators	
  can	
  be	
  used	
  to	
  reveal	
  
the	
  dynamics	
  of	
  hidden	
  orders.	
  This	
  is	
  general	
  and	
  can	
  be	
  adapted	
  to	
  
many	
  other	
  hidden	
  order	
  systems.	
  

4.	
  Finally,	
  the	
  non-­‐trivial	
  Berry	
  phase	
  effect	
  has	
  not	
  yet	
  been	
  discussed.	
  	
  
	
  	
  	
  	
  This	
  thought	
  has	
  been	
  hinted	
  in	
  Kivelson’s	
  recent	
  work	
  (PNAS	
  2018).
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