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There is no field theory, no exotic phenomenon,
no fractionalization, no topological order, etc in this tutorial.




Part 1 Topological magnons: the case of Weyl magnon

1. What is Weyl semimetal?
2. Antiferromagnets and spin wave excitations
3. Weyl magnons: uniqueness and extension.

Part 2 Detecting hidden multipolar orders in guantum magnets

1. Hidden orders in condensed matter physics

2. Hidden orders with intertwined multipolar structure
In rare-earth magnets

3. An experimental example




Part 1 Topological magnons: the case of Weyl magnon

1. What is Weyl semimetal?
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Theorists predict the possibility of topological “Fermi arc” surface states in a system with broken
time-reversal symmetry.

Subject Areas: Strongly Correlated Materials



Weyl| semimetal
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Energy 1s measured from the chemical potential, q = k — K




Weyl semimetal proposed in pyrochlore iridates
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Xiangang Wan, Turner, Vishwanath, Savrasov, PhysRevB 2011,
Magnetic Weyl semimetal from the Ir correlation driven all-in all-out order.
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FIG. 4. (Color online) Semimetallic nature of the state at U =
1.5 eV according to the LSDA + U + SO method. (a) Calculated
energy bands in the plane K, = 0 with band parities shown; (b) energy
bands in the plane k, = 0.6 /a, where a Weyl point is predicted to
exist. The lighter-shaded plane is at the Fermi level. (c) Locations
of the Weyl points in the three-dimensional Brillouin zone (Ref. 29)
(nine are shown, indicated by the circled + or — signs).
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (k,,k,) (and arbitrary
k.) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (X,k;) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (¢) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(K) = 25:1 [ {uk|Vilunk), where N is the
number of occupied bands. As usual, the Berry flux is defined
as F = Vi x A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (ko ,ko,) of each
Weyl point.

ERE

FODLAN UIVERSTTE




Weyl semimetal discovered in TaAs

TOPOLOGICAL MATTER

Discovery of a Weyl fermion

PHYSICAL REVIEW X 5, 031013 (2015)

semimetal and topological Fermi arcs

Su-Yang Xu,">* Tlya Belopolski,"* Nasser Alidoust,">>* Madhab Neupane,“>* Experimental Discovery of Weyl Semimetal TaAs

Guang Bian,'! Chenglong Zhang,* Raman Sankar,” Guoqing Chang,®” Zhujun Yuan,*

Chi-Cheng Lee,”” Shin-Ming Huang,*” Hao Zheng,' Jie Ma,® Daniel S. Sanchez,’ B.Q. Lv,' H.M. Weng,"” B.B. Fu,' X. P. Wang,”*' H. Miao,' J. Ma,' P. Richard,"” X. C. Huang,'
BaoKai Wang,%®”° Arun Bansil,’ Fangcheng Chou,” Pavel P. Shibayev,"'° Hsin Lin,%7 L.X. Zhao.! G.F. Chen.'? Z Fang L2 % Dail? T Qian L ond H Dingl’“

Shuang Jia,*™ M. Zahid Hasan"2t

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
*Collaborative Innovation Center of Quantum Matter, Beijing, China

C 2\/\/v> — 3Department of Physics, Tsinghua University, Beijing 100084, China
P \ | (Received 15 July 2015: published 31 July 2015)
N
§ _2> [ —— 2/><3;
== - %
S \/f \ 3 (a) . () @uas—yF N\ ®
" | 1 TRB » -Xo-(: D : s : 0 ) Sarfcr
XN r X / : ‘(vr\—‘:\‘ : . *,‘\\‘
ARPES Weyl semimetal (001) surf. 4 i T [_ = ()
- e : - re Fa Ny | -
1.54 F ] \“‘\tg}___—o#— - 3
\\\\\ ///,«"" X i X I'n ~\r ‘ - i - ) g
S e High ' N~————— %
(b) Fermi_arc €) ~ £
. * Surfxe 2 As A ]
g m Tady =
Py y ~ _:i- o ' Bulk '/ i u» l‘\’, r‘ — N0 g
F G Theory (001) surf. < 00 §2 i, 1 x '}7“ =L J / L
o o 7 ;; L™ | MMP " MMP g ;k,/
0o o oe ) ) 30 ) 30 1.5 . 0.0
-0.5 e - th—'i - Surface E-E, (eV) » ym E-E. eV)
_0 © (©N0) _ _ ]
Y B3 r <=y
oo o0 é
-1.0
® O A A e i
o O] e — "x" T T
e [\ J 0.0 0. 10
X M k. (A1)




Extensions

Type-Il Weyl semimetal

Hybrid Weyl semimetal

Dirac fermion, type-Il Dirac nodes
nodal line semimetal

hourglass fermion

new fermion.......




Part 1 Topological magnons: the case of Weyl magnon

2. Antiferromagnets and spin wave excitations




Ordered AFMs

Neel state

Ground state orders for AFMagnetic Heisenberg model.

Most known magnets are antiferromagnets.
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Propagating spin waves
and
Holstein-Primakoff spin wave
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Spin wave excitations in ordered AFM:
Pyrochlore Yb2Ti207
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Kate A. Ross,! Lucile Savary,2 Bruce D. Gaulin, and Leon Balents™*

PHYSICAL REVIEW X 1, 021002 (2011)




Part 1 Topological magnons: the case of Weyl magnon

3. Weyl magnons: uniqueness and extension




Remark

Weyl band touching is a topological property of the band
structure, and is thus independent from the particle statistics.

It can be fermion, e.qg. electron, can also be boson, e.g. photon.




Z{lF breathing

Breathing Pyrochlore

Breathing Pyrochlore Regular Pyrochlore

K. Kimura, S. Nakatsuji, and T. Kimura, PhysRevB 2014,
Yoshihiko Okamoto, Ggran J. Nilsen, J. Paul Attfield, and Zenji Hiroi, PhysRevLett 2013,
Yu Tanaka, Makoto Yoshida, Masashi Takigawa, Yoshi- hiko Okamoto, and Zenji Hiroi, PhysRevLett 2014.
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Minimal model and ground states

As there is no orbital degeneracy for the 3d> electron con-
figuration of Cr3* ions, the orbital angular momentum
is fully quenched and the Cr3™ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As

H — JZS S+J’ZS .S,

(ij)€u (ij)€ed

(ij)Eu 1€u

(ij)€ed red




Phase diagram

1,11
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|1l have the same order,
but are distinct topologically!




Quantum order by disorder

Sf,fl = Sm; = S(cosfx; +sinb y;),

IL11
Holstein-Primarkoff bosons to express the spin operators
as S; -1y = S —ala,, S;- % = (29)Y2(a, +al)/2, and
S; - (1 x 2) = (25)'/2(a, — al)/(2i). Keeping terms in / /
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une Weyl nodes with magnetic field
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Figure 5 | The evolution of Weyl nodes under the magnetic field. Applying a magnetic field along the global z direction, B=B2Z, Weyl nodes are shifted
but still in k,=0 plane. They are annihilated at I' when magnetic field is strong enough. Red and blue indicate the opposite chirality. (a,f): B=0, 0.1,
0.5J,0.9J, 1.0J, 1.1J. We have set D=0.2J, / =0.6J and 0 ==r/2.

different from Weyl electrons




low to probe in a REAL experiment?

1. Neutron scattering: detect the Weyl nodes as well as the consequence
(the surface arc states that connect the Weyl nodes).

2. Thermal Hall eftect: magnon Weyl nodes contribute the thermal
currents that are tunable by external magnetic field.

3. Optically: as Weyl node must appear at finite energy, one needs to use
puMmp-probe measurement.

COMPARE TO Weyl fermion in the electron system




—xtension

Dirac magnons (Yuan Li, Chen Fang, Jingsheng Wen)
VS
Dirac electron

nodal line magnon (7?)
VS
nodal line semimetal

Magnon topological insulator (Schnyder, Katsura)
VS
electron topological insulator




summary

Band topology of magnon can be another interesting thing
to look at among these magnetically ordered systems.

and Yue Yu, Leon Balents,
YongBaek Kim,
Arun Paramekanti

Fei-Ye L Yaodong LI
(Fudan) (Fudan->UCSB)

Fei-Ye Li, Yao-dong Li, YB Kim, L Balents, Yue Yu, Gang Chen*, Nature Comms. 7, 12691 (2018)
Fei-Ye Li, Yao-dong Li, Yue Yu, A Paramekanti, Gang Chen*, Phys. Rev. B, 95, 085132 (2017)
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Part 2 Detecting hidden multipolar orders in guantum magnets

1. Hidden orders in condensed matter physics



we undertand the order/structure,

we know how thing work, functior
make prediction

I u,;iup{i.an

If you like Lee Child you will love Brad Thor
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Hidden order in condensed matter

\

N

P(éPa)

 Hidden order: “dark matter” in CMT

* URu,SI,
e Second order transition at ~17K, AS~ 0.42 RIn2
* Order parameters unknown after decades




Nature of hidden orders

1. Magnetic multipolar order
Quadrupolar order
Octupolar order

2. Electric multipolar order

3. Orbital order

How to probe these hidden orders?




Part 2 Detecting hidden multipolar orders in guantum magnets

2. Hidden orders with intertwined multipolar structure
In rare-earth magnets




A rare-earth triangular lattice quantum spin liguid: YbMgGaOa4
collaboration with QM Zhang, Jun Zhao, Yuesheng Li, Yaodong Li

YbMgGaO,
a~34A4

e
Qingming Zhang
(Renmin)

e Hastings-Oshikawa-Lieb-Shultz-Mattis theorem.

e Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015).

e This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2.
e |tis the first clear observation of T23 heat capacity. (needs comment.)

¢ |nelastic neutron scattering is consistent with spinon Fermi surface results.

e We think it is a spinon Fermi surface U(1) QSL.

Inelastic neutron scattering performed by Jun Zhao’s group and M Mourigal’s group




YMGO is not alone: lots of isostructural materials

Compound Magneticion  Space group Local moment Ocw (K) Magnetic transition Frustration para. f  Refs.
YbMgGaO,  Yb’t(4f") R3m Kramers doublet —4 PM down to 60 mK f > 66 [4]
CeCd;P; Ce*t4 H P6;/mmc Kramers doublet —60 PM down to 0.48 K f > 200 [5]
CeZn;P; Ce’t4 h P63/ mmc Kramers doublet —6.6 AFM order at 0.8 K f =8.2 [7]
CeZn;As; Ce’T(4fh P65 /mmc Kramers doublet —62 Unknown Unknown [8]
PrZn;As; Prit (4 ) P63 /mmc Non-Kramers doublet —18 Unknown Unknown [8]
NdZn;As; Nd** (4 £3) P65 /mmc Kramers doublet —11 Unknown Unknown [8]
YD Li, XQ Wang, GC*, PRB 94, 035107 (2016)
KBaRE(BO,),

Magnetism in the KBaRE(BOs), (RE=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu) series: materials with a triangular rare earth lattice

M. B. Sanders, F. A. Cevallos, R. J. Cava
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Many ternary chalcogenides NaRES?2 , NaRESe2 , KRES2 , KRESe?2 ,
KRETe2 , RbRES?2 , RbRESe2 , RbRETe2 , CsRES2 , CsRESe2, etc.)

C Liu, YD Li, GC*, PRB 98, 045119 (2018)

)

RE Magnetic Lattice



Model Hamiltonian for all cases

CHANGLE LIU, YAO-DONG LI, AND GANG CHEN PHYSICAL REVII

TABLE I. The relevant spin Hamiltonians for three different doublets on the triangular lattice. The models for th
and the dipole-octupole doublet have been obtained in the previous works.

Local doublets The nearest-neighbor spin Hamiltonians on the triangular lattice

Usual Kramers doublet H=Y ]SS5+ Jo(SHS; 4+ 7S + Jaa(vy STST + v 8 S)—15
(V58 = vii STSS + Si (v ST — viy S

Dipole-octupole doublet H=5 ., J.SS5+ J.SiS7 + J,8 87 + J,.(S5S; + 57 S5)

Non-Kramers doublet H =73 i JoS7 S5+ Jo(S7 ST + S787) + Jex(yiy ST ST+ v58787)




Model for non-Kramers doublets

'y
-
L=0Y
Pri=: 42
as
a;
as

SOC CEF .
_—) = =) :
A
ACEF !
74 CEF;
9-fold non-Kramers
degeneracy doublet

H=) T S8+ Ju(S7S; +S7ShH
(i)

+ Jii(yijSi—i_S;_ +viS S, (1)

in which, y;; 1s a bond-dependent phase factor, and takes 1,

e'*™/3 and e~"?"/3 on the a,,a,, and a3 bond (see Fig. 2),

Time reversal symmetry forbids the coupling
between transverse and Ising components.



Kitaev Interaction

a — g:c lz
S =\/;s,. +\/;si,

2 1 V3
b —  [Z2¢_—qz . ¥Y©Y
Sz-_\/;( 23,L+2S,¢

Y) +

as
y 1 o a
1
—S?Ez’ o
3 as

H=Y" [Jsz- . 8 + K552
(i) €a
+ Y T(SeSY + 8752 + S¢ST + 575%)
B,v#a
+ 3 (K +1)(808] +5787)),
B, v#o

Kitaev material beyond iridates: the advantage of f electrons.

pointed out in Fei-Ye Li, YD Li, ..., GC, arXiv 2016, PRB 2017



Non-Kramers doublets: intertwined multipolar orders

Stripey

-1

J+/Jzz

We first notice that in the model, the spin rotation around the
z direction by 7 /4 transforms ST — i §* and the couplings
in the model transform as

JZZ —> JZZ, J:|: —> J:|:, J:|::|: —> —J:|::|:. (2)

combined consequence of geometrical frustration
and multipolar nature of the local moments




Non-Kramers doublets: intertwined multipolar orders

TABLE II. The list of ordered phases in the phase diagram of Fig. 3.

States Order types Elastic neutron
Fyy pure quadrupolar no Bragg peak
120° Néel pure quadrupolar no Bragg peak
Stripe, pure quadrupolar no Bragg peak
AF,Fyy intertwined multipolar Bragg peak at K
AF,AF,, intertwined multipolar Bragg peak at K
AF,Stripe, intertwined multipolar Bragg peak at K
(a) F (b) Stripe, (c) Néel,,




Quantum order by disorder | Changle Lit

Fudan
s. Assuming spins with sublattice index s has the direction magnetic Brillouin zone. H, can be diagonalized via a
pointing along the unit vector nyg, one can always associate two standard Bogoliubov transformation W(k) = T, ®(k) where
unit vectors uy - ng = 0 and vy, = n; X u, so that ny, u; and v,
are orthogonal with each other. Then we perform Holstein- O(k) = [Byys - - - »Bx M,,Bikl, . ,,Bik M]T, (10)

Primakoff transformation for the spin operator S,
and Tx € SUM,M). Here SU(M,M) refers to indefinite

n, S, =S — le[s b, 4) special unitary group that is defined as [43]
1 SUM,M) = {g € Coyxom : g'Zg = X, detg =1}, (11
(U +iV,) - Sy = (28 = bl bey) s, (5) (M) =18 € Canrcur 28720 = 2. detg = 1. (1D
X where X is the metric tensor and given as
(W — iVy) - Sty = bl,(2S — bl bry)2. (6)
Ivxm 0
After performing Fourier transformation L= 0 —Lysm ) (12)
b — M Z by o Res K 7 It1s straightforward to prove that such transformation preserves
TV N &~ ks ’ the boson commutation rules. The diagonalized Hamiltonian
keBZ reads
the spin Hamiltonian can be rewritten in terms of boson 1 1
bilinears as Hyw=Eo+5 ) [cb(k)* E(k)P (k) — Etrh(k)}
keBZ
H =E-+123qmmmmwmyfﬂmm (8) :
w0y L 2 ’ = Eo+ E 4+ ) osBi Py (13)
keBZ —
keBZ
where E is the mean-field energy, where E(k) = diag[w). . . . .0 .0kl - . 0—1ny] and
W(k) = [bs - Db g bl (9) 1
Kl KMk kM E = 3" w[EK) — h(K)] (14)
and h(K) is a 2M x 2M Hermitian matrix, and BZ is the keBZ




Quantum order by disorder

Fudan
(a) _ (b)
0.7570 _0.8954!
S —0.7575
—0.8255¢
—0.7580
-0.8256
0 n/3 27/3 n 0 /3 ; 2n/3 7T
0

FIG. 5. Energy per spin taking into account quantum zero-
point energy vs the azimuth angle 6 of spins for (a) the F,,
state and (b) the 120° N¢éel,, state. Here we take the param-
eter Jp =0.4J,, Jir =0.4J, for the F,, state and parameter
Jr =09/, Jr+ = 0.2/, for the Néel,, state. The zero-point energy
is calculated within the linear spin-wave method.
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The idea of non-commutative observables

To detect intertwined multipolar orders, one can combine
both elastic and inelastic neutron scattering measurements.

SZZ(q,w > 0)

+00
27TN Z/ dr ezq(r —r;j)— la)t<SZ(O)SZ(t)>

as if one is doing polarized neutron scattering measurements.




Detection of the intertwined multipolar orders: excitations

(a) Fuy (b)
O-I\IHH\ HHI\I_1 [a.u.]
6
N4 3
e i
w L
2.
0.
(d) (e)
2
S <
w L
0 |




Selection rules

selection rule associated with the symmetry generated by
W — T—a1+az ® eiﬂ Zj Sj ’ (18)

where T_, 14, denotes the lattice translation by —a; 4 a,. The
Hamiltonian stays invariant under W, [W,H ] =0.

From now on, we introduce the notation s and 5 to denote
the sublattice pair that is interchanged under the action of W.
In the labeling of Fig. 4, we find that A = B,C = D,E = F.

For the elementary excitations, the effect of W is such that

Stripe, : Why W' = Oy 5,5 = A, B, (19)

Stripe AF. : Whi W' = e ?®b5,s = A, ..., F, (20)

where ¢(K) = —k, +k,.
The eigenmodes of W take bonding/antibonding form,

Ok,s,+ = bk s £ bk 5, (21)
whose eigenvalues are
Wo s o Wi = e ®ey 4. (22)

Since W is a symmetry of the Hamiltonian, the energy
eigenmodes are separate linear combinations of oy g 4,

/8k,t,:|: — Z Ct,sOKk s, + + dt,saik,s,i, (23)
s

and
Wk e Wi = 2By, 1. (24)

The =+ branches do not mix, since they have distinct eigenvalues
under W.

Al N
Yaodong Li Changle Liu
Fudan -> UCSB Fudan

$¥(q.w > 0) =Y (0] Y Si(—q. — w)n)(n] Y _ Si(q.»)|0)

n s=1 s=1

M M
o Y 8 — (€0 — €0))(0] D _(bg.s + by )Iny(nl Y (b_qs + b} IO}
n s=1 s=1

M M
o Y 8 — (€0 — €)) (O] D (gt + 0l gy DIn)(nl Y (a_g s +ad, )I0).

s=1 s=1

It is thus obvious that the contribution is nonzero if and only
if |n) 1s created by the Py , 4 operators. The By, _ states are
not accessible. As a result, the S*-S* correlation function only
measures coherent excitations with even parity. The odd parity
excitations, instead, are present in $*-S* and §”-S§” correlation
functions.




Intertwined multipolar order in TmMgGaO4

Yao Shen Jun Zhao

szlazzg'aen)uu (Fudan) (Fudan)
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approximately thought as non-Kramers doublets

a b c
10
g H=10kOe = |
g 206
DT E ~
> 6f 503r ~ x 171
Ko i 3 & =
£ 4 S § E
S _ T = E
5 s =
A o
x [ )
0 | e ——)
1111111111111 L 1 L 1 L 1 L 1 L 0 PR | . M |
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(H, 2/3-H, 0) (r.l.u.)
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(-K, K, 0) (r.l.u.)

Well-defined spin wave

a b c d e
E =0.5+0.05 meV

E =0.2+0.05 meV E =0.3+£0.05 meV

0.8
0

E =0.1+£0.05 meV

0 0.4 0.8 0 0.4 0.8 0 0.4 0.8 0 0.4 0.8
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h i k
E=0.1 meV E =0.2 meV E =0.3 meV E =0.5meV

0.8
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0.4 0.8 0 0.4
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0.4 0.8 0
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0 0.4 0.8 0
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E =0.9£0.05 meV

0 0.4
(H, H, 0) (r.l.u.)

E =0.9 meV

0.8

0 0.4
(H, H, 0) (r.l.u.)

0.8 0

f
E =1.5£0.05 meV

0 0.4 0.8
(H, H, 0) (r.l.u.)
|
E=1.5meV

0.4

0.8
(H, H, 0) (r.l.u.)

The presence of well-defined spin wave indicates

FUDLAN TNIVERSTTE

the presence of the hidden order !

(‘'n "e) Ausuayu|

('n -e) Ajsuaju)



iIson with theory
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Summary

1. The interplay between geometrical frustration and multipolar local
moments leads to rich phases and excitations.

2. The manifestation of the hidden multipolar orders is rather non-
trivial, both in the static and dynamic measurements.

3. The non-commutative observables/operators can be used to reveal
the dynamics of hidden orders. This is general and can be adapted to
many other hidden order systems.

4. Finally, the non-trivial Berry phase effect has not yet been discussed.
This thought has been hinted in Kivelson's recent work (PNAS 2018).




