
Non-quantized and topological 
thermal Hall effect in spin liquids

Gang Chen

Thermal Hall signatures of non-Kitaev spin liquids in honeycomb Kitaev materials

Yong Hao Gao1, Ciarán Hickey2, Tao Xiang3,4, Simon Trebst2, and Gang Chen5

1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2Institute for Theoretical Physics, University of Cologne, 50937 Cologne, Germany

3Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
4University of Chinese Academy of Sciences, Beijing 100049, China and

5Department of Physics and Center of Theoretical and Computational Physics,
The University of Hong Kong, Pokfulam Road, Hong Kong, China

(Dated: May 28, 2019)

Motivated by the recent surge of field-driven phenomena discussed for Kitaev materials, in particular the
experimental observation of a finite thermal Hall effect and theoretical proposals for the emergence of additional
spin liquid phases beyond the conventional Kitaev spin liquid, we develop a theoretical understanding of the
thermal Hall effect in honeycomb Kitaev materials in magnetic fields. Our focus is on gapless U(1) spin liquids
with a spinon Fermi surface, which have been shown to arise as field-induced phases. We demonstrate that
in the presence of symmetry-allowed, second-neighbor Dzyaloshinskii-Moriya interactions these spin liquids
give rise to a finite, non-quantized, thermal Hall conductance in a magnetic field. The microscopic origin of
this thermal Hall effect can be traced back to an interplay of Dzyaloshinskii-Moriya interaction and Zeeman
coupling, which generates an internal U(1) gauge flux that twists the motion of the emergent spinons. We argue
that such a non-quantized thermal Hall effect is a generic response in Kitaev models for a range of couplings.

I. INTRODUCTION

The first experimental observation of a quantum Hall ef-
fect in two-dimensional electron systems1 has proved to be a
scientific revolution, with its exact quantization of Hall resis-
tance raising measurement standards to unprecedented levels
of precision2. It has also served as a blueprint for the inter-
play between experimental breakthroughs and deep concep-
tual progress on the theory side. For the integer quantum Hall
effect, it has been the seminal introduction of topological in-
variants3 to explain the quantization of conductance. For the
subsequent fractional quantum Hall effect4, it has been the
theoretical concepts of emergence and fractionalization5. The
observation of the quantum spin Hall effect6 has marked the
birth of the topological insulator7. It is therefore that the more
recent observation of a half-integer quantized thermal Hall ef-
fect8,9 has caught the imagination of experimentalists and the-
orists alike.

In one of these experiments8, a thermal Hall effect is ob-
served in crystalline samples of RuCl

3

– a Mott insulator,
in which the electronic degrees of freedom are frozen out10

and the heat transport11 must be facilitated through charge-
neutral modes. With the thermal conductance being quan-
tized at a half-integer value, this points to the striking pos-
sibility of a Majorana fermion edge current forming in these
systems. On the theoretical side, this is rationalized by the
designation of RuCl

3

as a “Kitaev material”12–special types
of spin-orbit assisted Mott insulators13,14, in which local spin-
orbit entangled j = 1/2 moments15–17 form that are subject
to bond-directional exchanges18 familiar from the celebrated
Kitaev model19. The appeal of making such a direct connec-
tion to this elementary spin model comes from the fact that
the latter exhibits a number of quantum spin liquid ground
states20,21. Out of these, the field-induced, gapped topological
spin liquid, often simply referred to as “Kitaev spin liquid”, is
a chiral spin liquid with gapless Majorana edge modes. As
such it appears to be a natural fit to explain the quantized

thermal Hall effect in RuCl
3

, in particular after considering
the subtle interplay of gapless Majorana and phonon modes in
such a chiral spin liquid22,23.

The observation of a finite, but non-quantized thermal Hall
effect is an even more general, though still unusual phe-
nomenon, which has been reported not only for a broad tem-
perature and magnetic field range for RuCl

3

24,25 (in addi-
tion to the quantized regime), but also a number of other
spin liquid candidate materials such as the kagome mag-
nets volborthite26 Cu

3

V
2

O
7

(OH)
2

· 2H
2

O and kapellasite27

CaCu
3

(OH)
6

Cl
2

· 0.6H
2

O, as well as the pyrochlore spin ice
material28 Tb

2

Ti
2

O
7

. This points to an alternative micro-
scopic origin of charge-neutral thermal transport beyond the
one sketched above for the gapped, chiral spin liquid, which
always leads to a quantized Hall effect22,23. Indeed, as some
of us have recently pointed out in the context of kagome spin
liquids29, there is the possibility that even a gapless quantum
spin liquid can exhibit a finite thermal Hall conductivity. The
microscopic mechanism at play involves an interplay between
the emergent, charge-neutral spinon degrees of freedom and
certain types of Dzyaloshinskii-Moriya interactions that lead
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FIG. 1. Schematic illustration of the thermal Hall effect of charge-
neutral spinons arising for a field-induced U(1) spin liquid with a
spinon Fermi surface in honeycomb Kitaev materials in an external
magnetic field.
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Remark: Expts provide a lot of random information. More generic and 
robust phenomenon is non-quantized thermal Hall conductivity for 
RuCl3 in fields. This is also quite unusual. 

We are not quite interested in spin wave / magnons in ordered systems,  
where everything is more or less understood. Orders are relatively  
easy to detect. 

effect on the elementary excitations producing the thermal
Hall signal. A change in magnetic structure below T! has
also been inferred at 6 T from the change in slope of the
magnetization [23] that may be related to the disappearance
of κxyðBÞ above 6 T.
From the linear fit for κxyðBÞ [the straight lines in

Fig. 2(b)], we estimated the slope κxy=B at each temper-
ature and plotted the temperature dependence of κxy=TB
(filled symbols in Fig. 3). Below T!, we estimated κxy=TB
from κxy at 15 T (open symbols in Fig. 3). We note that
κxy=TB data below T! are shown for reference owing to the
nonlinear field dependence of κxy. Clarifying κxy below T!,
which requires the detail of the magnetic order, remains as a
future work as discussed later. We find that κxy=TB for both
Ca kapellasite samples exhibit virtually the same temper-
ature dependence. The magnitudes of κxy for both differ by
a factor of ∼2, which is mostly attributed to the ambiguity
in the estimation of the sample geometry (see the SM [30]

for more details). As seen in Fig. 3, κxy=TB increases as the
temperature is lowered, then peaks at ∼20 K followed by a
rapid decrease to zero below T!. This temperature depend-
ence, in particular the peak in jκxy=TBj, is almost the same
with that of volborthite. Remarkably, the absolute value
of κxy=TB of Ca kapellasite is also similar to that of
volborthite, whereas κxx of Ca kapellasite is about one order
of magnitude smaller than that of volborthite. Because κxx
is dominated by phonons in this temperature range, similar
jκxy=TBj magnitudes in these kagome compounds with
different κxx magnitudes suggests that the thermal Hall
effect does not come from phonons [46]. Given almost the
same magnitude for the effective spin interaction energy
J=kB ∼ 60 K of the two compounds, similar κxy=TB
implies the presence of a common thermal Hall effect
from spin excitations of the kagome antiferromagnets.
To investigate the origin of κxy, we have simulated

κxy adopting the SBMFT [49] for KHA with the
Dzyaloshinskii-Moriya (DM) interaction, which reads

H ¼ 1

2

X

hi;ji
ðJSi · Sj þDijSi × Sj · ẑÞ − gμB

X

i

B · Si; ð1Þ

where Dij is the DM interaction, g the g factor, μB the Bohr
magneton, and the direction of the magnetic field B aligns
with the z axis. The sign of Dij is assumed to be positive if
i → j is in a clockwise direction from the center of each
triangle plaquette in the kagome lattice, and we define
Dij ¼ −Dji ¼ D. SBMFT has been employed to study the
possible spin-liquid ground states and the excitations of
quantum antiferromagnets [2,3,7,8,49–53]. In the SBMFT
framework, spin is expressed by a pair of bosons ðbi↑; bi↓Þ
as Si ¼ 1

2

P
α;β¼↑;↓b

†
iασαβbiβ, where σ is the Pauli matrices.

We decouple the Hamiltonian by taking a mean-field value
of the bond operator χij ¼ hb†iσbjσi and diagonalize it to
find the energy bands. Because of the nature of the DM
interaction, χij is a complex number, and therefore the
energy bands are gapped. Each band now carries a different
Berry flux, and this is directly related to the thermal Hall
conductivity through the relation [38,39]:

κSBMF
xy ¼ −

k2BT
ℏNt

X

k;n;σ

!
c2

"
nB

#
Enkσ

kBT

$%
−
π2

3

&
Ωknσ; ð2Þ

where c2 is a distribution function of the Schwinger
bosons, nB the Bose-Einstein distribution function, Eknσ
the energy eigenvalue, and Ωknσ the Berry curvature (see
the SM [30] for details). Equation (2) can be expressed as
κSBMF
xy =T ¼ ðk2B=ℏÞfSBMFðkBT=J;D=J; gμBB=JÞ, where
fSBMF is a dimensionless function. Given that κxy is an
odd function of both D and B, one has the approximation
κSBMF
xy =T ¼ ðk2B=ℏÞðD=JÞðgμBB=JÞf̃SBMFðkBT=JÞ when
both D and gμBB are smaller than J.

(a) (b)

FIG. 2. The field dependence (a) of the transverse temperature
difference ΔTyðBÞ and (b) of κxyðBÞ. Solid lines in (b) represent
linear fits. The field dependence of κxyðBÞ at other temperatures is
shown in the SM [30].

FIG. 3. The temperature dependence of κxy=TB of Ca kapella-
site (samples No. 1 and No. 2) and that of volborthite [41]. The
filled (open) symbols represent data estimated by the linear fit
of κxy (data at 15 T). The data of volborthite are taken from
Ref. [41]. The error bars correspond to one standard deviation and
are of the same order as the size of the symbol or smaller for data
of Ca kapellasite.
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We study the origin of Lorentz force on the spinons in a U(1) spin liquid. We are inspired by
the previous observation of gauge field correlation in the pairwise spin correlation using the neutron
scattering measurement when the Dzyaloshinskii-Moriya interaction intertwines with the lattice
geometry. We extend this observation to the Lorentz force that exerts on the (neutral) spinons. The
external magnetic field, that polarizes the spins, e↵ectively generates an internal U(1) gauge flux
for the spinons and twists the spinon motion through the Dzyaloshinskii-Moriya interaction. Such a
mechanism for the emergent Lorentz force di↵ers fundamentally from the induction of the internal
U(1) gauge flux in the weak Mott insulating regime from the charge fluctuations. We apply this
understanding to the specific case of spinon metals on the kagome lattice. Our suggestion of emergent
Lorentz force generation and the resulting topological thermal Hall e↵ect may apply broadly to other
non-centrosymmetric spin liquids with Dzyaloshinskii-Moriya interaction. We discuss the relevance
with the thermal Hall transport in kagome materials volborthite and kapellasite.

Quantum spin liquid (QSL) is an exotic quantum state
of matter in which spins are highly entangled quantum
mechanically and remain disordered down to zero tem-
perature [1–3]. Experimental identification of QSLs is of
fundamental importance for our understanding of quan-
tum matter. Thermal transport represents one sensitive
experimental probe to unveil the nature of low-energy
itinerant excitations, because other localized degrees of
freedom, such as nuclear spins and defects, do not carry
nor transport heat. Any heat current in a Mott insulator
must be carried by the emergent and neutral quasipar-
ticles [4, 5]. In the QSL regime, the deconfined spinons
transport heat in the same way that the physical elec-
trons carry charge in an electrical conductor. However,
a major di�culty is that other excitations, most notably
phonons, may get involved in the longitudinal thermal
conductivity [6–14]. The quantitative contribution of
spin excitations may be di�cult to be extracted from the
total longitudinal thermal conductivity due to the spin-
phonon interaction, which is suggested to be present in
many materials, especially in the ones with strong spin-
orbit coupling. Thus, thermal Hall e↵ect may be a more
suitable probe to unveil the exotic excitations in QSLs
since phonons do not usually contribute to thermal Hall
transport.

There are three ways that thermal Hall e↵ect may be-
come signicant in a QSL. First, if the QSL is a two-
dimensional chiral spin liquid, there would be chiral edge
states that contribute a quantized thermal Hall response.
Second, if the external magnetic field comes to mod-
ify the spinon bands such that the reconstructed spinon
band develops edge states, the system would produce
a quantized thermal Hall e↵ect. A well-known exam-
ple is the quantized thermal Hall e↵ect in the Kitaev
model [15] where the external field generates a Chern

band for majorana spinons via high-order perturbations.
This case may be not quite distinct from the first one
except the first one is already a chiral spin liquid with-
out magnetic field. The third case is when the gauge
field of the QSLs is continuous. This includes, for ex-
ample, spinon Fermi surface U(1) QSL [16–21], U(1)
Dirac QSL [22–24], and pyrochlore ice U(1) QSL [25–
28]. For the spinon Fermi surface U(1) QSL that was
proposed for the weak Mott insulating organic materi-
als -(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, it was
suggested [18, 29] that the external magnetic field could
induce an internal U(1) gauge flux through the strong
charge fluctuation or the four-spin ring exchange (due
to the proximity to a Mott transition) [16]. From this
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FIG. 1. (a) Symmetry allowed Dzyaloshinskii-Moriya inter-
actions between first neighbors on the kagome lattice, where
Dz (Dk) is the z (in-plane) component. The black arrows on
the bonds specify the order of the cross product Si⇥Sj . The
sublattices are labelled by colors. (b) Schematic view of scalar
spin chirality for a non-collinear spin configuration, where �
is the corresponding gauge flux through the plaquette and ⌦
is the solid angle subtended by the three spins. (c) Internal
U(1) flux distribution induced on the kagome lattice.
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mechanism, the neutral spinons could experience the ex-
ternal field and contribute to the thermal Hall e↵ect [30],
and a fundamentally di↵erent mechanism is required to
understand the thermal Hall e↵ects in this regime. Ap-
parently, thermal Hall e↵ects have been observed in the
kagome magnets volborthite Cu3V2O7(OH)2 · 2H2O [31]
and kapellasite CaCu3(OH)6Cl2·0.6H2O [32], and the
pyrochlore spin ice Tb2Ti2O7 [33]. In this Letter, we
develop a theory of the topological thermal Hall e↵ect
(TTHE) for U(1) QSLs with spinon Fermi surfaces in
the strong Mott regime. We will explain the emergent
Lorentz force generation and TTHE for the pyrochlore
ice U(1) QSL in a forthcoming paper. In the end of this
Letter, we discuss the open questions in this topic.

In the strong Mott insulating U(1) QSLs, the spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field as the spinons hop on
the lattice. To twist the spinon motion, the external
magnetic field has to influence the internal U(1) gauge
field and then indirectly impacts on the spinon motion.
In the strong Mott regime, the magnetic field couples
to the spin through the usual Zeeman coupling. The
internal U(1) gauge flux is related to the scalar spin chi-
rality, Si · (Sj ⇥ Sk), that involves three spins [34–36].
It is not obvious how the linear Zeeman coupling enters
to modify the three-spin scalar chirality in a disordered
system, although both terms break the time reversal. A
crucial observation was made by Patrick Lee and Naoto
Nagaosa in the proposal [37] of detecting gauge fields
or scalar spin chirality fluctuations using neutron scat-
tering. They noticed that, with Dzyaloshinskii-Moriya
interaction, the Sz-Sz correlator contains a piece of the
correlator of scalar spin chirality. Although their obser-
vation was originally made for neutron scattering, it also
establishes the microscopic link between the Zeeman cou-
pling and the scalar spin chirality. In the following, we
implement this observation to understand the TTHE in
QSLs.

In Mott insulators where the bond centers are not in-
version centers, the Dzyaloshinskii-Moriya interaction is
generally allowed [38, 39]. This is a relativistic e↵ect and
is more important in the strong spin-orbit-coupled sys-
tems such as the hyperkagome material Na4Ir3O8 [40].
A representative spin model in the strong Mott insulator
has the form,

H =
X

i,j

JijSi · Sj +
X

i,j

Dij · Si ⇥ Sj �
X

i

BSz
i , (1)

where the direction of Dij is determined by the lattice
symmetry from the Moriya’s rule [39], and the field is
applied along z direction. For the kagome lattice that
is used below as an example to illustrate our thought,
the Dzyaloshinskii-Moriya vector for nearest neighbors
can have two components [41, 42] with one normal to
the kagome plane and the other in the kagome plane (see
Fig. 1(a)). This Hamiltonian with variant exchange cou-

plings on neighboring bonds has been proposed for sev-
eral kagome materials where spinon Fermi surface QSLs
were suggested for some materials [31, 43]. It has been
estimated that the out-of-plane Dzyaloshinskii-Moriya
term (Dz) is about 8% of the nearest-neighbor Heisen-
berg exchange for herbertsmithite [44]. Our purpose is
not to solve for the ground state of a specific Hamiltonian.
We assume that the system stabilizes a U(1) QSL with
a spinon Fermi surface and explain how the spinons ac-
quire an emergent Lorentz force from the Dzyaloshinskii-
Moriya interaction.
For the spinon Fermi surface U(1) QSL, the spinon-

gauge coupling is described by the following Lagrangian,

L =
X

i

f†
i�(@⌧ � ia0i � µ)fi� �

X

hiji

t eiaijf†
i�fj�

+

Z

dr

X

µ

1

g
(✏µ⌫�@⌫a�)

2, (2)

where the first line describes the spinon hopping on a
kagome lattice and minimally coupled to the dynamical
U(1) gauge field a, and the second line describes the fluc-
tuation of a. The combined e↵ect of the Dzyaloshinskii-
Moriya interaction and Zeeman coupling has not been
included at this stage. The connection between the emer-
gent spinon-gauge variables and the spin variables is es-
tablished from the usual Abrikovsov fermion construction
with Si ⌘ 1

2f
†
i↵�↵�fi� (↵,� =", #) and the Hilbert space

constraint
P

� f
†
i�fi� ⌘ 1. As a standard procedure, the

above spin-gauge coupling can be readily obtained by in-
troducing the gauge fluctuation to the mean-field ansatz
that generates the spinon Fermi surface state [16, 17, 19].
From Elitzur’s theorem, only gauge invariant variables
are related to the physical spins. The scalar spin chiral-
ity is related to the emergent U(1) gauge flux � via (see
Fig. 1(b))

sin� =
1

2
S1 · S2 ⇥ S3, (3)

where the plaquette for the flux is defined by connecting
the three spins.
For this U(1) QSL, we show below that the

Dzyaloshinskii-Moriya interaction and Zeeman coupling
together could generate a gauge flux distribution on the
kagome lattice. The Dzyaloshinskii-Moriya interaction in
the spin Hamiltonian generates a finite vector spin chiral-
ity hSi ⇥Sji. This immediately suggests the linear rela-
tionship between the scalar spin chirality and the vector
spin operator. The Zeeman coupling generates a finite
spin polarization. Thus, we have a finite scalar spin chi-
rality on the lattice. To be specific, for the kagome lattice
in Fig. 1, we have

hS2 ⇥ S3i = hS4 ⇥ S5i = �D23 = �D45, (4)

where � is a proportionality constant with � ⇠ O(J�1),
and J would be the largest exchange coupling. It isThe combination of Zeeman coupling and DMI generates  

an internal U(1) gauge flux distribution.  

This provides a way to control emergent D.O.F. with external probes.

hSi ⇥ Sj · Ski ⇠ hSi ⇥ Sji · hSki 6= 0
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In the theory of quantum spin liquid, gauge fluctuation is an emergent excitation at low energy. The gauge
magnetic field is proportional to the scalar spin chirality S1 · S2 × S3. It is therefore highly desirable to measure the
fluctuation spectrum of the scalar spin chirality. We show that in the Kagome lattice with a Dzyaloshinskii-Moriya
term, the fluctuation in Sz, which is readily measured by neutron scattering, contains a piece which is proportional
to the chirality fluctuation.

DOI: 10.1103/PhysRevB.87.064423 PACS number(s): 75.10.Kt, 75.10.Jm

I. INTRODUCTION

It has long been suspected that the spin-1/2 antiferromag-
netic Heisenberg model on the Kagome lattice may support a
spin-liquid ground state, i.e., a singlet ground state which has
no Neel order due to quantum fluctuations.1,2 Several years ago
the compound ZnCu3(OH)6Cl2 (called herbertsmithite), where
the Cu2+ ions form S = 1/2 local moments on a Kagome
lattice, was synthesized.3,4 Despite an exchange constant J
estimated to be ∼200 K, no magnetic order was detected
down to 30 mK. Recent neutron scattering shows that the
spin excitations are gapless and form a broad continuum.5

Thus herbertsmithite has emerged as a strong candidate for the
spin-liquid state. However, for reasons described below, much
remains unknown about this material and the connection with
theory is tenuous at best. There is thus a strong need for more
experimental probes to help establish the nature of this state
of matter.

Theoretically it has been proposed by Ran et al.6 based on
projected fermionic wave functions that the ground state is a
U(1) spin liquid, with spinons which exhibit a gapless Dirac
spectrum. On the other hand, recent DMRG calculations on
finite-size cylinders show strong evidence that the ground state
is a Z2 spin liquid, with a substantial triplet gap.7 However,
the nearest-neighbor Heisenberg model appears to be a very
delicate point, because a small ferromagnetic next-nearest-
neighbor exchange, J2 ≈ −0.01J , is sufficient to destabilize
the Z2 state.8 Meanwhile, more detailed projected wave-
function calculations show that the Dirac state is surprisingly
stable. Furthermore, the application of a couple of Lanczos
steps produces an energy quite competitive with the energy of
the Z2 state obtained by DMRG.9 Thus while there is general
agreement that this ground state is a spin liquid, the precise
nature of the spin liquid remains somewhat unsettled.

Experimentally it is known that about 15% of the Zn
(S = 0) ions which are located between the Kagome planes
are replaced by S = 1/2 Cu ions. It has been argued that
there is not much Zn substitution for Cu in the Kagome
planes,10 so that the disturbance of the Kagome structure may
be minimal. However, the low-energy excitations measured
by thermodynamic probes such as specific heat and spin

susceptibility may be dominated by the local moments between
planes. Furthermore, due to spin-orbit coupling, we expect
deviation from the Heisenberg model. To first order in the spin-
orbit coupling constant λ, we expect Dzyaloshinskii-Moriya
(DM) terms of the form

HDM =
∑

⟨ij⟩
Dij · Si × Sj , (1)

where the DM vector Dij is located on bond ⟨ij ⟩. Since Dij =
−Dji , the Dij vectors depend on the convention of the bond
orientation.11–14 For a given convention the DM vectors are
shown in Fig. 1. The out-of-plane DM term (Dz) has been
estimated to be about 8% of J . Due to the delicate nature of
the ground state of the Heisenberg model explained above, it
is not at all clear that the nearest-neighbor Heisenberg result
applies to the herbertsmithite.

The defining character of a quantum spin liquid is the
emergence of exotic particles such as spinons which carry
S = 1/2 and the associated gauge fields.15 In the U(1) spin
liquid, the gauge field is gapless, whereas in the Z2 spin liquid
the gauge field is gapped. The gauge field is defined by phase
aij of the spinon hopping matrix element teiaij on link ij . It is
a compact gauge field and the spin liquid corresponds to the
deconfined phase of the gauge field, so that the compactness
may be ignored in the long-wavelength limit and aij may
be replaced by a continuum field a(r). The gauge-invariant
quantities are the gauge field b = ∇ × a, which is in the ẑ
direction, and the gauge electric field e = −∇a0 + da

dt
, which

lies in the plane. The physical meaning of the magnetic flux
has been extensively discussed.16 If " is the flux through a
plaquette, sin " is one-half of the solid angle subtended by the
spins along the plaquette. For a three-site triangle, we have

sin " = 1
2 S1 · (S2 × S3). (2)

The quantity S1 · S2 × S3 is known as the scalar spin chirality.
Thus the fluctuation spectrum of the gauge magnetic field
is proportional to the fluctuation of the spin chirality. It is
highly desirable to measure this correlation function because
it gives information on the gauge fluctuation and can help to
distinguish different spin liquids. However, the measurement
of a correlation of a product of three spin operators is a daunting

064423-11098-0121/2013/87(6)/064423(4) ©2013 American Physical Society
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ready to see the linear relation between Si · Sj ⇥ Sk and
Si ·Djk. Since we apply the magnetic field along z
direction, one then establishes hsin�i ' 1

2�DzhSzi =
1
2�Dz�B, where � is the flux defined on the elemen-
tary triangular plaquette of the kagome lattice and �
is the magnetic susceptibility. For the spinon Fermi
surface QSL, � is a constant. From the signs of the
Dzyaloshinskii-Moriya interaction, we conclude that the
induced internal U(1) fluxes by the external magnetic
field on both the up triangle and the down triangle are
equal and denoted as �. The orientation of the flux loop
is depicted in Fig. 1(c). Moreover, the flux through the
hexagon is determined by fluxes in its six neighboring tri-
angles. One can readily verify it equals �2� if adopting
the anticlockwise loop convention in Fig. 1(c).

We have demonstrated that the external magnetic field
induces an internal U(1) gauge flux through the combina-
tion of Zeeman coupling and Dzyaloshinskii-Moriya inter-
action for a strong Mott insulator QSL. This U(1) gauge
flux generation di↵ers fundamentally from the induction
of the internal U(1) gauge flux from the charge fluctua-
tions in a weak Mott insulator QSL. The spinon motion
will be twisted by the induced internal U(1) gauge flux.
This emergent Lorentz force on the spinons generates a
topological thermal Hall e↵ect (TTHE) of the spinons.
Our notion of “TTHE” is analogous to the “topological
Hall e↵ect” for itinerant magnets with non-collinear spin
configurations such as skyrmion lattices that create a fi-
nite scalar spin chirality and e↵ective U(1) gauge flux for
the conduction electrons [45, 46].

In the standard linear response theory to an exter-
nal magnetic field, the field enters as a perturbation.
For the temperature gradient, however, the Hamiltonian
stays invariant while the distribution function e��H is
modified [47], thus the theoretical treatment requires
some care. This di�culty is overcome by the intro-
duction of a fictitious pseudogravitational potential as
shown by Luttinger [48]. The temperature gradient is
defined by T (r) = T0[1� ⌘(r)] with a constant T0 and a
space-dependent small parameter ⌘(r), that can be re-
garded as a space-dependent prefactor to the Hamilto-
nian, e�H/[kBT (r)] ' e�(1+⌘(r))H/(kBT0). Then, ⌘(r)H is
regarded as a perturbation to the Hamiltonian from the
temperature gradient. We can incorporate the tempera-
ture gradient into the Hamiltonian as a perturbation by
using the psedogravitional potential. Further, we assume
⌘(r) to be linear in the position and expand the response
in terms of r⌘(r) since we are interested in the linear
response. The energy current density can then be de-
rived as follows, jEµ (r) = jE0µ(r) + jE1µ(r), where jE0µ(r)
is independent of r⌘(r) and jE1µ(r) is linear in r⌘(r).
They both contribute to the thermal transport coe�-
cients. Ref. 47 derived the thermal Hall conductivity
for a noninteracting spinless boson Hamiltonian and was
often used in the literature. Since we are dealing with
fermionic spinons, so we adopt the result from Ref. 49
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where a thermal Hall conductivity formula for a general
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tribution and �xy(✏) = �P
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temperature anomalous Hall coe�cient for a sys-
tem with the chemical potential ✏. ⌦nk� is the
Berry curvature for the fermions and is defined as
⌦nk� = �2Imh@unk�/@kx|@unk�/@kyi with eigenstate
|unk�i for band indexed by n and the spin �. Eq. (5)
indicates that the thermal Hall conductivity is directly
related to the Berry curvature in momentum space and a
finite Berry curvature is necessarily required to generate
xy. We show below that the magnetic field induced in-
ternal U(1) gauge flux generates a finite Berry curvature
and use Eq. (5) as our basis to calculate thermal Hall
conductivity for the spinon metal in a U(1) QSL.
To describe the TTHE in the spinon metal, we con-

sider a mean-field Hamiltonian for the spinon metal in
the external magnetic field without including the U(1)
gauge fluctuations of Eq. (2), HMF = �P
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hexagon is determined by fluxes in its six neighboring tri-
angles. One can readily verify it equals �2� if adopting
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the conduction electrons [45, 46].
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For the temperature gradient, however, the Hamiltonian
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⌘(r) to be linear in the position and expand the response
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response. The energy current density can then be de-
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is independent of r⌘(r) and jE1µ(r) is linear in r⌘(r).
They both contribute to the thermal transport coe�-
cients. Ref. 47 derived the thermal Hall conductivity
for a noninteracting spinless boson Hamiltonian and was
often used in the literature. Since we are dealing with
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tem with the chemical potential ✏. ⌦nk� is the
Berry curvature for the fermions and is defined as
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|unk�i for band indexed by n and the spin �. Eq. (5)
indicates that the thermal Hall conductivity is directly
related to the Berry curvature in momentum space and a
finite Berry curvature is necessarily required to generate
xy. We show below that the magnetic field induced in-
ternal U(1) gauge flux generates a finite Berry curvature
and use Eq. (5) as our basis to calculate thermal Hall
conductivity for the spinon metal in a U(1) QSL.
To describe the TTHE in the spinon metal, we con-
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FIG. 3. (a) The dependence on the induced internal flux �
of the thermal Hall conductivity at several temperatures. (b)
The thermal Hall conductivity as a function of temperature.

teraction is not included here. This free-spinon mean-
field Hamiltonian simply describes a QSL with a large
spinon Fermi surface in the weak magnetic field. As we
have explained above, the combination of the microscopic
Dzyaloshinskii-Moriya interaction and Zeeman coupling
induces an internal U(1) gauge flux distribution on the
kagome plane. To capture this flux pattern in Fig. 1, we
modify the spinon mean-field Hamiltonian by adding the
U(1) gauge potential with

HMF[�] = �t
X

hiji

[e�i�/3f†
i�fj� + h.c.]� µ

X

i

f†
i�fi�

�B
X

i,↵�

f†
i↵

�z
↵�

2
fi� , (6)

where we have fixed the gauge by setting the U(1) gauge
field haiji = �/3 for all the nearest-neighbor spinon hop-
ping in the anticlockwise manner. The net flux in each
unit cell is zero (see Fig. 2(a)), so the translation sym-
metry of the spinons is not realized projectively.

Without the internal U(1) gauge flux, the spinon
Hamiltonian HMF is real, and one can always choose the
eigenvector |unk�i to be real unless there is a band degen-
eracy, which immediately gives ⌦nk� = 0. With the in-
ternal U(1) gauge flux, the spinon Hamiltonian in Eq. (6)
is complex and we expect a finite Berry curvature. Indeed
as we plot in Fig. 2 for the specific choices of fluxes, the in-
ternal U(1) gauge flux reconstructs the spinon bands and
creates the Berry curvatures of the spinon bands. The
induced flux eliminates the band touching at � point be-
tween the upper two bands and the Dirac band touching
K point between the lower two bands. The Zeeman cou-
pling further splits the spinon bands with up and down
spins. Berry curvatures are enhanced at K point for the
lower two bands and along the Brillouin zone boundary
for the highest bands.

We calculate the thermal Hall conductivity for our
TTHE based on the spinon mean-field Hamiltonian
Eq. (6) using the formula Eq. (5) by varying the flux and
the temperature. The results are depicted in Fig. 3. The
thermal Hall conductivity xy vanishes at zero flux (i.e.

at zero field) and increases monotonously with a finite
flux � in the zero flux limit. Due to the spinon Fermi sur-
face, xy/T becomes a constant in the zero temperature
limit [50]. The non-monotonic temperature dependence
appears at finite temperatures. At very high tempera-
tures, xy/T should certainly vanish because the spinons
are almost equally populated and the summation of Berry
curvatures of all bands vanishes. At very low tempera-
tures, the spinon chemical potential decreases as T in-
creases. In this limit, xy/T can be approximated as the
summation of Berry curvature of spinon bands with en-
ergies below the chemical potential [51]. As the chemical
potential sits on the middle band, and the Berry cur-
vatures of the lowest and middle bands are of opposite
sign, the Berry curvature cancellation from two lowest
bands becomes less, thus we would expect an increase of
xy/T as T increases. This explains the non-monotonic
temperature dependence.
Discussion—In summary, we have proposed a physical

mechanism of the emergent Lorentz force on spinons and
established the resulting TTHE in QSLs. We applied
this understanding to the specific cases of spinon met-
als in kagome lattice and calculated the TTHE. It o↵ers
a new perspective to understand the origin of thermal
Hall e↵ect of QSLs in strong Mott regime and can be
related to the clear thermal Hall signal observed recently
in kagome materials volborthite and kapellasite [31, 32],
since the main feature of the experimental xy in the
QSL region (such as non-monotonic temperature depen-
dence) are consistent with our theoretical result. The
opposite signs of the thermal Hall conductivities in vol-
borthite and kapellasite could arise from the opposite
signs of the Dzyaloshinskii-Moriya interaction that in-
duces the internal U(1) fluxes with opposite signs. Our
theory can apply broadly to other non-centrosymmetric
QSLs with Dzyaloshinskii-Moriya interaction and QSLs
with bosonic spinons. Our understanding based on the
emergent Lorentz force and/or the induced internal U(1)
gauge flux through Dzyaloshinskii-Moriya interaction dif-
fers from the calculation using the bosonic spinon and
Schwinger boson mean-field theory for gapped QSLs by
Ref. [32] for kagome kapellasite and more recently in
Ref. [52] for the square lattice.
Broadly speaking, thermal transport in Mott in-

sulators is an interesting direction in quantum mag-
netism [30]. In the high temperature paramagnet, the
high temperature series expansion can be applied. In
the intermediate temperature regime where the correla-
tion deleveps but there is no quasiparticle description
yet, the thermal transport of these “no-particles” is an
open subject in the field. The thermal transport on the
pyrochlore ice material Tb2Ti2O7 remains to be under-
stood. In the very low temperature, various quasiparticle
descriptions may emerge. For ordered magnets, magnons
would be the energy carriers. The study of magnon
Berry curvature has proved successful in the thermal Hall
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ready to see the linear relation between Si · Sj ⇥ Sk and
Si ·Djk. Since we apply the magnetic field along z
direction, one then establishes hsin�i ' 1
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1
2�Dz�B, where � is the flux defined on the elemen-
tary triangular plaquette of the kagome lattice and �
is the magnetic susceptibility. For the spinon Fermi
surface QSL, � is a constant. From the signs of the
Dzyaloshinskii-Moriya interaction, we conclude that the
induced internal U(1) fluxes by the external magnetic
field on both the up triangle and the down triangle are
equal and denoted as �. The orientation of the flux loop
is depicted in Fig. 1(c). Moreover, the flux through the
hexagon is determined by fluxes in its six neighboring tri-
angles. One can readily verify it equals �2� if adopting
the anticlockwise loop convention in Fig. 1(c).

We have demonstrated that the external magnetic field
induces an internal U(1) gauge flux through the combina-
tion of Zeeman coupling and Dzyaloshinskii-Moriya inter-
action for a strong Mott insulator QSL. This U(1) gauge
flux generation di↵ers fundamentally from the induction
of the internal U(1) gauge flux from the charge fluctua-
tions in a weak Mott insulator QSL. The spinon motion
will be twisted by the induced internal U(1) gauge flux.
This emergent Lorentz force on the spinons generates a
topological thermal Hall e↵ect (TTHE) of the spinons.
Our notion of “TTHE” is analogous to the “topological
Hall e↵ect” for itinerant magnets with non-collinear spin
configurations such as skyrmion lattices that create a fi-
nite scalar spin chirality and e↵ective U(1) gauge flux for
the conduction electrons [45, 46].

In the standard linear response theory to an exter-
nal magnetic field, the field enters as a perturbation.
For the temperature gradient, however, the Hamiltonian
stays invariant while the distribution function e��H is
modified [47], thus the theoretical treatment requires
some care. This di�culty is overcome by the intro-
duction of a fictitious pseudogravitational potential as
shown by Luttinger [48]. The temperature gradient is
defined by T (r) = T0[1� ⌘(r)] with a constant T0 and a
space-dependent small parameter ⌘(r), that can be re-
garded as a space-dependent prefactor to the Hamilto-
nian, e�H/[kBT (r)] ' e�(1+⌘(r))H/(kBT0). Then, ⌘(r)H is
regarded as a perturbation to the Hamiltonian from the
temperature gradient. We can incorporate the tempera-
ture gradient into the Hamiltonian as a perturbation by
using the psedogravitional potential. Further, we assume
⌘(r) to be linear in the position and expand the response
in terms of r⌘(r) since we are interested in the linear
response. The energy current density can then be de-
rived as follows, jEµ (r) = jE0µ(r) + jE1µ(r), where jE0µ(r)
is independent of r⌘(r) and jE1µ(r) is linear in r⌘(r).
They both contribute to the thermal transport coe�-
cients. Ref. 47 derived the thermal Hall conductivity
for a noninteracting spinless boson Hamiltonian and was
often used in the literature. Since we are dealing with
fermionic spinons, so we adopt the result from Ref. 49
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where a thermal Hall conductivity formula for a general
noninteracting fermionic system with a nonzero chemical
potential µ was obtained as
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tem with the chemical potential ✏. ⌦nk� is the
Berry curvature for the fermions and is defined as
⌦nk� = �2Imh@unk�/@kx|@unk�/@kyi with eigenstate
|unk�i for band indexed by n and the spin �. Eq. (5)
indicates that the thermal Hall conductivity is directly
related to the Berry curvature in momentum space and a
finite Berry curvature is necessarily required to generate
xy. We show below that the magnetic field induced in-
ternal U(1) gauge flux generates a finite Berry curvature
and use Eq. (5) as our basis to calculate thermal Hall
conductivity for the spinon metal in a U(1) QSL.
To describe the TTHE in the spinon metal, we con-

sider a mean-field Hamiltonian for the spinon metal in
the external magnetic field without including the U(1)
gauge fluctuations of Eq. (2), HMF = �P
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effect on the elementary excitations producing the thermal
Hall signal. A change in magnetic structure below T! has
also been inferred at 6 T from the change in slope of the
magnetization [23] that may be related to the disappearance
of κxyðBÞ above 6 T.
From the linear fit for κxyðBÞ [the straight lines in

Fig. 2(b)], we estimated the slope κxy=B at each temper-
ature and plotted the temperature dependence of κxy=TB
(filled symbols in Fig. 3). Below T!, we estimated κxy=TB
from κxy at 15 T (open symbols in Fig. 3). We note that
κxy=TB data below T! are shown for reference owing to the
nonlinear field dependence of κxy. Clarifying κxy below T!,
which requires the detail of the magnetic order, remains as a
future work as discussed later. We find that κxy=TB for both
Ca kapellasite samples exhibit virtually the same temper-
ature dependence. The magnitudes of κxy for both differ by
a factor of ∼2, which is mostly attributed to the ambiguity
in the estimation of the sample geometry (see the SM [30]

for more details). As seen in Fig. 3, κxy=TB increases as the
temperature is lowered, then peaks at ∼20 K followed by a
rapid decrease to zero below T!. This temperature depend-
ence, in particular the peak in jκxy=TBj, is almost the same
with that of volborthite. Remarkably, the absolute value
of κxy=TB of Ca kapellasite is also similar to that of
volborthite, whereas κxx of Ca kapellasite is about one order
of magnitude smaller than that of volborthite. Because κxx
is dominated by phonons in this temperature range, similar
jκxy=TBj magnitudes in these kagome compounds with
different κxx magnitudes suggests that the thermal Hall
effect does not come from phonons [46]. Given almost the
same magnitude for the effective spin interaction energy
J=kB ∼ 60 K of the two compounds, similar κxy=TB
implies the presence of a common thermal Hall effect
from spin excitations of the kagome antiferromagnets.
To investigate the origin of κxy, we have simulated

κxy adopting the SBMFT [49] for KHA with the
Dzyaloshinskii-Moriya (DM) interaction, which reads

H ¼ 1

2

X

hi;ji
ðJSi · Sj þDijSi × Sj · ẑÞ − gμB

X

i

B · Si; ð1Þ

where Dij is the DM interaction, g the g factor, μB the Bohr
magneton, and the direction of the magnetic field B aligns
with the z axis. The sign of Dij is assumed to be positive if
i → j is in a clockwise direction from the center of each
triangle plaquette in the kagome lattice, and we define
Dij ¼ −Dji ¼ D. SBMFT has been employed to study the
possible spin-liquid ground states and the excitations of
quantum antiferromagnets [2,3,7,8,49–53]. In the SBMFT
framework, spin is expressed by a pair of bosons ðbi↑; bi↓Þ
as Si ¼ 1

2

P
α;β¼↑;↓b

†
iασαβbiβ, where σ is the Pauli matrices.

We decouple the Hamiltonian by taking a mean-field value
of the bond operator χij ¼ hb†iσbjσi and diagonalize it to
find the energy bands. Because of the nature of the DM
interaction, χij is a complex number, and therefore the
energy bands are gapped. Each band now carries a different
Berry flux, and this is directly related to the thermal Hall
conductivity through the relation [38,39]:

κSBMF
xy ¼ −

k2BT
ℏNt

X

k;n;σ

!
c2

"
nB

#
Enkσ

kBT

$%
−
π2

3

&
Ωknσ; ð2Þ

where c2 is a distribution function of the Schwinger
bosons, nB the Bose-Einstein distribution function, Eknσ
the energy eigenvalue, and Ωknσ the Berry curvature (see
the SM [30] for details). Equation (2) can be expressed as
κSBMF
xy =T ¼ ðk2B=ℏÞfSBMFðkBT=J;D=J; gμBB=JÞ, where
fSBMF is a dimensionless function. Given that κxy is an
odd function of both D and B, one has the approximation
κSBMF
xy =T ¼ ðk2B=ℏÞðD=JÞðgμBB=JÞf̃SBMFðkBT=JÞ when
both D and gμBB are smaller than J.

(a) (b)

FIG. 2. The field dependence (a) of the transverse temperature
difference ΔTyðBÞ and (b) of κxyðBÞ. Solid lines in (b) represent
linear fits. The field dependence of κxyðBÞ at other temperatures is
shown in the SM [30].

FIG. 3. The temperature dependence of κxy=TB of Ca kapella-
site (samples No. 1 and No. 2) and that of volborthite [41]. The
filled (open) symbols represent data estimated by the linear fit
of κxy (data at 15 T). The data of volborthite are taken from
Ref. [41]. The error bars correspond to one standard deviation and
are of the same order as the size of the symbol or smaller for data
of Ca kapellasite.
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1. Why it is finite? All neutral excitations.  
2. Non-monotonic.  
3. Opposite signs in two materials.
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FIG. 3. (a) The dependence on the induced internal flux �
of the thermal Hall conductivity at several temperatures. (b)
The thermal Hall conductivity as a function of temperature.

teraction is not included here. This free-spinon mean-
field Hamiltonian simply describes a QSL with a large
spinon Fermi surface in the weak magnetic field. As we
have explained above, the combination of the microscopic
Dzyaloshinskii-Moriya interaction and Zeeman coupling
induces an internal U(1) gauge flux distribution on the
kagome plane. To capture this flux pattern in Fig. 1, we
modify the spinon mean-field Hamiltonian by adding the
U(1) gauge potential with

HMF[�] = �t
X

hiji

[e�i�/3f†
i�fj� + h.c.]� µ

X

i

f†
i�fi�

�B
X

i,↵�

f†
i↵

�z
↵�

2
fi� , (6)

where we have fixed the gauge by setting the U(1) gauge
field haiji = �/3 for all the nearest-neighbor spinon hop-
ping in the anticlockwise manner. The net flux in each
unit cell is zero (see Fig. 2(a)), so the translation sym-
metry of the spinons is not realized projectively.

Without the internal U(1) gauge flux, the spinon
Hamiltonian HMF is real, and one can always choose the
eigenvector |unk�i to be real unless there is a band degen-
eracy, which immediately gives ⌦nk� = 0. With the in-
ternal U(1) gauge flux, the spinon Hamiltonian in Eq. (6)
is complex and we expect a finite Berry curvature. Indeed
as we plot in Fig. 2 for the specific choices of fluxes, the in-
ternal U(1) gauge flux reconstructs the spinon bands and
creates the Berry curvatures of the spinon bands. The
induced flux eliminates the band touching at � point be-
tween the upper two bands and the Dirac band touching
K point between the lower two bands. The Zeeman cou-
pling further splits the spinon bands with up and down
spins. Berry curvatures are enhanced at K point for the
lower two bands and along the Brillouin zone boundary
for the highest bands.

We calculate the thermal Hall conductivity for our
TTHE based on the spinon mean-field Hamiltonian
Eq. (6) using the formula Eq. (5) by varying the flux and
the temperature. The results are depicted in Fig. 3. The
thermal Hall conductivity xy vanishes at zero flux (i.e.

at zero field) and increases monotonously with a finite
flux � in the zero flux limit. Due to the spinon Fermi sur-
face, xy/T becomes a constant in the zero temperature
limit [50]. The non-monotonic temperature dependence
appears at finite temperatures. At very high tempera-
tures, xy/T should certainly vanish because the spinons
are almost equally populated and the summation of Berry
curvatures of all bands vanishes. At very low tempera-
tures, the spinon chemical potential decreases as T in-
creases. In this limit, xy/T can be approximated as the
summation of Berry curvature of spinon bands with en-
ergies below the chemical potential [51]. As the chemical
potential sits on the middle band, and the Berry cur-
vatures of the lowest and middle bands are of opposite
sign, the Berry curvature cancellation from two lowest
bands becomes less, thus we would expect an increase of
xy/T as T increases. This explains the non-monotonic
temperature dependence.
Discussion—In summary, we have proposed a physical

mechanism of the emergent Lorentz force on spinons and
established the resulting TTHE in QSLs. We applied
this understanding to the specific cases of spinon met-
als in kagome lattice and calculated the TTHE. It o↵ers
a new perspective to understand the origin of thermal
Hall e↵ect of QSLs in strong Mott regime and can be
related to the clear thermal Hall signal observed recently
in kagome materials volborthite and kapellasite [31, 32],
since the main feature of the experimental xy in the
QSL region (such as non-monotonic temperature depen-
dence) are consistent with our theoretical result. The
opposite signs of the thermal Hall conductivities in vol-
borthite and kapellasite could arise from the opposite
signs of the Dzyaloshinskii-Moriya interaction that in-
duces the internal U(1) fluxes with opposite signs. Our
theory can apply broadly to other non-centrosymmetric
QSLs with Dzyaloshinskii-Moriya interaction and QSLs
with bosonic spinons. Our understanding based on the
emergent Lorentz force and/or the induced internal U(1)
gauge flux through Dzyaloshinskii-Moriya interaction dif-
fers from the calculation using the bosonic spinon and
Schwinger boson mean-field theory for gapped QSLs by
Ref. [32] for kagome kapellasite and more recently in
Ref. [52] for the square lattice.
Broadly speaking, thermal transport in Mott in-

sulators is an interesting direction in quantum mag-
netism [30]. In the high temperature paramagnet, the
high temperature series expansion can be applied. In
the intermediate temperature regime where the correla-
tion deleveps but there is no quasiparticle description
yet, the thermal transport of these “no-particles” is an
open subject in the field. The thermal transport on the
pyrochlore ice material Tb2Ti2O7 remains to be under-
stood. In the very low temperature, various quasiparticle
descriptions may emerge. For ordered magnets, magnons
would be the energy carriers. The study of magnon
Berry curvature has proved successful in the thermal Hall
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Motivated by the recent surge of field-driven phenomena discussed for Kitaev materials, in particular the
experimental observation of a finite thermal Hall effect and theoretical proposals for the emergence of additional
spin liquid phases beyond the conventional Kitaev spin liquid, we develop a theoretical understanding of the
thermal Hall effect in honeycomb Kitaev materials in magnetic fields. Our focus is on gapless U(1) spin liquids
with a spinon Fermi surface, which have been shown to arise as field-induced phases. We demonstrate that
in the presence of symmetry-allowed, second-neighbor Dzyaloshinskii-Moriya interactions these spin liquids
give rise to a finite, non-quantized, thermal Hall conductance in a magnetic field. The microscopic origin of
this thermal Hall effect can be traced back to an interplay of Dzyaloshinskii-Moriya interaction and Zeeman
coupling, which generates an internal U(1) gauge flux that twists the motion of the emergent spinons. We argue
that such a non-quantized thermal Hall effect is a generic response in Kitaev models for a range of couplings.

I. INTRODUCTION

The first experimental observation of a quantum Hall ef-
fect in two-dimensional electron systems1 has proved to be a
scientific revolution, with its exact quantization of Hall resis-
tance raising measurement standards to unprecedented levels
of precision2. It has also served as a blueprint for the inter-
play between experimental breakthroughs and deep concep-
tual progress on the theory side. For the integer quantum Hall
effect, it has been the seminal introduction of topological in-
variants3 to explain the quantization of conductance. For the
subsequent fractional quantum Hall effect4, it has been the
theoretical concepts of emergence and fractionalization5. The
observation of the quantum spin Hall effect6 has marked the
birth of the topological insulator7. It is therefore that the more
recent observation of a half-integer quantized thermal Hall ef-
fect8,9 has caught the imagination of experimentalists and the-
orists alike.

In one of these experiments8, a thermal Hall effect is ob-
served in crystalline samples of RuCl

3

– a Mott insulator,
in which the electronic degrees of freedom are frozen out10

and the heat transport11 must be facilitated through charge-
neutral modes. With the thermal conductance being quan-
tized at a half-integer value, this points to the striking pos-
sibility of a Majorana fermion edge current forming in these
systems. On the theoretical side, this is rationalized by the
designation of RuCl

3

as a “Kitaev material”12–special types
of spin-orbit assisted Mott insulators13,14, in which local spin-
orbit entangled j = 1/2 moments15–17 form that are subject
to bond-directional exchanges18 familiar from the celebrated
Kitaev model19. The appeal of making such a direct connec-
tion to this elementary spin model comes from the fact that
the latter exhibits a number of quantum spin liquid ground
states20,21. Out of these, the field-induced, gapped topological
spin liquid, often simply referred to as “Kitaev spin liquid”, is
a chiral spin liquid with gapless Majorana edge modes. As
such it appears to be a natural fit to explain the quantized

thermal Hall effect in RuCl
3

, in particular after considering
the subtle interplay of gapless Majorana and phonon modes in
such a chiral spin liquid22,23.

The observation of a finite, but non-quantized thermal Hall
effect is an even more general, though still unusual phe-
nomenon, which has been reported not only for a broad tem-
perature and magnetic field range for RuCl

3

24,25 (in addi-
tion to the quantized regime), but also a number of other
spin liquid candidate materials such as the kagome mag-
nets volborthite26 Cu

3

V
2

O
7

(OH)
2

· 2H
2

O and kapellasite27

CaCu
3

(OH)
6

Cl
2

· 0.6H
2

O, as well as the pyrochlore spin ice
material28 Tb

2

Ti
2

O
7

. This points to an alternative micro-
scopic origin of charge-neutral thermal transport beyond the
one sketched above for the gapped, chiral spin liquid, which
always leads to a quantized Hall effect22,23. Indeed, as some
of us have recently pointed out in the context of kagome spin
liquids29, there is the possibility that even a gapless quantum
spin liquid can exhibit a finite thermal Hall conductivity. The
microscopic mechanism at play involves an interplay between
the emergent, charge-neutral spinon degrees of freedom and
certain types of Dzyaloshinskii-Moriya interactions that lead

T + �T
B

J

�T

T

FIG. 1. Schematic illustration of the thermal Hall effect of charge-
neutral spinons arising for a field-induced U(1) spin liquid with a
spinon Fermi surface in honeycomb Kitaev materials in an external
magnetic field.
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FIG. 3. Dzyaloshinskii-Moriya interactions. (a) Symmetry al-
lowed Dzyaloshinskii-Moriya interactions between second neigh-
bors on the honeycomb lattice, where D111 is the [111] component.
The arrows specify the order of the cross product Si ⇥ Sj . The two
sublattices are labeled by colors. (b) Schematic view of the gauge
flux � induced by the external magnetic field in the presence of the
next-nearest neighbor Dzyaloshinskii-Moriya interaction. (c) The
net flux in one unit cell is zero and the space translation symmetry is
well preserved.

With these microscopic considerations in place, we note
again that our purpose in the following is not to solve for the
ground state of a specific Hamiltonian. Instead, we assume
that the system stabilizes in the presence of an external mag-
netic field a non-Kitaev spin liquid as suggested by numerical
studies30–32,41 and clarify how the elementary spinons in these
spin liquids acquire an emergent Lorentz force in the exter-
nal field through the Dzyaloshinskii-Moriya interaction. Due
to the Zeeman coupling, a moderate magnetic field partially
polarizes the spins and generates a finite second neighbor
scalar spin chirality on the lattice through the Dzyaloshinskii-
Moriya interaction. This in turn induces an internal gauge
flux for the spinons, as we will show in the following, and
ultimately give rise to a thermal Hall effect.

III. THERMAL HALL EFFECT FOR SPIN LIQUID WITH
SPINON FERMI SURFACE

As first instance of a non-Kitaev spin liquid we consider
the scenario of a U(1) spin liquid with a spinon Fermi surface.
This is motivated by a recent string of numerical works30–32

that report strong evidence for the emergence of such a U(1)
spin liquid as an intermediate gapless phase in the antiferro-
magnetic Kitaev model before entering the high-field trivial
polarized state.

In more technical terms, the U(1) spin liquid describes
a highly entangled quantum state with gapless fermionic
spinons coupled to a massless U(1) gauge field. On a mean-

K

�

M
b1

b2

(a) (b)

E n
/tx 0

FIG. 4. (a) Representative spinon dispersions for the non-zero
mean field parameters (s3, t

x
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y
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z
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3 , t̃
z

3) = (�0.2,�0.2,�0.02,�0.02)
along the high symmetry line. Here the magnetic field is set as B = 1
and the induced gauge flux � = ⇡/20. (b) The Brillouin zone of hon-
eycomb lattice with reciprocal lattice vectors b1 = 2⇡(0, 2/

p
3) and

b2 = 2⇡(1,�1/
p
3). The arrows indicate the direction of the high

symmetry line in (a).

field level, a Hamiltonian for the neutral spinon Fermi surface
state can be constructed as

H
MF

= H
hop

+ H
B

, (11)

where H
hop

contains only spinon hopping operators on the
honeycomb lattice and

H
B

= �B

2

X

i,↵�

f†
i,↵

(�
x

+ �
y

+ �
z

)
↵�

f
i,�

(12)

represents the Zeeman coupling to an external magnetic field
B along the [111] direction, with f

i,↵

(f†
i,↵

) being the spinon
annihilation (creation) operator at site i. The [111] direction
is normal to the honeycomb plane. By studying the relation
between the relevant projective symmetry groups (PSGs)42,
three kinds of U(1) spin liquids are obtained31 that are con-
nected to the Kitaev Z

2

spin liquid state through a continuous
phase transition without symmetry breaking. Moreover, only
one of them, labeled as U

1

A
k=0

in Ref. 31, was shown to
support robust spinon Fermi surfaces. A representative mean-
field Hamiltonian for such a state, i.e. a U(1) spin liquid with
a neutral spinon Fermi surface on the honeycomb lattice, is
given in Appendix A. We will use this mean-field Hamilto-
nian as our starting point in the following discussion.

A. Field induced internal flux via Dzyaloshinskii-Moriya
interaction

For the U(1) spin liquid with spinon Fermi surface in the
weak Mott regime, by switching on an external magnetic field,
a ring exchange interaction derived from the Hubbard model
can contribute to the thermal Hall conductivity43–45. It was
originally proposed for the well-known triangular lattice or-
ganic spin liquid candidate -(ET)

2

Cu
2

(CN)
3

, due to its prox-
imity to the Mott transition44. However, since we are working
in the strong Mott regime, such a mechanism does not apply
because of the large charge gap. On the other hand, as we have

6

Hamiltonian generates non-trivial spinon Berry curvatures for
each band due to the influence of the induced internal gauge
flux. The numerical results for the thermal Hall conductiv-
ity are presented in Fig. 5(b). For a second neighbor hopping
coefficient t

2

= 0.5t
1

, we obtain a monotonic temperature de-
pendence of 

xy

/(k2

B

T/~). In the zero temperature limit, it
trends to a non-zero and non-quantized value. In the finite
temperature region, the thermal Hall conductivity decreases
monotonically and finally vanishes at high temperatures. The
vanishing thermal Hall conductivity in the high temperature
region originates from the almost equally populated spinon
bands and the corresponding Berry curvature cancellation.

C. Stability of the U(1) spin liquid

Numerical evidence for a U(1) spin liquid in the Kitaev
honeycomb model was recently reported for an intermediate
magnetic field range30–32. Here, we investigate the stability of
this U(1) spin liquid to a finite Dzyaloshinskii-Moriya inter-
action using exact diagonalization techniques. For fields close
to the (111) direction the intermediate U(1) spin liquid occurs
in a field range of h ⇠ 0.35�0.60K (where h is the field mag-
nitude, h = |h|). We focus on this field range and consider
the effects of adding a Dzyaloshinskii-Moriya interaction of
the form given in Eq. (10). The Hamiltonian is thus

H =
X

hiji2�

KS�

i

S�

j

+
X

hhi,jii

D
ij

·Si⇥Sj�
X

i

h
i

·S
i

. (18)

In Fig. 6 we show the resulting phase diagram, with the
U(1) spin liquid region stable up to a maximal Dzyaloshinskii-
Moriya interaction of about |D| ⇠ 0.025K. We should

KSL

AFMU(1) QSL

PL

FIG. 6. Phase diagram for an extended Kitaev model in the
combined presence of a finite Dzyaloshinskii-Moriya interaction, of
strength |D|, and a finite magnetic field, of magnitude h and oriented
close to the [111] direction. The energy unit is in the Kitaev cou-
plinng K of Eq. (18). In the figure, “U(1) QSL” specifically refers to
our spinon Fermi surface U(1) spin liquid, “KSL” refers to the Kitaev
spin liquid, “AFM” refers to the antiferromagnetic ordered state, and
“PL” refers to the polarized state.

note however that additional interactions, relevant for real Ki-
taev materials, could further increase or decrease the stabil-
ity of the U(1) spin liquid against the effects of the finite
Dzyaloshinskii-Moriya term. In any case, the U(1) spin liq-
uid is stable to adding finite, though small, Dzyaloshinskii-
Moriya interactions. This justifies our starting point of U(1)
spin liquid even in the presence of Dzyaloshinskii-Moriya in-
teractions.

IV. THERMAL HALL EFFECT FOR DIRAC SPIN LIQUID

For particular magnetic field directions on the honeycomb
plane, a gapless Dirac spin liquid and a gapped Kalmeyer-
Laughlin-type52 chiral spin liquid were both numerically ob-
tained in Ref. 41 for certain parameter regimes of the so-called
Kitaev-� model – a microscopic model with additional sym-
metric off-diagonal � terms beyond the Kitaev exchange that
has been argued14,34,35 to be particularly relevant to experi-
mental Kitaev materials.

The gapped chiral spin liquid can be characterized by the
net Chern number of the occupied spinon bands. In addition,
note that the ansatz of such a chiral spin liquid readily breaks
both time-reversal symmetry T and reflection P , while their
combination PT is well preserved. Generically, this leads to
a nonvanishing expectation value for the chiral order param-
eter S

i

· (S
j

⇥ S
k

), where i, j, k are three nearby sites. The
chiral spin liquid is effectively described by the Chern-Simons
theory with semion topological order, especially, this state has
chiral edge modes and would show an integer-quantized ther-
mal Hall effect. Thus we are not going to further discuss the
influence of the induced internal gauge flux on this state due
to the Chern-Simons term in the theory for gauge fluctuations.

Here we consider the situation where the system stabilizes
and stays in a gapless Dirac spin liquid state. Such a Dirac
spin liquid is a deconfined state with Dirac band touchings
at the Fermi level and its low-energy effective theory is de-
scribed by the Dirac equation. Usually, a Dirac spin liq-
uid has no thermal Hall effect associated with it. A repre-
sentative spinon dispersion for the Dirac spin liquid realized
in the Kitaev-� model for the honeycomb lattice is depicted
in Fig. 7(a), where we have adopted the spinon mean-field
Hamiltonian constructed in Ref. 41 (see Appendix B for de-
tails). One can see that, at the Fermi level, there is a Dirac

(a) (b)

E n
/t� 1

E n
/t� 1

FIG. 7. (a) Spinon dispersion for the Dirac spin liquid. (b) The
induced flux for the second neighbor hopping terms reconstructs the
spinon bands and the resulting state is a spinon Fermi surface spin
liquid. There is a Fermi pocket around the K point of the Brillouin
zone.



Summary

1. We point out the physical origin of emergent Lorentz force on spinons  
and obtain the resulting topological thermal Hall effects. 

2.     We establish the connection between microscopic interactions and  
    emergent D.O.F. and thus provide a scheme to control the emergent D.O.F.

4.    Thermal transports in Mott insulators are not well understood. 

3.     Our results can be extended to other non-centrosymmetric QSLs with  
        with Dzyaloshinskii-Moriya interaction.
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for the “magnetic monopoles”. The external magnetic

field, that couples linearly with the spins through a sim-
ple Zeeman coupling, polarizes the internal electric field
and thereby modifies the dual U(1) gauge flux that is ex-
perienced by the “magnetic monopoles”. This coupling
between the internal variable and the external field e↵ec-
tively generates an emergent Lorentz forces on the “mag-
netic monopoles” and creates a TTHE in the system. The
dual Hamiltonian for the “magnetic monopoles”, that
captures this e↵ect, is given as

H
dual

=� t
X

rr0

�†
r�r0e

�i2⇡arr0 � µ
X

r

�†
r�r

+
X

rr

0

U

2
(curl a� Ē

rr

0)2 �K
X

rr0

cosBrr0

(1)

where the first line describes the hopping of the “mag-
netic monopoles” on the dual diamond lattice and min-
imally couples to the dual dynamical U(1) gauge field,
and the second line is the Maxwell term of the U(1) gauge
field. The external magnetic field modifies the dual U(1)
gauge flux in the above equation and generates the TTHE
for the “magnetic monopoles”. The detailed description
is explained in Sec. III.

Thermal Hall e↵ect has been measured and detected
in the quantum spin ice materials Tb

2

Ti
2

O
7

4 and
Yb

2

Ti
2

O
7

5. In Tb
2

Ti
2

O
7

, the Tb3+ ion carries a non-
Kramers doublet, although the crystal field gap is rel-
atively small among the rare-earth pyrochlore magnets.
In Yb

2

Ti
2

O
7

, the Yb3+ ion carries a Kramers doublet.
In this paper, we first deliver our theory with the non-
Kramers doublets for the pyrochlore ice U(1) QSL and
then explain the extension to the Kramers doublets. Al-
though we start with the spin ice manifold, our results
do not rely on the proximity of the spin ice configuration.
As long as the pyrochlore U(1) QSL is realized, our re-
sults would be applicable, regardless whether the system
is close or not close to the spin ice manifold.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we construct the dual lattice gauge
theory for the pyrochlore U(1) QSL and introduce the
“magnetic monopole” degrees of freedom into the for-
mulation. In Sec. III, we present the induction of dual
U(1) gauge flux through Zeeman coupling. The ther-
mal Hall current for the “magnetic monopoles” under a
temperature gradient is analyzed in Sec. IV. In Sec. ??,
we calculate the thermal Hall conductivity for a mean-
field monopole Hamiltonian with an induced dual U(1)
gauge flux. Sec. ?? contains a semiclassical theory of the
monopole thermal Hall e↵ect under a general magnetic
field. We compare our results with other QSLs in Sec. V
and give a detailed discussion about the expectation for
di↵erent pyrochlore magnets. The details of derivations
are presented in Appendixes.

Excitations (notation 1) Excitation (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Correspondence between two di↵erent notations
for the elementary excitations in pyrochlore U(1) QSL. “Mag-
netic monopole” is sometimes referred as visons in some litera-
ture. Usually vison refers to the Z

2

flux for the Z
2

topological
order in 2+1D and is also known as “m” particle in Kitaev’s
toric code model.

II. “MAGNETIC MONOPOLES’ FROM DUAL
LATTICE GAUGE THEORY

There are two microscopic and realistic spin models
to realize the pyrochlore U(1) QSL. Due to the spin-
orbit entangled nature of the relevant rare-earth ion, the
spin models are high anisotropic. One generic model
applies to both usual Kramers doublets such as Yb3+

ion in Yb
2

Ti
2

O
7

and Er3+ ion in Er
2

Ti
2

O
7

and non-
Kramers doublet like Pr3+ ion in Pr

2

Zr
2

O
7

and Tb3+

ion in Tb
2

Ti
2

O
7

. The other model, known as the XYZ
model, applies to the dipole-octuple doublets such as
Nd3+ ion in Nd

2

Zr
2

O
7

and Ce3+ ion in the QSL candi-
dates Ce

2

Sn
2

O
7

and Ce
2

Zr
2

O
7

. Both these two models
have a XXZ model limit. Since the XXZ model on a py-
rochlore lattice supports a pyrochlore quantum ice U(1)
QSL, from the stability of this phase it is expected that,
this pyrochlore quantum ice U(1) QSL would generically
occur for these general spin models. Although theoretical
approaches have been started from the Ising regime and
applying degenerate perturbation theory, the stability of
the pyrochlore U(1) QSL goes beyond the perturbative
Ising regime. Therefore, we adopt the notion of “py-
rochlore U(1) QSL”. For the convenience of the presenta-
tion, in this section, we first start from the ring exchange
model that is obtained from the realistic spin model by
the degenerate perturbation theory for the Ising limit. It
will be a general discussion, and we do not need to spec-
ify whether the local moment is a Kramers doublet or
non-Kramers doublet. We will carry out a duality trans-
formation to make the “magnetic monopoples” explicit.
The pyrochlore U(1) QSL for the e↵ective spin-1/2 mo-

ments can be accessed by a ring exchange model

H
ring

=� K

2

X

7
p

(⌧+
1

⌧�
2

⌧+
3

⌧�
4

⌧+
5

⌧�
6

+H.c.) (2)

where K is a renormalized energy scale for the low-
energy e↵ective theory. Here the spin operators are
⌧±
i

= ⌧x
i

± i⌧y
i

. The z-direction is defined locally along
h111i-direction of each site (see Appendix D for de-
tails). An elementary hexagon 7

p

is formed by six sites
i = 1, ..., 6 on the pyrochlore lattice, and the subindex “p”
refers to the pyrochlore lattic.e One can transform the
ring exchange model into a compact U(1) lattice gauge

3

FIG. 2. (Color online.) Diamond lattice (in gray line) and the
dual diamond lattice (in red line). The physical spin is located
in the middle of the link on the diamond lattice. The diamond
lattice is formed by the tetrahedral centers of the original
pyrochlore lattice. The spinons (“magnetic monopoles”) hop
on the diamond (dual diamond) lattice. The colored balls
correspond to the position of “magnetic monopoles”.

theory (LGT)6,7,

H
LGT

=�K
X

7
d

cos
⇥

curlA
⇤

+
U

2

X

rr

0

�

E
rr

0 � ✏
r

2

�

2

(3)

by introducing a pair of conjugated lattice gauge field,
i.e. electric field E

rr

0 = ⌧z
i

+ 1/2 and vector gauge field
e±iA

rr

0 = ⌧±
i

. These gauge fields are defined on a nearest-
neighbor diamond links rr0. The pyrochlore site i lives at
the middle point of the link rr0. Two distinct sub-lattices
r(2 I), r0(2 II) reside at the center of two corner shar-
ing tetrahedra of the pyrochlore lattice. E

rr

0 (integer-
valued) and A

rr

0 (2⇡-periodic) form a pair of conju-
gated fields satisfying [E

rr

0 , A
r1r

0
1
] = i�

rr1,r
0
r

0
1
. The lat-

tice curl consists of summation over a diamond hexagon
curlA =

P

rr

027
d

A
rr

0 . Here 7
d

refers to the elemen-
tary hexagon on the diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. Addition-
ally, an electric field sti↵ness U term is added where
✏
r

= +1(�1), r 2 I(II). In the large U limit, the Hilbert
space of the LGT is properly casted back to the micro-
scopic spin-1/2 local moment. In the low energy and long
distance limit, the actual U is renormalized compared to
the original lattice level.

“Magnetic monopole” is the topological defect of emer-
gent U(1) gauge potential and is the source and sink of
the emergent “magnetic” fields. Unlike the spinons that
reside on the tetrahedral centers of the pyrochlore lattice
(or the diamond lattice sites), the “magnetic monopoles”
hop on the dual diamond lattice. In the above elec-
tric field and gauge field representation, the “magnetic
monopole” variable is not explicit. An electromagnetic
duality transformation is performed on the LGT to ex-
pose this variable6,8. Although this is covered in the lit-
erature extensively, some steps of the derivation are not

mathematically rigorous. We carry out this calculation
in the Appendix A, B with a special care for the dia-
mond lattice structure. The result has been presented in
Eq. (1), where r, r0 represent dual diamond lattice sites as
plotted in Fig. 2. The dual theory describes the “mag-
netic monopole” �r hops on the dual diamond lattice
and minimally couples to a dual U(1) gauge field. The
dual gauge field arr0 (real-valued) and magnetic field Brr0

(2⇡-periodic) are defined on the link rr0 of dual diamond
lattice,

curl a ⌘
X

rr027⇤
d

arr0 = E
rr

0 � E0

rr

0 ,

Brr0 = curlA ⌘
X

rr

027
d

A
rr

0 ,
(4)

where the dual hexagon is labelled by 7⇤
d

. The com-
mutation relation is satisfied [Brr0 , ar1r01 ] = i�rr1,r0r01 . An
electric field distribution is defined as the combination of
a background electric field and o↵set,

Ē
rr

0 =E0

rr

0 � ✏
r

2
. (5)

The background electric field is fixed at one particular
2-in-2-out spin-ice configuration, e.g.

E0

r,r+✏

r

e0
=E0

r,r+✏

r

e1
= ✏

r

,

E0

r,r+✏

r

e2
=E0

r,r+✏

r

e3
= 0.

(6)

III. INDUCTION OF DUAL U(1) GAUGE FLUX
BY ZEEMAN COUPLING

The pyrochlore U(1) QSL is in the deconfined phase of
the 3+1D LGT. It supports both deconfined spinons and
deconfined “magnetic monopoles”, as well as the gapless
U(1) gauge photon. In the inelastic neutron scattering
experiments, these would correspond to the continuous
excitations in the spectrum. The content of the contin-
uum is actually connected with the nature of the local
moments. This was elucidated in Refs. 8? . Moreover,
the spectral structure of the continuum is tied to the sym-
metry fractionalization of the spinons and “monopoles”.
While these results are quite useful, they are all conse-
quences of the deconfinement and fractionalization, not
the direct evidence of the matter-gauge coupling. To mo-
tivate this question, one can think about the case for elec-
trons. The Coulomb interaction between the electrons is
the consequence of the facts that the electron carries the
U(1) gauge charge and the photon mediates the inter-
action through the electron-photon coupling. The elec-
tromagnetic coupling of the electrons can be revealed for
example through the quantum oscillation of a metal in
external magnetic fields. This is Landau level physics
due to the orbital e↵ect of magnetic fields. For our case,
the “magnetic monopole” is coupled to the internal dual
U(1) gauge field, and the “magnetic monopole” is bosonic
and gapped. So there does not exist the usual quantum

4

oscillation. Moreover, the internal U(1) gauge flux is not
obviously tunable. Our key observation is that the exter-
nal field could generate an internal dual U(1) gauge flux
for the “magnetic monopoles”. This is already pointed
in Sec. 1. In the following, we explain this point with
non-Kramers doublets.

For non-Kramers doublets, only the local z component
of the e↵ective spin is odd under time reversal symmetry.
The coupling to the external field is quite simple and is
given as

H
Zeeman

=� gµ
B

H
0

X

i

(n̂ · ẑ
i

)⌧z
i

'� gµ
B

H
0

X

i

(n̂ · ẑ
i

)(curl a
rr

0 � Ē
rr

0),
(7)

where the first line is written with the microscopic spin
language while the second line is expressed in terms of the
emergent variables for the pyrochlore U(1) QSL phase.
Here the bond (rr0) on the diamond lattice is identical to
the pyrochlore lattice site i, and n̂ defines the direction of
the magnetic field. If the external field is weak such that
the U(1) QSL is preserved, this coupling will generate an
internal dual U(1) gauge flux. The observation is that,
the external field modifies the internal dual U(1) gauge
flux and thereby generates an emergent Lorentz force on
the “magnetic monopoles”. The motion of the “magnetic
monopoles” will be twisted by the induced dual gauge
flux, giving rise to the TTHE of “magnetic monopoles”.
This would be a direct manifestion and unbaised signa-
ture of the emergent “monopole”-gauge coupling. This is
somewhat analogous to the Lorentz force for the electron
motion on the lattice, except that the Lorentz force here
is emergent and arises from the induction of the internal
dual gauge flux via the Zeeman coupling. Moreover, the
Zeeman coupling depends sensitively on the local crys-
tal field axis, and thus the induced flux depends on the
lattice geometry and the field orientation, i.e. hcurl ai is
related to the induced local magnetization h⌧zi. With-
out the field, the dual U(1) gauge flux is ⇡ for the ele-
mentary hexagon on the dual diamond lattice. The field
breaks the time reversal symmetry and shifts the dual
U(1) gauge flux from ⇡ with

2⇡hcurl a0
rr

0i = ⇡ + 2⇡�z

rr

0 mod(2⇡). (8)

Here a0
rr

0 represents a gauge choice for the back-
ground gauge flux. The mean-field Hamiltonian for the
“monopoles” is then given as

H
MF

=� t
X

rr0

e�i2⇡a

0
rr0�†

r0�r � µ
X

r

�†
r�r, (9)

where the gauge fluctuation has been ignored.

IV. TOPOLOGICAL THERMAL HALL EFFECT

In previous sections, we have explained our ideas
and the physical origin of the TTHE for the “magnetic

monopoles”. Here we further establish the theoretical
framework to compute the TTHE and make specific pre-
dictions for the experiments.

A. General framework

To get information out of the twisted motion of the
“magnetic monopoles”, we perturb the system with a
temperature gradient within the horizontal plane. In the
standard linear response theory, the small external per-
turbation appears in the Hamiltonian. Nevertheless, the
e↵ect of the temperature gradient T (r) ' T

0

[1 �  (r)]
takes place in the Boltzmann factor, i.e.

e�H/kBT (r) ' e�[1+ (r)]H/kBT0 . (10)

Theoretical framework tackling with this problem was
first proposed by Luttinger11. By coupling the Hamil-
tonian with a pseudo-gravitational potential  (r), they
are able to incorporate the temperature gradient into a
perturbed Hamiltonian H̄(r) = [1 +  (r)]H.
We start from the mean-field Hamiltonian in Eq. (9),

and treat the dual diamond lattice structure carefully.
The pseudo-gravitational potential  r couples with an
energy density operator Hr on the dual lattice sites from
the I sublattice,

H̄ =
r2type�I

X

r

(1 +  r)Hr, (11)

where the energy density operator is at a dual site r is
defined as

Hr =
X

r02r

n

� t

2
e�i2⇡arr0�†

r0�r � µ
X

r

�†
r�r

o

(12)

where the summation is over four nearest neighbor dual
sites r0 2 r, which are labelled in Fig. 2. The energy den-
sity is not modified following the above convention. Since
four nearest neighbors necessarily belong to the type-II
sites. We work through the lattice version of continuity
equation for the energy density operator,

Ḣr +
X

r02r

J E

rr0 = 0 (13)

thus, obtained the modified energy current operator12,13,
J E

rr0 = (1+ r0)J 0,E

rr0 . J 0,E

rr0 representing the origin energy
current takes a form,

J 0,E

rr0 =t2
X

r12r0

i�†
r�r1e

i2⇡(arr0+ar0r1 ) +H.c. (14)

We rewrite the energy current in terms of the position of
a “magnetic unit-cell” ri

JE

1

(i) =
⇥

JE

0

(i)ri
⇤ ·r (15)
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“Magnetic monopole” is an exotic quantum excitation in pyrochlore U(1) spin liquid, and its
emergence is purely of quantum origin and has no classical analogue. We predict topological thermal
Hall e↵ect (TTHE) of “magnetic monopoles” and deliver this prediction for non-Kramers doublets.
We observe that, when the external magnetic field polarizes the Ising component of the local moment,
internally this corresponds to the induction of emergent dual U(1) gauge flux that is experienced by
magnetic monopoles. The motion of magnetic monopoles is twisted by the induced dual gauge flux.
This emergent (dual) Lorentz force on “magnetic monopoles” is the fundamental origin of TTHE.
Therefore TTHE would be a direct evidence of the monopole-gauge coupling and the emergent U(1)
gauge structure in pyrochlore U(1) spin liquid. Our result does not depend strongly on the choice
of non-Kramers doublets, and can be well extended to Kramers doublets. Our prediction can be
readily tested among the pyrochlore spin liquid candidate materials. We give a detailed discussion
about the expectation for di↵erent pyrochlore magnets.

I. INTRODUCTION

Emergent gauge structure and theory comprise an im-
portant subject in modern condensed matter physics,
particularly for strongly correlated quantum matter. It
is this theory that underlies the unified gauge theory de-
scription of fractional quantum Hall e↵ect and quantum
spin liquids (QSLs). While the understanding of frac-
tional quantum Hall e↵ect does not initially rely on the
introduction of the Chern-Simons gauge theory, the mod-
ern understanding of QSLs has been greatly advanced by
various lattice gauge theories. To confirm QSLs in a re-
alistic quantum material, one has to establish the pres-
ence of the emergent gauge structure and the associated
fractionalized quantum particles. This requires a mutual
feedback between theories and experiments. More pre-
cisely, one needs to understand how the emergent gauge
structure manifests itself in the actual experiments. In a
more progressive manner, it would be beneficial to pro-
vide some level of controllability or prediction of these
emergent phenomena from the understanding of the rela-
tionship between the microscopic physics and the emer-
gent gauge structure. In this e↵ort, we have proposed
ways to control the spinon band structure and then the
spinon continuum in the inelastic neutron scattering mea-
surement for several QSL candidates such as Ce

2

Sn
2

O
7

,
Ce

2

Zr
2

O
7

and YbMgGaO
4

1,2, have suggested the ori-
gin of the emergent Lorentz force from Dzyaloshinskii-
Moriya interaction for the spinons as the source of topo-
logical thermal Hall conductivity in the strong Mott in-
sulating QSLs3. Here, we turn our attention to the py-
rochlore U(1) QSL.

The pyrochlore U(1) QSL is described by the emer-
gent compact U(1) lattice gauge theory, and supports
the gapless gauge photon, gapped spinon and “mag-

netic monopole” as its elementary excitations. Many
pyrochlore materials, mainly the rare-earth pyrochlores,
have been proposed as candidates to realize this U(1)
QSL. Although many interesting experimental signatures
have been suggested, the firm establishment of pyrochlore
U(1) QSL has not yet been settled down for any ma-
terial. In this paper, we develop a theory to predict
the phenomenon of the topological thermal Hall e↵ect
(TTHE) in the pyrochlore U(1) QSL and propose it as
a positive evidence of the emergent U(1) gauge struc-
ture. Our observation stems from the physical mean-
ing of the spin variables in the U(1) QSL. It is observed
that, the Ising component of the spin works as an emer-
gent electric field in the U(1) lattice gauge theory. From
the view of the dual gauge theory, this emergent and in-
ternal electric field behaves as a dual U(1) gauge flux

FIG. 1. (Color online.) Schematic picture of the thermal Hall
e↵ect of “magnetic monopoles” on the dual diamond lattice
of the pyrochlore U(1) QSL, where the heat current is carried
by “magnetic monopoles”.

Experiments by P Ong’s group.



Three cases of thermal Hall effects

1. Chiral spin liquids: quantized w/o field 

2. Magnetic field changes the spinon band topology  

and creates chiral edge states: e.g. Kitaev spin liquid,  

(not much different from case 1), apply to QSL w/ gapped gauge.  

3. External field comes to modify the internal continuous gauge field and  

thereby indirectly twists the motion of matter fields, and generate  

thermal Hall effects.


