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neutrons of wavelength 2.0785 Å using BT1 at NIST
(Fig. 2). See Ref. [31] for a table listing the refined pa-
rameters. The high-temperature phase of these samples
indeed has the tetragonal P4=nmm structure [10]; however,
the chalcogen and Fe(1) sites of the PbO structure are fully
occupied, and the excess Fe partially occupies the inter-
stitial site Fe(2), see [31] and Fig. 1(a). Thus, the more
appropriate formula for nominal !-FeðTe1"xSexÞz is
Fe1þyðTe1"xSexÞ.

While Fe1:080Te0:67Se0:33 remains tetragonal in the
superconducting state at 4 K [[31], Table I(c)], the parent
compounds Fe1:141Te and Fe1:076Te experience a first-order
magnetostructural transition, see Fig. 3, similar to that in
BaFe2As2 [19]. The semiconducting Fe1:141Te distorts to
an orthorhombic Pmmn structure below TS % 63 K, with
the a axis expanding and the b axis contracting, Fig. 3(c)
and [31], Table I(a). This results in the splitting of the (h0k)
Bragg peaks of the high-temperature structure, Fig. 2(b).
The orthorhombic distortion here, however, does not

double the unit cell, different from that observed in either
the LaFeAsO [32] or BaFe2As2 [19]. The metallic
Fe1:076Te has a monoclinic P21=m structure below TS %
75 K, [31], Table I(b). In addition to the differentiation
of the a and b axis [Fig. 3(d)], the c axis rotates towards the
a axis to " % 89:2&. Thus, the monoclinic distortion not
only splits the (200) but also the (112) Bragg peak,
Fig. 2(d). In the weaker first-order transition of Fe1:141Te,
a mixed phase exists in the pink-shaded region in Fig. 3(c).
At 55 K upon warming, 85% of the sample is orthorhombic
and 15% tetragonal. See Ref. [31] for the temperature
dependence of distances and angles between various
atoms.
The additional magnetic Bragg reflections of the mono-

clinic metal in Fig. 2(d) can be indexed by a commensurate
magnetic wave vector q ¼ ð12 0 1

2Þ, as previously reported
[33]. However, magnetic Bragg reflections of the ortho-
rhombic semiconductor in Fig. 2(b) cannot be indexed by
multiples of the nuclear unit cell. By performing single-

FIG. 2 (color online). Neutron powder diffraction spectra of Fe1:141Te and Fe1:076Te above and below the phase transition.

FIG. 1 (color online). (a) Crystal structure of !-Fe(Te,Se). Magnetic structures of (b) !-FeTe and (c) BaFe2As2 are shown in the
primitive Fe square lattice for comparison. Note that the basal square lattice of the PbO unit cell in (a) is a
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The new !-Fe(Te,Se) superconductors share the common iron building block and ferminology with the

LaFeAsO and BaFe2As2 families of superconductors. In contrast with the predicted commensurate spin-

density-wave order at the nesting wave vector (", 0), a completely different magnetic order with a

composition tunable propagation vector (#", #") was determined for the parent compound Fe1þyTe in

this powder and single-crystal neutron diffraction study. The new antiferromagnetic order survives as a

short-range one even in the highest TC sample. An alternative to the prevailing nesting Fermi surface

mechanism is required to understand the latest family of ferrous superconductors.

DOI: 10.1103/PhysRevLett.102.247001 PACS numbers: 74.25.Ha, 61.05.fm, 74.70."b, 75.30.Fv

The recently discovered ferrous superconductors differ
from phonon-mediated conventional superconductors in an
important way: when the nonmagnetic La in LaFeAs(O,F)
is replaced by magnetic lanthanides, TC increases from
26 K to as high as 55 K [1–4], in contrast to the breaking
of the Cooper pairs by magnetic ions [5]. The La(O,F)
‘‘charge reservoir’’ layer turns out not to be a requirement
for superconductivity and can be replaced by simple metal
layers in ðBa=Sr=Ca;K=NaÞFe2As2 [6–9], or completely
absent as shown more recently in the ! phase of Fe(Se,Te)
[10–12]. The common iron layer contributes dominantly to
the electronic states at the Fermi level in these families of
materials [13–17], which thus share similar quasi-two-
dimensional Fermi surfaces with a nesting wave vector
(", 0) in the reciprocal Fe square lattice. The antiferro-
magnetic order observed in the parent compounds of both
the LaFeAsO [18] and BaFe2As2 [19] families of materi-
als, Fig. 1(c), has been predicted by the nesting spin-
density-wave (SDW) mechanism [20]. In view of insuffi-
cient electron-phonon coupling [21–23], spin excitations
from the only known mode at (", 0) have been proposed as
the bosonic ‘‘glue’’ mediating high TC superconductivity
in these ferrous materials [13–17,20].

However, the weak-coupling SDWmechanism critically
depends on the matching electron and hole Fermi surfaces
in the parent compounds [14]. The nesting condition is lost
when adding electrons or holes to the systems [24]. This
expectation is confirmed in systematic doping [25–27] and
pressure studies [28], which show the destruction of the
SDW order well before the optimal superconducting state
is established. Moreover, despite the same (", 0) SDW
order being predicted for !-FeTe in first-principles theory

[17], we observed a completely different antiferromagnetic
order with the in-plane propagation vector (#", #") along
the diagonal direction of the Fe ‘‘square’’ lattice, Fig. 1(b).
The # is tunable from an incommensurate 0.38 to the
commensurate 0.5. Therefore, experimental results re-
ported here call for a better understanding of the mecha-
nism of magnetism and its role in superconductivity for the
ferrous superconductors.
The single-phase FeðTe; SeÞz material in the tetragonal

PbO structure exists in a composition range near z ¼ 1
[29]. In this ! phase [10–12] (called $ phase in [29]), iron-
chalcogen forms with the same edge-sharing antifluorite
layers as found in the FeAs superconductors. The !-FeSe
with the nominal composition FeSe0:88 was recently re-
ported to superconduct at TC & 8 K [10], which increases
to 27 K at 1.48 GPa [30]. The isovalent series
FeðTe1"xSexÞz in the ! phase with nominal z ¼ 0:82 has
been synthesized, and the TC is enhanced to 14 K at x ¼
0:4 at ambient pressure [11]. Similar results have also been
reported for the nominal z ¼ 1 series [12].
The end member !-FeTez is not superconducting, and

bulk measurements indicate a phase transition at TS '
60–75 K [11,12]. As a function of z, there exist two distinct
types of transport behaviors in the low temperature phase:
for z ( 0:90 the samples change from a semiconductor to a
metal, while for z < 0:90 the samples remain semiconduct-
ing [11]. Therefore, we selected a typical composition
from each range of z for this study, FeTe0:82 and
FeTe0:90. For superconducting !-FeðTe; SeÞz, we chose
the highest TC & 14 K compound FeðTe0:6Se0:4Þ0:82. The
high-resolution powder diffraction spectra of polycrystal-
line samples, weighing 15–16 g, were measured with
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crystal neutron diffraction using the triple-axis spectrome-
ter BT9 at NIST, we determine the incommensurate mag-
netic wave vector q ¼ ð#!0 1

2Þ, where ! % 0:380, for

Fe1:141Te. The q determines that magnetic moments in
each row along the b axis are parallel to each other. The
rows of moments in an Fe plane modulate with the prop-
agating vector 2"!=a, which is 45& away from that of
previous FeAs materials, see Figs. 1(b) and 1(c). From one
plane to the next along the c axis, magnetic moments
simply alternate direction. In the same magnetostriction
pattern as previously observed in the magnetic state of
NdFeAsO [34] and BaFe2As2 [19], the lattice contracts
in the b axis, along which the magnetic moments are
parallel to each other, and it expands in the a and c axis,
which are the directions of the antiferromagnetic align-
ment. Once again, the unusual coupling between the lattice

and magnetic degrees of freedom is what expected from
multiple d-orbital magnetism [15].
The observed magnetic powder spectra can be refined by

a collinear sinusoid model,

M lðRÞ ¼ Mlb̂ cosðq 'Rþ#RÞ; (1)

where R is the position of the Fe, Ml the staggered mag-
netic moment, #R the additional phase at the Fe site. The
unit vector b̂ fixes the moment along the b-axis, and q is
the observed magnetic wave vector. Refined magnetic
parameters at low temperature are listed in Ref. [31]
Table I(a) and (b). However, for an incommensurate q, a
spiral model with the moment rotating in the ac plane,

M sðRÞ ¼ Ms½â cosðq 'Rþ#RÞ þ ĉ sinðq 'Rþ#RÞ*;
(2)

offers an equivalent description of the unpolarized neutron
diffraction results, with the relation between the respective
neutron diffraction cross sections

2$lðQÞ=hMli2 + $sðQÞ=hMsi2: (3)

Thus, any linear combination of Eqs. (1) and (2) is also an
equivalent description. On the other hand, $l and $s are
partial cross sections for different channels of polarized
neutron scattering [35]. Therefore, they can be readily
determined using polarized neutrons.
We measured a Fe1:141Te single-crystal sample, aligned

in the (h0l) horizontal scattering plane, using polarized
neutron spectrometer Asterix at the Lujan Center of
LANL. The neutron spin is controlled to align either
perpendicular to the (h0l) plane (VF) or parallel to the
momentum transfer (HF). All four channels (þþ, þ, ,
,þ , ,, ) in both the VF and HF configurations were
measured for the (001) and (!0 1

2 ) Bragg peaks. The flip-
ping ratio of the instrument is 10.3 as measured at the
nuclear (001) peak. The (!0 1

2 ) is proved magnetic by the
spin-flip scattering in HF. The normalized intensity of
(!0 1

2 ) in VF is 8.24(28) in the non-spin-flip (NSF) chan-
nels, and 4.13(20) in the spin-flip (SF) channels. After
correcting for the finite flipping ratio of the instrument,
we obtained $l=$s + INSF=ISF ¼ 7:91ð27Þ=3:37ð16Þ.
Therefore, the incommensurate magnetic structure for
Fe1:141Te is

M ðRÞ ¼ Ml þMs

¼ M½wb̂ cosðq 'Rþ#R þ c Þ þ â cosðq 'R
þ#RÞ þ ĉ sinðq 'Rþ#RÞ*;

(4)

where w +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2$l=$s

p
¼ 2:17ð6Þ, M ¼ Ml=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ w2

p
¼

0:76ð2Þ%B=Fe and c is an arbitrary phase between the
spiral and the sinusoidal components; see Fig. 1(b).
To understand whether the incommensurate magnetic

structure in the orthorhombic semiconducting phase is
locked or tunable, we examined another sample

FIG. 3 (color online). (a),(b) The magnetic Bragg peak (!, 0,
1=2) (blue symbols) and the splitting of the structural peak (200)
or (112) of the tetragonal phase (red symbols) show the thermal
hysteresis in the first-order transition. (c),(d) The lattice parame-
ters through the transition.
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Fe1:165ð3ÞTe by powder diffraction at BT1, [31], Table I(d).
The incommensurability is greatly affected and measures
at ! ¼ 0:346, despite no appreciable differences in either
the moment or the phase " from Fe1:141Te in [31],
Table I(a). Thus, ! can be tuned by varying the excess Fe
in the orthorhombic phase, and it reaches a commensurate
value 1

2 for the composition Fe1:076Te in the metallic mono-
clinic phase with less excess iron, see inset (a) of Fig. 4.

Having unveiled a tunable (!#, !#)-type of anti-
ferromagnetic order in the parent compound Fe1þyTe,
it is natural to ask whether the new magnetic order sur-
vives in the optimal TC superconducting sample
Fe1:080Te0:67Se0:33. While there is neither long-range mag-
netic order nor structural transition, we observed pro-
nounced short-range quasielastic magnetic scattering at
the incommensurate wave vector (0.438, 0, 12 ), Fig. 4, using
SPINS at NIST. The temperature insensitive half-width-at-
the-half-maximum 0:25 !A%1 indicates a short magnetic
correlation length of 4 Å, approximately only two
nearest-neighbor Fe spacings. The concave shape of the
peak intensity as a function of temperature in inset (b)
indicates the expected diffusive nature of the short-range
magnetic correlations. This is very different from the case
of the (#, 0) SDW which is completely suppressed in the
optimal TC FeAs samples [18,22,25,27].

To summarize, the $-Fe(Te,Se) shares a common elec-
tronic structure with the previously reported FeAs-based
superconductor systems. Though the same (#, 0) SDW
order has been predicted [17], we show the presence of a
fundamentally different (!#, !#) antiferromagnetic order
which propagates along the diagonal direction. The incom-
mensurability ! in the orthorhombic semiconducting phase
is easily tunable with excess Fe and locks into a commen-
surate 1

2 in the monoclinic metallic phase. This magnetic
order, which survives as short-range order even in the

optimal superconducting state, cannot be the result of
Fermi surface nesting, which is along the (#, 0) direction
and delicately depends on electronic band filling for its
existence.
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Fe1+yTe
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The Fe1+y

Te1�x

Se
x

family of iron-based superconductors demonstrates an unusual sensitivity
between between Se/Te ratio, the excess iron concentration y, structure, and magnetism. Using
inelastic neutron scattering (INS), we have observed a competition between commensurate and
incommensurate ordering

INTRODUCTION

The discovery of superconductivity in the iron-based
compound [1] LaFeAsO1�xFx with Tc = 28 K has
spurred much recent activity. Superconductivity may be
produced from any number of related semi-metallic par-
ent compounds. The common feature in the iron-based
materials is a simple square lattice of iron atoms, with
pnictides or chalcogens forming layers of tetrahedra. The
key di�erence between families is the interplanar layer,
which may be a heavy metal oxide, alkaline earth atom,
alkali atom, or nothing at all. The parent compounds
of most families become orthorhombic and antiferromag-
netic (AFM) at low temperatures. Doping generally kills
the orthorhombic-to-tetragonal transition and the AFM
ordering, and induces superconductivity. These systems

FIG. 1. Scans through (H, 0, 0.5) with E = 6 meV, taken
above and below T

N

= 67.5 K. The black horizontal bar shows
the estimated resolution width.

FIG. 2. a) Peak intensities of the incommensurate magnetic
excitation and the magnetic Bragg peak as a function of tem-
perature. Inset: width of (004) Bragg peak as a function of
temperature, showing the structural transition at 67.5 K. b)
some more scans

are very robust, and superconductivity can be induced
by doping with electrons, holes, isoelectronically, or the
application of pressure. For a recent review, see Ref. [2].
Of particular interest is the �- phase of Fe1+yTe1�xSex,

in which y is the interstital excess iron[3], and the Se-
doping x may vary from 0 to 1, with superconductivity
appearing upon doping[4] greater than 0.4[5]. A certain
amount of interstitial iron is required in order to sta-
bilize the Fe1+yTe endpoint[6], but the amount of excess
iron required decreases as the Se substitution increases[5].
There is a delicate interplay between Se/Te ratio, excess
iron, structure, and magnetism [3, 7, 8], which has led
some authors to propose a three-dimensional phase dia-
gram for this family[8, 9]. In spite of the complex phase
diagram, this material has attracted attention because
large single crystals may be grown[10], thus allowing de-
tailed inelastic neutron scattering (INS) studies.
Near the Fe1+yTe endpoint, the system undergoes a

first-order magnetostructural transition[11] to an AFM
state[12]. For small y this transition is to a commen-
surate and monoclinic state, and for y > 0.11 to an
incommensurate and orthorhombic state[3, 11, 13]. At
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intermediate Se-doping, the system becomes a spin-glass
which can coexsist with filamental superconductivity[5].
As the Se-doping increases, the AFM phase becomes sup-
pressed and superconductivity appears[14]. Samples in
the superconducting state demonstrate the classic ”res-
onance” feature at (0.5, 0.5, L)[14–16], similar to that
seen in the cuprate and pnictide superconductors. DFT
calculations suggest that this resonance is the result of
Fermi surface nesting[17].

However, the actual magnetic ordering possesses a
highly unusual ”bicollinear” magnetic structure[3], with
a wavevector along QAFM = (0.5, 0, 0.5). Neither
DFT calculations[17] nor ARPES measurements made on
Fe1+yTe in the AFM state[18] find any evidence for nest-
ing at this wavevector. This has led to the suggestion
that this system is best viewed within a local-moment
picture [19], although several authors have suggested or-
bital ordering[20] or spin-orbit interactions[21] as a pos-
sible viewpoints. Theoretical work has found that the ex-
cess iron acts as a magnetic impurity has suggested that
if it could be stabilized, pure Fe1+yTe with y=0 would
become superconducting[22]. Indeed, superconductivity
has been reported in thin films of pure FeTe[23].

Here we report the observation of competition between
a commensurate and an incommensurate state in the par-
ent compound Fe1.06Te, as seen in Fig. 1. We observe
an incommensurate spin excitation in the paramagnetic
state, which builds in intensity as the temperature is low-
ered. This suggests an impending phase transition, but
we find that this excitation is quenched upon passing be-
low the Néel temperature TN and entering the commen-
surate state. To our knowledge, this is the first observa-
tion of the disappearance of incommensurate excitations

FIG. 3. Scans along the c-axis direction. The black horizontal
bar shows the estimated FWHM of the resolution function.

with the appearance of static commensurate order.

EXPERIMENT

We have performed INS measurements on a single crys-
tal of Fe1.06Te with (MASS OR VOLUME volume 0.1
cc), and mosaic spread 2�. The sample was grown by the
Bridgman technique, and the excess iron content was de-
termined by single-crystal x-ray di�raction to be y=0.06.
The crystal structure at room temperature was found
to be tetragonal (P4/nmm) with lattice constants a =
b = 3.82 Å and c = 6.27 Å. Although our sample be-
comes monoclinic at low temperature, the e�ect is small
and amounts to a broadening of certain Bragg peaks (see
Fig. FIGURE), so we describe the measurements in the
tetragonal (HHL) reciprocal lattice units.
The neutron measurements were performed on the 1T1

triple-axis spectrometer at the Laboratoire Léon Bril-
louin, Saclay. It was mounted in a standard displex cryo-
stat (base temperature T = 11 K) in the (H0L) plane.
The measurements were done with vertically and hor-
izontally focusing PG crystals as monochromator and

FIG. 4. a) Dispersion taken above and below TN . The
dashed vertical lines show the location of the average peak
center, determined by a weighted average over all the peaks.
b) Linewidths of the peaks. c) Constant-Q scans taken at the
center of the excitations.
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Interstitial iron tuning of the spin fluctuations in Fe1+xTe
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Using neutron inelastic scattering, we investigate the low-energy spin fluctuations in Fe1+xTe as
a function of both temperature and interstitial iron concentration. For Fe1.057(7)Te the magnetic
structure is defined by a commensurate wavevector of ( 12 , 0,

1
2 ). The spin fluctuations are gapped

with a sharp onset at 7 meV and are three dimensional in momentum transfer, becoming two
dimensional at higher energy transfers. On doping with interstitial iron, we find in Fe1.141(5)Te the
ordering wavevector is located at the (0.38, 0, 1

2 ) position and the fluctuations are gapless with the
intensity peaked at an energy transfer of 4 meV. These results show that the spin fluctuations in the
Fe1+xTe system a can be tuned not only through selenium doping, but also with interstitial iron.
We also compare these results with superconducting concentrations and in particular the resonance
mode in the Fe1+xTe1−ySey system.

Magnetism is directly related to superconductivity in
several heavy fermion and d-transition metal ion sys-
tems.1,2 Most notably, localized magnetism is believed
to be directly coupled with high temperature supercon-
ductivity in the cuprates as evidenced through a series
of detailed studies as a function of hole concentration
where superconductivity is found to occur at a critical
concentration of pc=0.055, destroying long-ranged mag-
netic order.3 More recently, the discovery of superconduc-
tivity in the iron based materials have revealed a series
of materials where superconductivity and magnetism co-
exist.4 Magnetism and superconductivity are strongly in-
tertwined in these systems as illustrated through a series
of neutron inelastic scattering studies which have pre-
sented a distinct change in the spin fluctuations on cool-
ing through Tc.5–7 Arguably the simplest iron based su-
perconductor is the layered Fe1+xTe1−ySey system where
superconductivity has been observed with a maximum
Tc=14 K for y ∼ 0.5.8

The magnetic structure of the parent non supercon-
ducting Fe1+xTe has been investigated in powders using
neutron diffraction and have reported the existence of
a commensurate double stripe spin-density wave phase
for low concentrations of x with an ordering wave vec-
tor of q0=(12 , 0,

1
2 ).

9,10 For larger concentrations of iron,
the magnetic phase becomes incommensurate along the
a∗ direction and the structure is believed to be defined
by a magnetic spiral. The superconducting variants of
Fe1+xTe1−ySey have been investigated and neutron scat-
tering has reported the static magnetic order observed
in the parent material is replaced by short range mag-
netic correlations peaked near the q0=(12 ,

1
2 ,L) position.

This has led to the suggestion that the magnetic corre-
lations shift from the (π,0) positions to the (π, π) points
on becoming superconducting. Most notably in the su-
perconducting phase, a resonance peak at ∼ 7 meV has
been observed in approximately half doped (y ∼0.5) sys-
tems near the q0=(12 ,

1
2 ,L) positions.11–14 The peak ap-

pears below the superconducting transition and is sharp
in energy. Unlike its counterpart in heavy fermion su-
perconductors, the momentum dependence is very two-
dimensional in nature, forming a rod along the c∗ direc-
tion. 15

The microscopic nature of the magnetism and its re-
lation to superconductivity in the FeAs-based high tem-
perature superconductors is a matter of current debate
and research. While the reduced ordered moment on the
iron site of ∼ 0.3-0.75 µB may indicate that itinerant ef-
fects are important, there are two key differences with
the Fe1+yTe system which may point towards strong lo-
calized magnetism in this system. Firstly, the ordered
moments are significant with values of 2.5 µB being re-
ported for Fe1.05Te.16 Secondly, the ordering wave vector
is not consistent with nesting wave vector measured by
APRES.17 Nevertheless, a strong coupling between the
magnetism and electronics is implied by a series of optics
studies which have observed a strong increase in the elec-
tronic lifetime below the magnetic ordering transition in
Fe1+xTe compounds.18

Little attention has been placed on the role of excess
Fe on the spin fluctuations and transport properties with
much attention focussed on the effect of Se doping in the
phase diagram.20 The importance of interstitial iron on
the electronic properties has been highlighted by recent
work which found for a fixed concentration of Se, the
superconducting volume fraction could be independently
tuned to zero with the introduction of interstitial iron.19

Density functional calculations have further suggested
that the excess iron plays a key role in the electronic
properties with one electron carrier per excess Fe being
added.22 Therefore, tuning interstitial iron may provide
an alternate route for controlling the charge doping in
FeTe layers.
To investigate the effect of interstitial iron on the

low-energy spin fluctuations, we have performed neutron
scattering studies on the parent Fe1+xTe in the absence
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FIG. 1. The temperature and momentum dependence of the
elastic magnetic scattering measured in Fe1.057(7)Te (a and c)
and Fe1.141(5)Te(b and d)) taken on warming. The data were
taken with graphite filters and 80’ collimators placed before
and after the sample using BT9. The solid lines represent fits
to resolution limited gaussian line shapes.

of superconductivity. The 6 g single crystal samples were
prepared by the Bridgeman technique. The best growth
conditions for the Fe1.057(7)Te crystal included melting
the sample at 815◦ C for 12 hours, followed by a cool-
ing rate of 6◦ C/hr. The Fe1.141(5)Te crystal was pre-
pared with a similar heating time and cooling rate, but
at a higher melt temperature of 850◦ C. To prevent loss
of iron content via reaction with the quartz ampoule, a
pre-made powder sample of Fe1.057(7)Te was mixed with
excess iron powder to reach the Fe1.141(5)Te stoichiom-
etry. Single crystal x-ray diffraction on crystals cleaved
from the larger crystals was performed to characterize
the amount of interstitial iron.

The samples were then aligned in the (H0L) scattering
plane and the spin fluctuations were mapped out using
the MACS (Multi Axis Crystal Spectrometer) cold triple-
axis spectrometer located at the NIST Center for Neu-
tron Research (Gaithersburg, United States). Instrument
details and design concepts can be found elsewhere.23

Constant energy planes were scanned by fixing the fi-
nal energy to Ef=3.6 meV using the 20 double bounce
PG(002) analyzing crystals and detectors and varying the
incident energy defined by a double focussed PG(002)
monochromator. Each detector channel is collimated us-
ing 90’ soller slits before the analyzing crystal. Full maps
of the spin excitations in the (H0L) scattering plane as
a function of energy transfer were then constructed by
measuring a series of constant energy planes. All of the
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FIG. 2. Constant-Q slices (a and b) and constant-Q scans
obtained using the MACS cold triple-axis spectrometer. a

and b are integrated over L=[-1.525,-1.475]. Constant-Q cuts
are displayed in panels c and d. Panel c integrates over H=[-
0.55,-0.45] and L=[-1.55,-1.45]. Panel d integrates over H=[-
0.4,-0.36] and L=[-1.55,-1.45]. The solid curves are guides to
the eye.

data has been corrected for λ/2 contamination of the in-
cident beam monitor and an empty cryostat background
has been subtracted.24

The elastic magnetic scattering, measured on BT9
thermal triple-axis spectrometer (Fig. 1), was used to
characterize the magnetic properties of the two Fe1+xTe
samples. The temperature dependence of the magnetic
ordering is illustrated in panels a) and b) for Fe1.057(7)Te
and Fe1.141(5)Te, respectively. The ordering wave vector
is illustrated through H scans shown in panels c) and
d). The iron poor sample (Fe1.057(7)Te) displays a sharp
first-order transition at 75 K on heating with commen-
surate ordering defined by Bragg peaks with the propa-
gation wave vector of q0=(12 ,0,

1
2 ). On doping with Fe,

this transition (panel b)) becomes characterized by an
incommensurate wavevector at H=0.38 (panel d)) and
a lower transition temperature of 60 K. We note that
no evidence of a commensurate phase characterized by
scattering near q0=(12 ,0,

1
2 ) was found in the Fe1.141(5)Te

sample and likewise no strong incommensurate scattering
was observable in the commensurate Fe1.057(7)Te sample.
Therefore, these two materials provide a clean represen-
tation of the magnetic properties in the commensurate
and incommensurate phases of Fe1+yTe.
The inelastic scattering measured on MACS is summa-
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FIG. 4. Constant energy cuts of the correlated magnetic in-
tensity at 13.5 meV. The lower panel b) illustrates a con-
tour plot of the magnetic fluctuations along the (0.5,0.5,L)
direction and panel a) plots a cut through the data along
L. The solid curve is a fit to nearest neighbor correlations
demonstrating the two-dimensionality of the fluctuations as
discussed in the text.

tures near the TN ∼ 70 K, the gap is nearly completely
filled in and the static magnetic order is destroyed (Fig.
1).
The main result from this work is the characterization

of the low-energy spin fluctuations in Fe1+xTe as a func-
tion of interstitial iron. The comparison displayed in Fig.
2 illustrate the dramatic effects that interstitial Fe, and
the subsequent charge doping, have on the low-energy
spin dynamics. Such effects are likely present in super-
conducting concentrations of Fe1+xTe1−ySey as intersti-
tial iron clearly results in a filling in the spin excitations
at low energies. Such low-energy magnetic fluctuations
are possibly destructive to superconductivity, and the in-
terstitial iron concentration needs to be characterized in
superconducting materials.
It is interesting to compare our results with the mag-

netic fluctuations in superconducting Fe1+xTe1−ySey. In
particular, the commensurate ordered Fe1.057(7)Te sam-
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FIG. 5. The temperature dependence of the magnetic exci-
tations in Fe1.057(7)Te. The constant-Q scans in a − c where
taken with a single detector channel on MACS at T=2, 30,
and 70 K. d illustrates a constant-Q slice taken at 70 K illus-
trating the gapless excitations.

ple displays gapped three dimensional fluctuations. The
gap value has an identical energy scale to that observed
in superconducting Fe1+xTe1−ySey (optimal Tc=14 K)
samples and also in the analogous BaFe1.85Co0.15As2
(Tc=22 K) superconductor (denoted as the 122 sys-
tem).7,15,27 While the gap value has not been directly
observed to scale with the superconducting temperature
in Fe1+xTe, the spin gap in the 122 system does appear to
strongly scale with Tc and therefore likely the supercon-
ducting gap. While the spin gap in all iron based systems
has been interpreted as a resonance peak in analogy to
the cuprates, this interpretation may need reconsidera-
tion in the “11” Fe1+xTe system as interstitial iron and
effects due to localized magnetism are playing a strong
role in the dynamics.

The fact that a similar excitation spectrum exists in
a non superconductint parent material implies that the
gap value may not be directly related with the super-
conducting gap nor condensation energy as suggested
based on the scaling of the resonance energy with Tc

in some cuprates.29 The presence of a “resonance” peak
(which appears as gapped spin fluctuations) in the non
superconducting parent compound is consistent with sev-
eral theories proposed to explain the resonance peak in
the cuprates and heavy fermion compounds. The spin-
fermion model describes the resonance peak in terms of a
spin excitation which is broadened in energy in the nor-
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By the first-principles electronic structure calculations, we find that the ground state of PbO-type

tetragonal !-FeTe is in a bicollinear antiferromagnetic order, in which the Fe local moments (!2:5"B)

align ferromagnetically along a diagonal direction and antiferromagnetically along the other diagonal

direction on the Fe square lattice. This novel bicollinear order results from the interplay among the

nearest, the next-nearest, and the next-next-nearest neighbor superexchange interactions, mediated by Te

5p band. In contrast, the ground state of !-FeSe is in a collinear antiferromagnetic order, similar to those

in LaFeAsO and BaFe2As2. This finding sheds new light on the origin of magnetic ordering in Fe-based

superconductors.
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The recent discovery of superconductivity in the layered
iron-based compounds [1–5] attracts great research inter-
est, not only because they have reached the second high-
est superconductivity temperatures but also in breaking
conventional wisdom that Fe atoms should not play a
direct role in superconductivity. A universal property ob-
served is that the ground state of parent compounds of
these new superconductors is in a collinear antiferromag-
netic (AFM) order below a tetragonal-orthorhombic struc-
tural transition temperature [6,7]. The existence of
magnetic state supports strongly the viewpoint that mag-
netism plays a critical role in gluing electron pairs in the
superconducting state.

The microscopic origin of the magnetic state is an
important issue under hot debate. In particular, there are
two scenarios in describing this magnetic ordered state.
One suggests that there are no local moments and the
collinear AFM order is entirely induced by the Fermi
surface nesting [8,9]; the other suggests that the collinear
AFM order is driven by exchange AFM interactions be-
tween the nearest neighbor and next-nearest neighbor Fe-
Fe fluctuating local moments [10–13].

To resolve the above problem, we have performed the
first-principles calculations on the electronic structures of
tetragonal !-FeTe and !-FeSe. We find that the nonmag-
netic electronic band structures of both !-FeTe and
!-FeSe, especially the Fermi surfaces, are similar to those
of LaFeAsO and BaFe2As2 [9,10,14]. It is thus expected
that all these materials would adopt the similar magnetic
order if the magnetic order is induced by the Fermi surface
nesting. However, we find that the ground state of !-FeTe
is in a novel bicollinear AFM order [Fig. 1(a)], while that
of !-FeSe is in a conventional collinear AFM order. To our
knowledge, this novel bicollinear AFM order has never
been found in real materials.

The underlying physics of this new magnetic ordering
can be effectively described by the Heisenberg model with
the nearest, the next-nearest, and the next-next-nearest
neighbor superexchange interactions mediated by Te 5p
band [Fig. 1(a)]. Our results are in excellent agreement
with the latest neutron experimental results [15]. This
shows unambiguously that the local moment picture, rather
than the Fermi surface nesting effect, is more appropriate
for describing low-lying spin dynamics in these iron-based
pnictides or chalcogenides.
In our calculations the plane wave basis method was

used [16]. We employed the local (spin) density approxi-
mation with the generalized gradient correction of Perdew-
Burke-Ernzerhof [17] for the exchange-correlation poten-
tials. The ultrasoft pseudopotentials [18] were used to
model the electron-ion interactions. After the full conver-

FIG. 1 (color online). Schematic representations of magnetic
orders in the ground states of (a) !-FeTe and (b) !-FeSe. The Fe
spins are shown by red arrows. The bicollinear antiferromagnetic
(AFM) order means that the Fe moments align ferromagnetically
along a diagonal direction and antiferromagnetically along the
other diagonal direction on the Fe-Fe square lattice. In other
words, if the Fe-Fe square lattice is divided into two square
sublattices A and B, the Fe moments on each sublattice take their
own collinear AFM order.
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Fig. 1: (Color online) (a) Fe (noted as Fe1) square lattice show-
ing commensurate AFM3 order along the a-axis. The magnetic
exchange parameters J1a, J1b, J2a and J2b are specified.
(b) The monoclinic lattice distortion observed in neutron scat-
tering [19,20]. (c) The magnetic exchange coupling between
Fe1 and an excess iron atom in the middle of the plaquette
indicated as Fe2.

this prediction, the spin order in FeTe cannot be, at
least trivially, understood by a Fermi surface nesting
mechanisms.
In this letter, we show that the magnetic physics

in the FeTe parent compound can be understood from
the usual magnetic exchange nearest- and next-nearest-
neighbor J1-J2 model used for the Fe–As-based materi-
als, but with a natural parameter extension that takes
into account the monoclinic lattice distortion observed in
these compounds. The lattice distortion in Fe1+yTe1−xSex
is different from the one in Fe–As-based materials. The
two lattice distortion directions form a 45-degree angle,
just like the magnetic wave vectors in the magnetic order-
ing states of these two systems. Our extended J1-J2
model can explain both the commensurate and the incom-
mensurate spin order phases along the a-axis which
have been measured in neutron scattering experiments.
The commensurate-to-incommensurate phase transition
takes place at a critical concentration of excess Fe atom
in Fe1+yTe1−xSex. Above the critical concentration, the
incommensurate wave vector is proportional to the square
root of the concentration difference of excess Fe atoms.
We start with the J1-J2 model on the tetragonal lattice.

Due to their proximity in temperature, we strongly
believe that the lattice and magnetic transitions in
Fe-based materials are physically related. Considering
the coupling between the lattice and magnetism, it is
physical to assume that a particular lattice distortion
favors changes in the values of J1 and J2 as follows: in the
Fe–As compounds, J1 should be slightly more sensitive
to changes in the angle of the Fe–As–Fe bond (As is out
of plane) than J2. This is because the angle between two
nearest Fe atoms is around 72 degrees and hence closer
to 90 degrees than the one between two next-nearest
Fe atoms which is around 112 degrees. However, in

Fe1+yTe1−xSex, J2 should be significantly more sensitive
than J1 to changes in the angle between two nearest Fe
atoms; the angle between two nearest Fe atoms, which
influences J1, is around 66 degrees, whereas the angle
between the two next-nearest Fe atoms is around 96
degrees and hence much closer to 90 degrees.
In the monoclinic lattice distorted phase, the extended

magnetic Hamiltonian can be written as an in-plane
nearest- and next-nearest-neighbor Heisenberg model
supplemented by an out-of plane small antiferromagnetic
coupling as well as a next-next-nearest-neighbor term:

H = Jz
∑

i,n

S⃗ni S⃗
n+1
i +

∑

n

∑

⟨ij⟩

JijS⃗
n
i S⃗
n
j

+J3
∑

n

∑

⟨⟨ij⟩⟩

S⃗ni S⃗
n
j , (1)

where n is the layer index. The Jij ’s, defined in fig. 1,
are the magnetic exchange coupling parameters between
irons in the a-b plane, and their values depend on
the lattice distortion direction. If small, the added J3
next-next-nearest-neighbor coupling, suggested by first-
principle calculations [21], influences the phase diagram
only quantitatively. We take J2a ! J2b, J1a ! J1b and
study the part of the phase diagram of the model
for which (J2a, J2b)> 0 and J1a > 0. These values are
naturally expected in Fe1+yTe1−xSex, as shown in
fig. 1. Although we have presumed the antiferromagnetic
exchange coupling J1(a,b), all major results of this work
remains unchanged even when the spin exchanges J1(a,b)
flip their signs. As the exchange along the c-axis Jz > 0
is not frustrated, we only focus on in-plane magnetism.
All the possible ground states are presumed to have a
kz = π. The classical ground state of the Hamiltonian can
be obtained by comparing the energy of the following six
states: 1) (π,π) antiferromagnetic (AFM) phase (AFM1
phase) with E1 =−J1a−J1b+J2a+J2b+2J3; 2) (0,π)
AFM state (AFM2 phase) with E2 =−J2a−J2b+2J3;
3) commensurate AFM along the a-axis (AFM3) with
E3 =−J1a−J2a+J1b+J2b− 2J3 (see fig. 1); 4) incom-
mensurate AFM along the b-axis (ICB phase) with energy

E4 =−2(J2a+J3)− (J1a−J1b)
2

4(J2a+2J3)
; 5) incommensurate AFM

along the a-axis (ICA phase) with E5 =Min(J2b+
J1acos(φ1)+J1bcos(φ2)+ (J2a+2J3)cos(φ1+φ2)), to be
minimized with respect to φ1 and φ2; 6) incom-
mensurate AFM along the y-axis (ICY phase), with E6 =

− J1a+J1b2 −J3− (J2a+J2b−(J1a+J1b)/2)
2

4J3
. The three incom-

mensurate phases are depicted in fig. 2.
The phase diagram of above model in the J1aJ2a −

J1b
J2a

plane is plotted in fig. 2. For FeTe, we are inter-
ested in the AFM3 and ICA phases, which have
been experimentally observed. The AFM3 phase
exists when the following two conditions are satis-
fied: J1a ! J1b+4J2b− 8J3 and J1b

Jt2a
" J1a
J1a+Jt2a

where

J t2a = J2a+2J3. The transition line between AFM3
and ICA phases is determined by equality in the latter
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Fig. 3: (Color online) Top: 3D spin wave dispersion for the
parameter set of J2a = J2b = 1, J1a = 2, J1b = 0.94 and J3 = 0.4,
which gives a point on the AFM3-ICA phase boundary on
the phase diagram. Also note that along the BZ boundary
(k±π, k), the two sheets are degenerate and almost disper-
sionless. Bottom: different dispersion at different parameter
regions with common parameters J2a = J2b = 1. All the three
dispersions are drawn at AFM3-ICA phase boundary given by
(from left to right) (J1a, J1b, J3) = (1, 0.72, 0.8), (J1a, J1b, J3) =
(2, 0.94, 0.4) and (J1a, J1b, J3) = (5, 0.9, 0.1), respectively.

where

Ak =

(
ϵ1(k) J1bf(k)
J1bf(k)∗ ϵ1(k)

)
,

Bk =

(
ϵ2(k) J1af(k)∗

J1af(k) ϵ2(k)

)
,

where ϵ1(k) = 2(J1a+J2a−J1b−J2b+2J3)+ 2J2bcos×
(kx− ky), ϵ2(k) = 2J2acos(kx+ ky)+ 2J3(cos(2kx)+ cos
(2ky)) and f(k) = (eikx + eiky ). The explicit analytical
expressions for the spin wave dispersion spectra are
unreasonably long and will not be given here. We plot the
3D spin wave dispersion in fig. 3. Regardless of the values
of parameters, a common feature of the spin wave disper-
sion is an almost-dispersionless line along (k±π, k) where
two branches become degenerate with an energy around
4S
√
(J1a−J1b+2J2a− 2J2b)(J1a−J1b− 2J2b+4J3). By

comparing the spin wave dispersions for different J3, we
can also determine the value of J3. In fig. 3, we compare
the dispersion along (k,−k) for J3 = 0.1, 0.4, 0.8 respec-
tively. The major difference lies in the higher branch,
which turns from a convex- to a concave-shaped line. This
feature can be tested in inelastic neutron scattering [22]
to determine the value of J3 explicitly.
The spin moment correction in large S limit is

∆S =
∑

i=1,2

∫

BZ

⟨b†i,kbi,k⟩dk
2.

In the vicinity of AFM3-ICA transition line, ∆m is about
25%. It is worth noting that ∆m does not diverge at the
phase boundary because the ICA (ICB) phases can be

image

Fig. 4: (Color online) Top: the Fermi surface of the system
in the magnetic ordered AFM3 order taking A0 = 0.3t1. The
dashed red lines crop out the (folded) Brillion zone. Bottom:
the electronic density of states at the FS with the same para-
meters, with the dashed lines encircling the experimental FBZ.

obtained from the AFM3 state by a continuous rotation
of the magnetization starting from zero at the phase
transition line, unlike in other phase transitions where the
magnetic order wave vector direction changes [15].
We now discuss the influence of the observed magnetic

order in the AFM3 phase on the electronic properties of
the material. DFT calculations show that FeSe and FeTe
have a very similar Fermi surface structure to that in
Fe–As-based materials. In the AFM3 state, the mean-field
Hamiltonian can be written as Hmf =H0+HM , where
H0 =

∑
kσ ψ

+
σ (k)ϵ(k)ψσ(k) is kinetic energy that describes

the band structure and HM is the mean-field energy of the
spin ordering,

HM =
∑

k,q

A(q)(ψ+↑ (k+ q)ψ↑(k)−ψ
+
↓ (k+ q)ψ↓(k))

(8)
with A(q) =A0

∑1
j=0(1+ i(−1)j)δ(q− qj) where

q0 = (
π
2 ,
π
2 ), q1 = (

−π
2 ,

−π
2 ) in the AFM3 state. The

resulting Fermi surface is given in fig. 4 and remains
gapless even at a considerably large order parameter

67005-p4

A.M. Turner, F. Wang and Ashvin Vishwanath PRB 2009

configuration, but now the degenerate pair of orbitals con-
tains three electrons. We note that in both scenarios, the ac-
tive orbitals are dxy ,dxz ,dyz, which are also the ones expected
to be present at the Fermi energy from weakly correlated
band structure calculations of these materials.17,18 The two
scenarios are particle hole conjugates of one another, if one
focuses on the active triplet of orbitals. Henceforth, we will
assume Scenario 1 for concreteness, as it corresponds better
with experimental facts. The results there can be easily tran-
scribed to Scenario 2, by a particle hole transformation.

B. Orbital and magnetic order

Let us discuss first the pair of degenerate orbitals in Sce-
nario 1, filled by a single electron. Later, we will include the
third orbital. It is convenient to rotate orbitals by 45°, and
define another basis that point along the diagonals dXz/Yz

= 1
!2 "dxz!dyz#. Let d1

† ,d2
† be the creation operators for elec-

trons in these diagonal orbitals. The Hamiltonian for this
system is:

H = HKE + HU + HJT, "1#

where the first term is the hopping Hamiltonian, and the
second and third terms refer to interactions and coupling to
lattice phonons that lead to the Jahn Teller effect.

HU = $
r

1
2

U"nr − 1#nr − JHS!1r · S!2r, "2#

where nr is the electron density at site r and S!ar= 1
2dar

† "! dar is
the spin on site r in orbital a. In the limit of strong repulsion
U and a single electron per site, %n&=1, we obtain an insu-
lating state with orbital degeneracy. This degeneracy is typi-
cally resolved by the Jahn Teller effect. A lattice distortion,
which breaks symmetry and splits the degeneracy occurs.
The precise distortion that is realized is hard to predict, so we
will assume that it is indeed of the type required to obtain the
structural transition seen in this material. This involves a

uniform orthorhombic distortion that changes the relative
lengths of the two diagonal bonds. If we denote by A and B
the classical bond lengths for the two diagonals "so A=B in
the tetragonal state#, then we will assume that the lattice
coupling is given by:

HJT = − #"A − B#$
r

"d1r
† d1r − d2r

† d2r# +
$

2
"A − B#2 "3#

"See Fig. 3#. The orbital ordering implies that, in scenario 1,
the single electron on each site always occupies the same
orbital, i.e., n1r=1 and n2r=0, or vice versa. For concreteness
let us suppose that the X diagonal expands. Then the elec-
trons occupy orbital 1 "dXz# while orbital 2 "dYz# is empty,
because it is higher in energy. Since each site has an unpaired
electron, we can now derive the Hamiltonian governing their
magnetic moments.

In the insulating limit, the magnetic interaction is gener-
ated by virtual hopping of electrons. To proceed, we need to
specify HKE. Clearly, given the geometry of the Xz ,Yz orbit-
als, hopping along the diagonals will be very anisotropic. We
denote the X"Y# diagonal hopping of the dXz"dYz# orbital by
t2, and let t2! be the hopping of each in the orthogonal direc-
tion "see Fig. 4#. The figure suggests that t2% t2! "see Ref. 19#,
and for FeAs the nearest neighbor hoppings are compara-
tively small as well. Hence, we will simply work with the
exchange interaction induced by t2. Note, the next neighbor
hopping only operates within a single sublattice "labeled A
and B in the figure#, so here we consider just the A sublattice.
The t2 hopping of the electrons in the Xz orbital will intro-
duce antiferromagnetic exchange, but only along the X diag-
onal J2X= t2

2 /U. This will lead to antiferromagnetic order
along this diagonal direction. Note, assuming Scenario 1, this
antiferromagnetic direction will be the expanded diagonal of
the distorted compound, which is consistent with the ob-
served wave numbers of the magnetic and structural
distortions.4 Note, although the diagonal chains are ordered,
there is negligible coupling between chains at this moment
"because of the smallness of t2!#. Below, we will see there is
a possibly more important mechanism that can lock the mag-
netic order in the chains together, the double exchange inter-
action.

FIG. 2. Two scenarios for the level spacing of the iron atoms’
d-orbitals which lead to orbital degeneracy and S=1. Each set of
orbitals grouped together is assumed to fill up according to Hund’s
rule before any electrons are added to the next group of orbitals.
This occurs if the crystal field splitting between orbitals in different
groups is greater than the Hund’s coupling. Scenario 1 results in a
single electron having to decide between two degenerate orbitals
while Scenario 2 results in a single hole which is orbitally degen-
erate. We mainly discuss Scenario 1.

FIG. 3. Degeneracy lifting by Jahn Teller distortion. The tellu-
rium atoms projected into the xy-plane form a square in the undis-
torted compound, which distorts into a rhombus, so that A&B,
lowering the energy of the shaded orbital.
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tive orbitals are dxy ,dxz ,dyz, which are also the ones expected
to be present at the Fermi energy from weakly correlated
band structure calculations of these materials.17,18 The two
scenarios are particle hole conjugates of one another, if one
focuses on the active triplet of orbitals. Henceforth, we will
assume Scenario 1 for concreteness, as it corresponds better
with experimental facts. The results there can be easily tran-
scribed to Scenario 2, by a particle hole transformation.
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where the first term is the hopping Hamiltonian, and the
second and third terms refer to interactions and coupling to
lattice phonons that lead to the Jahn Teller effect.
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where nr is the electron density at site r and S!ar= 1
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† "! dar is
the spin on site r in orbital a. In the limit of strong repulsion
U and a single electron per site, %n&=1, we obtain an insu-
lating state with orbital degeneracy. This degeneracy is typi-
cally resolved by the Jahn Teller effect. A lattice distortion,
which breaks symmetry and splits the degeneracy occurs.
The precise distortion that is realized is hard to predict, so we
will assume that it is indeed of the type required to obtain the
structural transition seen in this material. This involves a

uniform orthorhombic distortion that changes the relative
lengths of the two diagonal bonds. If we denote by A and B
the classical bond lengths for the two diagonals "so A=B in
the tetragonal state#, then we will assume that the lattice
coupling is given by:

HJT = − #"A − B#$
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† d1r − d2r
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"A − B#2 "3#

"See Fig. 3#. The orbital ordering implies that, in scenario 1,
the single electron on each site always occupies the same
orbital, i.e., n1r=1 and n2r=0, or vice versa. For concreteness
let us suppose that the X diagonal expands. Then the elec-
trons occupy orbital 1 "dXz# while orbital 2 "dYz# is empty,
because it is higher in energy. Since each site has an unpaired
electron, we can now derive the Hamiltonian governing their
magnetic moments.

In the insulating limit, the magnetic interaction is gener-
ated by virtual hopping of electrons. To proceed, we need to
specify HKE. Clearly, given the geometry of the Xz ,Yz orbit-
als, hopping along the diagonals will be very anisotropic. We
denote the X"Y# diagonal hopping of the dXz"dYz# orbital by
t2, and let t2! be the hopping of each in the orthogonal direc-
tion "see Fig. 4#. The figure suggests that t2% t2! "see Ref. 19#,
and for FeAs the nearest neighbor hoppings are compara-
tively small as well. Hence, we will simply work with the
exchange interaction induced by t2. Note, the next neighbor
hopping only operates within a single sublattice "labeled A
and B in the figure#, so here we consider just the A sublattice.
The t2 hopping of the electrons in the Xz orbital will intro-
duce antiferromagnetic exchange, but only along the X diag-
onal J2X= t2

2 /U. This will lead to antiferromagnetic order
along this diagonal direction. Note, assuming Scenario 1, this
antiferromagnetic direction will be the expanded diagonal of
the distorted compound, which is consistent with the ob-
served wave numbers of the magnetic and structural
distortions.4 Note, although the diagonal chains are ordered,
there is negligible coupling between chains at this moment
"because of the smallness of t2!#. Below, we will see there is
a possibly more important mechanism that can lock the mag-
netic order in the chains together, the double exchange inter-
action.

FIG. 2. Two scenarios for the level spacing of the iron atoms’
d-orbitals which lead to orbital degeneracy and S=1. Each set of
orbitals grouped together is assumed to fill up according to Hund’s
rule before any electrons are added to the next group of orbitals.
This occurs if the crystal field splitting between orbitals in different
groups is greater than the Hund’s coupling. Scenario 1 results in a
single electron having to decide between two degenerate orbitals
while Scenario 2 results in a single hole which is orbitally degen-
erate. We mainly discuss Scenario 1.
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E!k,!" = J2X cos 2k + 2J1 cos k cos !

− K#1 + cos 2k cos 2!$ − 2%t2%" #6$

over ! and k shows that there is a transition between a
“single spiral” with !=0 and incommensurate wave vector
k= #

2 +O# J1

J2X
$ and the collinear state k=# /2,!=# /2 when

4K#J2X−K$=J1
2. For small K$J2X, the critical K is

&J1
2 /4J2X.
We can understand this result intuitively as follows. The

spiral order occurs to lower the nearest neighbor exchange
energy. The coupling of a spin to its neighbors to the left and
right cancels in the perfectly collinear state. To take advan-
tage of J1, the neighbors should therefore make an angle less
than 180°, and the central spin should point opposite to the
sum of the two neighboring spins. If J1 is small compared to
J2X, then the neighbors are nearly antiparallel, so J1 has a
very weak effect, explaining why the critical value for K is
not of order J1 as one might have expected, but rather second
order in J1.

Spin Waves: To contrast this scenario with others that pre-
dict the same magnetic ordering pattern, we calculate the
spin wave spectrum for the model Eq. #4$. We expect inelas-
tic neutron scattering experiments in the future to be able to
check this prediction. In particular, we contrast it with a re-
cent theory,11,21 in which there is a sufficiently large third
neighbor exchange J3 and the monoclinic distortion alters the
first and second nearest neighbor interactions, leading to the
observed magnetic order. In our model, the magnetic order
is stabilized just by the anisotropy of J2, with one ferromag-

netic and one antiferromagnetic direction. #Refs. 11 and 21
also include the anisotropic couplings but their third
neighbor hopping is essential for stabilizing the order with-
out ferromagnetic directions.$ Note, while doing the spin-
wave calculations, we expand about the equilibrium spin
state, and hence, the biquadratic interaction effectively leads
to weak #w$ and strong #s$ nearest-neighbor bonds, J1s
!J1w. That is, our spin wave dispersion is reproduced by a
model involving only quadratic spin couplings, where
J1S1 ·S2−K1#S1 ·S2$2⇒ #J1−2K1'S1 ·S2($S1 ·S2. Therefore,
the bonds between parallel spins are effectively weaker than
those between antiparallel spins, similar to Refs. 11 and 21.
The spin-wave spectrum is obtained using the Holstein-
Primakoff expansion #see e.g. Ref. 22$. Figure 5 compares
the dispersions one expects in the two models, the first with
a strong J3 and ours with a ferromagnetic diagonal coupling.
Note, the upper band of the dispersions curves in the oppo-
site direction along the Y-axis, because of the ferromagnetic
coupling J2Y.

E. Doping induced incommensuration

The properties of Fe1+yTe have been experimentally in-
vestigated as y is varied. Experimentally, Fe1+yTe is found to
have incommensurate spin order when y is large enough,
with an incommensurate wave vector that deviates from
## /2,# /2$ linearly with doping.4 One of the effects of the
excess iron, which is believed to be in the Fe2+ state, is to
electron dope the system by 2y electrons. Here, we consider
how this may be explained as a result of the increasing elec-

FIG. 5. #Color online$ Comparison of the spin wave dispersion for order stabilized by J3 versus by a ferromagnetic diagonal interaction.
The dispersions are plotted as a function of #kX ,kY$= #kx−ky ,kx+ky$ in the upper pictures. The other graphs show the dispersion in the Y
direction. #a$ The spin wave spectrum for J2X=J2Y =1,J1=1.47,K=0.265,J3=0.4, which have the same effective J1w,s as in Ref. 11. #b$ This
shows the spectrum for J2X=−J2Y =1,J1=0.7,K=0.265,J3=0. The sign of J2Y is flipped to describe a ferromagnetic coupling, while J3 is set
to zero. !J1’s value is decreased relative to #a$ to stabilize the order." Note that the upper band changes from a hill shape to a valley.
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C. Double exchange

Hopping of electrons between the antiferromagnetic
chains can readily occur if they occupy the dYz orbital. How-
ever, in an orbitally ordered insulator, these are assumed to
be empty. Given the empirical fact that FeTe is a metal, we
assume a small occupation ! of electrons in this orbital. This
can arise because of “self-doping,” i.e., if the orbital disper-
sion cannot be completely neglected, a fraction of carriers
from one of the “filled” bands !for example dxy", could be
transferred to an empty band, i.e., this orbital. In addition to
the self-doping, FeTe always occurs with a slight excess of
Fe i.e., Fe1+yTe. The electrons from the additional Fe+2 ions
also contribute to !.

Such an excess carrier density will lead to ferromagnetic
interactions between chains, via the double exchange mecha-
nism. An electron hopping in this nearly empty orbital will
be Hund’s coupled to the dXz electron according to Eq. !2".
The Hund’s coupling is typically large and will force both
electrons to have the same spin. If the electron is to hop to
the neighboring chain, the spins must be parallel. Then, it
can enjoy a lowering of kinetic energy by −2t2. Thus, a fer-
romagnetic arrangement of spins will have a lower energy
than an antiferromagnetic arrangement by an amount 2#t2#!,
which can roughly be viewed as a ferromagnetic coupling
along the Y diagonal !strictly speaking this is a nonlocal
interaction, and cannot be assigned solely to the diagonal
bond". Thus, J2Y =−2#t2#!. The coupling J2X along the X di-
rection remains antiferromagnetic. The double-exchange
along X generated by the holes left behind in the donor
xy-orbitals would be negligible if the effective mass for their
motion turns out to be large enough. With this combination
of exchange constants, the magnetic ordering on a single

sublattice is shown in Fig. 4. Note that it has the wave vector
!" /2," /2", as required.

D. Coupling the sublattices

So far, the two sublattices !A and B" are independent.
When the doping is small, the dominant spin interaction J,
between nearest neighbor sites will arise from antiferromag-
netic exchange from the electrons in the half filled dxy or-
bital. !The nearest neighbor hopping of electrons in the dXz
orbitals would induce a smaller ferromagnetic interaction
controlled by the Hund’s coupling, since the dominant hop-
ping is expected to move them to dyz orbitals after a hop." We
will also invoke a coupling to the lattice to generate a biqua-
dratic interaction term in order to lock in the commensurate
wave number, leading to the net Hamiltonian describing the
interaction of spin 1 atoms on a square lattice:

H = $
ij

JijSi · S j − K$
%ij&

!Si · S j"2. !4"

J2X= t2
2 /U, J2Y =−2#t2#! and J1#0, and J1 is the same for

both nearest-neighbor bonds. The phase diagram of this
model as a function of increasing K is included on the y-axis
of Fig. 6. The Si ·S j terms alone would lead to an incommen-
surate spiral state,20 where the nearest neighbor spins are
close to being orthogonal to one another !this is called the
“single spiral state” below". This state, even in the small
incommensuration limit, is significantly different from the
experimentally observed collinear state.

To stabilize the commensurate ! "
2 ,− "

2 " state, we take into
account the biquadratic spin interaction !−K!S1 ·S2"2", which
is a well-known consequence of spin-lattice coupling. This
term prefers collinear magnetism. As we will see below, even
modest values of the spin phonon coupling K can induce
locking of the commensurate, collinear phase observed in
experiments. In particular, we show below that the critical
coupling required to induce collinear order K$J1

2 /J2X can be
parametrically smaller than J1. Coupling of spin and lattice is
presumably essential to getting a commensurate state at this
wave vector.

Phase Diagram: The phase diagram can be obtained by
taking the ansatz of a pair of coplanar spirals on the two
sublattices with an arbitrary phase % between them, and
wave vector k along diagonal X. This is probably sufficiently
general to capture the ground states of Eq. !4", because the
ferromagnetic coupling along the Y-direction prevents the
spin from varying in that direction. Let the azimuthal angle
of spin i be &i. Then the ansatz reads:

&i = k!xi − yi" + !− 1"xi+yi
%

2
. !5"

Here, !k ,−k" is the wave number of the spin arrangement.
!This state is ICA, from Ref. 11." Note, the experimentally
observed collinear state corresponds to k=" /2 and %=" /2.
Along any row, the angle between adjacent spins alternates
between k−% and k+%. For k=%=" /2, the spins therefore
alternate from parallel to antiparallel.

Minimizing the energy per site,

FIG. 4. How the spin-order on sublattices arises out of the or-
bital order. The solid and dotted lines show the projections of the
dXz and dYz orbitals. !a" The second nearest neighbor hopping am-
plitudes, which determine the order in the sublattices. Electrons stay
in the same orbital when they hop to the second nearest neighbor.
The hopping for each orbital is anisotropic, with an anisotropy that
depends on the orbital, so each orbital forms a set of one-
dimensional chains. Electrons can hop between nearest neighbors as
well !not shown". !b" Generating the spin order in the A-sublattice.
!The iron atoms in the B-sublattice are indicated by x’s." The dXz
orbitals are shaded to indicate that they are filled and the dYz orbit-
als are lightly doped. The dXz orbitals form one-dimensional Mott
insulators parallel to the X-axis with antiferromagnetic coupling
J2X. The dYz orbitals form one-dimensional metals parallel to the Y
direction. Ferromagnetic order along Y lowers the kinetic energy of
the metals by about t2!.
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As such, the Coulomb repulsion energy U between the Fe
3d electrons is strongly solvated, whereas K remains
nearly unchanged [18], and this is in agreement with
x-ray data on both undoped and superconducting pnictides
[19]. Furthermore, the solvation effect on U from the
anions could be strongly orbital-dependent. A recent
first-principles Wannier-function analysis [20] indicates
that the influence of the anions on the Fermi-surface states,
mainly of Fe dxz and dyz characters, is so substantial that
the head-on ‘‘!-bond’’ hopping becomes surprisingly
small and the ‘‘"-bond’’ hopping becomes the leading
one. It is likely that the U for the Fe dxz and dyz electrons
is closer to the complete solvation. We thus assume that the
Fe 3d electronic states separate into two different types:
The dxz and dyz electrons are itinerant, and the rest form
relatively localized spins. The double-exchange FM effect
is thus introduced thanks to the energy barrier !K for an
itinerant electron to hop between two antiparallel localized
spins [16]; to this extent, our proposal is supported by the
spectroscopic imaging-scanning tunneling microscopy
(SI-STM) data [21] on CaFe2As2 and neutron-scattering
data [22] on Fe1þ#Te1#xSex.

The minimum model considered is an effective orbital-
degenerate double-exchange model [23]:

H ¼ #
X

ij$$0%

ðt$$0

ij Cy
i$%Cj$0% þ H:c:Þ

# K

2

X

i$%%0
Cy
i$% ~!%%0Ci$%0 ' ~Si þ

X

ij

Jij ~Si ' ~Sj; (1)

where Ci$% denotes the annihilation operator of an itiner-
ant electron with spin % ¼" or # in the $ ¼ dxz or dyz
orbital on site i. t$$

0

ij ’s are the electron hopping parameters.

~!%%0 is the Pauli matrix, and ~Si is the localized spin whose
magnitude is S. Jij is the AF superexchange couplings
between the localized spins; in particular, J and J0 are,
respectively, the nearest-neighbor (NN) and next-nearest-
neighbor (NNN) ones. KS ’ 0:4–0:8 eV [19] and JS2 (
J0S2 ( 0:01 eV. Our recent first-principles Wannier-
function analyses on LaOFeAs [20] and FeTe suggest
that to the y direction, the dxz # dxz NN hopping integral
tk ’ 0:4 eV and the dyz # dyz NN hopping integral t? ’
0:13 eV; they are swapped to the x direction; by symmetry
the NN interorbital hoppings are zero; the NNN intraorbi-
tal hopping integral t0 ’ #0:25 eV for both dxz and dyz
orbitals, and the NNN interorbital hopping is )0:07 eV;
farther hopping parameters and the interlayer ones are
weak [20] and neglected and so are the farther superex-
change parameters. We emphasize that, as demonstrated
below, our conclusions are independent of the details of the
parameters as long as the following two intrinsic features
of the parameters hold: tk * t? and moderate KS! tk.
Here one itinerant electron per site (denoted as n ¼ 1Þ is
considered to correspond to the parent compounds [24,25].

For the material dependence of the parameters, note that
the anion height from the iron plane, zanion, is the most

significant local structural variation among the iron-based
superconductors: zanion ¼ 1:31, 1.35, and 1.73 Å in
LaOFeAs, BaFe2As2, and FeTe, respectively [4–6]. Since
the iron atoms communicate with each other through the
anions, the farther away the anions are, the more isolated
the iron atoms are. The isolation of the Fe atoms would
enhance the local parameters S and KS (in agreement with
the ordered magnetic moments of 0.36, 0.87, and 1:70%B in
LaOFeAs, BaFe2As2, and FeTe, respectively [4–6]) but
suppress the nonlocal parameters Jij. Considering the can-
cellation of the zanion effects on S and Jij, JijS

2 as a whole
is approximately material-independent. Hence, KS is
decisive in distinguishing the bicollinear ordered FeTe
(KS! 0:8 eV) from the collinear ordered LaOFeAs and
BaFe2As2 (KS! 0:4 eV).
In Eq. (1), the itinerant electrons are actually strongly

correlated via Hund’s rule coupling to the quantum local-
ized spins [26,27]. To give a general and simple picture
elucidating that the model indeed conceives a strong mag-
netic phase competition, it suffices to compare a variety of
static spin orders with the localized spins treated as Ising
spins. The Ising approximation for the K term is supported
by a recent numerical study in local-density approximation
plus dynamical mean-field theory [13]. Then, Eq. (1) is
reduced to a system of noninteracting electrons moving in
an external potential that is #KS=2 and KS=2 at site i
when the itinerant electron is spin parallel and antiparallel

to ~Si, respectively.
The results shown in Fig. 2 indicate that a salient feature

of Eq. (1) is the magnetic softness, namely, the close
proximity of the collinear (C-type), bicollinear (E-type),
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FIG. 2 (color online). Close proximity of AF orders. The
shorthand notations [26] are G (checkerboard), C (collinear),
E (bicollinear), and F (ferromagnetic). The JS2 # J0S2 phase
diagrams for n ¼ 1 with (a) KS ¼ 0:4 eV and (b) KS ¼ 0:8 eV.
The green and red dots mark out JS2 ¼ J0S2 ¼ 0:01 eV. (c) The
J0S2 # KS phase diagrams for n ¼ 1. Also illustrated are the
placements of FeTe (‘‘11,’’ red dot), LaOFeAs, and BaFe2As2
(‘‘1111’’ and ‘‘122,’’ respectively, green dot). JS2 ¼ J0S2.
(d) The total energy as a function of n with respect to that of
the bicollinear order. KS ¼ 0:8 eV and JS2 ¼ J0S2 ¼ 0:01 eV.
The energy unit is eV.
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We use bulk magnetic susceptibility, electronic specific heat, and neutron scattering to study structural and
magnetic phase transitions in Fe1+ySexTe1−x. Fe1.068Te exhibits a first-order phase transition near 67 K with a
tetragonal-to-monoclinic structural transition and simultaneously develops a collinear antiferromagnetic !AF"
order responsible for the entropy change across the transition. Systematic studies of the FeSe1−xTex system
reveal that the AF structure and lattice distortion in these materials are different from those of FeAs-based
pnictides. These results call into question the conclusions of present density-functional calculations, where
FeSe1−xTex and FeAs-based pnictides are expected to have similar Fermi surfaces and therefore the same
spin-density wave AF order.
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I. INTRODUCTION

Superconductivity was recently discovered in the
tetragonal-structured " phase !sometimes called # phase"
FeSex system1–3 shortly after the discovery of high transition
temperature superconductivity with Tc of up to 55 K in
FeAs-based pnictides.4–9 The Tc of the Fe1+ySexTe1−x system
can reach up to 14 K at ambient pressure1,10–12 and 27 K at a
pressure of 1.48 GPa.13 Contrary to the earlier prediction of a
low-Tc conventional superconductor,14 density-functional
calculations of the electronic structure, magnetism, and
electron-phonon coupling for the superconducting phase of
Fe1+ySexTe1−x suggest that superconductivity in this class of
materials is unconventional and mediated by spin
fluctuations.15 Furthermore, the calculated Fermi surface of
Fe1+ySexTe1−x is very similar to that of the iron pnictides
such as LaFeAsO and BaFe2As2. If the observed collinear
antiferromagnetic !AF" order in the parent compounds of the
FeAs-based pnictides16–23 is due to the spin-density wave
!SDW" instability of a nested Fermi surface,24–27 one would
expect to find the same AF structure or SDW instability in
the nonsuperconducting Fe1+ySexTe1−x. For FeAs-based ma-
terials such as BaFe2As2, SrFe2As2, and CaFe2As2, neutron-
scattering experiments have shown that the system exhibits a
tetragonal-to-orthorhombic lattice distortion accompanied by
a collinear commensurate AF order with moment direction
along the orthorhombic long !a" axis #Fig. 1!c"$.21–23 In the
case of Fe1+ySexTe1−x, there have been several previous neu-
tron and x-ray scattering experiments studying their structure
and magnetic properties. More than 30 years ago, Fruchart et
al.28 discovered that Fe1.125Te orders antiferromagnetically
with a commensurate structure at low temperature. Below
the magnetic ordering temperature, these authors further
showed that the crystal lattice exhibits a monoclinic
distortion.28 Recently, combined Rietveld refinements of the
synchrotron x-ray and neutron powder-diffraction data on the
superconducting FeSe1−x suggest that the crystal structure of

FIG. 1. !Color online" !a" Neutron powder-diffraction data of
Fe1.068Te at T=5 K collected on the BT-1 diffractometer with
Ge!3,1,1" monochromator and an incident-beam wavelength of $
=2.0785 Å. The lattice structure is described by the monoclinic
space group P21 /m, which changes to tetragonal P4 /nmm above
TN, as illustrated schematically in the inset. !b" Schematic in-plane
spin structure of Fe1.068Te. The solid arrows and hollow arrows
represent two sublattices of spins, which can be either parallel or
antiparallel, as discussed in the text. The shaded area indicates the
magnetic unit cell. !c" Schematic in-plane spin structure of
SrFe2As2 from Ref. 22.
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tion) is considered to be ferromagnetic.? ? Ref. ? argues the
ferromagnetic exchange along b direction results from elec-
tron’s doping on the upper dY z orbital and kinetic energy of
these extra dY z electrons. Ref. ? attributes this ferromag-
netic exchange to the nearly 90 degree exchange path. We
aslo include an antiferromagnetic exchange between nearest
neighbors. Therefore, the exchange interaction is written as

Hex = J1

⇤

⇥ij⇤

Si · Sj + J2a

⇤

⇥⇥ij⇤⇤a

Si · Sj � J2b

⇤

⇥⇥ij⇤⇤b

Si · Sj .

(1)
Next we write down the single-ion anisotropic term,

Hani = �
⇤

i

[Aa(Sa
i )2 + Ab(Sb

i )
2], (2)

in which, Sa
i = 1⌅

2
(Sx

i � Sy
i ) and Sb

i = 1⌅
2
(Sx

i + Sy
i ).

Such an anisotropic term is allowed by the symmetry of the
orthorombic crystal structure. Microscopically this single-ion
anisotropy comes from the second order effect of the spin-
orbit interaction. We assume Ab > Aa > 0 to favor magnetic
order along b lattice direction.

The full Hamiltonian we will study is

H = Hex + Hani. (3)

B. Phase diagram and spin wave excitation

In last subsection, we introduce our microscopic Hamilto-
nian in Eq. (3). In this subsection, we analyze the phase dia-
gram of this Hamiltonian and study the spin wave excitation
of different phases. Treating the spin classically, one can find
that the ground state of the exchange interaction in Eq. (1) is
a coplanar spin spiral with an ordering wavevector (k,�k),
where cos k = �J1/(2J2a). In general, this spin spiral is in-
commensurate unless J1/(2J2a) ⇧ 1 or takes certain discrete
values. When J1/(2J2a) ⇧ 1, the ground state is the usual
(�,�) state on the square lattice. For the single-ion anisotropy,
since we assume Ab > Aa, it favors the spins to be aligned
with b lattice directions, which frustrates the incommensurate
spin spirals. Therefore, there is a competition between the
exchange interaction and the single-ion anisotropy. The pres-
ence of the single-ion anisotropy tends to lock the coplanar
spin spiral in xy (or ab) plane and also pin the wavevector
be commensurate with k = �/2,�. Due to the orbital or-
dering dicussed in previous subsection, J2a is the predomi-
nant exchange interation for Fe1+yTe, so the wavevector of
the spin spiral is close to (�/2,��/2). Consequently, when
the single-ion anisotropy is dominant over the exchange inter-
action, the system develops a collinear magnetic order along
b lattice direction with the ordering wavevector (�/2,��/2).
With this ordering wavevector, nearest-neighbor exchange in-
teraction J1 is quenched and the two sublattices of the square
lattice effectively decouple. Therefore, this state was called
“bicollinear” magnetic order in the literature.? Now we com-
pute the energies of all three candidate ground states and de-
termine the phase diagram. For the incommensurate spin spi-

ral state, we have the energy per site

E(k,�k)|cos k=�J1/(2J2a) = �(J2a+J2b+
J2

1

2J2a
)�Aa + Ab

2
.

(4)
For the bicollinear state, the energy per site is

E(�/2,��/2) = �(J2a + J2b)�Ab. (5)

For the (�,�) state, the spins also orient along b lattice direc-
tion, so the energy per site is

E(�,�) = �(�J2a + J2b + 2J1)�Ab. (6)

Comparing the three energy, we obtain the approximate phase
diagram depicted in Fig. ??. This phase diagram is approxi-
mate because the actual phase boundary for a commensurate-
incomensurate transition cannot be obtained by simply com-
paring energies (see Sec. III).

The incommensurate spin spiral phase and the bicollinear
phase are two relevant phases for Fe1+yTe. Here, we study
the spin wave excitations of these two states by the standard
linear spin-wave theory. For the incommensurate spin spiral
state, we have the spin orientation at site (x, y)

n̂i =
�
cos(kxi � kyi), sin(kxi � kyi), 0

⇥
, (7)

and express the spin operators as

Si · n̂i = S � a†iai (8)

S+
i ⌅ (ẑ + i n̂i ⇤ ẑ) · Si =

�
2Sai (9)

S�i ⌅ (ẑ � i n̂i ⇤ ẑ) · Si =
�

2Sa†i . (10)

For the bicollinear spin state, we label two sublattices of the
square lattice as A and B. The spin orientations for two sub-
lattices are

n̂A,i = (�)(x�y)/2(
1�
2
,

1�
2
, 0) (11)

n̂B,i = (�)(x�y�1)/2(
1�
2
,

1�
2
, 0). (12)

We express the spin operators as

SA,i · n̂A,i = S � a†A,iaA,i (13)

S+
A,i ⌅ (ẑ + i n̂A,i ⇤ ẑ) · SA,i =

�
2SaA,i (14)

S�A,i ⌅ (ẑ � i n̂A,i ⇤ ẑ) · SA,i =
�

2Sa†A,i. (15)

and

SB,i · n̂B,i = S � a†B,iaB,i (16)

S+
B,i ⌅ (ẑ + i n̂B,i ⇤ ẑ) · SB,i =

�
2SaB,i (17)

S�B,i ⌅ (ẑ � i n̂B,i ⇤ ẑ) · SB,i =
�

2Sa†B,i. (18)

Plugging Eq. (10),(15) and (18) into the Hamiltonian Eq. (3)
and keeping the quadratic order in the magnon operators, one
can readily obtain the spin wave dispersion. As shown in
Fig. ??, the spin wave excitation of the incomensurate spin
spiral phase is gapless while it is gapped for the bicollinear
spin state.
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spiral phase is gapless while it is gapped for the bicollinear
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Commensurate-incommensurate transition

3

III. INCOMMENSURATE-COMMENSURATE
TRANSITION

In this section, we study the commensurate incommensu-
rate transition and determine the phase boundary of these two
phases using a Landau expansion of the effective action. First
we derive the effective Landau action from the microscopic
Hamiltonian Eq. (3) using the Hubbard-Stratonovich method
to decouple the exchange interactions. The partition funciton
reads

Z = Tr exp
⇤
� �

⇧

i,j

JijSi · Sj � �Hani
⌅

(19)

with the exchange-coupling matrix Jij . Here, Jij = J1, J2a
or �J2b when ij connects first-neighbor or second neighbor
sites along a and b directions, respectively. Now we decouple
the spin exchange by introducing an auxiliary field �i and
transforming the partition function to

Z =

⌃
D� e⇥J

�1
ij �i·�j/2Tr e�⇥Hani�⇥

P
i Si·�i (20)

Expanding around the saddle point gives

Z =

⌃
D� exp[�Seff] (21)

where the effective action Seff is given by

Seff =
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+
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2

Aa
)
⇥�
. (22)

We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,

f (2)[( )] = �
⇧

µ=0,1

(�)µ(
( a

µ)
2

Ab
+

( b
µ)

2

Aa
)

+
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µ=0,1

(�)µ

2
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µ (�c0 + cX�

2
X + cY �

2
Y ) 

�
µ
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A(i�Y ) 

�
B , (24)

in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,

c0 =
1

J2a + J2b
(25)

cX =
J2a

2(J2a + J2b)2
(26)

cY =
2J2

1 + J2aJ2b + J2
2a

2(J2a + J2b)3
(27)

⇥ =
J1

(J2a + J2b)2
(28)

and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is

f (4)[( )] =
⇧
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b
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( b
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by

 b
A =  b cos(⇤ Y + ⌅b) (30)

 b
B = (�i) b sin(⇤ Y + ⌅b), (31)

in which, ⇤ = ⇥/(2cY ) and  �, ⌅� are arbitrary real con-
stants. As x, y directions are the easy axes, we expect the in-
commensurate spin order is a coplanar spin spiral in xy plane.
We have

 A =  0Re[(â+ ib̂)ei(⇤ Y+⌅)] (32)

 B = (�i) 0Re[(�b̂+ iâ)ei(⇤ Y+⌅)] (33)

This state corresponds to an incommensurate spin spiral state
with the wavevector

k = (
⌃

2
,�⌃

2
, 0) (34)

As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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reads
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with the exchange-coupling matrix Jij . Here, Jij = J1, J2a
or �J2b when ij connects first-neighbor or second neighbor
sites along a and b directions, respectively. Now we decouple
the spin exchange by introducing an auxiliary field �i and
transforming the partition function to
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We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,
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in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,
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and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by

 b
A =  b cos(⇤ Y + ⌅b) (30)

 b
B = (�i) b sin(⇤ Y + ⌅b), (31)

in which, ⇤ = ⇥/(2cY ) and  �, ⌅� are arbitrary real con-
stants. As x, y directions are the easy axes, we expect the in-
commensurate spin order is a coplanar spin spiral in xy plane.
We have

 A =  0Re[(â+ ib̂)ei(⇤ Y+⌅)] (32)

 B = (�i) 0Re[(�b̂+ iâ)ei(⇤ Y+⌅)] (33)

This state corresponds to an incommensurate spin spiral state
with the wavevector

k = (
⌃

2
,�⌃

2
, 0) (34)

As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,

f (2)[( )] = �
⇧

µ=0,1

(�)µ(
( a

µ)
2

Ab
+

( b
µ)

2

Aa
)

+
⇧

µ=0,1

(�)µ

2
 �
µ (�c0 + cX�

2
X + cY �

2
Y ) 

�
µ

+ ⇥ �
A(i�Y ) 

�
B , (24)

in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,
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and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by

 b
A =  b cos(⇤ Y + ⌅b) (30)

 b
B = (�i) b sin(⇤ Y + ⌅b), (31)

in which, ⇤ = ⇥/(2cY ) and  �, ⌅� are arbitrary real con-
stants. As x, y directions are the easy axes, we expect the in-
commensurate spin order is a coplanar spin spiral in xy plane.
We have

 A =  0Re[(â+ ib̂)ei(⇤ Y+⌅)] (32)

 B = (�i) 0Re[(�b̂+ iâ)ei(⇤ Y+⌅)] (33)

This state corresponds to an incommensurate spin spiral state
with the wavevector

k = (
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As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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with the exchange-coupling matrix Jij . Here, Jij = J1, J2a
or �J2b when ij connects first-neighbor or second neighbor
sites along a and b directions, respectively. Now we decouple
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transforming the partition function to
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We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,
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in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,
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and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by

 b
A =  b cos(⇤ Y + ⌅b) (30)

 b
B = (�i) b sin(⇤ Y + ⌅b), (31)

in which, ⇤ = ⇥/(2cY ) and  �, ⌅� are arbitrary real con-
stants. As x, y directions are the easy axes, we expect the in-
commensurate spin order is a coplanar spin spiral in xy plane.
We have

 A =  0Re[(â+ ib̂)ei(⇤ Y+⌅)] (32)

 B = (�i) 0Re[(�b̂+ iâ)ei(⇤ Y+⌅)] (33)

This state corresponds to an incommensurate spin spiral state
with the wavevector

k = (
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As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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In this section, we study the commensurate incommensu-
rate transition and determine the phase boundary of these two
phases using a Landau expansion of the effective action. First
we derive the effective Landau action from the microscopic
Hamiltonian Eq. (3) using the Hubbard-Stratonovich method
to decouple the exchange interactions. The partition funciton
reads
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with the exchange-coupling matrix Jij . Here, Jij = J1, J2a
or �J2b when ij connects first-neighbor or second neighbor
sites along a and b directions, respectively. Now we decouple
the spin exchange by introducing an auxiliary field �i and
transforming the partition function to
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We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,
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in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,
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and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by

 b
A =  b cos(⇤ Y + ⌅b) (30)

 b
B = (�i) b sin(⇤ Y + ⌅b), (31)

in which, ⇤ = ⇥/(2cY ) and  �, ⌅� are arbitrary real con-
stants. As x, y directions are the easy axes, we expect the in-
commensurate spin order is a coplanar spin spiral in xy plane.
We have

 A =  0Re[(â+ ib̂)ei(⇤ Y+⌅)] (32)

 B = (�i) 0Re[(�b̂+ iâ)ei(⇤ Y+⌅)] (33)

This state corresponds to an incommensurate spin spiral state
with the wavevector

k = (
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As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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We want to study the commensurate-incommensurate phase
transition starting from the commensurate side, so we expand
the �i field around the (⌃/2,�⌃/2) ordering wavevector and
express the free energy in terms of the staggered magnetiza-
tion  i, which is a slowly varying field,

�µ(ri) = ei
�
2 (xi�yi) µ(ri), (23)

in which, the subindex µ denotes the sublattice A and B. One
should note that in the above equation  A is a real field while
 B is a pure imaginary field. In terms of the field  µ, the
quadratic part of the free energy density is written as,
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in which, µ = 0, 1 correspond to two sublattices A and B,
respectively. And,
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and the new coordinate variables are defined as X = x +
y, Y = x � y (see Fig. ??). The quartic terms of the free
energy density is
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First we consider the behavior of the system when the spin
order parameter is small. Physically this can correspond to the
case near a continuous transition between a disordered phase
and an ordered phase. For the real system of Fe1+yTe, we al-
ways encounter a first-order structural transition which termi-
nates the paramagnetic phase and produces a finite magnetic
order at low Fe doping. At high Fe doping, the ordered phase
transition takes place in the high temperature tetragonal phase
where the system has an orbital degeneracy and the exchange
model is expected to be different from Eq. (1). With a small
order parameter, the instability is signaled by quadratic part of
the free energy, i.e. the vanishing of the lowest eigenvalue of
the quadratic terms. The unstable eigenvectors of the  fields
are given by
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 b
B = (�i) b sin(⇤ Y + ⌅b), (31)
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As the spin order gradually increases, the quartic terms of
the free energy becomes more important, favoring commen-
surate (bi-collinear) state in which the spins are aligned with
the b axis. To study this incommensurate-commensurate tran-
sition, we plug Eq. (33) into the free energy density Eq. (24)
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and Eq. (29). Assuming ⌃0 is a constant, we obtain the re-
duced free energy density, neglecting an additive constant
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with ⇤ = 2cY ⌃2
0 and ⇧ = �4
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a � A�1
b )2.

This is a standard sine-Gordon model. The location of the
incommensurate-commensurate transition is determined by
the condition that the energy of a single domain-wall exci-
tation of the commensurate state (a “soliton”) vanishes. One
can readily find the transition occurs at

�c =
2

⌅

⇤
⇧

⇤
. (36)

When � < �c, the system is in the bi-collinear state. To obtain
the magnitude of the order parameter, we may simply evaluate
the free energy with ⌃A and ⌃B given by Eq. (33) with � =
0, ⇥ = ⌅/4. Minimizing the free energy with respect to ⌃0,
we have

⌃2
0 = (37)

Combining Eq. (36) and Eq. (37), we obtain the comensurate-
incommensurate transition occurs at

J1 = . (38)

IV. IN A MANGETIC FIELD

In this section we study the Hamiltonian Eq. (3) in pres-
ence of external magnetic field for both the bi-collinear state
and incommensurate spin spiral state. We treat the spin as a
classical vector with |Si| = 1. The full Hamiltonina is written
as

H = Hex +Hani �
�

i

B · Si (39)

A. Bi-collinear state

Starting from the bi-colliner state with field along z direc-
tion, we parametrize the spin vector with staggered magneti-
zation ms and uniform magnetization m,

SA,i = (�)(x�y)/2msb̂+mẑ (40)

SB,i = (�)(x�y�1)/2msb̂+mẑ, (41)

in which, ms =
⇧
1�m2. Inserting Eq. (41) into Eq. (39),

we minimize the energy over m. We find the uniform magne-
tization and minimal energy per site,
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4(2J1 + 2J2a +Ab)
.(43)

When the field is applied along b axis, there exists a spin-
flop transition: at a critical field Bc, the staggered magnetiza-
tion switches from b axis to a axis. When the field B < Bc,
the system has the original bi-collinear spin order which is
given by Eq. (12). There is no uniform magnetization. When
the field B > Bc, the spin vector is parameterized as

SA,i = (�)(x�y)/2msâ+mb̂ (44)

SB,i = (�)(x�y�1)/2msâ+mb̂. (45)
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Comparing the energies of the two spin states, we have the
critical field Bc,

Bc = 2
⇥
(Ab �Aa)(2J1 + 2J2a +Aa �Ab). (48)

When the field is applied along a axis, the staggered mag-
netization is along b axis and the uniform magnetization is
along a axis,

SA,i = (�)(x�y)/2msb̂+mâ (49)

SB,i = (�)(x�y�1)/2msb̂+mâ. (50)

Optimizing the energy over m, we find the uniform magneti-
zation and energy per site,

m =
B

2(2J1 + 2J2a +Ab �Aa)
(51)
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c = �(J2a + J2b +Ab)�
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4(2J1 + 2J2a +Ab �Aa)
.(52)

B. Incommensurate spin spiral state

Si =
⇥

1�m2(cos(kxi � kyi)x̂+ sin(kxi � kyi)ŷ +mẑ)
(53)
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Bc = 2
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and Eq. (29). Assuming ⌃0 is a constant, we obtain the re-
duced free energy density, neglecting an additive constant
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This is a standard sine-Gordon model. The location of the
incommensurate-commensurate transition is determined by
the condition that the energy of a single domain-wall exci-
tation of the commensurate state (a “soliton”) vanishes. One
can readily find the transition occurs at
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When � < �c, the system is in the bi-collinear state. To obtain
the magnitude of the order parameter, we may simply evaluate
the free energy with ⌃A and ⌃B given by Eq. (33) with � =
0, ⇥ = ⌅/4. Minimizing the free energy with respect to ⌃0,
we have
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the system has the original bi-collinear spin order which is
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Comparing the energies of the two spin states, we have the
critical field Bc,

Bc = 2
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(Ab �Aa)(2J1 + 2J2a +Aa �Ab). (48)

When the field is applied along a axis, the staggered mag-
netization is along b axis and the uniform magnetization is
along a axis,

SA,i = (�)(x�y)/2msb̂+mâ (49)

SB,i = (�)(x�y�1)/2msb̂+mâ. (50)

Optimizing the energy over m, we find the uniform magneti-
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m =
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and Eq. (29). Assuming ⌃0 is a constant, we obtain the re-
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This is a standard sine-Gordon model. The location of the
incommensurate-commensurate transition is determined by
the condition that the energy of a single domain-wall exci-
tation of the commensurate state (a “soliton”) vanishes. One
can readily find the transition occurs at
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When � < �c, the system is in the bi-collinear state. To obtain
the magnitude of the order parameter, we may simply evaluate
the free energy with ⌃A and ⌃B given by Eq. (33) with � =
0, ⇥ = ⌅/4. Minimizing the free energy with respect to ⌃0,
we have
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incommensurate transition occurs at
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critical field Bc,

Bc = 2
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When the field is applied along a axis, the staggered mag-
netization is along b axis and the uniform magnetization is
along a axis,

SA,i = (�)(x�y)/2msb̂+mâ (49)
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and Eq. (29). Assuming ⌃0 is a constant, we obtain the re-
duced free energy density, neglecting an additive constant

f =
⇤

2
(�Y ⇥)

2 + ⇧ cos 4(⇥ + �Y ) (35)

with ⇤ = 2cY ⌃2
0 and ⇧ = �4

0
4 (A�1

a + A�1
b )(A�1

a � A�1
b )2.

This is a standard sine-Gordon model. The location of the
incommensurate-commensurate transition is determined by
the condition that the energy of a single domain-wall exci-
tation of the commensurate state (a “soliton”) vanishes. One
can readily find the transition occurs at
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When � < �c, the system is in the bi-collinear state. To obtain
the magnitude of the order parameter, we may simply evaluate
the free energy with ⌃A and ⌃B given by Eq. (33) with � =
0, ⇥ = ⌅/4. Minimizing the free energy with respect to ⌃0,
we have

⌃2
0 = (37)

Combining Eq. (36) and Eq. (37), we obtain the comensurate-
incommensurate transition occurs at

J1 = . (38)

IV. IN A MANGETIC FIELD

In this section we study the Hamiltonian Eq. (3) in pres-
ence of external magnetic field for both the bi-collinear state
and incommensurate spin spiral state. We treat the spin as a
classical vector with |Si| = 1. The full Hamiltonina is written
as

H = Hex +Hani �
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B · Si (39)

A. Bi-collinear state

Starting from the bi-colliner state with field along z direc-
tion, we parametrize the spin vector with staggered magneti-
zation ms and uniform magnetization m,

SA,i = (�)(x�y)/2msb̂+mẑ (40)

SB,i = (�)(x�y�1)/2msb̂+mẑ, (41)

in which, ms =
⇧
1�m2. Inserting Eq. (41) into Eq. (39),

we minimize the energy over m. We find the uniform magne-
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When the field is applied along b axis, there exists a spin-
flop transition: at a critical field Bc, the staggered magnetiza-
tion switches from b axis to a axis. When the field B < Bc,
the system has the original bi-collinear spin order which is
given by Eq. (12). There is no uniform magnetization. When
the field B > Bc, the spin vector is parameterized as

SA,i = (�)(x�y)/2msâ+mb̂ (44)

SB,i = (�)(x�y�1)/2msâ+mb̂. (45)
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2. Incommensurae spin spirals
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1. Unusual bi-collinear spin order along b axis for low Fe doping
2. Large spin-wave gap for the bi-collinear state
3. Incommensurate spin spiral state for high Fe doping
4. Gapless spin wave excitation for the incommensurate phase
5. Incommensurate spin fluctuation above the Tc
6. Strong correlation between spin, orbital and crystal structure 

Interpretation of experiments
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Conclusion

1. Our model explain many experimental observation: different spin orders, spin 
wave excitation, etc. 

2. Our model gives prediction for further experimental direction.
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