Octupolar quantum spin ice:

Controlling spinons in a U(1) quantum spin liquid

Gang Chen (陈 钢) Fudan University

Opportunity for students and postdocs

- My group is looking for graduate students and postdocs
- Our postdocs and visiting professors are generously funded.

Postdoc: ~230K RMB/year + other benefits

Visiting Prof: ~500 RMB/day + hotel + travel



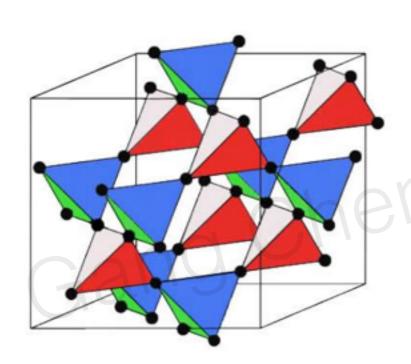

Outline

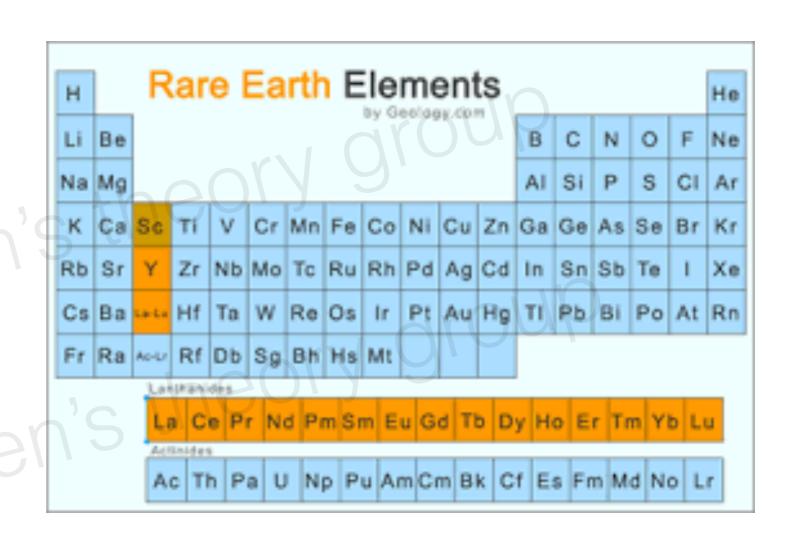
- Symmetry enriched U(1) topological order:
 dipolar and octupolar U(1) quantum spin liquids
- Control spinons in a U(1) quantum spin liquid

Yao-Dong Li (Fudan)

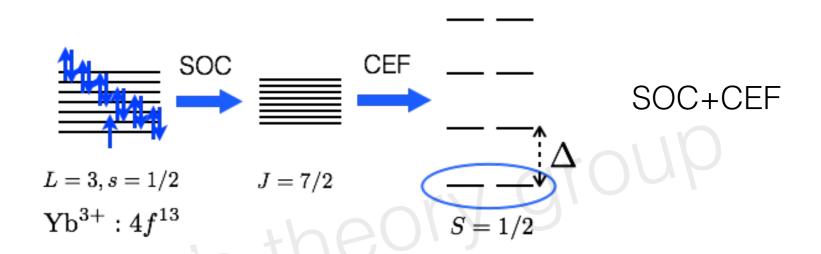
 Quantum order by disorder, Weyl magnon, Kitaev-Heisenberg model in rare-earth double perovskites

Fei-Ye Li (ITP-CAS/Fudan)

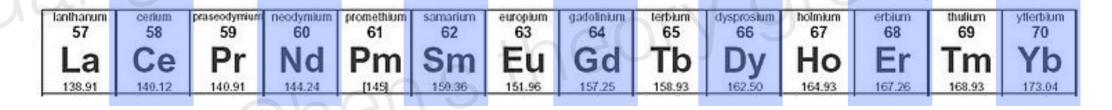

Yao-Dong Li (Fudan)


 Octupolar U(1) quantum spin liquid of quantum spin ice

Rare-earth pyrochlores



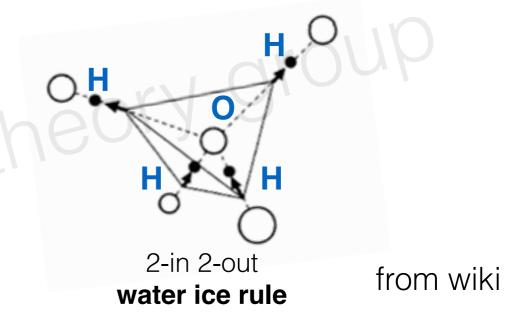
RE₂M₂O₇



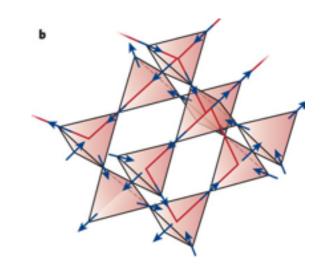
Rare-earth local moments: a crude classification

Kramers' doublet: R3+ with **odd** number of electrons


Non-Kramers' doublet / singlet: R3+ with **even** number of electrons


lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytlerbium 70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04

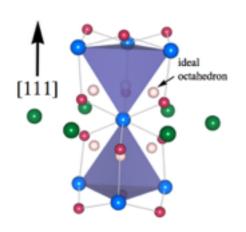
Spin ice (Ising) limit


$$H = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z + \dots$$

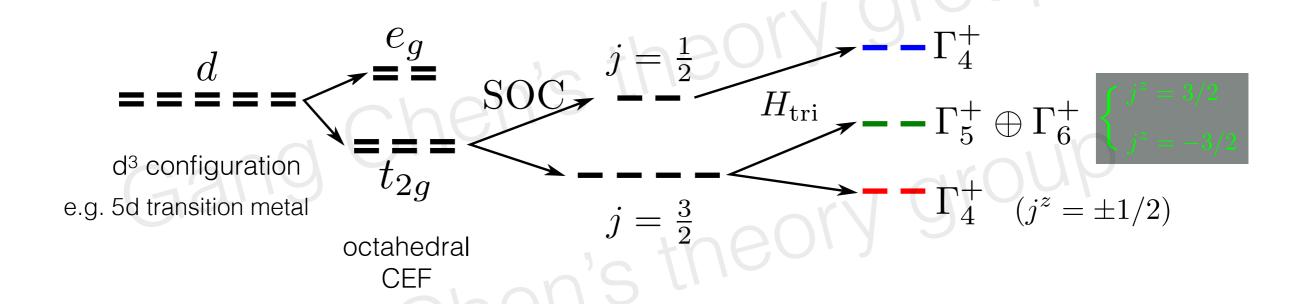
Classical spin ice

- The "2-in 2-out" states are extensively degenerate.
- At temperature T < Jzz, the system thermally fluctuates within the ice manifold, leading to classical spin ice and interesting experimental discoveries.

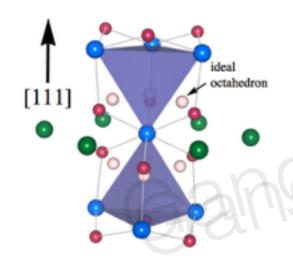
Pinch points in spin correlation


Dipole-octupole doublet

The early classification of local moments is a bit crude!


One should carefully examine the wavefunction of the local doublet.

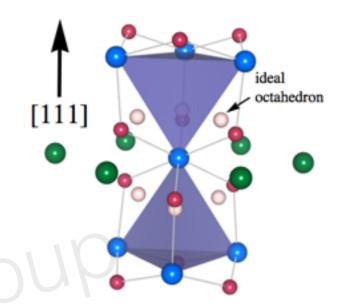
Local moments on pyrochlore lattice: effective spin-1/2



d electrons under D3d point group crystal field

• Why is this Kramers doublet so special?

ONE-dimensional representations of the point group!


$$R(2\pi/3)|J^z = \pm 3/2\rangle = -|J^z = \pm 3/2\rangle$$

$$R(2\pi/3) \equiv e^{-i\frac{2\pi}{3}J^z} = e^{-i\frac{2\pi}{3}\times(\pm\frac{3}{2})} = e^{\mp i\pi} = -1$$

$$J^z = +3/2 \rangle \quad \xrightarrow{\text{time reversal}} \quad |J^z = -3/2 \rangle$$

More generally, ...

Also applies to 4f electron moments on pyrochlore

$$J = \frac{3}{2}, \frac{9}{2}, \frac{15}{2}, \dots$$

with the local crystal field Hamiltonian

$$H_{\rm cf} = 3B_2^0 (J^z)^2 + \cdots$$
 if $B_2^0 < 0$.

e.g. local doublet wavefunction of Dy^{3+} $(J = \frac{15}{2})$ in $\mathrm{Dy}_2\mathrm{Ti}_2\mathrm{O}_7$

$$|\phi_0^{\pm}\rangle = 0.981 |\pm \frac{15}{2}\rangle \pm 0.190 |\pm \frac{9}{2}\rangle - 0.022 |\pm \frac{3}{2}\rangle \mp 0.037 |\mp \frac{3}{2}\rangle + 0.005 |\mp \frac{9}{2}\rangle \pm 0.001 |\mp \frac{15}{2}\rangle$$

Emphasis: what matters is the wavefunction, not the spin value!

may generally apply to any Kramers' doublets with J > 1/2!

e.g, Ce: Ce2Sn2O7

PRL 115, 097202 (2015)

PHYSICAL REVIEW LETTERS

week ending 28 AUGUST 2015

Candidate Quantum Spin Liquid in the Ce³⁺ Pyrochlore Stannate Ce₂Sn₂O₇

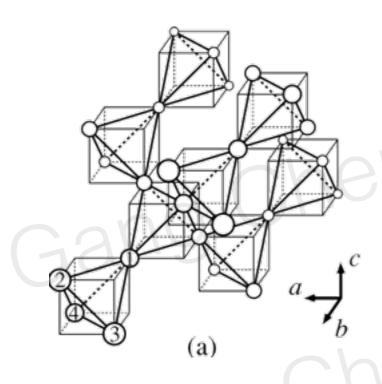
Romain Sibille,^{1,*} Elsa Lhotel,² Vladimir Pomjakushin,³ Chris Baines,⁴ Tom Fennell,^{3,†} and Michel Kenzelmann¹

 $4f^1$ ion in D_{3d} local symmetry to the susceptibility was realized between T=1.8 and 370 K, and the resulting calculation of the single ion magnetic moment is shown in Fig. 2(c). The wave functions of the ground state Kramers doublet correspond to a linear combination of $m_J=\pm 3/2$ states. The fitted coefficients result in energy levels at $50 \pm$

Ce³⁺
$$(4f^1, {}^2F_{5/2}).$$

$$J = \frac{5}{2}$$

Realistic XYZ model


and

Symmetry Enriched U(1) topological order

Symmetry properties

Effective spin-1/2 under lattice symmetry Tetrahedral Group

$$T_d \times \mathcal{I} \times translations$$
 and $T_d = \{C_3, M\}$

$$\begin{cases} S^{z} = \frac{1}{2} |\frac{3}{2}\rangle \langle \frac{3}{2}| - \frac{1}{2}| - \frac{3}{2}\rangle \langle -\frac{3}{2}| \\ S^{+} = |\frac{3}{2}\rangle \langle -\frac{3}{2}|, \ S^{-} = |-\frac{3}{2}\rangle \langle \frac{3}{2}| \end{cases}$$

$$C_3: S^{\mu} \to S^{\mu}$$

$$M: S^{x,z} \to -S^{x,z}, S^y \to S^y$$

$$\mathcal{I}: S^{\mu} \to S^{\mu}$$

Important: S^x and S^z transform identically (as a dipole), while S^y transforms as an octupole moment under *mirror*.

Generic model: XYZ model

$$H = \sum_{\langle ij \rangle} J_z S_i^z S_j^z + J_x S_i^x S_j^x + J_y S_i^y S_j^y$$
$$+J_{xz} \left(S_i^x S_j^z + S_i^z S_j^x \right)$$

Uniform Spatially!

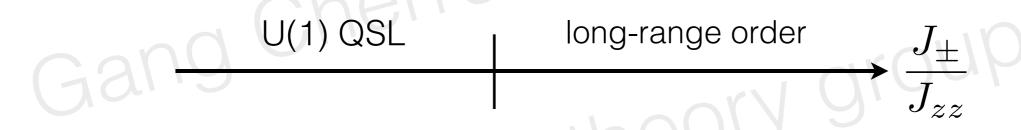
VS

$$\begin{split} H &= \sum_{\langle ij \rangle} \{J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) \\ &+ J_{\pm\pm} (\gamma_{ij} \mathbf{S}_{i}^{+} \mathbf{S}_{j}^{+} + \gamma_{ij}^{*} \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{-}) \\ &+ J_{z\pm} [\mathbf{S}_{i}^{z} (\zeta_{ij} \mathbf{S}_{j}^{+} + \zeta_{ij}^{*} \mathbf{S}_{j}^{-}) + i \leftrightarrow j] \}, \end{split}$$

Anisotropic Spatially!

A small transformation into XYZ model

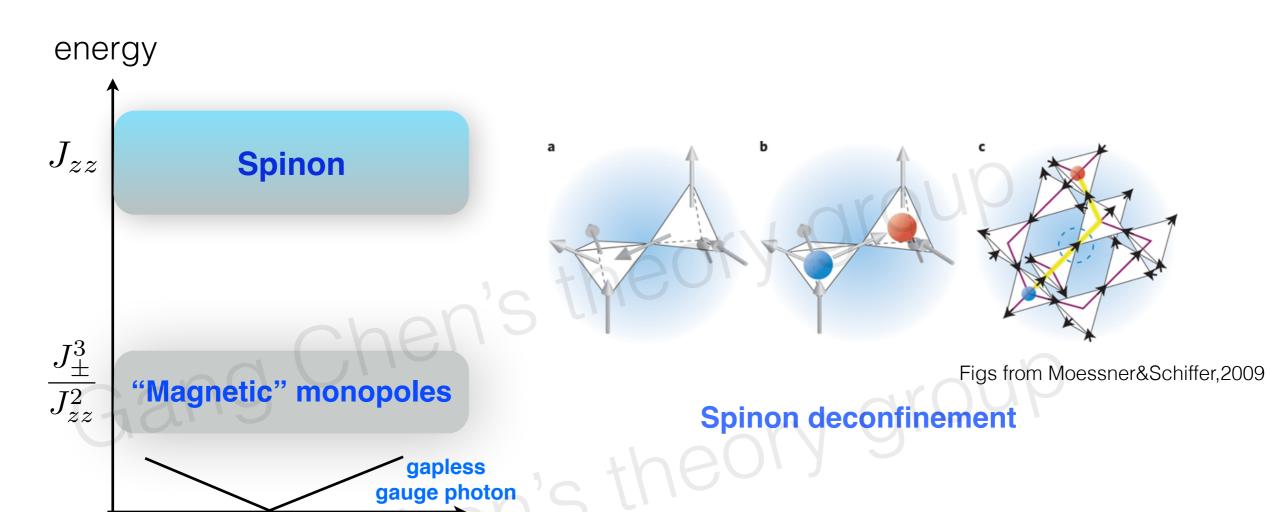
$$H = \sum_{\langle ij \rangle} J_z S_i^z S_j^z + J_x S_i^x S_j^x + J_y S_i^y S_j^y + J_{xz} \left(S_i^x S_j^z + S_i^z S_j^x \right)$$



Rotation around the y axis in the effective spin space

$$H_{\rm XYZ} = \sum_{\langle ij\rangle} \tilde{J}_z \tilde{S}_i^z \tilde{S}_j^z + \tilde{J}_x \tilde{S}_i^x \tilde{S}_j^x + \tilde{J}_y \tilde{S}_i^y \tilde{S}_j^y \qquad \text{XYZ model}$$

XXZ model can lead to U(1) QSL

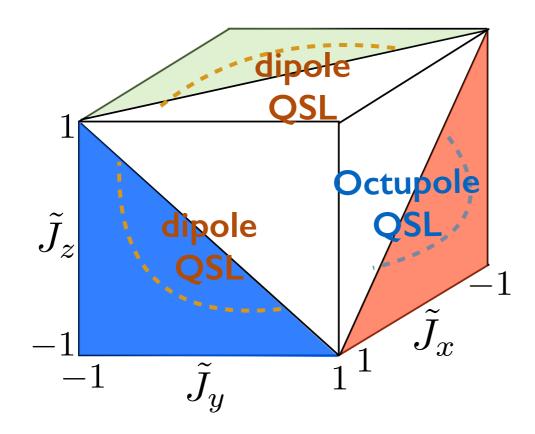

$$H = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z \left(-J_{\pm} \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right) + \cdots$$
 Hermele, Fisher, Balents, Moessner, Isakov,

• Pretty much one can add any term to create **quantum** tunneling, as long as it is not too large to induce magnetic order, the **ground state** is a U(1) QSL!

Emergent Quantum Electrodynamics

Emergent electric field

 $S^z \sim E$


Emergent vector potential

 $S^{\pm} \sim e^{\pm iA}$

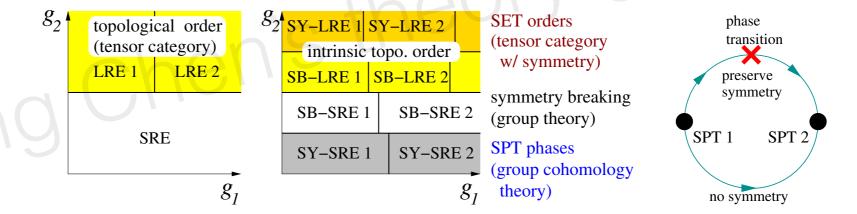
XYZ model is the generic model that describes the interaction between DO doublets.

$$H_{XYZ} = \sum_{\langle ij \rangle} \mathcal{J}_x \tau_i^z \tau_j^z + \mathcal{J}_y \tau_i^y \tau_j^y + \mathcal{J}_z \tau_i^z \tau_j^z$$

3D phase diagram

Each component (not just Sz) can be emergent electric field, depending on the parameters!

Study phase on a cube: $-1 \leq \tilde{J}_{x,y,z} \leq 1$.



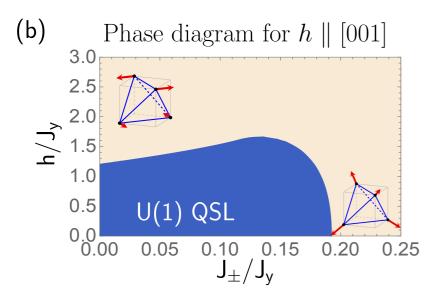
Xiaogang Wen

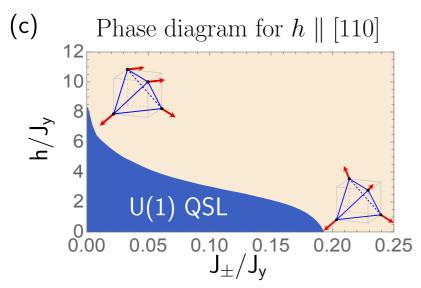
Gapped phases w/ symmetry \rightarrow SET and SPT phases

- there are LRE symmetric states \rightarrow Symm. Enriched Topo. phases
 - 100s symm. spin liquid through the PSG of topo. excit. Wen 02
 - 8 trans. symm. enriched Z_2 topo. order in 2D, 256 in 3D Kou-Wen 09
 - 1000,000s symm. Z_2 spin liquid through $[\mathcal{H}^2(SG,Z_2)]^2 \times$ Hermele 12
 - Classify SET phases through $\mathcal{H}^3[SG \times GG, U(1)]$ Ran 12
- there are SRE symmetric states → many different phases

We may call them symmetry protected trivial (SPT) phase

 Control spinons in a quantum spin ice U(1) quantum spin liquid



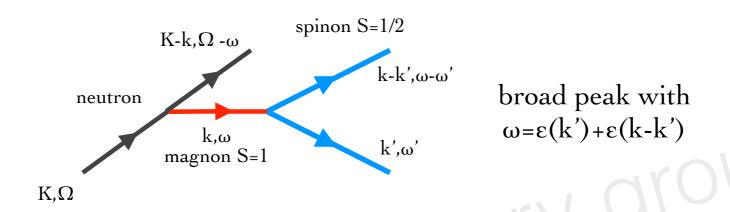

Yao-Dong Li (Fudan)

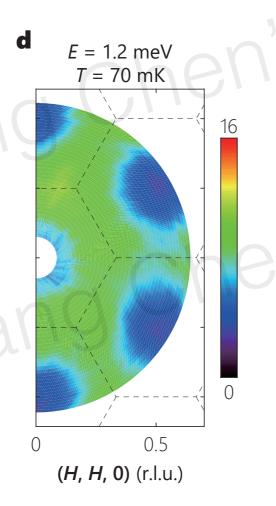
arxiv yesterday

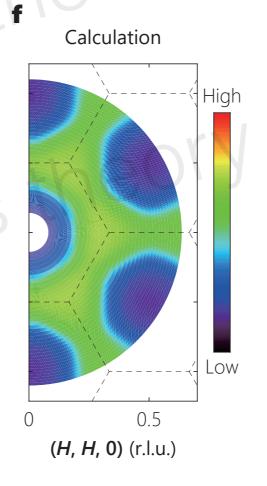
(a) Phase diagram for $h \parallel [111]$ 3.0 2.5 2.0 1.5 1.0 0.5 0.00 0.05 0.10 0.15 0.20 0.25 J_{\pm}/J_{y}

Field-driven Higgs transition for octupolar U(1) QSL

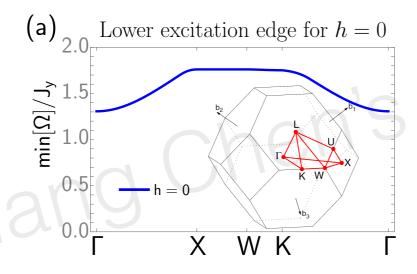
How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not?

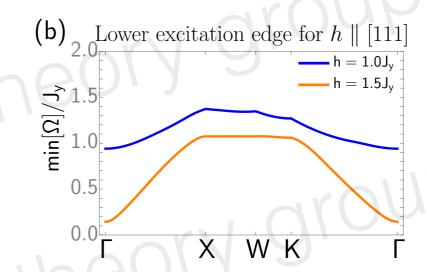

The idea to use a little knob that could simply lead to some clear experimental consequence, very much like the isotope effect of BCS superconductors.

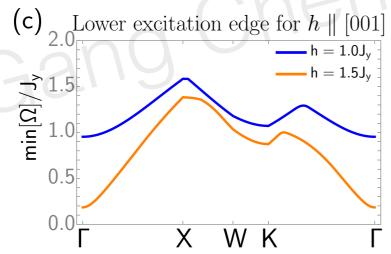

Here we apply external magnetic field, and expect a field-driven Higgs transition to magnetic ordering as the field only couples to the matter field (spinons).

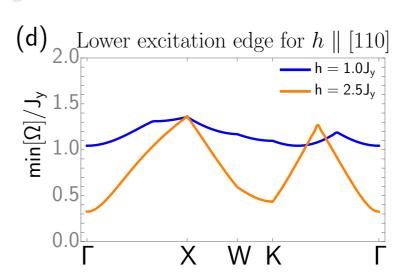

$$H_{\text{sim}} = \sum_{\langle ij \rangle} J_y \tau_i^y \tau_j^y - J_{\pm} (\tau_i^+ \tau_j^- + h.c.)$$
$$- \sum_i h \left(\hat{n} \cdot \hat{z}_i \right) \tau_i^z,$$
$$\tau_i^{\pm} = \tau_i^z \pm i \tau_i^x$$

Inelastic neutron scattering and spinon continuum




Spinon continuum in YbMgGaO4 (today's arXiv)




Lower excitation edge

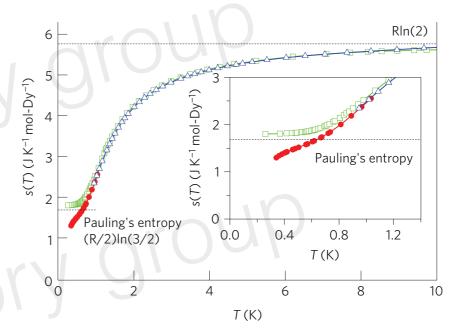
$$\mathbf{q} = \mathbf{k}_1 + \mathbf{k}_2,$$

$$\Omega(\mathbf{q}) = \omega_i(\mathbf{k}_1) + \omega_j(\mathbf{k}_2),$$

Neutron scattering and thermal transport

Different U(1) QSLs	Heat capacity	Inelastic neutron scattering measurement							
Octupolar $U(1)$ QSL for DO doublets	$C_v \sim T^3$	Gapped spinon continuum							
Dipolar U(1) QSL for DO doublets	$C_v \sim T^3$	Both gapless gauge photon and gapped spinon continuum							
Dipolar $U(1)$ QSL for non-Kramers' doublets	$C_v \sim T^3$	Gapless gauge photon							
Dipolar $U(1)$ QSL for usual Kramers' doublets	$C_v \sim T^3$	Both gapless gauge photon and gapped spinon continuum							
Gany arour stheory grown									
Thermal transport									

see both contribution, but there is a big separation of energy scales in spinon and gapless photons.


Material survey: other DO doublet systems

Our doublet can potentially be realized for any Kramers spin moment with J > 1/2.

Two well-known systems:

Pyrochlores A₂B₂O₇,

e.g.,
Nd₂Ir₂O₇, Nd₂Sn₂O₇, Nd₂Zr₂O₇, etc
Dy₂Ti₂O₇,
Cd₂Os₂O₇, etc
Ce₂Sn₂O₇,

Prof Gaulin's group, Dy2Ti2O7, Nat Phys, 2013

Spinels AB₂X₄, B=lanthanide?

e.g. CdEr₂Se₄ CdYb₂S₄

Conclusion

- We propose a new doublet dubbed "dipole-octupole" doublet.
- We propose a generic XYZ model for our new doublet.
- This XYZ model supports both exotic (octupolar) order and symmetry enriched U(1) quantum spin liquid (quantum spin ice) ground states.
- There exist a large class of materials (not just pyrochlore, any other lattices with the same point group) that can support such doublets.
- The remarkable properties of the doublet allows a direct comparison between numerics and experiments. We propose a way to detect the consequence of symmetry enrichment.

