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U(1) quantum spin liquid
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•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a U(1) quantum spin liquid !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….
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Ring exchange
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Excitations in the U(1) QSL

Spinon deconfinement

SpinonJzz

energy

Magnetic monopoles
J3
±

J2
zz

gapless  
gauge photon

•  No LRO, no symmetry breaking, cannot be understood in Landau’s paradigm!  

•  The right description is in terms of fractionalization and emergent gauge structure.

Consequence 2: monopoles and defects
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Figs from Moessner&Schiffer,2009
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Equivalence of “notations”

What does inelastic neutron scattering measure in quantum spin ices?
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

This talk Eun-Gook Moon’s talk

has classical 
analogue

} purely quantum,
no classical analogue

“Magnetic monopole” is probably closer in spirit to Dirac’s monopole (1931). 
One has to confirm that “magnetic monopole” is emergent excitation,  

rather than a fictitious particle.

What piece of experimental info indicates these exotic and emergent particles?
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Spinon continuum: background flux and folded Brillouin zone
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FIG. 1. The schematic phase diagram of the XXZ model on the
pyrochlore lattice. The AFM0 stands for the magnetic ordered state
that is proximate to the U(1)0 QSL [42]. The colored region refers to
the QSI regime in which the quantum fluctuation gradually releases
the classical spin ice entropy. The QSLs appear as the ground states at
zero temperature, while the AFM0 extends to finite temperatures. The
solid lines indicate a finite-temperature magnetic ordering transition.
The dashed line indicates the crossover temperature from the high-
temperature paramagnetic regime to the spin ice regime. See the main
text and Table I for details.

U(1) QSL. This model is defined as92

HXXZ =
∑

⟨ij⟩
JzzS

z
i S

z
j − J⊥(S+

i S−
j + S−

i S+
j ), (1)

where Jzz > 0. The phase diagram of the specific XXZ model93

is given in Fig. 1 and explained in the remaining part of94

the paper. In the regime with |J⊥| ≪ Jzz, the third-order95

degenerate perturbation theory yields an effective Hamiltonian96

that acts on the extensively degenerate spin ice manifold. The97

effective model is a ring exchange model with [1]98

Heff = −12J 3
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J 2
zz
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where “i,j,k,l,m,n” are the six vertices on the elementary99

hexagon (“!p”) of the pyrochlore lattice. To reveal the U(1)100

gauge structure, one introduces the lattice gauge fields as101

Er r ′ ≃ Sz
r r ′ ,eiAr r′ ≃ S±

r r ′ , where r,r ′ label the centers of the102

tetrahedra and form a diamond lattice. The effective spin model103

becomes104

HLGT = −K
∑

!d

cos(curl A) + U
∑

r r ′

(
Er r ′ − ηr

2

)2

, (3)

where K = 24J 3
⊥/J 2

zz and U → ∞ recovers the Hilbert space1 105

of the spin-1/2 moment. Here, !d refers to the elementary106

hexagon on the diamond lattice, and ηr = +1 (−1) for r ∈107

I (II) sublattice of the diamond lattice. When J⊥ > 0 and108

|J⊥| is small so that the XY order is absent, the ground state109

favors a zero U(1) gauge flux and is labeled as U(1)0 QSL.110

This regime has been extensively studied theoretically and111

numerically [1,8,9,28,49–51]. For J⊥ < 0, the ground state112

favors a π background U(1) gauge flux with [9]113

curl A ≡
∑

r r ′∈!d

Ar r ′! = π (4)

for each diamond lattice hexagon [see Fig. 2(a)] and is114

thus labeled as U(1)π QSL. This regime has a sign prob-115

lem for quantum Monte Carlo simulation and is thus less116

FIG. 2. The diamond lattice formed by the tetrahedral centers
of the pyrochlore lattice. The dots are the diamond lattice sites
or the tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the π flux. (b) The successive
translations of the spinon along the (red) pathway, which are marked
by ⃝1 , ⃝2 , ⃝3 , and ⃝4 , experience the U(1) gauge flux in the hexagon
plaquette.

explored. Only one prior work [9] has carefully studied the 117

stability of the U(1) QSL in this regime and found the 118

U(1) QSL is more robust in this regime than the J⊥ > 0 119

regime. Despite the different phase stability, both U(1)0 and 120

U(1)π QSLs are described by the same low-energy field 121

theory and characterized by the same long-distance universal 122

properties. We, however, point out that the U(1)π QSL is a 123

distinct symmetry-enriched U(1) QSL from the U(1)0 QSL. 124

We show below that the symmetry enrichment occurs in 125

the translational symmetry fractionalization of the spinons. 126

We emphasize that the spectral periodicity of the spinon 127

continuum is a keen physical property encoding the distinct 128

symmetry enrichment and could thus provide a sharp experi- 129

mental confirmation of the U(1) QSL. 130

III. TRANSLATIONAL SYMMETRY 131

FRACTIONALIZATION AND THE SPECTRAL 132

PERIODICITY 133

The translation symmetry of the pyrochlore lattice is 134

generated by the three translations T1,T2, and T3. Here, the Tµ 135

operation translates the system by the fcc Bravais lattice vector 136

aµ, and we have a1 = 1
2 (011),a2 = 1

2 (101), and a3 = 1
2 (110), 137

where we have used the cubic coordinate system here and 138

throughout the paper (except as specifically mentioned). Any 139

two translation operations, Tµ and Tν (µ ̸= ν), commute with 140

each other with TµTν = TνTµ. 141

In the U(1) QSL, the spinons are fractionalized and decon- 142

fined excitations, and the symmetry operations act locally on 143

the spinons. This symmetry localization condition leads to the 144

TABLE I. Physical properties of the U(1)0 and U(1)π QSLs.

U(1) QSLs U(1)0 QSL U(1)π QSL

Exchange coupling J⊥ > 0 J⊥ < 0
Background U(1) flux 0 flux π flux
Heat capacity Cv ∼ T 3 Cv ∼ T 3

Proximate XY order Keep translation enlarged cell
Spectral periodicity Not enhanced Enhanced

005100-2

⇡

Occasionally, the spinon experiences a PI background 
flux as it moves on the diamond hexagons. 

Sungbin Lee, S Onoda, Balents, PRB 2012 
Gang Chen, PRB, 96, 085136, 2017
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π flux in the U(1)π QSL. We focus on the J⊥ < 0 regime226

that has not been extensively studied. It was shown that the227

U(1)π QSL extends to the point [9] at J⊥ = −4.13Jzz within228

a gauge mean-field calculation. We, however, do not think229

the U(1)π QSL can extend beyond the Heisenberg point at230

J⊥ = −Jzz/2 where the SU(2) symmetry, which permutes the231

spin components, is inconsistent with the distinct physical232

meaning of three spin components in the U(1)π QSL. It is233

likely that the Heisenberg point is a critical point where the234

U(1)π QSL terminates. Nevertheless, the early study does235

show the quantitative stability of the U(1)π QSL. Following the236

previous treatment [6,8–10], we implement the spinon-gauge237

construction via238

Sz
i = sz

r r ′ , (20)

S+
i = "†

r"r ′s
+
r r ′ , (21)

where "
†
r ("r ) creates (annihilates) the spinon at the diamond239

lattice site r , and sz and s± encode the U(1) gauge field240

such that sz
r r ′ ≃ Er r ′ and s+

r r ′ ≃ 1
2eiAr r′ . The XXZ model is241

expressed as242

HXXZ ≃ Jzz

2

∑

r

Q2
r − J⊥

4

∑

⟨⟨r r ′⟩⟩
"†

r"r ′e
−iAr r′ , (22)

where Ar r ′ = Ar r ′′ + Ar ′′ r ′ , and r ′′ is the shared nearest-243

neighbor site of r and r ′. Here the operator Qr is defined244

as Qr =
∑

r ′∈n.n.(r) ηrS
z
r r ′ , where the summation is taken for245

the nearest-neighbor sites of r . A conjugate rotor variable is246

introduced such that247

"r = e−iφr , |"r | = 1, (23)

and [φr ,Qr ] = i. One further fixes the gauge by setting [9]248

Ār r ′ = ϵr r ′ q0 · r that takes care of the π flux [see Fig. 2(a)],249

where q0 = 2π (100), r ∈ I sublattice, and ϵr r ′ takes the value250

0,1,1,0 for r r ′ orienting along (111), (11̄1̄), (1̄11̄), (1̄1̄1) lattice251

directions, respectively. The gauge fixing condition enlarges252

the unit cell for the spinons, but the translation symmetry is253

preserved and is realized projectively. The spinon excitation254

in U(1)π QSL is then solved by the standard coherent-state255

path-integral method and is given as [9]256

ωI,±(k) =
√

2Jzz

(
λ ± J⊥

(
c2
yc

2
z + s2

xs
2
y + c2

xs
2
z

) 1
2
)
, (24)

ωII,±(k) =
√

2Jzz

(
λ ± J⊥

(
s2
ys

2
z + c2

xc
2
y + s2

xc
2
z

) 1
2
)
, (25)

where cµ = cos(kµ/2),sµ = sin(kµ/2). The subindices I and II257

arise from the fact that the two diamond lattices are decoupled258

in Eq. (22) and the subindices ± arise from the doubling of the259

unit cell by the gauge choice. Here, the constraint |"r | = 1 is260

implemented by the global Lagrangian multiplier λ, which is261

demanded to be uniform for the two sublattices by inversion.262

The spinon continuum is detected by the ⟨S+
i S−

j ⟩ correlator263

via the INS. From the relation264

⟨S+
i S−

j ⟩ ∼ ⟨"†
r i
"r ′

i
e
iAri r′

i "rj
"

†
r ′
j
e
−iAri r′

j ⟩

≃ ⟨"†
r i
"rj

⟩⟨"r ′
i
"

†
r ′
j
⟩⟨eiĀri r′

i
−iĀri r′

j ⟩, (26)

FIG. 3. The lower excitation edge of the spinon continuum in the
U(1)0 and the U(1)π QSLs. Here, the ( points are the centers of the
Brillouin zones and are connected by the reciprocal lattice vectors
with (0(1 = 2π (−1,1,1) and (0(2 = 2π (1,−1,1). The enhanced
spectral periodicity in (b) can be visualized by examining the wiggles
of the spectrum. We set (a) J⊥ = 0.12Jzz for the U(1)0 QSL and
(b) J⊥ = −Jzz/3 for the U(1)π QSL.

where r i ,rj ∈ I, r ′
i ,r

′
j ∈ II, and the neutron spin flip excites 265

two spinons with one from the I sublattice and the other from 266

the II sublattice. We obtain the momentum and energy transfers 267

of the neutron, 268

q = k1 + k2 + q0, (27)

E = ωI,µ(k1) + ωII,ν(k2), (28)

where µ,ν = ± and the offset q0 arises from the particular 269

gauge choice for the U(1)π QSL, and the predicted physical 270

observable does not depend on this choice. Here we have 271

neglected the photon contribution that appears as a higher- 272

order term from the gauge fluctuation with respect to the gauge 273

choice in the expansion of Eq. (26). The spinons are gapped, 274

and a minimal energy is required to excite them, which defines 275

the lower excitation edge. As we show explicitly in Fig. 3, the 276

lower excitation edge of the U(1)π QSL has the enhanced 277

periodicity while the U(1)0 QSL does not. 278

V. DISCUSSION 279

Although the gapless U(1) gauge photon is one defining 280

feature of the U(1) QSLs, its very low-energy scale and the 281

suppressed spectral weight may prohibit the experimental 282

identification [8,36]. In contrast, the spinon continuum occurs 283

at the higher energy. The enhanced spectral periodicity with a 284

fold Brillouin zone of the spinon continuum in the U(1)π QSL 285

could be a sharp signature for the experimental observation. 286

005100-4

Spectral periodicity of spinon  
lower excitation edges: 

Pi flux -> folded Brillouin zone

diamond lattice of  
pyrochlore centers
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Kramers vs Non-Kramers doublet

What does inelastic neutron scattering measure in quantum spin ices?
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

In contrast, the Tb ion in Tb2Ti2O7, Pr ion in Pr2Ir2O7, Pr2Sn2O7, Pr2Zr2O7, etc, 
are non-Kramers doublets

Kramers doublet: e.g. Yb ion in Yb2Ti2O7

Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �T : Sx ! �Sx, Sy ! �Sy, Sz ! �Sz

CEF

(unusual example is dipole-octupole doublet in Ce2Sn2O7 and Nd2Zr2O7),  
YP Huang, GC, Hermele, PRL 2014; YD Li, GC, PRB2016, YD Li, GC, PRB 2017
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Emergent light: U(1) photon

I(!) ⇠ !
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the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

Gang Chen, arXiv:1706.04333

Low energy theory
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,
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where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
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The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
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and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
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dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
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degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,
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The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
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interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
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and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
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INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
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the hexagon plaquette on the dual diamond lattice. This
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and is the starting point to explore the dynamics of the
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“monopole” excitations have the following enlarged spec-
tral periodicity such that

L

m

(q) = L

m

(q+ 2⇡(100))

= L

m

(q+ 2⇡(010))

= L

m

(q+ 2⇡(001)), (20)

where L

m

(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠
µ

(Q · R), (21)

where R 2 I sublattice of the dual diamond lattice, and
R+ e

µ

2 II sublattice of the dual diamond lattice with
e
µ

(µ = 0, 1, 2, 3) the nearest-neighbor vectors connecting
two sublattices. Here e

0

= 1

4

(111), e
1

= 1

4

(11̄1̄), e
2

=
1

4

(1̄11̄), e
3

= 1

4

(1̄1̄1), (⇠
0

, ⇠
1

, ⇠
2

, ⇠
3

) = (0, 1, 1, 0) and Q =
2⇡(100).

Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,

H
MFT

= �t
X

hRR0i

e�i2⇡h↵RR0 i�†
R�R0 � µ

X

R

�†
R�R,(22)

where the “monopole” spectrum is found to be

⌦+

±(q) = +t[4± 2(3 + C

x

C

y

� C

x

C

z

+ C
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C

z

)
1
2 ]

1
2 � µ,

⌦�
±(q) = �t[4± 2(3 + C

x

C

y

� C

x

C

z

+ C

y

C

z

)
1
2 ]

1
2 � µ,

where C

µ

= cos q
µ

(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.

FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.
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“monopole” excitations have the following enlarged spec-
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where L

m

(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠
µ

(Q · R), (21)

where R 2 I sublattice of the dual diamond lattice, and
R+ e

µ

2 II sublattice of the dual diamond lattice with
e
µ

(µ = 0, 1, 2, 3) the nearest-neighbor vectors connecting
two sublattices. Here e
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2⇡(100).

Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,

H
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X
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e�i2⇡h↵RR0 i�†
R�R0 � µ

X

R

�†
R�R,(22)

where the “monopole” spectrum is found to be
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where C

µ

= cos q
µ

(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.

FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.
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Suggestion 2: effect of the external magnetic field 3

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

HZeeman = ~B ·
X

i

Sz
i ẑi

The weak magnetic field polarizes Sz slightly, and thus modifies  
the background electric field distribution. This further modulates  
monopole band structure, creating “Hofstadter” monopole band,  
which may be detectable in inelastic neutron.



Gang Chen’s theory group 

Gang Chen’s theory group

Summary

1. We point out the existence of “magnetic monopole continuum” in the  
   U(1) quantum spin liquid, and monopole is purely quantum origin. 

2. We further point out that the “magnetic monopole” always experiences 
   a Pi flux, and thus supports enhanced spectral periodicity with folded  
   Brillouin zone.
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
          ( R. Sibille, et al, arXiv 1706.03604). 


