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Kitaev model

• A. Kitaev proposed and solved his 
model exactly with the majorana 
representation

relies on a quasidiagonal matrix formalism (see Appendix C), which is similar to, but more
elementary than, noncommutative geometry. It can also be applied to disordered systems.

Furthermore, we find that there are actually 16 (8 Abelian and 8 non-Abelian) types of
vortex-fermion statistics, which correspond to different values of ν mod 16. Only three of them
(for ν = 0,±1) are realized in the original spin model. We give a complete algebraic description
of all 16 cases, see tables on pages 30, 41, and 42.

1 The model

We study a spin-1/2 system in which spins are located at the vertices of a honeycomb lattice,
see Fig. 3a. This lattice consists of two equivalent simple sublattices, referred to as “even” and
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Figure 3: Three types of links in the honeycomb lattice.

“odd” (they are shown by empty and full circles in the figure). A unit cell of the lattice contains
one vertex of each kind. Links are divided into three types, depending on their direction (see
Fig. 3b); we call them “x-links”, “y-links”, and “z-links”. The Hamiltonian is as follows:
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where Jx, Jy, Jz are model parameters.
Let us introduce a special notation for the individual terms in the Hamiltonian:

Kjk =

⎧
⎨
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x
k , if (j, k) is an x-link;
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y
k , if (j, k) is an y-link;
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z
k, if (j, k) is an z-link.

(5)

Remarkably, all operators Kjk commute with the following operators Wp, which are associated
to lattice plaquettes (i.e., hexagons):
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Figure 5: Phase diagram of the model. The triangle is the section of the positive octant
(Jx, Jy, Jz ! 0) by the plane Jx + Jy + Jz = 1. The diagrams for the other octants are similar.

gapped phases, Ax, Ay, and Az, are algebraically distinct, though related to each other by
rotational symmetry. They differ in the way lattice translations act on anyonic states (see
Section 5.2). Therefore a continuous transition from one gapped phase to another is impossible,
even if we introduce new terms in the Hamiltonian. On the other hand, the 8 copies of each
phase (corresponding to different sign combinations of Jx, Jy, Jz) have the same translational
properties. It is unknown whether the 8 copies of the gapless phase are algebraically different.

We now consider the zeros of the spectrum that exist in the gapless phase. The momentum q
is defined modulo the reciprocal lattice, i.e., it belongs to a torus. We represent the momentum
space by the parallelogram spanned by (q1,q2) — the basis dual to (n1,n2). In the symmetric
case (Jx = Jy = Jz) the zeros of the spectrum are given by

q2 q
1

*q *q− q∗ ≡ 1
3q1 + 2

3q2 (mod q1,q2)

−q∗ ≡ 2
3q1 + 1

3q2 (mod q1,q2)
(34)

If |Jx| and |Jy| decrease while |Jz| remains constant, q∗ and −q∗ move toward each other (within
the parallelogram) until they fuse and disappear. This happens when |Jx| + |Jy| = |Jz|. The
points q∗ and −q∗ can also effectively fuse at opposite sides of the parallelogram. (Note that
the equation q∗ = −q∗ has three nonzero solutions on the torus).

At the points ±q∗ the spectrum has conic singularities (assuming that q∗ ̸= −q∗):

qδ y

qδ x

ε(q)

ε(q) ≈ ±
√

gαβ δqα δqβ,

where δq = q − q∗ or δq = q + q∗.
(35)
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the subspace M; (2) when restricted to M, the operators σ̃x, σ̃y, σ̃z obey the same algebraic
relations as σx, σy, σz. We will use the following particular representation:

bybx

bz

c σ̃x = ibxc, σ̃y = ibyc, σ̃z = ibzc. (10)

(We have associated the Majorana operators with four dots for a reason that will be clear later.)
This representation is correct since σ̃α (α = x, y, z) commutes with D (so that M is preserved),
(σ̃α)† = σ̃α, (σ̃α)2 = 1, and

σ̃xσ̃yσ̃z = ibxbybzc = iD.

The last equation is consistent with the formula σxσyσz = i because D acts as the identity
operator on the subspace M.

A multi-spin system is described by four Majorana operators per spin. The corresponding
operators σ̃αj , Dα

j and the physical subspace L ⊂ L̃ are defined as follows:

σ̃αj = ibαj cj , Dj = bx
j b

y
j b

z
jcj ;

|ξ⟩ ∈ L if and only if Dj |ξ⟩ = |ξ⟩ for all j.
(11)

Any spin Hamiltonian H{σαj } can be replaced by the fermionic Hamiltonian H̃{bαj , cj} =
H{σ̃αj} the action of which is restricted to the physical subspace. (The resulting Hamilto-
nian H̃ is rather special; in particular, it commutes with the operators Dj.)

Remark 2.1. The substitution σαj $→ σ̃αj = ibαj cj is gauge-equivalent to a more familiar one
(see [49] and references therein):

σαj $→ Dj σ̃
α
j , i.e., σx

j $→ −iby
j b

z
j , σy

j $→ −ibz
j b

x
j , σz

j $→ −ibx
j b

y
j . (12)

Thus one can represent a spin by only 3 Majorana operators without imposing gauge constraints.
However, this is not sufficient for our purposes.

2.2 Application to the concrete model

Let us apply the general procedure to the the spin Hamiltonian (4). Each term Kjk = σαj σ
α
k

becomes K̃jk = (ibαj cj)(ibαk ck) = −i (ibαj bαk ) cjck. The operator in parentheses, ûjk = ibαj bαk , is
Hermitian; we associated it with the link (j, k). (The index α takes values x, y or z depending
on the direction of the link, i.e., α = αjk.) Thus we get:

H̃ =
i

4

∑

j,k

Âjkcjck, Âjk =

{
2Jαjk

ûjk if j and k are connected,
0 otherwise,

ûjk = ib
αjk

j b
αjk

k .

(13)

Note that each pair of connected sites is counted twice, and ûkj = −ûjk. The structure of this
Hamiltonian is shown in Fig. 4.
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Iridates as Kitaev materials

Na2IrO3 
Red is iridium atom

2009 Jackeli and Khaliullin pointed out that  
Na2IrO3 may support a model with the Kitaev 
interaction in it. 

IrO6  
octahedron

eg

t2g
J=1/2

J=3/2
spin-orbit 
coupling

Ir4+ : 5d5

spin-orbit-entangled  
local moment
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A large families of Kitaev materials

hyperkagome: Na4Ir3O8
H. Takagi, et al, PRL 2007, 
GC and Balents PRB 2008.

A recent fashion  
RuCl3
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Kitaev materials beyond iridates
• What gives the Kitaev interaction is the strong spin-orbit coupling, 

therefore, this does not restrict to iridates.  

• The vast families of rare-earth magnets have never been discussed 
along the line of Kitaev interaction. 

Advantage:  

1. SOC of 4f electrons is much larger than 4d and 5d 
              
2. 4f electron is more localized than 4d/5d electron, so most times the  
    exchange is nearest neighbors, no perturbation from further neighbors 

3. The rare earth elements do not suffer from the neutron absorption issue that  
    prevails in iridates.               
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An example: rare-earth double perovskites



Nd, Tb) were well described with the I2/m space group [22]. The
fractional positions are Ba(x, 1/2, z) with xC1/2 and zC1/4, Ln(1/2, 0,
0), Bi(0, 1/2, 0), O1(x, y, z) with xC1/4, yC1/4, and zC1 and O2(x, 0,
z) with xC1/2 and zC1/4. The atomic positional parameters
determined for Ba2LaBiO6 are also listed in Table 3. The space group
and the lattice parameters for Ba2LnBiO6 are listed in Table 4.

Crystal structures for Ba2LaBiO6 and Ba2LuBiO6 are drawn in
Fig. 4. According to Glazer’s notation, double perovskite structures
with the space group Fm3m, R3 and I2/m are described as a0a0a0,

a!a!a! , and a0b!b! , respectively [26]. The differences in struc-
tures are attributed to the different MO6 octahedral tilting system.

3.1.3. Correlation between crystal structures and tolerance factors
The ionic radii of A, B and O ions directly affect the structure of

the perovskite-type oxides ABO3. The stability of perovskites ABO3

is described by the tolerance factor (t). The tolerance factor of
double perovskites Ba2LnMO6 is represented by the following
equation,

t ¼
rBaþrOffiffiffi

2
p rLn þ rM

2 þrO
" #; ð1Þ

where rBa, rO, rLn and rM are the ionic radii of the respective ions.
The tolerance factors of each Ba2LnMO6 (M¼Sb, Bi) are calcu-

lated, and they are plotted against the ionic radius of Ln3þ in Fig. 5.
We have found that there is a clear relation between crystal
structures and tolerance factors, i.e., the structure is monoclinic,
rhombohedral, and cubic for t¼0.927–0.959, t¼0.960–0.971, and
t¼0.977–0.999, respectively.

3.1.4. Bond lengths
The average bond lengths Ba–O, Ln–O, Sb–O, and Bi–O are

calculated and they are listed in supplementary Table S1. Fig. 6
(a) and (b) shows the variation of their bond lengths against the
ionic radius of Ln3þ ion for the Ba2LnSbO6 and Ba2LnBiO6,
respectively.

The Ba–O and Ln–O bond lengths increase with ionic radius of
Ln3þ . Since the Ba and O atoms form face-centered cubic structure,

Table 2
Lattice parameters for Ba2LnSbO6.

Compound Space group a (Å) α (1)

Ba2LaSbO6 R3 6.0866 (3) 60.30 (3)
Ba2PrSbO6 R3 6.0527 (1) 60.16 (3)
Ba2NdSbO6 R3 6.0383 (5) 60.10 (2)
Ba2SmSbO6 Fm3m 8.5069 (3) 90
Ba2EuSbO6 Fm3m 8.4910 (1) 90
Ba2GdSbO6 Fm3m 8.4732 (2) 90
Ba2TbSbO6 Fm3m 8.4505 (1) 90
Ba2DySbO6 Fm3m 8.4297 (1) 90
Ba2HoSbO6 Fm3m 8.4146 (1) 90
Ba2ErSbO6 Fm3m 8.3958 (1) 90
Ba2TmSbO6 Fm3m 8.3778 (1) 90
Ba2YbSbO6 Fm3m 8.3620 (1) 90
Ba2LuSbO6 Fm3m 8.3484 (1) 90

Fig. 3. Powder X-ray diffraction profiles for (a) Ba2LuBiO6 and (b) Ba2LaBiO6. The calculated profiles based on the R3 (for Ba2LuBiO6) or I2/m (for Ba2LaBiO6) model and the
observed profiles are shown on the top solid line and cross markers, respectively. The insets show the enlarged diffraction profiles in low 2θ region.
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and Bi ion occurs at the B-site of the double perovskite and both the Pr (Tb) and Bi exist in two oxidation
state in the same compound from the analysis of the X-ray diffraction and magnetic susceptibility data.
Magnetic susceptibility measurements show that all these compounds are paramagnetic and have no
magnetic ordering down to 1.8 K.
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1. Introduction

The perovskite-type oxides have the general formula ABO3, in
which A represents a large electropositive cation and B represents
a small transition metal ions. They have often interesting physical
properties, such as ferroelectricity, electrical conductivity, super-
conductivity, and magnetroresistance, due to their diversity of
crystal structure and electronic properties.

We have been focusing our attention on the crystal structures
of the perovskite-type oxides containing rare earth ions. The rare
earth ion is relatively large and tends to adopt a high coordination
number. Therefore, the rare earth ion usually sits at the A site of
the perovskite-type oxides ABO3. Not the A site ions but the B site
ions normally determine the physical properties of the perovskites
[1]. The perovskites have the flexibility of chemical composition
and the possibility of combination of many kinds of ions. By
selecting large alkaline earth elements such as Ba at the A site
atoms, one finds that the rare earths occupy the 6-coordinate B
sites. Double perovskite-type oxides have the formula A2B0B″O6, in
which the primes indicate the different ions in different oxidation
states, and the cations at the B-sites, B0 and B″, are regularly
ordered, i.e., 1:1 arrangement of B0 and B″ ions has been observed
over the six-coordintate B sites. Different kinds of B0 and B″ ion

should show a variety of the physical properties of double
perovskite oxides. Since highly oxidized cations from the second
or third transition series sometimes show quite unusual magnetic
behavior, many studies have been performed on the preparation
and magnetic properties of double perovskite oxides containing
both rare earth and such transition metals, A2LnMO6 (A¼Sr, Ba;
Ln¼rare earths; M¼Ru, Os, Ir, Re) [2–19].

On the other hand, studies on double perovskites containing
post-transition elements such as antimony and bismuth,
Ba2LnMO6 (M¼Sb, Bi), are very limited. Structures of Ba2LnSbO6

(Ln¼La, Pr, Nd, Sm) were investigated by X-ray and neutron
diffraction measurements [20,21]. Harrison et al. reported struc-
tures and magnetic properties of Ba2LnBiO6 (Ln¼Ce, Pr, Nd, Tb)
[22]. In this study, we have paid our attention to the structural
chemistry and magnetic properties of such double perovskites.
From the standpoint of the crystal chemistry, this series of rare
earth compounds are suitable to systematically study their crystal
structures. The valence states of the Ln and Sb (Bi) ions are
expected to be trivalent ([Xe]4fn) and pentavalent ([Kr]4d10, [Xe]
5d10), respectively ([Xe]: electronic xenon core, [Kr]: electronic
krypton core). Therefore, the magnetic behavior of this series of
compounds depends only on Ln3þ ions. That is, this system is
appropriate for the study of the magnetic behavior of f-electrons at
the B sites of double perovskites. The aim of the present work is to
prepare a series of Ba2LnMO6 (M¼Sb, Bi) compounds with
different rare earths and to investigate the influence of the size
of the Ln cations on the stability of the structure and their
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Generalized Kitaev-Heisenberg model

Order by quantum disorder and Weyl magnons of a generalized Kitaev-Heisenberg
model in rare-earth double perovskites
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Motivated by the experiments on the rare-earth double perovskites, we propose a general-
ized Kitaev-Heisenberg model to describe the generic interaction between the spin-orbit-entangled
Kramers doublets of the rare-earth moments. We carry out a systematic analysis of the mean-field
phase diagram of this new model. In the phase diagram, there exist large regions with a continuous
U(1) or O(3) degeneracy. Since no symmetry of the model protects such a continuous degeneracy,
we predict that the quantum fluctuation lifts the continuous degeneracy and favors various magnetic
orders in the phase diagram. From this order by quantum disorder mechanism, we further predict
that the magnetic excitations of the resulting ordered phases are characterized by nearly gapless
pseudo-Goldstone modes. We find that there exist Weyl magnon excitations for certain magnetic
orders. We expect our prediction to inspire further study of Kitaev physics, the order by quantum
disorder phenomenon and topological spin wave modes in the rare-earth magnets and the systems
alike.

I. INTRODUCTION

There has been an intensive interest in the study
of Kitaev materials1–15. Originally, Kitaev materi-
als refer to honeycomb1,2,16,17, hyperhoneycomb9, har-
monic honeycomb11, and hyperkagome iridates18–20, and
more recently, have been extended to the new material
RuCl321–23. In these systems, the magnetic ions are
heavy elements like Ir4+ and Ru4+, where the spin-orbit
coupling (SOC) is quite strong. Due to the spin-orbit en-
tanglement of the local moments, the interaction between
them depends on the bond orientation1,19,24,25, and may
involve a large Kitaev spin interaction1. Since Kitaev
model26 supports a robust quantum spin liquid ground
state, one goal of exploring these systems is to realize the
Kitaev spin liquid with a dominant Kitaev interaction.
More generally, it is of great importance to understand
the role of spin-orbit entanglement on the properties of
a strongly correlated quantum many-body system27.

Since the Kitaev interaction1, or more precisely, the
bond dependent spin interaction, is a natural conse-
quence of the strong SOC19, its presence should go be-
yond iridates or ruthenates. The vast families of rare-
earth magnets have not been explored along the line of
Kitaev interaction. In fact, rare-earth moments have
much stronger SOC than iridium or ruthenium28–36. The
4f electrons are much more localized than the 5d or 4d
electrons in iridates and ruthenates. Most often, the in-
teraction between the local moments in the rare earth
systems is merely restricted to the nearest neighbors,
while the iridates or ruthenates may involve significant
further neighbor interactions due to the extended elec-
tron wavefunctions37. Moreover, the rare-earth elements
do not su↵er from the neutron absorption issue that pre-
vails in the study of iridates16,17. Because of the small
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FIG. 1. (Color online.) The bond dependent interactions
in the FCC lattice. We have marked the six distinct bond
types �± (� = x, y, z), that have the specific forms of bond-
dependent interactions in Eq. 1. The inset is the global coor-
dinate system that defines the spin components.

energy scale of the interaction, the external magnetic field
and the inelastic neutron scattering could even be used
to precisely determine the Hamiltonian of the rare-earth
systems. All these advantages make the rare-earth sys-
tems ideal Kitaev materials.
In this paper, we turn from iridates to the rare-earth

systems and explore the consequence of the spin-orbit
entanglement and the Kitaev interaction in rare-earth
double perovskites. Double perovskite (A2BB0O6) is a
very common system in which the magnetic ions B0 form
a face-centered-cubic (FCC) lattice24,25,38. Previously,
the interplay of strong correlation and strong SOC has
been explored for the 4d and 5d transition metal elements
with partially filled t2g shells24,25. It was pointed out
that the strong spin-orbit entanglement gives a multipo-
lar structure of the local moments and rich magnetic mul-
tipolar orders24,25. In contrast, the rare-earth electrons
often experience substantial crystal electric field (CEF)
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Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.
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where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system48. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,19,24,25,36.

Compared with the rare-earth triangular system35,36,49

and the pyrochlore system28,30,32, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of
the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as

the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method50

that is to replace the local hard spin constraint by a
global one such that

X

i

|S
i

|2 = NS2, (2)

where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,

Ecl =
X

q

X

↵�

E
↵�

(q)S↵

q S�

�q, (3)

under the global constraint. Here we have defined

S↵

i

=
1

N
1
2

X

q

S↵

q eiq·ri . (4)

Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained
from the antiferromagnetic K term remains invariant
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Phase diagram
2

that splits the (2J +1)-fold degeneracy of the spin-orbit-
entangled total moment J. For a half-integer moment
J , the CEF ground state is a Kramers’ doublet whose
degeneracy is protected by the time reversal symmetry.
Often, the CEF gap is much larger than the tempera-
ture scale and exchange interaction in the system, and
the low-temperature magnetic properties are fully cap-
tured by the ground state doublets that are modeled by
pseudospin-1/2 local moments.

For the rare-earth double perovskites (Ba2LnSbO6, Ln
= rare earths)38–43, we propose a generic model on the
FCC lattice that describes the nearest-neighbor interac-
tion between the Kramers’ doublet local moments. This
generic model involves the Heisenberg interaction, the
Kitaev interaction, and an additional crossing exchange
that is symmetric in two pseudospin components. In the
mean-field phase diagram of this generic model, we find
large parameter regions that support ground states with
continuous degeneracies. Due to the spin-orbit entangle-
ment, the generic model does not have any continuous
symmetry. The continuous degeneracy is thus acciden-
tal and not related to any microscopic symmetry of the
model. We expect that, the quantum fluctuations should
break the accidental degeneracy and favor magnetic or-
dered states. This mechanism is known as order by quan-
tum disorder (ObQD)34,44–46. Because of the continuous
degeneracy, the fluctuations within the degenerate mean-
field ground state manifold are very soft and are char-
acterized by the pseudo-Goldstone mode with a nearly
gapless dispersion when the system becomes ordered.
The pseudo-Goldstone mode is a direct consequence of
the ObQD, and the consequence of the nearly gapless
pseudo-Goldstone mode is a T 3 temperature dependence
of the heat capacity in the ordered phases. In addition
to the pseudo-Goldstone mode, the Weyl magnon mode47

is found in the magnetic excitation for certain magnetic
order. In constrast to the low energy pseudo-Goldstone
mode, the Weyl magnon mode appears at finite energies
due to the bosonic nature of the spin wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present
a systematic analysis of the mean-field phase diagram
of this model in Sec. III. Competition between di↵erent
interactions, together with the geometrical frustration,
leads to a very rich phase diagram. Specifically, among
di↵erent phases, we focus on the regions with a contin-
uous U(1) or O(3) degeneracy, in Sec. IV. The degener-
acy at the mean-field level is lifted when the quantum
fluctuation is included, and various magnetic orders are
favored in these regions. We demonstrate the ObQD ex-
plicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Fi-
nally, we conclude with a discussion in Sec. V.
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FIG. 2. (Color online.) The mean-field phase diagrams for
an antiferromagnetic Heisenberg coupling (a) and for a fer-
romagnetic Heisenberg coupling (b). The incommensurate
phase has non-uniform spin amplitudes on every site. Both
phase I and phase II have antiferromagnetic collinear orders
with the wavevector X, and a continuous U(1) ground state
degeneracy exists in phase II. Both phase III and phase IV
have antiferromagnetic collinear orders with the wavevector
L, and phase IV shows a U(1) degeneracy. Phase V is ferro-
magnetically ordered with an O(3) ground state degeneracy.
See the main text and Tab. I for a detailed discussion.

II. THE GENERALIZED
KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides38,
Ba2LnSbO6 (Ln= rare earth), where the Ba ions are lo-
cated at the A sites of the perovskite-type oxides ABO3,
and the Ln and Sb ions are regularly ordered at the B
sites. Specifically, the Ln and Sb ions are ordered in the
rock-salt type structure, with space group Fm3̄m. Each
of the two kinds of ions forms a separate FCC lattice. The
magnetic behavior depends on the Ln3+ ions ([Xe]4fn,
[Xe]: electronic xenon core), where the SOCs are typi-
cally quite large. We study the Kramers’ doublet that is
formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.

Under the Fm3̄m space group symmetry, the pseu-
dospin, S, that acts on the Kramers’ doublet of the
rare earth ion, transforms as a pseudovector. Both the
pseudospin position and the pseudospin orientation are
transformed. The most general exchange interaction be-
tween the local moments on the nearest neighbor sites,
allowed by the lattice symmetry, is a generalized Kitaev-

3

Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.
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where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system48. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,19,24,25,36.

Compared with the rare-earth triangular system35,36,49

and the pyrochlore system28,30,32, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of
the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as

the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method50

that is to replace the local hard spin constraint by a
global one such that

X

i
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where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,
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under the global constraint. Here we have defined
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Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained
from the antiferromagnetic K term remains invariant
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where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system48. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,19,24,25,36.

Compared with the rare-earth triangular system35,36,49

and the pyrochlore system28,30,32, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of
the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as

the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method50

that is to replace the local hard spin constraint by a
global one such that
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Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,
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where x
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is the x coordinate of the lattice site r
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. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained
from the antiferromagnetic K term remains invariant

3

Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.
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where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system48. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,19,24,25,36.

Compared with the rare-earth triangular system35,36,49

and the pyrochlore system28,30,32, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of
the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as

the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method50

that is to replace the local hard spin constraint by a
global one such that

X

i

|S
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|2 = NS2, (2)

where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,
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q S�
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under the global constraint. Here we have defined
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=
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N
1
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q eiq·ri . (4)

Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained
from the antiferromagnetic K term remains invariant
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FIG. 3. (Color online.) Quantum zero point energy in X
= (2⇡, 0, 0) ordered state (phase II). (a) The minimum of �E
occurs at ✓ = n⇡/2 with n 2 Z. (b) Arrows indicate four-
fold symmetry equivalent pseudospin orientation in the (100)
plane. We choose (J,K, F ) = (1, 1, 0).

when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
i

⌘ S m̂
i

=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
i

⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,

V: S
i

⌘ S m̂
i

= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as
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where m̂
i

is the unit vector describing the spin orienta-
tion of classical spin order at site i, n̂

i

is a unit vector
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fold symmetry equivalent pseudospin orientation in the (100)
plane. We choose (J,K, F ) = (1, 1, 0).

when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
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⌘ S m̂
i

=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
i

⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)
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= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
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fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,

V: S
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⌘ S m̂
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= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as
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tion of classical spin order at site i, n̂
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when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
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⌘ S m̂
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=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
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⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/
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2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)
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fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,
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= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as
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when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with
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(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as
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⌘ Sm̂
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= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,
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6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
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like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,
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+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as
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when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
i

⌘ S m̂
i

=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
i

⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,

V: S
i

⌘ S m̂
i

= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as

S
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· m̂
i

= S � b†
i

b
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, (10)
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· n̂
i
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(2S)

1
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i

), (11)
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· (m̂
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) =
(2S)

1
2

2i
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� b†
i

), (12)

where m̂
i

is the unit vector describing the spin orienta-
tion of classical spin order at site i, n̂

i

is a unit vector

3

Phase Wavevector Order Para. Continuous deg
I (2⇡, 0, 0) along [100] axis –
II (2⇡, 0, 0) in (100) plane U(1)
III (⇡,⇡,⇡) along [111] axis –
IV (⇡,⇡,⇡) in (111) plane U(1)
V (0, 0, 0) any direction O(3)

TABLE I. The mean-field phases in Fig. 2. The incommen-
surate phase is not included here.

Heisenberg model with

H =
X

hiji�±

⇥
J S

i

·S
j

+KS�

i

S�

j

±F (S↵

i

S�

j

+S�

i

S↵

j

)
⇤
, (1)

where the bond index �± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest
neighbor interaction is su�cient to describe the mag-
netic properties of the rare-earth moments in this system
as the 4f electrons are very localized spatially. Besides
the ordinary isotropic Heisenberg exchange interaction,
we have the well-known Kitaev exchange interaction as
well as the symmetric pseudo-dipole interaction that de-
pends on the bond orientation. In Eq. 1, the antisym-
metric Dzyaloshinskii-Moriya interaction is prohibited by
the inversion symmetry of the system48. The component
� (= x, y, z) specifies the three distinct types of Ising
coupling in the Kitaev exchange (K term), and {↵,�, �}
is a cyclic permutation of {x, y, z}, that contributes to
the symmetric pseudo-dipole interaction (F term). The
bond dependent pseudospin interaction is a direct conse-
quence of the spin-orbit entanglement and widely occurs
in many strong spin-orbit-coupled materials1,19,24,25,36.

Compared with the rare-earth triangular system35,36,49

and the pyrochlore system28,30,32, there are only three
independent pseudospin interactions in Eq. 1. It is the
symmetries of the FCC lattice that help reduce the num-
ber of independent pseudospin interactions in our model.
This result indicates that one may find even simpler mod-
els in strong spin-orbit-coupled systems with large lattice
symmetries.

III. MEAN-FIELD PHASE DIAGRAM

We now discuss the mean-field phase diagram of the
generalized Kitaev-Heisenberg model in Eq. 1. We sys-
tematically analyze the mean-field ground states in dif-
ferent parameter regimes. We consider both antiferro-
magnetic and ferromagnetic Heisenberg interactions with
J > 0 and J < 0, respectively.

In the classical mean-field theory, we first treat the
pseudospin as a classical vector that satisfies the hard
constraint |S

i

| = S. The classical (mean-field) energy of
the system needs to be optimized under this local con-
straint on every lattice site. This procedure is di�cult as

the local hard constraint is hard to implement. Instead,
we here adopt the well-known Luttinger-Tisza method50

that is to replace the local hard spin constraint by a
global one such that

X

i

|S
i

|2 = NS2, (2)

where N is the total number of the pseudospins in the
system. We optimize the classical mean-field energy,

Ecl =
X

q

X

↵�

E
↵�

(q)S↵

q S�

�q, (3)

under the global constraint. Here we have defined

S↵

i

=
1

N
1
2

X

q

S↵

q eiq·ri . (4)

Once the mean-field ground state satisfies both the global
constraint and the local hard spin constraint, then the
ground state under this approximation turns out to be
the real ground state of the model in the classical limit.
In Fig. 2, we depict the mean-field phase diagram with

both antiferromagnetic and ferromagnetic Heisenberg in-
teractions. In the phase diagram, there is a large region
where the minimum of the mean-field energy occurs in a
set of incommensurate wavevectors (see Fig. 2). In these
incommensurate regions, only one spin component is in-
volved in the mean-field ground state. As a result, this
incommensurate state cannot satisfy the local hard spin
constraint due to the incommensurability. This result
indicates the strong frustration in these regions of the
generalized Kitaev-Heisenberg model.
We continue with other ordered phases in the phase di-

agram. In Fig. 2a, phase I is an antiferromagnetic state
with the ordering wavevector at X = (2⇡, 0, 0) or equiva-
lently (0, 2⇡, 0), (0, 0, 2⇡). In this state, the spins order in
a collinear pattern. For the (2⇡, 0, 0) ordering wavevec-
tor, the spin ordering is locked to the x̂ direction with,

I: S
i

⌘ S m̂
i

= S x̂ e2⇡xi , (5)

where x
i

is the x coordinate of the lattice site r
i

. The
locking between the ordering wavevector and the spin ori-
entation is a direct consequence and general phenomenon
of the strong spin-orbit-coupled magnets.
In phase II with a dominant and antiferromagnetic Ki-

taev interaction (K > 0), the system also orders with
the wavevector X and equivalent ones. Although hav-
ing the same ordering wavevector, the ground state of
phase II has a continuous U(1) degeneracy. If we choose
the (2⇡, 0, 0) ordering wavevector, the ground state is pa-
rameterized as

II: S
i

⌘ S m̂
i

= S [cos ✓ ŷ + sin ✓ ẑ] e2⇡xi , (6)

where ✓ is an angular variable. This U(1) degeneracy can
be well understood, because the classical energy gained
from the antiferromagnetic K term remains invariant
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FIG. 3. (Color online.) Quantum zero point energy in X
= (2⇡, 0, 0) ordered state (phase II). (a) The minimum of �E
occurs at ✓ = n⇡/2 with n 2 Z. (b) Arrows indicate four-
fold symmetry equivalent pseudospin orientation in the (100)
plane. We choose (J,K, F ) = (1, 1, 0).

when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
i

⌘ S m̂
i

=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
i

⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

0 0.5 1 1.5 2 2.5 3

-2.2

-2.195

-2.19

-2.185

-2.18

0 0.5 1 1.5 2 2.5 3

-2.2

-2.195

-2.19

-2.185

-2.18

(a)

�
E
/(
|J
|N

si
te
)

-2.200

-2.195

-2.190

-2.185

-2.180

0.0 0.5 1.0 1.5 2.0 2.5 3.0
✓

(b)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,

V: S
i

⌘ S m̂
i

= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as

S
i

· m̂
i

= S � b†
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where m̂
i

is the unit vector describing the spin orienta-
tion of classical spin order at site i, n̂

i

is a unit vector
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FIG. 3. (Color online.) Quantum zero point energy in X
= (2⇡, 0, 0) ordered state (phase II). (a) The minimum of �E
occurs at ✓ = n⇡/2 with n 2 Z. (b) Arrows indicate four-
fold symmetry equivalent pseudospin orientation in the (100)
plane. We choose (J,K, F ) = (1, 1, 0).

when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
i

⌘ S m̂
i

=
Sp
3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
i

⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,

V: S
i

⌘ S m̂
i

= S (sin ✓ cos� x̂+ sin ✓ sin� ŷ

+cos ✓ ẑ), (9)

where ✓ runs from 0 to ⇡, and � runs from 0 to 2⇡. The
O(3) degeneracy, as in the previous U(1) degeneracy case,
is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
discrete lattice symmetries, the continuous degeneracy of
the mean-field ground states is not granted at the quan-
tum level. We, therefore, expect that the degeneracy in
the mean-field level will be lifted when quantum fluctu-
ation is included. Within the linear spin wave theory,
we now discuss this order by quantum disorder (ObQD)
e↵ect explicitly.
For the ground state with a continuous U(1) degener-

acy, parametrized as in Eq. 6 and Eq. 8, we introduce the
Holstein-Primako↵ bosons to express the spin operators
as
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where m̂
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is the unit vector describing the spin orienta-
tion of classical spin order at site i, n̂
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is a unit vector
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FIG. 5. (Color online.) Quantum zero point energy of two
representative parameters in mean-field phase V. The two-
dimensional sphere is parametrized by polar angle ✓ and az-
imuthal angle '. (a) We set (J,K, F ) = (�1, 1, 0) for phase
Va in Fig. 6, the favored spin orientations are ±x̂, ±ŷ, and
±ẑ, corresponding to the six minima of �E. (b) We set
(J,K, F ) = (�1, 0, 1) for phase Vb in Fig. 6, the favored spin
orientations are [111] directions, corresponding to the eight
minima of �E.

normal to m̂
i

, and S = 1/2. We substitute the spin oper-
ators with these Holstein-Primako↵ bosons. In the linear
spin wave approximation, we keep the boson terms up
to the quadratic order. The resulting linear spin wave
Hamiltonian has the following form

Hsw =
X

k

hX

µ,⌫

�
A

µ⌫

(k)b†kµbk⌫ +B
µ⌫

(k)b�k,µbk⌫

+B⇤
µ⌫

(�k)b†kµb
†
�k,⌫

�
+ C(k)

i
+ Ecl, (13)

where Ecl is the classical mean-field energy of the ground
state and independent of the angular variable ✓ due to
the U(1) degeneracy, A

µ⌫

, B
µ⌫

and C depend on ✓, and
A

µ⌫

, B
µ⌫

satisfy

A
µ⌫

(k) = A⇤
⌫µ

(k), (14)

B
µ⌫

(k) = B
⌫µ

(�k). (15)

While the classical mean-field energy Ecl preserves the
U(1) degeneracy, the quantum fluctuation lifts this con-
tinuous degeneracy through the quantum zero point en-
ergy �E that is given by

�E =
X

k

hX

µ

1

2

�
!
µ

(k)�A
µµ

(k)
�
+ C(k)

i
, (16)

where !
µ

(k) is the excitation energy of the µ-th spin wave
mode at momentum k.

In phase II where there is a U(1) degeneracy (see
Eq. 6), the minima of zero point energy �E occurs at

II: ✓ =
n⇡

2
, (17)
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FIG. 6. (Color online.) Phase V in the mean-field phase
diagram of Fig. 2 (b) is split into two phases with di↵erent
magnetic orders once the quantum fluctuation is considered.
Here J < 0.

where n 2 Z, and the favored magnetic order has a four-
fold symmetry equivalent configuration that is shown in
Fig. 3.
In phase IV where there is also U(1) degeneracy (see

Eq. 8), the minima of zero point energy �E occurs at

IV: ✓ =
⇡

6
+

n⇡

3
, (18)

where n 2 Z and the favored magnetic order has a six-
fold symmetry equivalent configuration that is shown in
Fig. 4.
Now we turn to phase V of the mean-field phase dia-

gram, the ferromagnetic ordered state with an O(3) de-
generacy. As we have parametrized with a vector on a
unit sphere in Eq. 9, two angular variables (✓ and �) are
needed to capture the O(3) degeneracy. The minima of
the zero point energy �E are shown in Fig. 5. We find
two distinct ordering patterns that are not equivalent
under the lattice symmetry. As we depict in Fig. 6, the
phase V of the mean-field phase diagram is split into two
distinct phases (Va and Vb). In Va (Vb), the quantum
fluctuation selects the [001] type ([111] type) of magnetic
order.
The lifting of the O(3) degeneracy is understood

through a cubic anisotropy that is induced by the quan-
tum fluctuation. The cubic anisotropy in the energy is
given as

Eani = �ani[(M
x)4 + (My)4 + (Mz)4], (19)

where M is the order parameter of the ferromagnetic
phase. In phase Va, �ani < 0 and we have the [001]
ordering. In phase Vb, �ani > 0 and we have the [111]
ordering.
Having determined the ground state configurations, we

further study the spin wave excitation spectra in di↵er-
ent phases. The results are depicted along high symme-
try momentum lines in Fig. 7. There are two qualita-
tive features in the spin wave spectra. First, we observe
gapless modes in Fig. 7 (a), (b) and (c). These pseudo-
Goldstone modes are characteristic of the phase ordered
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FIG. 3. (Color online.) Quantum zero point energy in X
= (2⇡, 0, 0) ordered state (phase II). (a) The minimum of �E
occurs at ✓ = n⇡/2 with n 2 Z. (b) Arrows indicate four-
fold symmetry equivalent pseudospin orientation in the (100)
plane. We choose (J,K, F ) = (1, 1, 0).

when spin vectors are rotated within the U(1) manifold.
Here the presence of a weak pseudo-dipole interaction
does not lift the degeneracy. At the mean field level,
phase I and phase II are understood as the easy axis
along the [100] direction and easy plane anisotropy in the
(100) plane for the order parameter, respectively. Note
that in region II there also exists a line degeneracy from
X to W in the reciprocal space. Since only one spin com-
ponent is involved, therefore, however, it can not form a
normalized spin spiral order.

In the regimes dominated by the pseudo-dipole interac-
tion (F term), we obtain two other ordered phases. Phase
III is an antiferromagnetic ordered phase with the order-
ing wavevector L = (⇡,⇡,⇡) or equivalent ones. Given
L = (⇡,⇡,⇡), the spin ordering is locked to the [111]
direction with

III: S
i
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=
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3
(x̂+ ŷ + ẑ) ei⇡(xi+yi+zi). (7)

Finally, phase IV has the same ordering wavevector as
phase III but has a U(1) ground state degeneracy. For
the (⇡,⇡,⇡) ordering, the spin vector is parameterized as

IV: S
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⌘ Sm̂
i

= S(cos ✓ û1+sin ✓ û2)e
i⇡(xi+yi+zi), (8)

where ✓ is an angular variable, and û1, û2 are two unit
vectors in the (111) plane, chosen as û1 = [11̄0]/

p
2,

û2 = [112̄]/
p
6. At the mean field level, phase III and

Phase IV can be understood as the easy axis along the
[111] direction and easy plane anisotropy in the (111)
plane of the order parameter, respectively. Furthermore,
like the case in phase II, a line degeneracy exists in the
reciprocal space, from L to another equivalent L (e.g.
from (⇡,⇡,⇡) to (⇡,⇡,�⇡)). Since the spins do not have
uniform magnitudes, they cannot be the ground states.

When the Kitaev interaction is switched to ferromag-
netic with K < 0 and remains dominant, the ground
state depends on the sign of the Heisenberg interaction.
The case with an antiferromagnetic Heisenberg interac-
tion gives phase I. For the ferromagnetic Heisenberg in-
teraction with J < 0, however, the classical ground state
is a simple ferromagnetic state (phase V) but has an O(3)

FIG. 4. (Color online.) Quantum zero point energy in L
= (⇡,⇡,⇡) ordered state (phase IV). (a) The minimum of �E
occurs at ✓ = ⇡/6+n⇡/3 with n 2 Z. (b) Arrows indicate six-
fold symmetry equivalent pseudospin orientation in the (111)
plane. We choose (J,K, F ) = (�1, 2,�4).

degeneracy. The spin order is parametrized by two an-
gular variables,
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is understood from the invariance of the dominant clas-
sical energy from the ferromagnetic Kitaev interaction.
As we summarize in Tab. I, these five ordered phases

have rather di↵erent order parameters. The phase tran-
sition between them, if there exists a direct transition
between them, is first order.

IV. QUANTUM FLUCTUATION AND
MAGNETIC EXCITATION

We focus on the ordered phases with a continuous
ground state degeneracy, and discuss the role of quantum
fluctuation when the quantum nature of the pseudospin is
considered. Since the microscopic Hamiltonian only has
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tum level. We, therefore, expect that the degeneracy in
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where m̂
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is the unit vector describing the spin orienta-
tion of classical spin order at site i, n̂
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is a unit vector
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FIG. 5. (Color online.) Quantum zero point energy of two
representative parameters in mean-field phase V. The two-
dimensional sphere is parametrized by polar angle ✓ and az-
imuthal angle '. (a) We set (J,K, F ) = (�1, 1, 0) for phase
Va in Fig. 6, the favored spin orientations are ±x̂, ±ŷ, and
±ẑ, corresponding to the six minima of �E. (b) We set
(J,K, F ) = (�1, 0, 1) for phase Vb in Fig. 6, the favored spin
orientations are [111] directions, corresponding to the eight
minima of �E.

normal to m̂
i

, and S = 1/2. We substitute the spin oper-
ators with these Holstein-Primako↵ bosons. In the linear
spin wave approximation, we keep the boson terms up
to the quadratic order. The resulting linear spin wave
Hamiltonian has the following form
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where Ecl is the classical mean-field energy of the ground
state and independent of the angular variable ✓ due to
the U(1) degeneracy, A
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and C depend on ✓, and
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satisfy
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(k), (14)

B
µ⌫

(k) = B
⌫µ

(�k). (15)

While the classical mean-field energy Ecl preserves the
U(1) degeneracy, the quantum fluctuation lifts this con-
tinuous degeneracy through the quantum zero point en-
ergy �E that is given by
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µ
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µµ

(k)
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+ C(k)
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where !
µ

(k) is the excitation energy of the µ-th spin wave
mode at momentum k.

In phase II where there is a U(1) degeneracy (see
Eq. 6), the minima of zero point energy �E occurs at
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2
, (17)
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FIG. 6. (Color online.) Phase V in the mean-field phase
diagram of Fig. 2 (b) is split into two phases with di↵erent
magnetic orders once the quantum fluctuation is considered.
Here J < 0.

where n 2 Z, and the favored magnetic order has a four-
fold symmetry equivalent configuration that is shown in
Fig. 3.
In phase IV where there is also U(1) degeneracy (see

Eq. 8), the minima of zero point energy �E occurs at

IV: ✓ =
⇡

6
+

n⇡

3
, (18)

where n 2 Z and the favored magnetic order has a six-
fold symmetry equivalent configuration that is shown in
Fig. 4.
Now we turn to phase V of the mean-field phase dia-

gram, the ferromagnetic ordered state with an O(3) de-
generacy. As we have parametrized with a vector on a
unit sphere in Eq. 9, two angular variables (✓ and �) are
needed to capture the O(3) degeneracy. The minima of
the zero point energy �E are shown in Fig. 5. We find
two distinct ordering patterns that are not equivalent
under the lattice symmetry. As we depict in Fig. 6, the
phase V of the mean-field phase diagram is split into two
distinct phases (Va and Vb). In Va (Vb), the quantum
fluctuation selects the [001] type ([111] type) of magnetic
order.
The lifting of the O(3) degeneracy is understood

through a cubic anisotropy that is induced by the quan-
tum fluctuation. The cubic anisotropy in the energy is
given as

Eani = �ani[(M
x)4 + (My)4 + (Mz)4], (19)

where M is the order parameter of the ferromagnetic
phase. In phase Va, �ani < 0 and we have the [001]
ordering. In phase Vb, �ani > 0 and we have the [111]
ordering.
Having determined the ground state configurations, we

further study the spin wave excitation spectra in di↵er-
ent phases. The results are depicted along high symme-
try momentum lines in Fig. 7. There are two qualita-
tive features in the spin wave spectra. First, we observe
gapless modes in Fig. 7 (a), (b) and (c). These pseudo-
Goldstone modes are characteristic of the phase ordered
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fold symmetry equivalent configuration that is shown in
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gram, the ferromagnetic ordered state with an O(3) de-
generacy. As we have parametrized with a vector on a
unit sphere in Eq. 9, two angular variables (✓ and �) are
needed to capture the O(3) degeneracy. The minima of
the zero point energy �E are shown in Fig. 5. We find
two distinct ordering patterns that are not equivalent
under the lattice symmetry. As we depict in Fig. 6, the
phase V of the mean-field phase diagram is split into two
distinct phases (Va and Vb). In Va (Vb), the quantum
fluctuation selects the [001] type ([111] type) of magnetic
order.
The lifting of the O(3) degeneracy is understood

through a cubic anisotropy that is induced by the quan-
tum fluctuation. The cubic anisotropy in the energy is
given as

Eani = �ani[(M
x)4 + (My)4 + (Mz)4], (19)

where M is the order parameter of the ferromagnetic
phase. In phase Va, �ani < 0 and we have the [001]
ordering. In phase Vb, �ani > 0 and we have the [111]
ordering.
Having determined the ground state configurations, we

further study the spin wave excitation spectra in di↵er-
ent phases. The results are depicted along high symme-
try momentum lines in Fig. 7. There are two qualita-
tive features in the spin wave spectra. First, we observe
gapless modes in Fig. 7 (a), (b) and (c). These pseudo-
Goldstone modes are characteristic of the phase ordered
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FIG. 7. (Color online.) The representative spin wave spectra
along high symmetry momentum lines with (a) (J,K, F ) =
(1, 1, 0) and ✓ = 0 in phase II; (b) (J,K, F ) = (�1, 2,�4),
✓ = ⇡/6 in phase IV; (c) (J,K, F ) = (�1, 1, 0), ✓ = ⇡/2,
' = 0 in phase Va. In (d) we depict the FCC Brillouin zone
(the figure is adapted from Wikipedia52).

due to quantum fluctuation that lifts the continuous de-
generacy, in our case, phase II, IV and V. Although a
small gap is expected to be generated by anharmonic ef-
fects, nearly gapless dispersion is a possible experimental
signature of the order by quantum disorder scenario. Sec-
ond, magnon spectrum in Fig. 7 (a) shows band touching
(along K-�) due to accidental degeneracy, indicating the
“Weyl magnon” behavior and the corresponding topo-
logically robust surface states, although the Weyl node
along K-� belong to the type-II node51 for the specific
parameter choice in Fig. 7 (a).

V. DISCUSSION

Despite the abundance of the rare-earth double per-
ovskites38,39, the experimental characterization of them
is quite limited. Only the crystal structure and the mag-
netic susceptibility measurements have been carried out
so far. All these compounds are paramagnetic and have
no magnetic ordering down to 1.8K38. This result does
not mean all of them would be spin liquids. The tem-
perature (1.8K) is not quite low for the rare-earth local
moments since the exchange interaction between them is

of the order of a couple Kelvin. It is very likely that the
absence of magnetic ordering down to 1.8K is a thermal
e↵ect, and one could observe the ground state properties
if the temperature is further lowered.
What would be the experimental phenomena that are

expected for the ObQD phenomena and Weyl magnons?
Clearly, one should observe one of the orders that we
predict. Moreover, the consequence of the ObQD is the
presence of the nearly gapless pseudo-Goldstone mode for
the magnetic excitation. Strictly speaking, the pseudo-
Goldstone mode should develop a minigap due to the
quantum e↵ect, but one would expect a T 3 heat capac-
ity in the temperature regime above the minigap energy
scale. For the Weyl magnons, one could probe the spin
wave spectrum with the inelastic neutron scattering mea-
surement and directly detect the linear band touching.
Alternatively, one could measure the consequence of Weyl
magnons, such as the chiral surface state and optical con-
ductivities. All these probes have been discussed in de-
tails in Ref. 47.
In many systems, the ObQD is very fragile because

other small interactions, that are not included in the
model, may simply drive the system into a di↵erent state.
For rare-earth double perovskites, however, we expect the
dominant interaction is from the nearest neighbors. The
further neighbor exchanges are rather weak due to the
spatial localization of the 4f electrons. The remaining
interaction is the magnetic dipole interaction that decays
very fast with the separation of the local moments. The
actual magnitude would depend on the material’s details
such as the the moment size and lattice constants. In
any case, we expect the rare-earth double perovskites to
be promising candidates for the ObQD phenomena.
The study of the rare-earth double perovskites is in

the early stage. Many physical properties of the rare-
earth double perovskites need to be measured, and it
is very likely that other exotic quantum phases could
emerge besides the ones that have been predicted here.
We expect our work to bring further attention to this
new class of materials.
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Holstein-Primarko↵ bosons, one can readily write down
the spin wave Hamiltonian as

Hsw =
P

k

P
µ,⌫ [Aµ⌫(k)a

†
k,µak,⌫ +Bµ⌫(k)a�k,µak,⌫

+B⇤
µ⌫(�k)a†k,µa

†
�k,⌫ ] + Ecl, (3)

where Ecl is the classical ground state energy, and Aµ⌫ ,
Bµ⌫ satisfy Aµ⌫(k) = A⇤

µ⌫(k), Bµ⌫(k) = Bµ⌫(�k) and
depend on the angular variable ✓. Although the clas-
sical energy Ecl is independent of ✓ due to the U(1)
degeneracy, the quantum zero point energy �E of the
spin wave modes depends on ✓ and is given by �E =P

k

P
µ

1
2 [!µ(k) � Aµµ(k)], where !µ(k) is the excita-

tion energy of the µ-th spin wave mode at momentum k

and is determined for every classical spin ground state.
The minimum of �E occurs at ✓ = ⇡/6 + n⇡/3 (n⇡/3)
with n 2 Z in region I and III (region II). The U(1)
degeneracy of the classical ground states is thus broken
by quantum fluctuations. This is the well-known phe-
nomenon known as “quantum order by disorder” [11–13].
The resulting state is a non-collinear state and the spin
is pointing along the local h112i (h11̄0i) lattice direction
at each sublattice in region I and III (region II).

To obtain the phase diagram in Fig.X, we have im-
plemented the semiclassical approach and included the
quantum fluctuation within the linear spin wave anal-
ysis. This treatment may underestimate the quantum
fluctuation in the parameter regimes when J � J 0, D or
J 0 � J,D. In these regimes, one may first consider the
tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these
regimes might be non-magnetic and will be addressed in
the future work. For the purpose of the current work, we
will focus on the ordered ground states in Fig.X.

Magnon Weyl nodes and surface states.

Although region I and III of the phase diagram have the
same magnetic ordering structure, the magnetic excita-
tions of the two regions are distinct in a topological man-
ner. Without losing any generality, we choose ✓ = ⇡/2
and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using the lin-
ear spin-wave theory, we obtain the magnetic excitation
spectrum with respect to this magnetic state in region I
and III. In Fig.X, we depict a representative excitation
spectrum along the high symmetry lines in the Brillouin
zone for region I.

Here we comment on the magnon spectrum in Fig.X.
First of all, the gapless mode of the spectrum is simply an
artifact of the linear spin-wave approximation. Because
there is no symmetry that protects the gapless mode, a
small gap would eventually be created when the inter-
action between the Holstein-Primarko↵ bosons is taken
into account. Secondly, the spectrum in Fig.X has a lin-
ear band touching at the momentum point from � to X.
In fact, as we show in Fig.X, there are in total four such

FIG. 3. (Color Online.) (a) The spin wave spectrum along
high symmetry momentum lines. (b) Four Weyl nodes are
located at (±k0, 0, 0), (0,±k0, 0) with k0 = 1.072⇡. Red and
blue indicate the opposite chirality. We have set D = 0.2J ,
J

0 = 0.6J and ✓ = ⇡/2 in the plots.

linear band touchings. These linear band touchings occur
at a finite energy and are the Weyl nodes of the magnon
spectrum. Just like the Weyl nodes in the electronic band
structure of Weyl semimetals [2], the magnon Weyl nodes
are sources and sinks of Berry curvatures and are char-
acterized by the chirality number that takes ±1. Unlike
the Weyl semimetal in the electron systems where one
can tune the Fermi energy to the Weyl nodes by varying
the electron density, the magnon Weyl nodes of our sys-
tem must appear at finite energies because of the bosonic
nature of magnons. Likewise, due to the bulk-edge cor-
respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
Once the magnon Weyl nodes emerge in the magnon

spectrum, they are robust and thus exist over a finite
regime in the parameter space. We find that the magnon
Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....
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band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....

Discussion.
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FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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4

FIG. 4. Surface states of a slab (cut in h110i direction)
by setting D = 0.2J , J

0 = 0.6J and ✓ = ⇡/2. (a) Sur-
face band dispersion in surface Brillouin zone (k1-k2 plane).
States with E = EWeyl form (red) arcs connecting the pro-
jection of Weyl nodes (Pink and Light Blue, only four nodes
independent). States near the two longer(shorter) arcs are
localized in one(another) surface. The chiral semi-classical
velocity of states can be implied by the gradient of the band
dispersion. (b) Dispersion along (k,⇡) (Blue, Dashed line in
(a)): projected bulk spectrum(Blue), chiral edge states(Red),
EWeyl(Green, Dashed).

Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region II, there is no Weyl
band crossing, and this is what really distinguishes region
II from region I.

When we apply an external magnetic field to the sys-
tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian [11]. As we show in Figure 5, Weyl nodes
are shifted gradually and finally annihilated when mag-

FIG. 5. The evolution of Weyl nodes under the mag-

netic field. Applying a magnetic field along the global z

direction, B = B[001], Weyl nodes are shifted but still in
kz = 0 plane. They are annihilated at � when magnetic field
is strong enough. Red and blue indicate the opposite chiral-
ity. (a) to (f): B = 0, 0.1, 0.5, 0.9, 1.0, 1.1. We have set
D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2.

netic field increasing.

Discussion.

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal probe to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Moreover, the Weyl magnon can be
potentially detected optically [16]. As it appears at finite
energies, one necessarily needs to use the pump-probe
approach to measure the optical absorption. In addition
to the spectrascopic property, the presence of the Weyl
magnon spectrum may lead to thermal Hall e↵ect, just
like the Weyl fermion that gives rise to the anomalous
Hall current in the electron systems [17, 18]. Further-
more, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop the AFM long-range
orders at low temperature [8, 9], the precise structures of
the magnetic order in these two systems are not yet clear
at this stage. Therefore, it is certainly of interest to con-
firm the magnetic order and detect possible Weyl magnon
excitations in these systems and other three dimensional
Mott insulators with long range magnetic orders.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional

Weyl magnon in magnetic field

Unlike Weyl fermion in electron systems,  
there is no Lorenz coupling of the spins to 
the external magnetic field. 

Via Zeeman coupling, the magnetic field 
modifies the magnetic order, and indirectly 
influences the band structure of the magnon. 

The magnon Weyl points can be moved and 
annihilated by magnetic field, this provides a 
way to control Weyl magnons with magnetic 
fields.
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Summary

• We have pushed the Kitaev materials from iridates to rare-
earth families.  

• We predict the “order by quantum disorder” phenomenon in 
the rare-earth double perovskites.  

• The pseudo-Goldstone mode and Weyl magnons are the 
excitations that we predict.  

• We expect our work to inspire the experimental efforts on this 
series materials and alike. Some new states may be found.

arXiv: 1607.05618
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P W Anderson

“By Landau’s definition this is simply any parameter that 
is zero in the symmetric state and has a nonzero average
uniquely specifying the state when the symmetry is broken.”

1984



Weyl fermions

Hong Ding, Hasan, Ling Lu, Hongming Weng, Xi Dai, Zhong Fang, etc

Discovered in 2015 in various physical systems !

Xiangang Wan,Vishwanath, etc 2011, 
Burkov, Balents 2011

explain the history 



Weyl band touching is a topological property of the band 
structure, and is thus independent from the particle statistics.  

It can be fermion, e.g. electron, can also be boson, e.g. photon.

Remark
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.

DOI: 10.1103/PhysRevLett.110.097203 PACS numbers: 75.47.Lx, 75.25.#j

Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin

Cr
Ga/In

Li

J

O

(a) (b)

Cr J'

d
d'

FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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FIG. 1. (Color online) (a) The breathing pyrochlore lattice. The
magnitude of the breathing has been exaggerated for visual effect.
(b) The breathing pyrochlore lattice interpolates between isolated
tetrahedra and the isotropic pyrochlore lattice. LiInCr4O8 is found at
Bf ∼ 0.1 while the related compound LiGaCr4O8 has Bf ∼ 0.6.

excitation at an energy consistent with those found in prior
measurements, with a linewidth that exceeds the excitation
energy. This implies that the spin gap is in fact filled with
magnetic states, and is thus only a pseudogap. The energy of
the inelastic excitation decreases upon cooling, but it does not
soften completely as T → Tp, immediately below which the
system exhibits dispersive excitations which may arise from
a nematic state. The overall behavior is ascribed to the action
of the two dominant perturbing terms present in the system,
the spin-lattice coupling and the breathing distortion, on the
highly degenerate manifold of states of the frustrated breathing
pyrochlore lattice.

I. SAMPLE SYNTHESIS AND EXPERIMENTAL

Powder samples of LiInCr4O8 were prepared by the solid-
state route reported in Ref. [8]. The samples were enriched
with 7Li to reduce neutron absorption. For the diffraction
experiments, performed on the D2B diffractometer at the
Institut Laue-Langevin (ILL), approximately 7 g of powder
were packed in a V can of diameter 9 mm. A neutron
wavelength λ = 1.59 Å was selected using the (335) reflection
of a Ge monochromator. To observe the structural changes on
passing through the phase transitions as clearly as possible, the
resolution was optimized by placing 10′ of collimation before
the monochromator, and by summing only the central pixels of
the 25-cm-high position-sensitive detectors preceding Rietveld
analysis. Measurements were carried out in the range 2–20 K,
spanning both transitions. All diffraction data were analyzed
using the programs of the FULLPROF suite [13].2 The high-
resolution diffraction measurements were supplemented by
lower-resolution polarized diffraction experiments performed
on the D7 spectrometer, also at the ILL. The same sample
was loaded in an Al can, and measured using λ = 4.8 Å
neutrons from the (002) reflection of a pyrolytic graphite
(PG) monochromator. The XYZ polarization analysis [14,15]
method was employed to separate the magnetic scattering from
the other components of the scattering cross section.

For the inelastic time-of-flight experiment, which was
carried out on the IN4 spectrometer (ILL), approximately 13
g of LiInCr4O8 powder were packed to a thickness of ∼2.5

2All the programs of the FULLPROF suite can be obtained at
http://www.ill.eu/sites/fullprof

mm in an Al sachet, which was mounted in a flat Cd frame
with a 23 × 40 mm opening. Wavelengths of λ = 2.2 Å (Ei =
16.9 meV) and λ = 1.59 Å (Ei = 32.4 meV) from, respec-
tively, the (002) and (004) reflections of a PG monochromator
were used to probe the excitation spectrum in the temperature
range 2–200 K. Background subtraction of the raw spectra was
performed assuming a transmission of approximately 70%.

II. STRUCTURE AND PHASE TRANSITIONS

We begin by discussing the structure LiInCr4O8 in its
high-temperature cubic phase. At T = 20 K, slightly above
both Tp and Tm, the diffraction pattern is indexed in the space
group F43̄m, consistent with previous work [8] [Fig. 2(a)].
The Rietveld refined lattice parameter is 8.403 47(3) Å and
the Cr x-position parameter is 0.3732(3). While a is smaller
than at room temperature [art = 8.4205(5) Å], x is larger
[xrt = 0.3719(3)], which translates into a slight reduction
in r ′/r = 1.047 versus (r ′/r)rt = 1.0515, and a consequent
increase in Bf . Another feature of the 20-K diffraction pattern
is the systematic broadening of the (00l) and (hk0) peaks with
respect to the (hhh) peaks, especially at large scattering angle
[Figs. 2(c) and 2(d)]. This anisotropic broadening is unlikely
to originate from particle size, given the cubic symmetry of
the material and angle dependence of the broadening, and is
hence probably related to the buildup of strain on approaching
the structural phase transition.

In order to model the strain, we employ the approach first
introduced in Ref. [16], and further developed in Ref. [17].
This assumes that the strains are described by Gaussian
fluctuations in the metric parameters of the lattice, permitting
their correlation to be described by a variance-covariance
matrix. The broadening of the Bragg peaks is then expressed as
a sum of quartic polynomials with coefficients SHKL, of which
only S400 and S220 are symmetry allowed for the m3̄m Laue
class. The anisotropic strain coefficients at 20 K are found to
be S400 = 0.056(2) and S220 = −0.054(2). Cooling to 18 K,
the SHKL increase to S400 = 0.088(3) and S220 = −0.082(3),
respectively. At 16 K∼ Tp, however, the diffraction pattern
is no longer indexed by the cubic F 4̄3m space group, as
evidenced by a large splitting of the (00l) and (hk0) peaks
[Fig. 2(c)].

From the lack of either splitting or broadening of the
(hhh) peaks in the T < Tp phase [Fig. 2(d)], the crystal
system of the low-temperature structure can be inferred to be
either orthorhombic or tetragonal. Furthermore, the complete
absence of shifts in these peaks remarkably implies that the
unit-cell volume is conserved in the transition, although the
statistics of the data do no allow us to exclude satellites
resulting from multiplication of the unit cell. At lower T , the
(00l) and (hk0) peak splittings increase continuously through
Tm, saturating towards the lowest measured temperature T = 2
K [Figs. 2(b) and 2(e)]. This implies that the phases at
Tm < T < Tp and T < Tm possess the same symmetry.

The splitting of the cubic (008) peak at 2 K [Fig. 2(b)]
reveals several interesting features of the low-T structure:
(i) the intensity is concentrated in two peaks, implying a
tetragonal crystal system, but (ii) some intensity persists
between the Bragg peaks and (iii) the widths remain con-
siderably larger than resolution. Observations (i) and (ii) can
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.
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Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin
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FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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the inversion center, and the whole lattice breaks into un-
equivalent upper-pointing and down-pointing tetrahedral
units (see Fig.X). In the recent experiments on the Cr-
based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as

H = J
X

hiji2u

Si · Sj + J 0
X

hiji2d

Si · Sj

+D
X

i

(Si · ẑi)2 , (1)

where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
(spins point to local ŷ). (d) The ground state with ✓ = 0
(spins point to local x̂).

obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as

S

cl
i ⌘ Sm̂i = S(cos ✓ x̂i + sin ✓ ŷi), (2)

where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the
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anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
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orders at much lower temperatures, TN = 14K and 16K,
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figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
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where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
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interactions, hence we take J > 0, J 0 > 0. Because the
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We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus
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obtain a unique classical ground state (up to a 2-fold de-
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“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as
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where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and
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anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
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U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
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the Hamiltonian, we expect it to be eventually lifted
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The breathing pyrochlore is a remarkable system that provides an exciting arena for geometrical
frustration and unconventional magnetic excitations. We theoretically study a realistic spin model
on the Cr-based breathing pyrochlore lattice. Although the system develops a conventional long-
range magnetic order via the mechanism of quantum order by disorder, the magnon excitation is
rather non-trivial and supports linear band touchings in the magnon band spectrum. Despite being
bosonic in nature, this Weyl-like band touching is a topological property of the magnon bands. We
thus dub it “Weyl magnon”. The bulk Weyl magnon implies the presence of chiral magnon surface
states that, however, appear at a finite energy. Unlike the case for the Weyl fermions in electron
systems, the external magnetic field only couples to the spins via the Zeeman coupling, and thus
the Weyl nodes can be easily shifted rather than being killed by the external magnetic field. We
propose various experiments to probe the Weyl magnons. Our work will inspire a re-examination
of the magnetic excitations in many magnetic ordered systems.

It is usually thought that the long-range magnetic or-
ders in Mott insulators uniquely specify the state of the
system [1] and lead to simple product states that are of-
ten of little fundamental interest. This traditional view
on long-range magnetic ordered states turns out to be
quite incomplete. With the modern era of topological
matters, it is certainly possible that the magnetic ex-
citation of a Mott insulator with the long-range mag-
netic order can carry a non-trivial band structure topol-
ogy in spite of a simple product state for the ground
state. In this work, we consider a concrete magnetic sys-
tem, namely, the Cr-based breathing pyrochlores, and
explicitly demonstrate that there exist Weyl magnon ex-
citations with a linear band touching in the spin wave
spectrum of the magnetic ordered phase. Weyl magnon,
as we use here, is analogous to the Weyl fermion [2, 3] in
the electron system except having di↵erent statistics.

Since its original proposal in pyrochlore iridates [2],
Weyl fermion has sparked a wide interest and its exis-
tence has been confirmed recently in various systems [4?
, 5]. Weyl fermion results from the linear band touching
in the electron band structure and carries a nontrivial
chirality that is defined topologically. The spectacular
angle resolved photoemission spectroscopy measurements
confirmed both the presence of bulk Weyl nodes and its
consequence, i.e. the surface Fermi arcs that connect dif-
ferent Weyl nodes [4? ]. The Weyl band touching and the
bulk-boundary correspondence are topological properties
of the band structure, and thus are independent has a dis-
tinct magnetic order from region I and III. red star and

FIG. 1. (Color online.) (a) The breathing pyrochlore lattice.
The letter ‘u’ (‘d’) refers to the up-pointing (down-pointing)
tetrahedra. (b) The phase diagram of the minimal spin model.
Please refer the main text for the detailed description of the
phase diagram.

from the particle statistics. It can be applied to fermions,
such as electrons, as well as bosons, such as photons [5].
What we present in this work is about bosonicWeyl nodes
in the magnon spectrum of the magnetic ordered phase
on the breathing pyrochlores. In contrast to the electron
systems for which one can tune the Fermi level to the
Weyl nodes and hence have the surface Fermi arcs right
at the Fermi levels, due to its bosonic nature, the Weyl
magnon and the associated magnon surface arc states can
only appear at a finite energy.
The breathing pyrochlore is a new class of material

in which the magnetic ions form a breathing pyrochlore
lattice [6–9]. Unlike the usual pyrochlore lattice, the lat-
tice site of the breathing pyrochlore lattice is no longer
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Holstein-Primarko↵ bosons, one can readily write down
the spin wave Hamiltonian as

Hsw =
P

k

P
µ,⌫ [Aµ⌫(k)a

†
k,µak,⌫ +Bµ⌫(k)a�k,µak,⌫

+B⇤
µ⌫(�k)a†k,µa

†
�k,⌫ ] + Ecl, (3)

where Ecl is the classical ground state energy, and Aµ⌫ ,
Bµ⌫ satisfy Aµ⌫(k) = A⇤

µ⌫(k), Bµ⌫(k) = Bµ⌫(�k) and
depend on the angular variable ✓. Although the clas-
sical energy Ecl is independent of ✓ due to the U(1)
degeneracy, the quantum zero point energy �E of the
spin wave modes depends on ✓ and is given by �E =P
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and is determined for every classical spin ground state.
The minimum of �E occurs at ✓ = ⇡/6 + n⇡/3 (n⇡/3)
with n 2 Z in region I and III (region II). The U(1)
degeneracy of the classical ground states is thus broken
by quantum fluctuations. This is the well-known phe-
nomenon known as “quantum order by disorder” [11–13].
The resulting state is a non-collinear state and the spin
is pointing along the local h112i (h11̄0i) lattice direction
at each sublattice in region I and III (region II).

To obtain the phase diagram in Fig.X, we have im-
plemented the semiclassical approach and included the
quantum fluctuation within the linear spin wave anal-
ysis. This treatment may underestimate the quantum
fluctuation in the parameter regimes when J � J 0, D or
J 0 � J,D. In these regimes, one may first consider the
tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these
regimes might be non-magnetic and will be addressed in
the future work. For the purpose of the current work, we
will focus on the ordered ground states in Fig.X.

Magnon Weyl nodes and surface states.

Although region I and III of the phase diagram have the
same magnetic ordering structure, the magnetic excita-
tions of the two regions are distinct in a topological man-
ner. Without losing any generality, we choose ✓ = ⇡/2
and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using the lin-
ear spin-wave theory, we obtain the magnetic excitation
spectrum with respect to this magnetic state in region I
and III. In Fig.X, we depict a representative excitation
spectrum along the high symmetry lines in the Brillouin
zone for region I.

Here we comment on the magnon spectrum in Fig.X.
First of all, the gapless mode of the spectrum is simply an
artifact of the linear spin-wave approximation. Because
there is no symmetry that protects the gapless mode, a
small gap would eventually be created when the inter-
action between the Holstein-Primarko↵ bosons is taken
into account. Secondly, the spectrum in Fig.X has a lin-
ear band touching at the momentum point from � to X.
In fact, as we show in Fig.X, there are in total four such

FIG. 3. (Color Online.) (a) The spin wave spectrum along
high symmetry momentum lines. (b) Four Weyl nodes are
located at (±k0, 0, 0), (0,±k0, 0) with k0 = 1.072⇡. Red and
blue indicate the opposite chirality. We have set D = 0.2J ,
J

0 = 0.6J and ✓ = ⇡/2 in the plots.

linear band touchings. These linear band touchings occur
at a finite energy and are the Weyl nodes of the magnon
spectrum. Just like the Weyl nodes in the electronic band
structure of Weyl semimetals [2], the magnon Weyl nodes
are sources and sinks of Berry curvatures and are char-
acterized by the chirality number that takes ±1. Unlike
the Weyl semimetal in the electron systems where one
can tune the Fermi energy to the Weyl nodes by varying
the electron density, the magnon Weyl nodes of our sys-
tem must appear at finite energies because of the bosonic
nature of magnons. Likewise, due to the bulk-edge cor-
respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
Once the magnon Weyl nodes emerge in the magnon

spectrum, they are robust and thus exist over a finite
regime in the parameter space. We find that the magnon
Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....

Discussion.
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FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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How to probe in a REAL experiment?

1. Neutron scattering: detect the Weyl nodes as well as the consequence  
(the surface arc states that connect the Weyl nodes).   

2.   Thermal Hall effect: magnon Weyl nodes contribute the thermal  
      currents that are tunable by external magnetic field.   

3.   Optically: as Weyl node must appear at finite energy, one needs to use  
      pump-probe measurement.  

可以对⽐比Weyl fermion in the electron system
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Summary

We have studied a realistic spin model on the Cr-based breathing  
pyrochlore systems.  

We show that the combination of the single-ion spin anisotropy and  
the superexchange interaction leads to conventional magnetic order. 

We find the magnetic excitation in a large parameter regime develops 
magnon Weyl nodes in the magnon spectrum. 
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