Spectroscopic signatures of spinon Fermi surface in a rare-earth triangular lattice spin liquid

Gang Chen

Fudan University, Shanghai, China

व0

Outline

1. Spin quantum number fractionalization in YbMgGaO ? Is it a spin liquid with a spinon Fermi surface?
2. Weak field regime: theoretical prediction and measurement
```
YD Li, XQ Wang, GC*,
    PRB 94, 035107 (2016)
YD Li, XQ Wang, GC*,
PRB 94, 201114 (2016)
YD Li, Y Shen, YS Li, J Zhao, GC*,
PRB 97, xxxxxx (2018)
YD Li, YM Lu, GC*,
YD Li, GC*,
YS Li, GC*, .., QM Zhang*, PRL 115, 167203 (2015)
Y Shen, YD Li, .., GC*, J Zhao*, Nature, 540, 559 (2016)
Y Shen, YD Li, .., GC*, J Zhao*, arXiv 1708.06655
```


A rare-earth triangular lattice quantum spin liquid: $\mathrm{Yb} \mathrm{MgGaO}_{4}$

Qingming Zhang (Renmin)

- Hastings-Oshikawa-Lieb-Shultz-Mattis theorem.
- Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015).
- This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2.
- It is the first clear observation of $T^{2 / 3}$ heat capacity. (needs comment.)
- Inelastic neutron scattering is consistent with spinon Fermi surface results.
- I think it is a spinon Fermi surface $U(1)$ QSL.

The microscopics

Yb ${ }^{3+}$ ion: $4 f^{13}$ has $J=7 / 2$ due to SOC.

YS Li, ...QM Zhang, Srep 2015

YS Li, GC, ..., QM Zhang, PRL 2015 YD Li, XQ Wang, GC, arXiv1512, PRB 2016

At $T \ll \Delta$, the only active DOF is the ground state doublet that gives rise to an effective spin-1/2.

YbMgGaO4

- observation of $\mathrm{T}^{2 / 3}$ heat capacity

- Entropy: effective spin-1/2 local moments

No breaking of time reversal symmetry at finite temperature.
Our proposal for ground state: spinon Fermi surface $U(1)$ QSL.

Modeling

$4 f$ electron is very localized, and dipolar interactions weak.

$$
\begin{align*}
\mathcal{H}= & \sum_{\langle i j\rangle}\left[J_{z z} S_{i}^{z} S_{j}^{z}+J_{ \pm}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)\right. \\
& +J_{ \pm \pm}\left(\gamma_{i j} S_{i}^{+} S_{j}^{+}+\gamma_{i j}^{*} S_{i}^{-} S_{j}^{-}\right) \\
& \left.-\frac{i J_{z \pm}}{2}\left(\gamma_{i j}^{*} S_{i}^{+} S_{j}^{z}-\gamma_{i j} S_{i}^{-} S_{j}^{z}+\langle i \leftrightarrow j\rangle\right)\right], \tag{1}
\end{align*}
$$

where $S_{i}^{ \pm}=S_{i}^{x} \pm i S_{i}^{y}$, and the phase factor $\gamma_{i j}=$ $1, e^{i 2 \pi / 3}, e^{-i 2 \pi / 3}$ for the bond $i j$ along the $\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}$ direction (see Fig. 1), respectively. This generic Hamil-

Yao-Dong Li (Fudan -> UCSB)

anisotropic both in spin space and in real space!
YD Li, XQ Wang, GC, arXiv1512, PRB 2016
YD Li, Y Shen, YS Li, J Zhao, GC*, arXiv 1608.06445, PRB
DMRG: Chernyshev, White, 2017 Jize Zhao, XQ Wang, 2017

Polarized neutron scattering

Strong exchange anisotropy in $\mathrm{YbMgGaO}_{4}$ from polarized neutron diffraction

Sándor Tóth, ${ }^{1, *}$ Katharina Rolfs, ${ }^{2}$ Andrew R. Wildes, ${ }^{3}$ and Christian Rüegg ${ }^{1,4}$
${ }^{1}$ Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
${ }^{2}$ Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
${ }^{3}$ Institut Max von Laue-Paul Langevin, 38042 Grenoble 9, France
${ }^{4}$ Department of Quantum Matter Physics, University of Geneva, 1211 Genève, Switzerland

(Dated: May 17, 2017)

We measured the magnetic correlations in the triangular lattice spin-liquid candidate material $\mathrm{YbMgGaO}_{4}$ via polarized neutron diffraction. The extracted in-plane and out-of-plane components of the magnetic structure factor show clear anisotropy. We found that short-range correlations persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered at the M middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin anisotropy, with different correlation lengths for the in-plane and out-of-plane spin components. When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with only first-neighbor coupling and strongly anisotropic exchanges.
arXiv 1705.05699

Inelastic neutron scattering

Yao Shen (Fudan)

Yao-Dong Li (Fudan->UCSB)

Jun Zhao (Fudan)

Y Shen, YD Li ...GC*, J Zhao* Nature 2016
consistent neutron results from Martin Mourigal's group, Nature Physics

Spinon Fermi surface state

$$
\boldsymbol{S}_{\boldsymbol{r}}=\frac{1}{2} \sum_{\alpha, \beta} f_{r \alpha}^{\dagger} \sigma_{\alpha \beta} f_{\boldsymbol{r} \beta}, \quad H_{\mathrm{MFT}}=-t \sum_{\langle i j\rangle}\left(f_{i \alpha}^{\dagger} f_{j \alpha}+\text { h.c. }\right)-\mu \sum_{i} f_{i \alpha}^{\dagger} f_{i \alpha}
$$

Prediction from the 0 flux uniform spinon hopping

Particle-hole continuum of the spinon Fermi surface

More assurance from projective symmetry group analysis

Yao-Dong Li (Fudan->UCSB)

Yuan-Ming Lu (OSU)

$$
\begin{aligned}
& T_{1}^{-1} T_{2} T_{1} T_{2}^{-1}=T_{1}^{-1} T_{2}^{-1} T_{1} T_{2}=1, \\
& C_{2}^{-1} T_{1} C_{2} T_{2}^{-1}=C_{2}^{-1} T_{2} C_{2} T_{1}^{-1}=1, \\
& S_{6}^{-1} T_{1} S_{6} T_{2}=S_{6}^{-1} T_{2} S_{6} T_{2}^{-1} T_{1}^{-1}=1, \\
& \quad\left(C_{2}\right)^{2}=\left(S_{6}\right)^{6}=\left(S_{6} C_{2}\right)^{2}=1 . \\
& S_{r}=\frac{1}{2} \sum_{\alpha, \beta} f_{r \alpha}^{\dagger} \sigma_{\alpha \beta} f_{\boldsymbol{r} \beta}, \\
& \Psi_{r}=\left(f_{\boldsymbol{r} \uparrow}, f_{\boldsymbol{r} \downarrow}^{\dagger}, f_{\boldsymbol{r} \downarrow},-f_{\boldsymbol{r} \uparrow}^{\dagger}\right)^{T} \\
& \boldsymbol{S}_{\boldsymbol{r}}=\frac{1}{4} \Psi_{r}^{\dagger}\left(\boldsymbol{\sigma} \otimes I_{2 \times 2}\right) \Psi_{\boldsymbol{r}}, \\
& \boldsymbol{G}_{\boldsymbol{r}}=\frac{1}{4} \Psi_{r}^{\dagger}\left(I_{2 \times 2} \otimes \boldsymbol{\sigma}\right) \Psi_{\boldsymbol{r}}, \\
& {\left[S_{\boldsymbol{r}}^{\mu}, G_{\boldsymbol{r}}^{\nu}\right]=0 .}
\end{aligned}
$$

The spin transformation and gauge transformation commute with each other.
XG Wen PRB 2002

Reduction and simplification: classification mean field states

Mean-field model

$$
\begin{aligned}
& H_{\mathrm{MF}}=-\frac{1}{2} \sum_{\left(r, r^{\prime}\right)}\left[\Psi_{r}^{\dagger} u_{\boldsymbol{r} \boldsymbol{r}^{\prime}} \Psi_{\boldsymbol{r}^{\prime}}+h . c .\right], \\
& \Psi_{\boldsymbol{r}}=\left(f_{\boldsymbol{r} \uparrow}, f_{\boldsymbol{r} \downarrow}^{\dagger}, f_{\boldsymbol{r} \downarrow},-f_{\boldsymbol{r} \uparrow}^{\dagger}\right)^{T}
\end{aligned}
$$

symmetry transformation \mathcal{O}

$$
u_{\boldsymbol{r} \boldsymbol{r}^{\prime}}=\mathcal{G}_{\mathcal{O}(\boldsymbol{r})}^{\mathcal{O} \dagger} \mathcal{U}_{\mathcal{O}}^{\dagger} u_{\mathcal{O}(\boldsymbol{r}) \mathcal{O}\left(\boldsymbol{r}^{\prime}\right)} \mathcal{U}_{\mathcal{O}} \mathcal{G}_{\mathcal{O}\left(\boldsymbol{r}^{\prime}\right)}^{\mathcal{O}}
$$

spin rotation
gauge rotation
group relation $\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}=1$

$$
\begin{aligned}
& \mathcal{U}_{\mathcal{O}_{1}} \mathcal{G}_{r}^{\mathcal{O}_{1}} \mathcal{U}_{\mathcal{O}_{2}} \mathcal{G}_{\mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{\mathcal{O}_{3}}} \mathcal{G}_{\mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{3}} \mathcal{U}_{\mathcal{O}_{4}} \mathcal{G}_{\mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{4}} \\
= & \mathcal{U}_{\mathcal{O}_{1}} \mathcal{U}_{\mathcal{O}_{2}} \mathcal{U}_{\mathcal{O}_{3}} \mathcal{U}_{\mathcal{O}_{4}} \mathcal{G}_{\boldsymbol{r}}^{\mathcal{O}_{1}} \mathcal{G}_{\mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})} \mathcal{G}_{\mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})} \mathcal{G}_{\mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{4}} \\
\in & \text { IGG, } \quad\left\{ \pm I_{4 \times 4}\right\} \subset \text { IGG } \\
& \mathcal{U}_{\mathcal{O}_{1}} \mathcal{U}_{\mathcal{O}_{2}} \mathcal{U}_{\mathcal{O}_{3}} \mathcal{U}_{\mathcal{O}_{4}=}= \pm I_{4 \times 4}, \quad \mathcal{G}_{\boldsymbol{r}}^{\mathcal{O}_{1}} \mathcal{G}_{\mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})} \mathcal{G}_{\mathcal{O}_{3} \mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{3}} \mathcal{G}_{\mathcal{O}_{4}(\boldsymbol{r})}^{\mathcal{O}_{4}} \in \mathrm{IGG}
\end{aligned}
$$

Projective symmetry group classification

U(1) QSL	$W_{r}^{T_{1}}$	$W_{r}^{T_{2}}$	$W_{r}^{C_{2}}$	$W_{r}^{C_{6}}$
U1A00	$I_{2 \times 2}$	$I_{2 \times 2}$	$I_{2 \times 2}$	$I_{2 \times 2}$
U1A10	$I_{2 \times 2}$	$I_{2 \times 2}$	$i \sigma^{y}$	$I_{2 \times 2}$
U1A01	$I_{2 \times 2}$	$I_{2 \times 2}$	$I_{2 \times 2}$	$i \sigma^{y}$
U1A11	$I_{2 \times 2}$	$I_{2 \times 2}$	$i \sigma^{y}$	$i \sigma^{y}$
U1B00	$I_{2 \times 2}$	$(-1)^{x} I_{2 \times 2}$	$(-1)^{x y} I_{2 \times 2}$	$(-1)^{x y-\frac{y(y-1)}{2}} I_{2 \times 2}$
U1B10	$I_{2 \times 2}$	$(-1)^{x} I_{2 \times 2}$	$i \sigma^{y}(-1)^{x y}$	$(-1)^{x y-\frac{y(y-1)}{2} I_{2 \times 2}}$
U1B01	$I_{2 \times 2}$	$(-1)^{x} I_{2 \times 2}$	$(-1)^{x y} I_{2 \times 2}$	$i \sigma^{y}(-1)^{x y-\frac{y(y-1)}{2}}$
U1B11	$I_{2 \times 2}$	$(-1)^{x} I_{2 \times 2}$	$i \sigma^{y}(-1)^{x y}$	$i \sigma^{y}(-1)^{x y-\frac{y(y-1)}{2}}$

TABLE III. The transformation for the spinons under four U1A PSGs that are labeled by U1A $n_{C_{2}} n_{S_{6}}$.

U(1) PSGs	T_{1}	T_{2}	C_{2}	S_{6}
U1A00	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x+1, y) \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x+1, y), \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x, y+1) \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x, y+1), \downarrow} \end{aligned}$	$\begin{aligned} f_{(x, y) \uparrow} & \rightarrow e^{i \frac{\pi}{6}} f_{(y, x), \downarrow} \\ f_{(x, y), \downarrow} & \rightarrow e^{i \frac{5 \pi}{\frac{1}{2}}} f_{(y, x), \uparrow} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow e^{-i \frac{\pi}{3}} f_{(x-y, x), \uparrow} \\ & f_{(x, y) \downarrow} \rightarrow e^{+i \frac{\pi}{3}} f_{(x y y, x), \downarrow} \end{aligned}$
U1A10	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x+1, y, \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x+1, y), \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x, y+1), \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x, y+1), \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y) \uparrow} \rightarrow e^{i \frac{\pi}{6}} f_{(, x), \uparrow}^{\dagger} \uparrow \\ & f_{(x, y), \downarrow} \rightarrow e^{-i \frac{\pi}{6}} f_{(y, x, \downarrow),}^{\dagger} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow e^{-i \frac{\pi}{3}} f_{(x-y, x) \uparrow}, \uparrow \\ & f_{(x, y) \downarrow} \rightarrow e^{+i \frac{\pi}{3}} f_{(x-y, x), \downarrow} \end{aligned}$
U1A01	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x+1, y, \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x+1, y) \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x, y+1), \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x, y+1), \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y) \uparrow} \rightarrow e^{i \frac{\pi}{5}} f_{(y, x), \downarrow} \\ & f_{(x, y), \downarrow} \rightarrow e^{i \frac{5 \pi}{6}} f_{(y, x), \uparrow} \end{aligned}$	$\begin{aligned} f_{(x, y), \uparrow} & \rightarrow-e^{-i \frac{\pi}{3}} f_{(x-y, x) \downarrow}^{\dagger} \\ f_{(x, y), \downarrow} & \rightarrow e^{+i \frac{\pi}{3}} f_{(x-y, x), \uparrow}^{\dagger} \end{aligned}$
U1A11	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x+1, y, \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x+1, y) \downarrow} \end{aligned}$	$\begin{aligned} & f_{(x, y), \uparrow} \rightarrow f_{(x, y+1), \uparrow} \\ & f_{(x, y), \downarrow} \rightarrow f_{(x, y+1), \downarrow} \end{aligned}$		$\begin{aligned} f_{(x, y), \uparrow} & \rightarrow-e^{-i \frac{\pi}{3}}{ }^{\frac{\pi}{\dagger}} \dagger-y, y, \downarrow \\ f_{(x, y), \downarrow} & \rightarrow e^{+i \frac{\pi}{3}} f_{(x-y, x), \uparrow}^{\dagger} \end{aligned}$

Spectroscopic constraints

We use PSG to predict the corresponding spectrum.
Yao-Dong Li

$$
H_{\mathrm{MF}}=-\sum_{\left(\boldsymbol{r} \boldsymbol{r}^{\prime}\right)} \sum_{\alpha \beta}\left[t_{\boldsymbol{r} \boldsymbol{r}^{\prime}, \alpha \beta} f_{\boldsymbol{r} \alpha}^{\dagger} f_{\boldsymbol{r}^{\prime} \beta}+\text { h.c. }\right],
$$

(d)

The U1A00 state is the spinon Fermi surface state that we proposed in Shen, et al, Nature.

Dynamic spin structure factor

2. Weak field regime: theoretical prediction and measurement

```
YD Li, GC*,
Y Shen, YD Li, .., GC*, J Zhao*, arXiv 1708.06655
```


Explore the weak field regime

Continuing the recent proposal of the spinon Fermi surface $\mathrm{U}(1)$ spin liquid state for $\mathrm{YbMgGaO}_{4}$ in Yao-Dong Li, et al, arXiv:1612.03447 and Yao Shen, et al, Nature 2016, we explore the experimental consequences of the external magnetic fields on this exotic state. Specifically, we focus on the weak field regime where the spin liquid state is preserved and the fractionalized spinon excitations remain to be a good description of the magnetic excitations. From the spin- $1 / 2$ nature of the spinon excitation, we predict the unique features of spinon continuum when the magnetic field is applied to the system. Due to the small energy scale of the rare-earth magnets, our proposal for the spectral weight shifts in the magnetic fields can be immediately tested by inelastic neutron scattering experiments. Several other experimental aspects about the spinon Fermi surface and spinon excitations are discussed and proposed. Our work provides a new way to examine the fractionalized spinon excitation and the candidate spin liquid states in the rare-earth magnets like $\mathrm{YbMgGaO}_{4}$.

Reasonable, Feasible, and Predictable.

YD Li, GC, arXiv: 1703.01876
PhysRevB, 96, 075105
ESR response in a field by Oleg Starykh's group, 2017

Organic spin liquids?

Kanoda

* No magnetic order down to 32 mK
* Constant spin susceptibility at zero temperature

Other experiments: transport, heat capacity, optical absorption, etc, Unfortunately, no neutron scattering so far.

Prediction for dynamic spin structure factor

We predict:

1. The system remains gapless and spinon continuum persists
2. spectral weight shifts
3. the spectral crossing at Gamma point
4. the presence of lower and upper excitation edges

Very different from magnon in the field !!

Excitation continuum in weakly magnetized YbMgGaO4

Theoretical results for the experimental parameter

YD Li, GC*, PRB 96, 075105 (2017)

Finally, lots of isostructural materials

Compound	Magnetic ion	Space group	Local moment	$\Theta_{\mathrm{CW}}(\mathrm{K})$	Magnetic transition	Frustration para. f	Refs.
$\mathrm{YbMgGaO}_{4}$	$\mathrm{Yb}^{3+}\left(4 f^{13}\right)$	$\mathrm{R} \overline{3} \mathrm{~m}$	Kramers doublet	-4	PM down to 60 mK	$f>66$	$[4]$
$\mathrm{CeCd}_{3} \mathrm{P}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-60	PM down to 0.48 K	$f>200$	$[5]$
$\mathrm{CeZn}_{3} \mathrm{P}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-6.6	AFM order at 0.8 K	$f=8.2$	$[7]$
$\mathrm{CeZn}_{3} \mathrm{As}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-62	Unknown	Unknown	$[8]$
$\mathrm{PrZn}_{3} \mathrm{As}_{3}$	$\mathrm{Pr}^{3+}\left(4 f^{2}\right)$	$\mathrm{P}_{3} / m m c$	Non-Kramers doublet	-18	Unknown	Unknown	$[8]$
$\mathrm{NdZn}_{3} \mathrm{As}_{3}$	$\mathrm{Nd}^{3+}\left(4 f^{3}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-11	Unknown	Unknown	$[8]$

YD Li, XQ Wang, GC*, PRB 94, 035107 (2016)

Magnetism in the $\mathrm{KBaRE}\left(\mathrm{BO}_{3}\right)_{2}(\mathrm{RE}=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}$, $\mathrm{Yb}, \mathrm{Lu})$ series: materials with a triangular rare earth lattice
M. B. Sanders, F. A. Cevallos, R. J. Cava

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Summary

1. We propose YbMgGaO 4 to be a spin-orbit-coupled spin liquid.
2. The signature of spin fractionalization has been discovered and interpreted as spinons.
3. Predictions have been made for the weakly magnetized regime. It can be immediately tested by inelastic neutron. It has been confirmed in Jun Zhao's recent experiment.
