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with symmetry: 

the topological phases are richer, 
even with the same topological order, 
different SET phases cannot transform  

into each other with finite-step local unitary  
transformation w/o breaking symmetry.
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the interplay between symmetry and topology has led to the 
great discovery of topological insulator. Like many other 
symmetry breaking states, xx only has short range quantum 
entanglement. 


For intrinsic topological order like Z2 spin liquid, chiral Abelian

topogolical order, that has LRE, symmetry 


symmetry and intrinsic topological order, something new. 


finite step local unitary transformation.


The classification of this universal phase diagram transcends 
the degree of freedom. Actually we don’t have a good 
understanding how to realize them in real physical systems. 


Here I will give a realistic example. 


finite step local unitary transformation !!!
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An important question

What are the *physical* degrees of freedom  
and their interactions to realize these novel quantum phases?
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Octupolar quantum spin ice: controlling spinons in a U(1) quantum spin liquid
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We point out that the Ce local moment in the newly discovered quantum spin liquid (QSL)
candidate material Ce2Sn2O7 is a dipole-octupole doublet. The generic spin model that describes
the interaction between these unusual doublets on a pyrochlore lattice has two distinct symmetry
enriched U(1) QSL ground states in the corresponding quantum spin ice regime. These two U(1)
QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has
been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry
properties of the DO doublets, we predict the peculiar physical properties of the octupolar U(1)
QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We predict the
Anderson-Higgs’ transition from the octupolar U(1) QSL driven by the external magnetic fields. We
explain the experimental relevance with the QSL candidate material Ce2Sn2O7 and other dipole-
octupole doublet systems.

Introduction.—The interplay between symmetry and
topology is the frontier subject in modern condensed
matter physics [1–3]. At the single particle level, the non-
trivial realization of time reversal symmetry in electron
band structure has led to the great discovery of topo-
logical insulator [4, 5]. For the intrinsic topological order
such as Z2 toric code and chiral Abelian topological order,
a given symmetry of the system could enrich the topolog-
ical order into distinct phases that cannot be connected
without passing a phase transition [6–9]. The experi-
mentally relevant symmetry enriched topological order,
however, is extremely rare. In this work, we explore one
physical realization of symmetry enriched U(1) topologi-

cal order via dipole-octupole doublets on the pyrochlore
lattice and predict the experimental consequences of dis-
tinct symmetry enrichment.

Dipole-octupole (DO) doublet is a special Kramers’
doublet in the D3d crystal field environment [10, 11]. Due
to the peculiar forms of the wavefunction, both states
of the DO doublet transform as the one-dimensional ir-
reducible representations (�+

5 or �+
6 ) of the D3d point

group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quan-
tum spin liquid (QSL) ground states [10]. These distinct
U(1) QSLs are the symmetry enriched U(1) topological
orders [12] and are enriched by the symmetries of the
pyrochlore lattice.

The Ce3+ local moment in Ce2Sn2O7 is such a DO
doublet on the pyrochlore lattice, although it was not
noticed before. As we show in Fig. 1, the strong atomic
spin-orbit coupling (SOC) of the 4f1 electron in the Ce3+

ion first entangles the electron spin (S = 1/2) with the
orbital angular momentum (L = 3) into a J = 5/2 total
moment. The six-fold degeneracy of the J = 5/2 to-
tal moment is further splitted into three Kramers’ dou-
blets by the D3d crystal field. Since the ground state
doublet wavefunctions are combinations of Jz = ±3/2

FIG. 1. The electron configuration and the D3d crystal elec-
tric field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The
CEF ground state wavefunctions are combinations of J

z =
±3/2 states [13], thus the CEF ground state is a DO doublet.
� is the CEF gap and was fitted to be � = 50± 5meV [13].

states [13], this doublet is precisely the DO doublet that
we defined. Since the crystal field gap is much larger than
the interaction energy scale of the local moments and the
temperature scale in the experiments, the low tempera-
ture magnetic property of Ce2Sn2O7 is governed by the
ground state doublets. No magnetic order was detected
down to 0.02K [13], making Ce2Sn2O7 the first Ce-based
QSL candidate in the pyrochlore family.
Motivated by the experiments on Ce2Sn2O7 and more

generally by the experimental consequences of the dis-
tinct symmetry enriched U(1) QSL for the DO doublets,
in this Letter, we explore the peculiar properties of the
DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for
the DO doublets, we find that the external magnetic field
directly couples to the spinons and modifies the spinon
dispersions. This e↵ect allows us to directly control the
spinon excitations with the magnetic fields. The lower
excitation edge of the spinon continuum in the dynamic
spin structure factors can thus be modified by the mag-
netic fields, which gives a sharp prediction for the inelas-
tic neutron scattering experiments. When the magnetic
field exceeds the critical value and closes the spinon gap,
the spinons are condensed, driving the system through an
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.
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Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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This doublet is dipole-octupole doublet ! 
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How does it work? Why so special?
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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and
the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of
the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole doublet. The generic model for
these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding
quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While
the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the
symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar
U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the
Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the
experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

DOI: 10.1103/PhysRevB.95.041106

Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1–3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6–9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10–12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground

*gangchen.physics@gmail.com

state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and
the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry
enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of
the newly discovered pyrochlore QSL candidate Ce2Sn2O7, is a dipole-octupole doublet. The generic model for
these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding
quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While
the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the
symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar
U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the
Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the
experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.
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Introduction. The interplay between symmetry and topol-
ogy is the frontier subject in modern condensed matter
physics [1–3]. At the single particle level, the nontrivial
realization of time reversal symmetry in electron band structure
has led to the discovery of topological insulators [4,5].
For the intrinsic topological order such as Z2 toric code
and chiral Abelian topological order, a given symmetry of
the system could enrich the topological order into distinct
phases that cannot be smoothly connected without crossing a
phase transition [6–9]. Despite the active theoretical efforts,
the experimentally relevant symmetry enriched topological
order is extremely rare. In this Rapid Communication, we
explore one physical realization of symmetry enriched U(1)
topological order for the dipole-octupole (DO) doublets on the
pyrochlore lattice and predict the experimental consequences
of distinct symmetry enrichment. The DO doublet is a special
Kramers’ doublet in the D3d crystal field environment [10–12].
Both states of the DO doublet transform as the one-
dimensional irreducible representations (!+

5 or !+
6 ) of the D3d

point group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quantum
spin liquid (QSL) ground states [10]. These distinct U(1) QSLs
are the symmetry enriched U(1) topological orders [13] and are
enriched by the lattice symmetries of the pyrochlore systems.

Recently Ce2Sn2O7 was proposed as the first Ce-based QSL
candidate in the pyrochlore family [14], in which no magnetic
order was observed down to 0.02 K. Although it was not
noticed previously, the Ce3+ local moment in Ce2Sn2O7 is
actually a DO doublet. The strong atomic spin-orbit coupling
(SOC) of the 4f 1 electron in the Ce3+ ion entangles the
electron spin (S = 1/2) with the orbital angular momentum
(L = 3) into a J = 5/2 total moment. The sixfold degeneracy
of the J = 5/2 total moment is further split into three Kramers’
doublets by the D3d crystal field (see Fig. 1). Since the ground
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state doublet wave functions are combinations of J z = ±3/2
states [14], this doublet is precisely the DO doublet that we
defined [10]. Because the crystal field gap is much larger
than the interaction energy scale of the local moments and
the temperature scale in the experiments, the low temperature
magnetic property of Ce2Sn2O7 is fully governed by the
ground state doublets.

Motivated by the experiments on Ce2Sn2O7 and more
generally by the experimental consequences of the distinct
symmetry enriched U(1) QSLs for the DO doublets, in this
Rapid Communication, we explore the peculiar properties of
the DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for the
DO doublets, we find that the external magnetic field directly
couples to the spinons and modifies the spinon dispersions.
This effect allows us to control the spinon excitations with
the magnetic fields. The lower excitation edge of the spinon
continuum in the dynamic spin structure factors can thus be
modified by the magnetic fields, which gives a sharp prediction
for the inelastic neutron scattering experiments. When the
magnetic field exceeds the critical value and closes the spinon
gap, the spinons are condensed, driving the system through

FIG. 1. The electron configuration and the D3d crystal electric
field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The CEF ground
state wave functions are combinations of J z = ±3/2 states [14], thus
the CEF ground state is a DO doublet. " is the CEF gap and was
fitted to be " = 50 ± 5 meV [14].
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Symmetry Enriched U(1) topological order 
and 

Experimental signatures of Symmetry Enrichment

next i will introduce the realistic XYZ 
model that describe the interaction 
between these peculiar doublet, and 
discuss the remarkable physical 
properties. 
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XYZ model

Generic model: XYZ model

this does not look like XYZ, 


just because of the spatial uniformity, 
one can do a rotation in spin space 
without effecting real space, 

Td ⇥ I ⇥ translations

Important: Sx and Sz transform identically (as a dipole),   
  while Sy transforms as an octupole moment under mirror.
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XXZ limit: U(1) QSL of spin ice regime

Spinon deconfinement

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge
Figs from Moessner&Schiffer,2009

Emergent electric field 

Emergent vector potential
Sz ⇠ E

S± ⇠ e±iA

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

classical spin ice

+ quantum 
fluctuations

S. Curnoe, 2008
S. Onoda, 2010

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
Sz

i

�
�ijS

+
j + �⇥ijS

�
j

⇥
+ i� j

⌅

H±± = J±±
⇤

⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

+ · · · · · · XXZ model can lead to  
U(1) QSL when Jzz is dominant

Hermele, Fisher, Balents 
Moessner, Huse, Sondhi

as quantum spin ice is a disordered state,

there is no long range order, no symmeetry breaking, it is 
a new phase of matter and cannot be understood 

in the landau’s paradigm of symmetry breaking theory. 


the right description of quantum spin ice is in terms of 
fractionalization and emergent gauge structure.  


there are 3 elementary excitation, emergent gapless 
gauge photon,

it is not goldstone boson, which is due to symmetry 
breaking, there is no sym breaking. it is a consequence 
of emergent gauge structure. 


there are deconfined spinons. if you make a spin flip, this 
create 2 spinons,

you can flip the further spins and seprate 2 spinon by 
arbitrary distance, it is only cost fine energy . one can 
image there is a string connecing 2 spinons, because the 
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Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

classical spin ice

+ quantum 
fluctuations

S. Curnoe, 2008
S. Onoda, 2010

Quantum fluctuation can lead to U(1) QSL

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
Sz

i

�
�ijS

+
j + �⇥ijS

�
j

⇥
+ i� j

⌅

H±± = J±±
⇤

⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a quantum spin ice !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….

flip 6 spins on the hexagon
or

Ring exchange

quantum  
tunneling

1. But classical spin ice is purely 
classical and  is not a new phase of 
matter. It is smoothly connected to the 
high temperature paramagnetic phase. 


2. In contrast, quantum spin ice is a 
new quantum phase of matter. 


3. To obtain quantum spin ice, one can 
simply add quantum spin flip term into

the ising hamiltonian. 


4. the quantum term allows the system

to tunnel from one spin ice state to the 
other. 


5. As long as the term is not too large, 
the system is disordered, and the 
ground sate is quantum spin ice. 
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XYZ model is the generic model that describes the interaction  
between DO doublets. 

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
Z

J̃x

J̃y

J̃z

J̃x

J̃y

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

�1 1

1

�1

AIAO

AFO

FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.

Acknowledgements. – We thank Leon Balents, Michel

Octupole  
QSL

dipole 
QSL

Study phase on a cube: �1  ˜J
x,y,z

 1.

Each component (not just Sz) 
can be emergent electric field, 
depending on the parameters ! 

3D phase diagram

unlike XXZ model, XYZ model is much 
richer 

dipole 
QSL

HXYZ =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
x

S̃x

i

S̃x

j

+ J̃
y

S̃y

i

S̃y

j

The shady part does not sign problem
for quantum Monte Carlo
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physics is defined with observables.

4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets [23] Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets [22] Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [31].

background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [31]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the
U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar

U(1) QSL.
In the U(1) QSL, the spinon excitation has two

branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. (7),
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [31].
The INS measures the dynamic spin structure factor

h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a rare example
that one can control the spinon excitations in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [34–41], which makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was argued
in Ref. 13 that an antiferromagnetic ⇥CW cannot support
a QSL in the spin ice regime. This conclusion is certainly
true for the usual Kramers’ doublet, but is not the case
for the DO doublets. For the DO doublets, what ⇥CW

measures is J
z

, not J̃
z

nor J̃
x

[31]. What determines the
phase diagram of HXYZ are J̃

µ

’s, not the sign or value of

H =
X

hiji

J
z

Sz

i

Sz

j

+ J
x

Sx

i

Sx

j

+ J
y

Sy

i

Sy

j

+J
xz

�
Sx

i

Sz

j

+ Sz

i

Sx

j

�
�h

X

i

(n̂ · ẑi)Sz
i

Infinite anisotropic g-factor
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How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not ? 

The idea to use a little knob that could simply 
lead to some clear experimental consequence,  
very much like the isotope effect of BCS superconductors. 

Here we apply external magnetic field, and expect 
a field-driven Higgs transition to magnetic ordering 
as the field only couples to the matter field (spinons).

Field-driven Higgs transition 
for octupolar U(1) QSL

2

0.00 0.05 0.10 0.15 0.20 0.25
0.0
0.5
1.0
1.5
2.0
2.5
3.0

(a)

U(1) QSL

Phase diagram for h k [111]

J±/Jy

h/
J y

FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X

hiji

J̃
x

⌧̃x
i

⌧̃x
j

+ J̃
y

⌧̃y
i

⌧̃y
j

+ J̃
z

⌧̃z
i

⌧̃z
j

, (1)

where ⌧̃x and ⌧̃z (J̃
x

and J̃
z

) are related to ⌧x and ⌧z

(J
x

and J
z

) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃

y

⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃
µ

⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (2)

where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is

Hsim =
X

hiji

J
y

⌧y
i

⌧y
j

� J±(⌧
+
i

⌧�
j

+ h.c.)

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (3)

where we define ⌧±
i

= ⌧z
i

± i⌧x
i

and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]

Hring = Jring
X
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⇥
⌧+
i

⌧�
j

⌧+
k

⌧�
l

⌧+
m

⌧�
n

+ h.c.
⇤
, (4)
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X

hiji

J̃
x

⌧̃x
i

⌧̃x
j

+ J̃
y

⌧̃y
i

⌧̃y
j

+ J̃
z

⌧̃z
i

⌧̃z
j

, (1)

where ⌧̃x and ⌧̃z (J̃
x

and J̃
z

) are related to ⌧x and ⌧z

(J
x

and J
z

) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃

y

⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃
µ

⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
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where n̂ is the direction of the magnetic field and ẑ
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is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i
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⇥
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i
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i

i
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(8)

=
1
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⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the
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tum fluctuation and dynamics within the ice manifold.
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is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
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QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†
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With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating
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late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±
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is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as
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shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
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r and �r are raising and lowering operators of the
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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i

)(�†
r�r0s

+
rr0 + h.c.). (7)

0. 1.5708 2.35619 2.91155 4.57764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.

0. 1.5708 2.35619 2.91155 4.57764

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.

� X W K �

2.0

1.5

1.0

0.5

0.0

m
in
[
⌦
]
/J

y

(d)
Lower excitation edge for h k [110]

h = 1.0Jy
h = 2.5Jy

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i
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⇥
h⌧+

i
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i

i
⇤

(8)

=
1
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⇥
h�†

r�r0ihs+rr0i+ h.c.
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, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

Lower excitation edge

4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is J

z

, not J̃
z

nor J̃
x

[29]. The sign or
value of J

z

is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of J

z

. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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Our doublet can potentially be realized for any Kramers spin moment with J>1/2.

Two well-known systems:

• Pyrochlores A2B2O7,

e.g. ,
Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc
Dy2Ti2O7,
Cd2Os2O7, etc
Ce2Sn2O7,

• Spinels AB2X4, B=lanthanide?
e.g.  CdEr2Se4
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.
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Conclusion

•  We point out a new doublet dubbed “dipole-octupole” doublet that is  
 realized in the spin liquid material Ce2Sn2O7. 

•  This doublet supports distinct symmetry enriched U(1) spin liquids.  

•  We predict the experimental signatures of distinct symmetry enrichments. 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