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e n e r g i e s  ex t rapo la te  r a t h e r  smooth ly  to 

E r a i l r o a d  ~ -0 .490  NJ + 0. 005 (13) 

which should be quite a c c u r a t e  and is u n m i s t a k e a b l y  be t t e r  than the sp in -wave  

resu l t .  

A l e s s  a c c u r a t e  ex t r apo la t ion  may  be made  f rom the l inea r  chain  via 

the r a i l r o a d  t r e s t l e  to the en t i r e  t r i ang le  la t t ice .  One finds 

E A ~- -(0. 54 .+. 0 . 0 1 ) N J .  (14) 

This  is n e a r l y  20% lower  than the sp in -wave  ene rgy  (11) of the Ndel s tate.  It 

s e e m s  a l m o s t  c e r t a i n  that it 
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qua l i t a t ive ly  d i f fe ren t  s tate.  I 2 
j r  i r  iw iw / i  Sw l i t  iv Z i i  w 

I I S I O~ nS n' I '  I e d S ~ f • I Let us make some 

br ie f  c o m m e n t s  about the na ture  

of this  s tate .  A d i s c l a i m e r  is / 

in o rde r :  we r ea l l y  know ve ry  / / / ~kk ~k / 

l i t t le  about it. On the o ther  -- 

hand, there are a few very / / / ~k ~k / / / 
bas ic  th ings  which  can be said.  b) - -  / / / 

We note that w h e r e v e r  two 
bonds a r e  pa ra l l e l  ne ighbors ,  FIG. 3 

such as  (12) and (34) in Fig.  3a, Random a r r a n g e m e n t s  of pa i r  bonds on a 
t r i ang le  la t t ice .  (a) Shows a r e g u l a r  a t -  

e i t he r  (S 1" S 2) or  (S 3 • $4) p ro -  r a n g e m e n t  with 2N/4 a l t e r n a t i v e  d i s t inc t  
v ides  a m a t r i x  e l e m e n t  to the pa i r ings  ( " rhombus"  approx imat ion) .  
d e g e n e r a t e  conf igura t ion  (23)(41), (b) An a r b i t r a r y  a r r a n g e m e n t .  

while  only (S1S3) g ives  a m a t r i x  e l e m e n t  of opposi te  sign. Thus  we can a lways  
gain ene rgy  by l inea r ly  combin ing  d i f fe ren t  conf igura t ions  in which such bonds 
a r e  in t e rchanged .  Since t h e r e  a r e  in any r a n d o m  conf igura t ion  like Fig. 3b 

g r e a t  n u m b e r s  of s e t s  of pa ra l l e l  bonds,  one can a r r i v e  at any conI igu ra t ion  
f r o m  any other ;  and r e t u r n  to the o r ig ina l  one by ve ry  many paths.  What is 

not c l e a r  is that one wil l  r e t u r n  to the s ame  s ta te  in the s a m e  phase by t r a -  
ve r s ing  d i f f e ren t  paths. If one did,  the s ta te  would be e s s e n t i a l l y  a Bose  con-  
densed  s ta te  of pa i r -bonds  with a f o rm  of ODLRO. This would be c lo se ly  r e -  
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energies extrapolate rather smoothly to 

Erailroad ~ -0.490 NJ + 0. 005 (13) 

which should be quite accurate and is unmistakeably better than the spin-wave 

result. 

A less accurate extrapolation may be made from the linear chain via 

the railroad trestle to the entire triangle lattice. One finds 

E A ~- -(0. 54 .+. 0.01)NJ. (14) 

This is nearly 20% lower than the spin-wave energy (11) of the Ndel state. It 

seems almost certain that it 3 4 
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little about it. On the other -- 

hand, there are a few very / / / ~k ~k / / / 
basic things which can be said. b) -- / / / 

We note that wherever two 
bonds are parallel neighbors, FIG. 3 

such as (12) and (34) in Fig. 3a, Random arrangements of pair bonds on a 
triangle lattice. (a) Shows a regular at- 

either (S 1" S 2) or (S 3 • $4) pro- rangement with 2N/4 alternative distinct 
vides a matrix element to the pairings ("rhombus" approximation). 
degenerate configuration (23)(41), (b) An arbitrary arrangement. 

while only (S1S3) gives a matrix element of opposite sign. Thus we can always 
gain energy by linearly combining different configurations in which such bonds 
are interchanged. Since there are in any random configuration like Fig. 3b 

great numbers of sets of parallel bonds, one can arrive at any conIiguration 
from any other; and return to the original one by very many paths. What is 

not clear is that one will return to the same state in the same phase by tra- 
versing different paths. If one did, the state would be essentially a Bose con- 
densed state of pair-bonds with a form of ODLRO. This would be closely re- 
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Pauling’s RVB state  
of benzene molecule

Anderson’s spin singlet RVB states,  
then possible application to  

high-Tc superconductor in 1987.
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A B S T R A C T  
The p o s s i b i l i t y  of a new kind of e l e c t r o n i c  s ta te  is poin ted  out, 
c o r r e s p o n d i n g  rough ly  to P a u l i n g ' s  idea of " r e s o n a t i n g  v a l e n c e  
bonds"  in m e t a l s .  As  o b s e r v e d  by Pau l ing ,  a pure  s ta te  of th i s  
type  would be insu la t ing ;  it would r e p r e s e n t  an a l t e r n a t i v e  s ta te  
to the  N6el  a n t t f e r r o m a g n e t i c  s ta te  for  S = 1/2.  An e s t i m a t e  of 
i ts  e n e r g y  is m a d e  in one case .  

Many y e a r s  ago Pau l i ng  gave a " r e s o n a t i n g  va l ence  bond" t h e o r y  of 

m e t a l s  (1) which  v i r t ua l l y  ignored  the  e l e c t r o n  gas  na tu re  of the  m e t a l l i c  s ta te  

and in s t ead  t r i e d  to r e l a t e  the  b inding  e n e r g i e s  s e m i q u a n t i t a t i v e l y  to known 

v a l e n c e  bond c o n c e p t s .  Only r e c e n t l y  ha s  the  conven t iona l  F e r m i  gas  t h e o r y  

begu n  to a d d r e s s  i t se l f  m o r e  a n a l y t i c a l l y  to the s a m e  p r o b l e m s .  But P a u l i n g ' s  

a t t e m p t  l e a v e s  behind  a ve ry  i n t e r e s t i n g  p r o b l e m  of p r inc ip l e :  i s  a s ta te  in 

which  va lence  bonds  move  a r o u n d  f r e e l y  b e t w e e n  p a i r s  of a t o m s  a m e t a l  in 

fact  ? Does  it conduc t  e l e c t r i c i t y  in the c h a r a c t e r i s t i c  m e t a l l i c  w a y ?  More  

*Work  at the C a v e n d i s h  L a b o r a t o r y  s u p p o r t e d  in pa r t  by the A i r  F o r c e  Office 
of Sc ien t i f i c  R e s e a r c h  Office of A e r o s p a c e  R e s e a r c h ,  U. S. A i r  F o r c e  
u n d e r  g r a n t  No. 1052-69. 

**Th i s  p a p e r  was  o r i g i n a l l y  in tended  for  the Pau l ing  F e s t s c h r i f t ,  V o l u m e  7, 
N u m b e r  11 ( N o v e m b e r  1972). 
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It is NOT a Landau symmetry breaking state. This brings up an old and fundamental 
question, how do we characterize phase of matter?  Does spin liquid even exist?

Gang Chen’s theory group 

Gang Chen’s theory group



• Exactly solvable models: e.g. Kitaev model and its variants 

• Classification: many many spin liquids (X.-G. Wen, etc) 

• Numerical studies: DMRG, quantum Monte Carlo, exact diagonalization, etc

The existence of spin liquid (in theory) is well established and is supported by

QSL is a new phase of matter, and is not characterized by symmetry, but characterized by an 
emergent gauge structure and deconfined excitations that carry fractional (spin) quantum numbers. 

One-slide introduction to quantum spin liquids
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 Candidate spin liquid materials

organics: kappa-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, κappa−H3(Cat-EDT-TTF)2   
herbertsmithite (ZnCu3(OH)6Cl2), Ba3NiSb2O9, Ba3CuSb2O9, LiZn2Mo3O8, ZnCu3(OH)6Cl2 
volborthite (Cu3V2O7(OH)2), BaCu3V2O3(OH)2, [NH4]2[C7H14N][V7O6F18], Na2IrO3, CsCu2Cl4,  
CsCu2Br4, NiGa2S4, He-3 layers on graphite, etc 

Some candidate materials have already been ruled out. 
Not being a QSL does not necessarily mean the physics is not interesting ! 

Na4Ir3O8, IrO2, Ba2YMoO6, Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7, Tb2Ti2O7, Nd2Zr2O7, FeSc2S4, etc

• 2D triangular and Kagome lattice

• 3D pyrochlore, hyperkagome, FCC lattice, diamond lattice, etc

• Ultracold atom and molecules on optical lattices: temperature is too high now. 

What’s needed? Experiments, and the connection from theory to experiments!
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a. Early thermodynamics and microscopic modeling

b. Phenomenological approaches and neutron scattering 

c. Prediction of the weak-field behavior and our roadmap 

Outline
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a. Early thermodynamics and microscopic modeling
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. (needs comment.) 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  I think it is a spinon Fermi surface U(1) QSL.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Qingming Zhang
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Modeling

Yao-Dong Li
(Fudan -> UCSB) 

2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X

hiji

⇥
J
zz

Sz

i

Sz

j

+ J±(S
+

i

S�
j

+ S�
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)
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ij
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Sz
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+ hi $ ji)
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, (1)

where S±
i

= Sx

i

± iSy

i

, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
2

,a
3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order

4f electron is very localized, and  
dipolar interactions weak. 

YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Polarized neutron scattering

Strong exchange anisotropy in YbMgGaO4 from polarized neutron
di↵raction
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We measured the magnetic correlations in the triangular lattice spin-liquid candidate material
YbMgGaO4 via polarized neutron di↵raction. The extracted in-plane and out-of-plane components
of the magnetic structure factor show clear anisotropy. We found that short-range correlations
persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered
at the M middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin
anisotropy, with di↵erent correlation lengths for the in-plane and out-of-plane spin components.
When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with
only first-neighbor coupling and strongly anisotropic exchanges.

Anderson proposed in a seminal paper that the
ground state of the spin-1/2 Heisenberg triangular
lattice antiferromagnet (TLA) is a ”quantum liq-
uid” of resonating valence bonds [1]. Later studies
of this model mostly showed an ordered ground
state, with sublattice magnetization hSi = 0.41S

[2–7]. In contrast to the isotropic model, per-
turbations such as further-neighbor interactions
[8–13] or ring exchange [14, 15] were shown to
destroy Néel order and to promote the forma-
tion of a spin-liquid ground state. Real, undis-
torted spin-1/2 triangular lattice systems are rare.
Until recently the charge transfer salts were the
only known class. Members such as -(BEDT-
TTF)2Cu2(CN)3 [16] and EtMe3Sb[Pd(dmit)2]
[17] show spin-liquid ground states with a spinon
Fermi surface at low temperature. However the
magnetism of these systems is complicated with
charge fluctuations inducing an e↵ective ring ex-
change between spins that destroys Néel order.
Also, no momentum resolved spectroscopic data
of the magnetic excitations, crucial to fully char-
acterize the correlated state, is available due to
the small size of the synthetic crystals.

The recent discovery of YbMgGaO4, an inor-
ganic rare-earth oxide with e↵ective spin-1/2 tri-
angular lattice (see Fig. 1) gives a new opportu-
nity to study frustrated magnetism in this sim-
ple geometry [19]. First studies showed corre-
lated spin fluctuations without long range or-
der at the lowest measured temperature of 50
mK [20]. Moreover, large single crystals enabled
momentum resolved neutron spectroscopic stud-
ies of the magnetic excitation spectrum [21] that
was interpreted both as a spinon Fermi surface
[22] and resonating valence bonds [23]. Support-
ing the resonating valence bond picture, recent
measurements found no magnetic contribution to

FIG. 1. Single triangular layer of YbMgGaO4 with
the magnetic Yb3+ atoms shown as green spheres.
Surrounding oxygen atoms above and below the tri-
angular plane are shown by red and purple spheres,
respectively. The tilted blue ellipsoids represent the
first-neighbor symmetric exchange tensor [18].

the thermal conductivity [24]. Moreover it has
emerged very recently that crystalline electric-
field randomness induced by the non-magnetic
Mg/Ga site disorder is an essential characteris-
tic of YbMgGaO4[25]. This suggests that the
origin of the low temperature disordered state
might be driven by both intrinsic (quantum fluctu-
ations) and extrinsic (exchange randomness) pa-
rameters. The theoretical development is also
hampered by the lack of consensus on the under-
lying spin Hamiltonian.

In this Letter, we report the results of polarized
neutron di↵raction measurements in the candi-
date spin-liquid phase of YbMgGaO4. The experi-
mental technique probes separately the real-space
dependence and the spin-direction dependence of
the spin-spin equal time correlation function. In
rare earth systems such as YbMgGaO4, the mag-
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FIG. 3. Integrated magnetic di↵use scattering sig-
nal of YbMgGaO4 measured at di↵erent tempera-
tures and compared to the SCGA calculation. Pur-
ple symbols denote the magnetic signal measured at
10 K, green and blue symbols correspond to the mea-
sured spin structure-factors Syy and Szz at 52(2) mK,
while the blue and green lines show the corresponding
SCGA result simulated at TMF = 120 mK for model
B. (a) Powder-averaged data with black line denot-
ing the magnetic form factor of the Yb3+ ion. (b-d)
Angular dependence of the di↵use scattering signal in-
tegrated between q = 0.9 � 1.3 Å�1 and q = 2 � 2.4
Å�1. Black line is a guide to the eye.

3(a). The signal, measured at 10 K, is identical
to the magnetic form factor of Yb3+, confirming
the ideal paramagnetic nature of YbMgGaO4 at
this temperature. At base temperature the cor-
relations between the in-plane spin components
has a more pronounced maximum when compared
to the z-component and both are centered at
q = 1.15 Å�1. We also integrated the magnetic
signal within the 0.9 < q < 1.3 Å�1 annulus that

includes the M - and K-points of the first BZ, see
Fig. 3(b). Both the y and z components of the
e↵ective spin show clear peaks at the symmetry
equivalent M -points of the first BZ. We also inte-
grated the magnetic signal between 2.0 < q < 2.4
Å�1 that includes the center of the second BZ, see
Fig. 3(c). The signal again shows clear peaks at
angles corresponding to the M

0-points while there
is no di↵erence between the y and z components
of the spin in this cut.

The momentum dependence of the measured
magnetic di↵use scattering in YbMgGaO4 reveals
short-range correlations down to the lowest tem-
perature of 52 mK. This temperature is far below
the Curie-Weiss temperature of 4 K [19], suggest-
ing a strongly fluctuating magnetic ground state.
The most prominent feature of the di↵use scatter-
ing data is the peak at (1/2, 0, 0), the M point of
the Brillouin zone as previously observed via neu-
tron scattering without separating the spin com-
ponents [21]. This is in strong contrast to the re-
sults of the simplest antiferromagnetic model on
the triangular lattice with isotropic first-neighbor
interactions, where correlations are strongest at
the K-point (1/3, 1/3, 0). This suggests that fur-
ther terms in the Hamiltonian are important in
describing the low temperature correlated state of
YbMgGaO4. Our second observation is that the
correlations are strongly spin direction dependent,
revealing that the underlying Hamiltonian has to
be anisotropic as well. This is indeed expected for
a system with strong spin-orbit coupling and pre-
viously evidenced by magnetic susceptibility, mag-
netization and electron spin resonance measure-
ments in the paramagnetic phase [19, 20]. Also
it was previously shown that strongly anisotropic
couplings are present in the Yb3+-pyrochlore com-
pound, Yb2Ti2O7 [30].

Two di↵erent model Hamiltonians have been
proposed that describe the exchange interactions
in YbMgGaO4[21, 31]. The for the ambiguity of
the spin wave fit is two fold. Firstly, the spin
waves in the magnetic field polarized phase are
broad due to the randomness of the g-values [25].
Secondly, the spin wave spectrum is independent
of J

z± for the measured Bkz field direction. In or-
der to compare these models with our experimen-
tal data, we use self-consistent Gaussian approxi-
mation to calculate spin-spin correlations [32, 33],
as detailed in Sec. 4 of the Supplementary Mate-
rials [28]. The SCGA method describes correla-
tions between classical spins taking into account
the fluctuations of the molecular field. It is accu-
rate except the vicinity of the critical point T

c

. All
model parameters are fixed by previous fits of the
spin wave dispersion except the model tempera-
ture, that is fitted to our di↵use scattering data.
The reason for taking temperature as a variable
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We measured the magnetic correlations in the triangular lattice spin-liquid candidate material
YbMgGaO4 via polarized neutron di↵raction. The extracted in-plane and out-of-plane components
of the magnetic structure factor show clear anisotropy. We found that short-range correlations
persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered
at the M middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin
anisotropy, with di↵erent correlation lengths for the in-plane and out-of-plane spin components.
When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with
only first-neighbor coupling and strongly anisotropic exchanges.

Anderson proposed in a seminal paper that the
ground state of the spin-1/2 Heisenberg triangular
lattice antiferromagnet (TLA) is a ”quantum liq-
uid” of resonating valence bonds [1]. Later studies
of this model mostly showed an ordered ground
state, with sublattice magnetization hSi = 0.41S

[2–7]. In contrast to the isotropic model, per-
turbations such as further-neighbor interactions
[8–13] or ring exchange [14, 15] were shown to
destroy Néel order and to promote the forma-
tion of a spin-liquid ground state. Real, undis-
torted spin-1/2 triangular lattice systems are rare.
Until recently the charge transfer salts were the
only known class. Members such as -(BEDT-
TTF)2Cu2(CN)3 [16] and EtMe3Sb[Pd(dmit)2]
[17] show spin-liquid ground states with a spinon
Fermi surface at low temperature. However the
magnetism of these systems is complicated with
charge fluctuations inducing an e↵ective ring ex-
change between spins that destroys Néel order.
Also, no momentum resolved spectroscopic data
of the magnetic excitations, crucial to fully char-
acterize the correlated state, is available due to
the small size of the synthetic crystals.

The recent discovery of YbMgGaO4, an inor-
ganic rare-earth oxide with e↵ective spin-1/2 tri-
angular lattice (see Fig. 1) gives a new opportu-
nity to study frustrated magnetism in this sim-
ple geometry [19]. First studies showed corre-
lated spin fluctuations without long range or-
der at the lowest measured temperature of 50
mK [20]. Moreover, large single crystals enabled
momentum resolved neutron spectroscopic stud-
ies of the magnetic excitation spectrum [21] that
was interpreted both as a spinon Fermi surface
[22] and resonating valence bonds [23]. Support-
ing the resonating valence bond picture, recent
measurements found no magnetic contribution to

FIG. 1. Single triangular layer of YbMgGaO4 with
the magnetic Yb3+ atoms shown as green spheres.
Surrounding oxygen atoms above and below the tri-
angular plane are shown by red and purple spheres,
respectively. The tilted blue ellipsoids represent the
first-neighbor symmetric exchange tensor [18].

the thermal conductivity [24]. Moreover it has
emerged very recently that crystalline electric-
field randomness induced by the non-magnetic
Mg/Ga site disorder is an essential characteris-
tic of YbMgGaO4[25]. This suggests that the
origin of the low temperature disordered state
might be driven by both intrinsic (quantum fluctu-
ations) and extrinsic (exchange randomness) pa-
rameters. The theoretical development is also
hampered by the lack of consensus on the under-
lying spin Hamiltonian.

In this Letter, we report the results of polarized
neutron di↵raction measurements in the candi-
date spin-liquid phase of YbMgGaO4. The experi-
mental technique probes separately the real-space
dependence and the spin-direction dependence of
the spin-spin equal time correlation function. In
rare earth systems such as YbMgGaO4, the mag-
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Phase diagram: a conservative approach
YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

Hamiltonian under the global constraint slightly deviates
from the 120◦ state and occurs at incommensurate wave
vectors. In strong spin-orbit coupled insulators, however, the
incommensurate ordering is generically not favored. Because
of the intrinsic spin anisotropy that originates from the strong
spin-orbit coupling [19], to optimize the spin anisotropy, the
ordered spin moments cannot orient freely like the case for
an incommensurate state. As a result, we generically have the
commensurate spin orders in the strong spin-orbit coupled
insulators. Apart from the general understanding, we here
provide more specific reasons. Due to the low symmetry of
the spin Hamiltonian, the eigenstate that corresponds to the
minimum is generically unique, hence one cannot find two
orthogonal eigenvectors to construct an incommensurate spiral
state that satisfies the hard-spin constraint on every lattice site.
Therefore, the incommensurate state cannot be a true classical
ground state, and we tentatively regard the 120◦ state as the
candidate classical ground state in the regime with a small J±±.

With a large |J±±| and/or a large |Jz±|, the minimum of the
classical spin Hamiltonian occurs at

ks =
(

0,
2π√

3

)
, (5)

or its symmetry-equivalent wave vectors. Remarkably, this
minimum state satisfies the hard-spin constraint and is thus a
true ground state. The spin configuration with this ordering
wave vector has a stripe order, i.e., the spins order ferromag-
netically along one lattice direction and antiferromagnetically
along the remaining two lattice directions. To obtain the
classical phase diagram in Fig. 4(a), we compare the energies
of the 120◦ state and the stripe-ordered phases. In region I of
the phase diagram, the 120◦ state is obtained. In regions II
and III, we find two stripe-ordered phases with different spin
orientations. Without loss of generality, we fix the ordering
wave vector of the stripe phase to be ks = (0,2π/

√
3). Due to

the locking of the spin orientation and the ordering wave vector,
the spin configuration is fixed as well. With this choice of the
ordering wave vector, the spins are pointing in the yz plane [20]
and x direction in regions II and III, respectively (see Fig. 4).

Here we elucidate the structure of the classical ground-state
phase diagram. The magnetic phases for a negative Jz± can be
simply generated from the ones in the positive Jz± case by a
180◦ rotation around the z axis in the spin space. Under this
spin rotation,

Sz
i → Sz

i , (6)

S±
i → −S±

i , (7)

the coupling Jz± → −Jz±, while other couplings stay invariant
[21]. Therefore, we only consider the phase diagram with a
positive Jz± in Fig. 4(a). In addition, on the horizontal axis
with Jz± = 0, the magnetic phases are symmetric about the
origin. This is seen by rotating the spins around the z axis by
90◦. It transforms the spins as

Sz
i → Sz

i , (8)

S±
i → ±iS±

i , (9)

(a) T = 0 phase diagram

J±±/Jzz

J z
±
/J

zz

(b)

kc

ks

(c)

(d) (e)

FIG. 4. (a) The classical phase diagram in the zero temperature
limit. The solid phase boundaries are determined by the Luttinger-
Tisza method, and the colored regions are determined by classical
Monte Carlo simulation. (b) Ordering wave vectors kc and ks drawn
in the first Brillouin zone (the hexagon) for the three phases. (c)
The 120◦ order in region I with spins pointing in the xy plane. (d)
The stripe order in region II with spins pointing in the yz plane.
(e) The stripe order in region III with spins pointing along the x

direction.

and the coupling as J±± → −J±±. The above properties of
the classical phase diagram hold even for the quantum case.

B. Classical Monte Carlo simulation

To further investigate the structure of the classical phase
diagram and to extract finite-temperature magnetic properties,
we implement the classical Monte Carlo simulation of the
classical spin Hamiltonian [22,23]. As we previously ex-
plained, the system prefers the commensurate spin orders.
So one does not need a large system size to carry out the
classical Monte Carlo simulation. The simulation is performed
on 6×6 and 12×12 triangular systems. It starts with a randomly
chosen initial spin configuration, followed by 5000 transient
Monte Carlo steps (MCS) for the system to equilibrate. Within
each step, the Metropolis algorithm [24,25] is implemented
for sampling, and a method proposed in Ref. [26] is used
for updating the spin configurations in the canonical ensem-
ble. The observables are averaged within a sample of size
MCS = 50 000.

Since the 120◦ state (the stripe-ordered phase) has an
ordering wave vector kc (ks), we evaluate the spin-spin
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FIG. 8. Quantum correction (δm) to the magnetic orders that is
calculated within the self-consistent spin-wave theory on a 80×80
lattice. The region near phase boundary where δm exceeds the spin
magnitude with δm ! 1/2 is marked in beige.

V. MAGNETIC EXCITATIONS WITH AND WITHOUT
EXTERNAL MAGNETIC FIELDS

In this section, we study the properties of the magnetic
excitations in different ordered phases as well as in the
presence of strong magnetic fields.

A. Linear spin-wave theory for the three ordered phases

Since the quantum fluctuation is found to be very weak
deep inside each ordered phases, it is legitimate to apply the
linear spin-wave theory to study the magnetic excitation in the
strongly ordered regimes. In Fig. 9, we plot the representative
spin-wave dispersions for the three ordered phases. Due to
the anisotropic spin interaction, the system does not have any
continuous symmetry, so generically the spin-wave spectrum is
fully gapped. This is indeed the case for the two stripe-ordered
phases in Figs. 9(a) and 9(b). In Fig. 9(c), the parameters are
chosen that the spin model reduces to a XXZ model. Due to the
continuous U(1) symmetry breaking, the spin-wave spectrum
has one gapless mode. As one moves away from this special
point, we expect the spectrum should be gapped.

B. Polarized phases and strong magnetic fields

For the rare-earth magnets, the 4f electrons are very
localized. As a result, the exchange interaction between
the rare-earth local moments are usually very small. For
YbMgGaO4, the couplings in the spin Hamiltonian are of
the order of 1–4 K. Therefore, an external magnetic field of
the order of 10 T is probably sufficient to polarize the local
moments. For the magnetic field that is applied along the z
direction, we have the spin Hamiltonian,

HZ = H − hz

∑

i

Sz
i . (34)

Here hz ≡ gzµBBz and the gz is the Landé factor for magnetic
field in z direction. When the field hz is strong enough, the
spin is polarized along z. To obtain the magnetic excitation
of this polarized state, we use the linear spin-wave theory and
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FIG. 9. Spin-wave dispersion along high symmetry momentum
points. (a) Spin-wave dispersion in x-stripe phase, at J±± = − 0.9Jzz,

Jz± = 0.1Jzz. Inset: The first Brillouin zone, with red loop of
high-symmetry points along which we plot the dispersion indicated.
(b) Spin-wave dispersion in yz-stripe phase, at J±± = 0.8Jzz, Jz± =
0.8Jzz. (c) Spin-wave dispersion in 120◦ phase, at J±± = Jz± = 0.

transform the spin operators as

Sz
i = 1

2 − c
†
i ci , (35)

S+
i = ci , (36)

S−
i = c

†
i . (37)

We then plug this transformation in the Hamiltonian HZ and
keep the bilinear terms of boson operators. The magnetic
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 

0 0.5

1

0.5

0

–0.5

–1

(–
K

, K
, 0

) (
r.l

.u
.)

(H, H, 0) (r.l.u.)

E = 0.3 meVa

×1
0 0.5

(H, H, 0) (r.l.u.)

E = 0.6 meVb

×1
0 0.5

(H, H, 0) (r.l.u.)

E = 1.0 meVc

×2
0 0.5

(H, H, 0) (r.l.u.)

E = 1.2 meVd

×4
0 0.5

(H, H, 0) (r.l.u.)

0

65

E = 1.5 meVe

In
te

ns
ity

 (a
.u

.) 

×8

0 0.5
(H, H, 0) (r.l.u.)

Low

High

f

In
te

ns
ity

 (a
.u

.) 

1

0.5

0

–0.5

–1

(–
K

, K
, 0

) (
r.l

.u
.)

E = 7.5t

p

(H, H, 0) (r.l.u.)
–0.6 –0.4 –0.2 0 0.2 0.4 0.6

1

0.5

0

–0.5

–1

(–
K

, K
, 0

) (
r.l

.u
.)

M

Γ

K

g

Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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METHODS
Sample growth and characterizations. High-quality YbMgGaO4 single crystals 
were synthesized using the optical floating zone technique19. A representative  
single crystal, which is optically transparent with mirror-like cleaved surfaces, is 
shown in Extended Data Fig. 1a. Our X-ray diffraction (XRD) measurements 
revealed that all of the reflections from the cleaved surface could be indexed by 
(0, 0, L) peaks of triangular YbMgGaO4; no impurity phases were observed 
(Extended Data Fig. 1b). The full-width at half-maximum (FWHM) of the rocking 
curve of the (0, 0, 18) peak was about 0.009°, indicating an extremely high crystal-
lization quality (Extended Data Fig. 1c). This was confirmed by the sharp and clear 
diffraction spots in the X-ray Laue pattern (Extended Data Fig. 1d). Powder XRD 
patterns on ground single crystals also revealed no indication of impurity phases 
(Extended Data Fig. 1e). The Rietveld refinements31 confirm that the XRD pattern 
can be described by the R m3  space group. The refined structural parameters are 
given in Extended Data Table 1. These results suggested that the YbMgGaO4 single 
crystal possessed a perfect triangular lattice with no detectable impurities. This is 
consistent with previous measurements that have demonstrated that the impurity/
isolated spins are less than 0.04% in similar samples18,19. Although the Mg/Ga site 
disorder in the non-magnetic layers does not directly affect the exchange interac-
tion between the Yb local moments, it may have an indirect effect and could lead 
to some exchange disorder. It seems that this disorder is not significant, because 
no signs of spin freezing were observed. A QSL is often stable against weak local 
perturbations, provided that the perturbation is irrelevant or not significant. 
Therefore, if a QSL is realized as the ground state for YbMgGaO4, then the possible 
exchange disorder will not destabilize this state if the disorder strength is not  
significant.

In addition, the field dependence of magnetization in our single  crystal 
 displayed a linear behaviour above 12 T (Extended Data Fig. 1f),  indicative 
of a fully  polarized state. The Van Vleck susceptibility extracted from the 
 linear-field-dependent magnetization data was subtracted in the inset of Fig. 1c.
Neutron scattering experiments. INS measurements were carried out on the 
ThALES cold triple-axis spectrometer at the Institut Laue-Langevin, Grenoble, 
France, and at the FLEXX cold triple-axis spectrometer in the BER-II reactor at 
Helmholtz-Zentrum Berlin, Germany32. For the ThALES experiment, silicon (111) 
was used as a monochromator and analyser; the final neutron energies were fixed at 
Ef =  3 meV (energy resolution of about 0.05 meV), Ef =  3.5 meV (energy resolution 
of about 0.08 meV) or Ef =  4 meV (energy resolution of about 0.1 meV). For the 
FLEXX experiment, pyrolythic graphite (002) was used as a monochromator and 
analyser. Contamination from higher-order neutrons was eliminated through a 
velocity selector installed in the front of the monochromator. The final neutron 
energy was fixed at Ef =  3.5 meV (energy resolution of about 0.09 meV). Three (six) 
pieces of single crystals with total a mass of about 5 g (19 g) were coaligned in the 
(HK0) scattering plane for the ThALES (FLEXX) experiment. The FWHM of the 
rocking curve of the coaligned crystals for the ThALES and FLEXX experiments 
were approximately 0.95° and 0.92°, respectively. The elastic neutron scattering 
experiment was carried out at the WAND neutron diffractometer at the High 
Flux Isotope Reactor, Oak Ridge National Laboratory, USA; one single crystal was 
used for the experiment, with the incident wavelength λ =  1.488 Å (Extended Data  
Fig. 2). For the low-temperature experiments, a dilution insert for the standard 4He 
cryostat was used to reach temperatures down to around 30–70 mK.

Because of the non-uniform shape of the single crystal, the relatively large 
sample volume and the extremely broad spin-excitation spectrum, the neutron 
beam self-attenuation (by the sample) may require consideration. In most cases 
the self-attenuation is dependent on only the distance traversed by the  neutrons 
through the sample. We observed the self-attenuation effect in an elastic  incoherent 
scattering image of our sample at 20 K, which exhibited an anisotropic intensity 
distribution (Extended Data Fig. 3a). The self-attenuation effect was also observed 
in the raw constant-energy images (Extended Data Fig. 3b–f), which were shown 
to be anisotropic, with slightly higher intensities occurring at approximately 
the same direction as that observed in the elastic incoherent scattering images. 
The self- attenuation can be corrected by normalizing the data with the elastic 
 incoherent scattering image; that is, the elastic incoherent scattering intensity, 
which is dependent on the sample position (ω) and scattering angle (2θ), is  
converted to a linear attenuation correction factor for the scattering images 
 measured at different energies. The normalized constant-energy images are 
 presented in Fig. 2a–e, revealing a nearly isotropic intensity distribution.

Extended Data Fig. 4 shows the spin excitation spectrum at 20 K, which is 
 broadened and weakened compared with that at 70 mK (discussed below).
Spinon Fermi surface and dynamic spin structure factor. Here we explain the 
spinon mean-field state that is used to explain the dynamic spin structure factor 
of the neutron scattering experiments. As we proposed in the main text, a QSL 
with a spinon Fermi surface gives a compatible explanation for the INS results 
for YbMgGaO4.

To describe the candidate spinon-Fermi-surface QSL state in YbMgGaO4, we 
formally express the Yb3+ effective spin as the bilinear combination of the 
 fermionic spinon with spin †σ=∑αβ α αβ βS f fi i i

1
2

 and a Hilbert space constraint  
†∑ =α α αf f 1i i , where σαβ is a vector whose three components are the Pauli matrices 

and †
αfi  ( fiα) creates (annihilates) a spinon with spin α =  ↑ , ↓  at site i. For the QSL 

with a spinon Fermi surface, we propose a minimal mean-field Hamiltonian HMFT 
for the spinons on the  triangular lattice. We consider a uniform spinon hopping 
with a zero background flux:

† †∑ ∑µ=− + . . −α α α α
〈 〉

H t f f f f( h c ) (1)
ij

i j
i

i iMFT

where t is the mean-field parameter, which represents the hopping amplitude 
between nearest-neighbour sites. The chemical potential µ is included to impose 
the Hilbert space constraint on average. Here, we have treated the spinons freely 
by neglecting the gauge fluctuations. This mean-field state gives a single spinon 
dispersion

∑ω µ=− ⋅ −k at cos( )k
a

i
{ }i

where {ai} are six nearest-neighbour vectors of the triangular lattice. Owing to the 
Hilbert space constraint, the spinon band is half-filled, leading to a large Fermi 
surface in the Brioullin zone (Extended Data Fig. 5a).

INS measures the dynamic spin structure factor
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where N is total number of lattice sites, the summation goes over all eigenstates, 
| Ω〉  refers to the spinon ground state with the spinons filling the Fermi sea, E0 is 
the energy of the ground state and En(p) is the energy of the nth excited state with 
momentum p. In the actual calculation, owing to the energy resolution of the 
experiments, the δ function is taken to have a broadening: 

δ η
η

− =
/π

− +
ε

ε
E

E
( )

( )2 2

where η is the broadening and ε is the measured energy. Because †=∑+
+ ↑ ↓S f fp k k p k , 

the summation in equation (2) would be over all possible spin-1 excited states that 
are characterized by one spinon particle–hole pair crossing the spinon Fermi 
 surface (Fig. 2g) with a total momentum p and a total energy E. As we show in  
Fig. 2f and Extended Data Fig. 5b, and discuss in the main text, this spinon- Fermi-
surface QSL state gives the three crucial features of the INS results: (1) the broad 
continuum that covers the large portion of the Brioullin zone; (2) the broad 
 continuum persisting from the lowest energy transfer to the highest energy 
 transfer; and (3) the clear upper excitation edge near the Γ  point.

In our calculation of Fig. 2f and Extended Data Fig. 5b, we choose the lattice 
size to be 40 ×  40 and η =  1.2t, in accordance with the energy and momentum 
resolution of the instruments. The energy scale of Fig. 2f is set to be 7.5t.

Here we explain the details of the dynamic spin structure factor in Fig. 2f and 
Extended Data Fig. 5b, based on the particle–hole excitation of the spinon Fermi 
surface. For an infinitesimal energy transfer, the neutrons simply probe the spinon 
Fermi surface. Because the spinon particle and hole can be excited anywhere near 
the Fermi surface, the neutron spectral intensity appears from p =  0 to p =  2kF, 
where kF is the Fermi wavevector. Because | 2kF|  already exceeds the first Brillouin 
zone, the neutron spectral intensity then covers the whole Brillouin zone  including 
the Γ  point. For a small but finite E, as we explain in the main text, a minimal 
momentum transfer pmin ≈  E/vF is required to excite the spinon particle–hole 
pairs. Therefore, the spectral intensity gradually moves away from the Γ  point as 
E increases. Because it is always possible to excite the spinon particle–hole pair with 
the momenta near the zone boundary, the spectral intensity is not greatly affected 
at the zone boundary as E increases. Thus, the broad continuum continues to cover 
a large portion of the Brillouin zone at a finite E.

With the free spinon mean-field model HMFT, we further calculate the spectral 
weight along the energy direction for fixed momenta. The discrepancy between the 
theoretical results in Extended Data Fig. 5d and the experimental results in Extended 
Data Fig. 5e occurs at low energies. We attribute this low-energy  discrepancy to 
the fact that the free spinon theory ignores the gauge fluctuations. The enhance-
ment of the low-energy spectral weight compared to the free spinon results is 
then identified as possible evidence of strong gauge fluctuations in the system;  
we elaborate on this in the following discussion of the heat capacity  behaviour.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

Gang Chen’s theory group 

Gang Chen’s theory group
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first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
along high-symmetry directions. A reciprocal lattice unit (r.l.u.) is used 

here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
indicated momenta (marked by arrows in b). e, Measured constant-Q 
scans at the indicated momenta. The dashed line is the incoherent elastic 
line for Ef =  4 meV.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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How about Dirac spin liquid?
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Extended Data Figure 6 | Calculation of the π-flux Hamiltonian. a, Flux 
pattern and real nearest-neighbour hoppings on the triangular lattice. In 
the figure, ‘+ t’ denotes tij =  tji =  t and ‘− t’ denotes tij =  tji =  − t; ‘π ’ denotes 
triangles that are threaded by a π  flux. b, Spinon band structure of the  
π -flux Hamiltonian. The two bands are particle–hole related, both with 
bandwidths of 3t. c, Calculated momentum dependence of the dynamic 

spin structure factor at low energy ω =  2.1t. Strong peaks can be 
distinguished at the Γ  point, the π= /M (0,2 3 ) point ((1/2, − 1/2) in 
r.l.u.) and equivalent positions. White dashed lines denote the zone 
boundaries. d, Calculated dynamic spin structure factor along high-
symmetry points with η =  0.3t.
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triangles that are threaded by a π  flux. b, Spinon band structure of the  
π -flux Hamiltonian. The two bands are particle–hole related, both with 
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spin structure factor at low energy ω =  2.1t. Strong peaks can be 
distinguished at the Γ  point, the π= /M (0,2 3 ) point ((1/2, − 1/2) in 
r.l.u.) and equivalent positions. White dashed lines denote the zone 
boundaries. d, Calculated dynamic spin structure factor along high-
symmetry points with η =  0.3t.
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Spin transformation and gauge transformation

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
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1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2
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TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1
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f†
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fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
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(rr0)
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+ h.c.
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, (6)
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such that  r = (fr", f
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r")
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⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
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4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

The spin transformation and gauge transformation commute with each other. 
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation [43].

coupling is present. In Sec. V, we explain the relationship89

between the spinon band structure and the projective symmetry90

group of the spinon mean-field states. In Sec. VI, we focus on91

the U1A00 state and study the spectroscopic properties of92

this state. Finally in Sec. VII, we discuss the experimental93

relevance and remark on the thermal transport result and94

the competing scenarios and proposals. The details of the95

calculation are presented in the Appendixes.96

II. SPACE-GROUP SYMMETRY97

It was pointed out that intralayer symmetries involve two98

translations, T1 and T2, one twofold rotation, C2, one threefold99

rotation, C3, and one spatial inversion, I [see Fig. 1(a)]100

[35,39]. Here we use a different complete set of elementary101

transformations for the space-group symmetries that involve102

two translations, T1 and T2, one twofold rotation, C2, and one103

more operation, S6 [see the definition in Fig. 1(b)]. We can104

now confirm I = S3
6 , C3 = S2

6 with the definition S6 ≡ C−1
3 I .1 105

The multiplication rules of this symmetry group are given as106
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(C2)2 = (S6)6 = (S6C2)2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [34,36–107

38], we further supplement the symmetry group with the time108

reversal T such that O−1T OT = 1 and T 2 = 1, where O is109

a lattice symmetry operation.110

III. FERMIONIC PARTON CONSTRUCTION111

To describe the U (1) QSL that we propose for YbMgGaO4,112

we introduce the fermionic spinon operator frα(α = ↑, ↓) that113

carries spin-1/2, and we express the Yb local moment as114

Sr = 1
2

∑

α,β

f †
rασ αβfrβ , (5)

where σ = (σ x,σ y,σ z) is a vector of Pauli matrices. We further115

impose a constraint
∑

α f
†
rαfrα = 1 on each site to project116

back to the physical Hilbert space of the spins. The choice of117

fermionic spinons allows a local SU (2) gauge freedom [48].118

As a direct consequence of the spin-orbital entanglement, 119

the spinon mean-field Hamiltonian for the U (1) QSL should 120

generically involve both spin-preserving and spin-flipping 121

hoppings, and it has the following form: 122

HMF = −
∑

(r r ′)

∑

αβ

[ tr r ′,αβf †
rαfr ′β + H.c. ], (6)

where tr r ′,αβ is the spin-dependent hopping. The choice of 123

the mean-field ansatz in Eq. (6) breaks the local SU (2) gauge 124

freedom down to U (1). Here, to get a more compact form 125

for Eq. (6), we follow Ref. [49] and introduce the extended 126

Nambu spinor representation for the spinons such that $r = 127

(fr↑,f
†
r↓,fr↓, − f

†
r↑)T and 128

HMF = −1
2

∑

(r,r ′)

[$†
rur r ′$r ′ + H.c.], (7)

where ur r ′ is a hopping matrix that is related to tr r ′,αβ . With the 129

extended Nambu spinor, the spin operator Sr and the generator 130

Gr for the SU (2) gauge transformation are given by [48,50– 131

53] 132

Sr = 1
4$†

r (σ ⊗ I2×2)$r , (8)

Gr = 1
4$†

r (I2×2 ⊗ σ )$r , (9)

where I2×2 is a 2 × 2 identity matrix. Under the symmetry 133

operation O, $r transforms as 134

$r → UOGO
O(r)$O(r) = GO

O(r)UO$O(r), (10)

where GO
O(r) is the local gauge transformation that corresponds 135

to the symmetry operation O, and we add a spin rotation UO 136

because the spin components are transformed when O involves 137

a rotation. In Eq. (10), the gauge transformation and the spin 138

rotation are commutative [54] simply because [Sµ
r ,Gν

r ] = 0. 139

Moreover, from Eq. (9), the gauge transformation GO
r is block 140

diagonal with GO
r = I2×2 ⊗ WO

r , where WO
r is a 2 × 2 matrix 141

[43]. 142

IV. PROJECTIVE SYMMETRY GROUP CLASSIFICATION 143

For the spinon mean-field Hamiltonian in Eq. (6), the lattice 144

symmetries are realized projectively and form the projective 145

symmetry group (PSG). To respect the lattice symmetry 146

transformation O, the mean-field ansatz should satisfy 147

ur r ′ = GO†
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†
OuO(r)O(r ′)UOGO

O(r ′). (11)

The ansatz itself is invariant under the so-called invariant gauge 148

group (IGG) with ur r ′ = G1†
r ur r ′G1

r ′ . The IGG can be regarded 149

as a set of gauge transformations that correspond to the identity 150

transformation. For an U (1) QSL, IGG = U (1). 151

A general group relation O1O2O3O4 = 1 for the lattice 152

symmetry turns into the following group relation for the PSG: 153
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YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation [43].

coupling is present. In Sec. V, we explain the relationship89

between the spinon band structure and the projective symmetry90

group of the spinon mean-field states. In Sec. VI, we focus on91

the U1A00 state and study the spectroscopic properties of92

this state. Finally in Sec. VII, we discuss the experimental93

relevance and remark on the thermal transport result and94

the competing scenarios and proposals. The details of the95

calculation are presented in the Appendixes.96
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translations, T1 and T2, one twofold rotation, C2, one threefold99

rotation, C3, and one spatial inversion, I [see Fig. 1(a)]100

[35,39]. Here we use a different complete set of elementary101

transformations for the space-group symmetries that involve102

two translations, T1 and T2, one twofold rotation, C2, and one103
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38], we further supplement the symmetry group with the time108

reversal T such that O−1T OT = 1 and T 2 = 1, where O is109

a lattice symmetry operation.110
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∑
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rαfrα = 1 on each site to project116

back to the physical Hilbert space of the spins. The choice of117

fermionic spinons allows a local SU (2) gauge freedom [48].118

As a direct consequence of the spin-orbital entanglement, 119

the spinon mean-field Hamiltonian for the U (1) QSL should 120

generically involve both spin-preserving and spin-flipping 121

hoppings, and it has the following form: 122

HMF = −
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∑
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where tr r ′,αβ is the spin-dependent hopping. The choice of 123

the mean-field ansatz in Eq. (6) breaks the local SU (2) gauge 124

freedom down to U (1). Here, to get a more compact form 125
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Nambu spinor representation for the spinons such that $r = 127
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Sr = 1
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Gr = 1
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where I2×2 is a 2 × 2 identity matrix. Under the symmetry 133

operation O, $r transforms as 134

$r → UOGO
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O(r)UO$O(r), (10)

where GO
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symmetries are realized projectively and form the projective 145
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The ansatz itself is invariant under the so-called invariant gauge 148
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r ′ . The IGG can be regarded 149

as a set of gauge transformations that correspond to the identity 150
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X
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f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form
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+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f
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r")
T and
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, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52
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Gr =
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 †
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where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
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O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†
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r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X
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f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form
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f†
r↵fr0
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+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and
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⇤
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where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52
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where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
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O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy
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O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).
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where GO
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r] = 0. Moreover, from
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with GO
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should satisfy
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The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).
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symmetry turns into the following group relation for the
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.
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further impose a constraint
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to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.
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where trr0
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is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
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where urr0 is a hopping matrix that is related to trr0
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where GO
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formed when O involves a rotation. In Eq. (10), the
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tative53 simply because [Sµ
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with GO

r = I2⇥2 ⌦WO
r , where WO
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For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy
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The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†
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r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
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results.
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34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
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where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint
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r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
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is the spin-dependent hopping. The choice
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gauge freedom down to U(1). Here, to get a more com-
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With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52
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where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
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 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ
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⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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2 IGG, (13)

where we used the fact that the gauge transformation
commutes with the spin rotation. As the series of rota-
tions O1O2O3O4 either rotate the spinons by 0 or 2⇡,

UO1
UO2

UO3
UO4

= ±I4⇥4, (14)

where I4⇥4 is a 4⇥ 4 identity matrix. Since
{±I4⇥4} ⇢ IGG, then

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. (15)

This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
“canonical gauge” for the IGG with

IGG = {I2⇥2 ⌦ ei��
z |� 2 [0, 2⇡)}. (16)

Under the canonical gauge, the gauge transformation as-
sociated with the symmetry operation O takes the form
of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (17)

where nO = 0, 1. For translations, one can always choose
a gauge such that

WT1
r = (i�x)n1 , (18)

WT2
r = (i�x)n2ei�2[x,y]�

z

(19)

with n1, n2 = 0, 1 and �2[0, y] = 0. The group relation
in Eq. (3) further demands n1 = n2 = 0. Thus the group
relation in Eq. (1) gives WT1

r = 1,WT2
r = eix�1�

z

, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t

0
1 and t2 are hoppings in their

spinon mean-field Hamiltonians42. The Dirac cones are high-
lighted in dashed circles. The dashed line refers to the Fermi
level. (d) The Brioullin zone of the triangular lattice.

the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01

MF =
P

k h↵�

(k)f†
k↵fk� in the

momentum space and h(k) is a 2⇥ 2 matrix with

h(k) = d0(k)I2⇥2 +
3X

µ=1

d
µ

(k)�µ. (20)

For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
the PSG demands that55 spinons to transform as

fk" ! �e�i⇡/3f†
�C

�1
6 k,#, (21)

fk# ! ei⇡/3f†
�C

�1
6 k,". (22)

Applying C6 three times and keeping HMF invariant, we
require

h(k) = �[�yh(k)�y]T (23)

which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
d
µ

(k) = �d
µ

(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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where we used the fact that the gauge transformation
commutes with the spin rotation. As the series of rota-
tions O1O2O3O4 either rotate the spinons by 0 or 2⇡,

UO1
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UO3
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This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
“canonical gauge” for the IGG with

IGG = {I2⇥2 ⌦ ei��
z |� 2 [0, 2⇡)}. (16)

Under the canonical gauge, the gauge transformation as-
sociated with the symmetry operation O takes the form
of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (17)

where nO = 0, 1. For translations, one can always choose
a gauge such that
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WT2
r = (i�x)n2ei�2[x,y]�

z
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with n1, n2 = 0, 1 and �2[0, y] = 0. The group relation
in Eq. (3) further demands n1 = n2 = 0. Thus the group
relation in Eq. (1) gives WT1

r = 1,WT2
r = eix�1�

z

, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t

0
1 and t2 are hoppings in their

spinon mean-field Hamiltonians42. The Dirac cones are high-
lighted in dashed circles. The dashed line refers to the Fermi
level. (d) The Brioullin zone of the triangular lattice.

the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01
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For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
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Applying C6 three times and keeping HMF invariant, we
require

h(k) = �[�yh(k)�y]T (23)

which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
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µ

(k) = �d
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(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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where we used the fact that the gauge transformation
commutes with the spin rotation. As the series of rota-
tions O1O2O3O4 either rotate the spinons by 0 or 2⇡,
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This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
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, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,
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symmetry momentum lines (see (d)) of the U1A00, U1A01
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the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01
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For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
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Applying C6 three times and keeping HMF invariant, we
require

h(k) = �[�yh(k)�y]T (23)

which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
d
µ

(k) = �d
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(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
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, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t
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spinon mean-field Hamiltonians42. The Dirac cones are high-
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the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01
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momentum space and h(k) is a 2⇥ 2 matrix with
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For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
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Applying C6 three times and keeping HMF invariant, we
require
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which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
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(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

U1B00 I2⇥2 (�1)xI2⇥2 (�1)xyI2⇥2 (�1)xy�
y(y�1)

2 I2⇥2

U1B10 I2⇥2 (�1)xI2⇥2 i�y(�1)xy (�1)xy�
y(y�1)

2 I2⇥2

U1B01 I2⇥2 (�1)xI2⇥2 (�1)xyI2⇥2 i�y(�1)xy�
y(y�1)

2

U1B11 I2⇥2 (�1)xI2⇥2 i�y(�1)xy i�y(�1)xy�
y(y�1)

2

TABLE II. List of the gauge transformations for the sym-
metry operations of the eight U(1) PSGs, where (x, y) is the
coordinate in the oblique coordinate system. For time rever-
sal symmetry, all PSGs have the same gauge transformation
W T

r = I2⇥2.

where urr0 is a hopping matrix that is related to trr0
,↵�

,

urr0 =

0

BBBBB@

trr0
,"" 0 trr0

,"# 0

0 �t⇤rr0
,## 0 t⇤rr0

,#"
trr0

,#" 0 trr0
,## 0

0 t⇤rr0
,"# 0 �t⇤rr0

,""

1

CCCCCA
. (B3)

1. Spatial Symmetry

First of all, the gauge transformation and spin rotation
are commutative. So in the PSG classification, we only
need to focus on the gauge part of the PSG transforma-
tion. In the canonical gauge IGG = {I2⇥2 ⌦ ei��

z |� 2
[0, 2⇡)}, the gauge transformation associated with a given
symmetry operation O takes the form

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (B4)

where nO = 0, 1. For the symmetry multiplication
rule O1O2O3O4 = 1 where O

i

is an unitary trans-
formation, the corresponding PSG relation becomes
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG, or equivalently,

WO1
r WO2

O2O3O4(r)
WO3

O3O4(r)
WO4

O4(r)

2 {ei��z |� 2 [0, 2⇡)}. (B5)

We start with T1 and T2, where

WT1
r = (i�x)nT1 , (B6)

WT2
r = (i�x)nT2 ei�T2

[r]�z

. (B7)

Through Eq. (A10) that connects T1 and T2, one im-
mediately has n

T1 = n
T2 . From Eq. (A11) where the

total number of T1 and T2 is odd, one immediately has
n
T1 = n

T2 = 0. So we have

WT1
r = 1, WT2

r = ei�T2 [x,y]�
z

. (B8)

Using Eq. (A9), we have

[WT1T1]
�1[WT2T2][W

T1T1][W
T2T2]

�1

= T�1
1 (WT1)�1WT2T2W

T1T1T
�1
2 W�1

T2

2 {ei��z |� 2 [0, 2⇡)}, (B9)

which leads to the result

�
T2
[x+ 1, y]� �

T2
[x, y] ⌘ �1 (B10)

with �1 to be determined. Since it is always possible
to choose a gauge such that �

T2 [0, y] = 0, then we have
�
T2 [x, y] = �1x.
Similarly, T�1

1 T�1
2 T1T2 = 1 leads to

�
T2
[x+ 1, y + 1]� �

T2
[x, y + 1] = �2. (B11)

It is ready to find �2 = �1.
We continue to find WC6

r and WC2
r . For the operation

C6 with WC6
r = (i�x)nC6 ei�C6 [x,y]�

z

, Eq. (A11) leads to

��
C6 [T1(r)] + �

C6 [r] = ��1y + �3, (B12)

��
C6 [T2(r)] + �

C6 [r] = �4 � �1x+ �1y, (B13)

for n
C6 = 0, and

��
C6 [T1(r)] + �

C6 [r] = ��1y + �3 (B14)

��
C6 [T2(r)] + �

C6 [r] = �4 + �1x+ �1y. (B15)

for n
C6 = 1. So we obtain

n
C6 = 0,�

C6 [r] = �1xy � �3x� �4y �
�1y(y � 1)

2
(B16)

n
C6 = 1,�

C6 [r] = �1xy � �3x� �4y �
�1y(y � 1)

2
.(B17)

For n
C6 = 1, we further require �1 = 0,⇡. C6

6 = 1 is
automatically satisfied with the above relations for both
n
C6 = 0 and n

C6 = 1.
For WC2

r with WC2
r = (i�x)nC2 ei�C2 [x,y]�

z

, we need to
consider two separate cases with n

c2 = 0, 1, respectively.
If n

C2 = 0, Eq. (A10) leads to

��
T2 [C

�1
2 T1(r)]� �

C2 [T1(r)] + �
C2 [r] = �5, (B18)

��
C2 [T2(r)] + �

T2 [T2(r)] + �
C2 [r] = �6. (B19)

So we obtain �
C2 [x, y] = ��5x��6y�xy�1 and �1 = 0,⇡

for n
C2 = 0. Similary, for n

C2 = 1, we obtain �
C2 [x, y] =

��5x� �6y � xy�1.
Using C2

2 = 1, we further have �6 = ��5 for n
C2 = 0,

and �6 = �6 for n
C2 = 1. So we arrive at the result

n
C2 = 0, �

C2 [x, y] = ��5(x� y)� xy�1, (B20)

n
C2 = 1, �

C2 [x, y] = ��5(x+ y)� xy�1. (B21)

Here, to simplify the above expression, we choose a pure
gauge tranformation W̃ a

r = eix�
z
�5 . Under the pure

gauge transformation, the gauge part of the PSG trans-
forms as

WO
r ! W̃ a

rW
O
r W̃ a†

O�1(r). (B22)
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TABLE III. The transformation for the spinons under four U1A PSGs that are labeled by U1AnC2nS6 .

U(1) PSGs T1 T2 C2 S6

U1A00
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f(y,x),↓

f(x,y),↓ → ei 5π
6 f(y,x),↑

f(x,y),↑ → e−i π
3 f(x−y,x),↑

f(x,y),↓ → e+i π
3 f(x−y,x),↓

U1A10
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f

†
(y,x),↑

f(x,y),↓ → e−i π
6 f

†
(y,x),↓

f(x,y),↑ → e−i π
3 f(x−y,x),↑

f(x,y),↓ → e+i π
3 f(x−y,x),↓

U1A01
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f(y,x),↓

f(x,y),↓ → ei 5π
6 f(y,x),↑

f(x,y),↑ → −e−i π
3 f

†
(x−y,x),↓

f(x,y),↓ → e+i π
3 f

†
(x−y,x),↑

U1A11
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f

↓†
(y,x),↑

f(x,y),↓ → e−i π
6 f

↓†
(y,x),↓

f(x,y),↑ → −e−i π
3 f

†
(x−y,x),↓

f(x,y),↓ → e+i π
3 f

†
(x−y,x),↑

Hamiltonian H U1A00
MF has already been given in the main text.562

This state gives a large spinon Fermi surface in the Brillouin563

zone. The spinon mean-field states of the U1A01 state and the 564

U1A11 state are given by 565

H U1A01
MF =

∑

x,y

t1
[
−if

†
(x+1,y),↑f(x,y),↓ − if

†
(x+1,y),↓f(x,y),↑ − e− iπ

6 f
†
(x,y+1),↑f(x,y),↓

+ e
iπ
6 f

†
(x,y+1),↓f(x,y),↑ − e

iπ
6 f

†
(x+1,y+1),↑f(x,y),↓ + e− iπ

6 f
†
(x+1,y+1),↓f(x,y),↑ + H.c.

]

+ t2
[
e

i2π
3 f

†
(x+1,y−1),↑f(x,y),↓ + e

iπ
3 f

†
(x+1,y−1),↓f(x,y),↑ + f

†
(x+1,y+2),↑f(x,y),↓

− f
†
(x+1,y+2),↓f(x,y),↑ + e

iπ
3 f

†
(x+2,y+1),↑f(x,y),↓ + e

i2π
3 f

†
(x+2,y+1),↓f(x,y),↑ + H.c.

]
(C6)

and 566

H U1A11
MF =

∑

x,y

t1
[
if

†
(x+1,y),↑f(x,y),↑ − if

†
(x+1,y),↓f(x,y),↓ + if

†
(x,y+1),↑f(x,y),↑

− if
†
(x,y+1),↓f(x,y),↓ − if

†
(x+1,y+1),↑f(x,y),↑ + if

†
(x+1,y+1),↓f(x,y),↓ + H.c.

]

+ t ′1
[
−f

†
(x+1,y),↑f(x,y),↓ + f

†
(x+1,y),↓f(x,y),↑ + e

iπ
3 f

†
(x,y+1),↑f(x,y),↓

+e
i2π

3 f
†
(x,y+1),↓f(x,y),↑ + e

i2π
3 f

†
(x+1,y+1),↑f(x,y),↓ + e

iπ
3 f

†
(x+1,y+1),↓f(x,y),↑ + H.c.

]

+ t2
[
e

iπ
6 f

†
(x+1,y−1),↑f(x,y),↓ + e

i5π
6 f

†
(x+1,y−1),↓f(x,y),↑ − if

†
(x+1,y+2),↑f(x,y),↓

− if
†
(x+1,y+2),↓f(x,y),↑ + e

i5π
6 f

†
(x−2,y−1),↑f(x,y),↓ + e

iπ
6 f

†
(x−2,y−1),↓f(x,y),↑ + H.c.

]
, (C7)

where in both Hamiltonians t1,t
′
1 denote the first-neighbor567

hoppings and t2 denotes the second-neighbor hopping.568

The band structures for specific choices of the hopping569

parameters are plotted in the main text. Clearly, we observe570

the band touchings at the ", M , and K points for the U1A01571

state, and band touchings at the " and M points for the U1A11572

state.573

APPENDIX D: THE U1A00 STATE AND574

THE SPECTROSCOPIC RESULTS575

1. Free spinon mean-field theory576

The spinon mean-field Hamiltonian of the U1A00 state is577

H U1A00
MF = −t1

∑

⟨r r ′⟩,α
f †

rαfrα − t2
∑

⟨⟨r r ′⟩⟩,α
f †

rαfrα, (D1)

from which we compute the dynamic spin structure factor for 578

different choices t2/t1. The dynamic spin structure factor is 579

given by 580

S(q,ω) = 1
N

∑

r,r ′

eiq·(r−r ′)
∫

dt e−iωt

〈
%U1A00

MF

∣∣S−
r (t)S+

r ′ (0)
∣∣%U1A00

MF

〉

=
∑

n

δ(ω − ξnq)
∣∣⟨n|S+

q

∣∣%U1A00
MF

〉∣∣2
, (D2)

where N is the total number of spins, the summation is over all 581

mean-field states with the spinon particle-hole excitation, and 582

ξnq is the energy of the nth excited state with the momentum q. 583

The results are depicted in Figs. 4(a)–4(e) and are consistent 584

with the inelastic neutron scattering results [36,37]. All the 585

results so far are independent from any microscopic spin 586

interaction. 587
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Spectroscopic constraints

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

The U1A00 state is the spinon Fermi surface state  
that we proposed in Shen, et al, Nature.
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r WT2
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r WC6
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U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2
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U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
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C�1
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6 T2C6T
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2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

We use PSG to predict the corresponding spectrum. Yao-Dong Li
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where we used the fact that the gauge transformation com-154

mutes with the spin rotation. As the series of rotations155

O1O2O3O4 rotate the spinons by either 0 or 2π ,156

UO1
UO2

UO3
UO4

= ±I4×4, (14)

where I4×4 is a 4 × 4 identity matrix. Since {±I4×4} ⊂ IGG,157

then158

GO1
r GO2

O2O3O4(r)G
O3
O3O4(r)G

O4
O4(r) ∈ IGG. (15)

This immediately indicates that, to classify the PSGs for a159

spin-orbit-coupled Mott insulator, we only need to focus on160

the gauge part, first find the gauge transformation with the161

same procedures as those for the conventional Mott insulators162

with spin-only moments [47], and then account for the spin163

rotation.164

For the mean-field ansatz in HMF, we choose the “canonical165

gauge” for the IGG with166

IGG = {I2×2 ⊗ eiφσ z |φ ∈ [0,2π )}. (16)

Under the canonical gauge, the gauge transformation associ-167

ated with the symmetry operation O takes the form168

GO
r = I2×2 ⊗ WO

r

≡ I2×2 ⊗
[
(iσ x)nO eiφO [r]σ z]

, (17)

where nO = 0,1. For translations, one can always choose a169

gauge such that170

WT1
r = (iσ x)n1 , (18)

WT2
r = (iσ x)n2eiφ2[x,y]σ z

, (19)

with n1,n2 = 0,1 and φ2[0,y] = 0. The group relation in171

Eq. (3) further demands n1 = n2 = 0. Thus the group relation172

in Eq. (1) gives WT1
r = 1, WT2

r = eixφ1σ
z

, where φ1 is the flux173

through each unit cell of the triangular lattice and takes the174

value of 0 or π Appendix B. The PSGs with φ1 = 0 (π ) are175

labeled by U1A (U1B). Among the 16 algebraic PSGs that we176

find, eight unphysical solutions have T 2 = 1 for the spinons177

and give vanishing spinon hoppings everywhere. In Table I and178

the Appendixes, we list the remaining eight PSGs that have179

T 2 = −1 consistent with the fact that fermionic spinons are180

Kramers doublets Appendix B.181

V. MEAN-FIELD STATES182

Here we obtain the spinon mean-field Hamiltonian from183

Table I and explain why the U1A00 state stands out as the184

TABLE I. List of the gauge transformations for the four U1A
PSGs. For the time reversal, all PSGs here have W T

r = I2×2. The last
two letters in the labels of the U(1) QSLs are extra quantum numbers
in the PSG classification Appendix B.

U (1) QSL WT1
r WT2

r WC2
r WS6

r

U1A00 I2×2 I2×2 I2×2 I2×2
U1A10 I2×2 I2×2 iσ y I2×2
U1A01 I2×2 I2×2 I2×2 iσ y

U1A11 I2×2 I2×2 iσ y iσ y

FIG. 2. (a)–(c) The mean-field spinon bands along the high-
symmetry momentum lines [see (d)] of the U1A00, U1A01, and
U1A11 states, where t1, t ′

1, and t2 are hoppings in their spinon mean-
field Hamiltonians Appendix C. The Dirac cones are highlighted in
dashed circles. The dashed line refers to the Fermi level. (d) The
Brillouin zone of the triangular lattice.

candidate ground state for YbMgGaO4. We start with the U1A 185

states. Among the four U1A states, the U1A10 state gives 186

a vanishing mean-field Hamiltonian for the spinon hoppings 187

between the first and second neighbors; the remaining ones 188

except the U1A00 state all have symmetry-protected band 189

touchings at the spinon Fermi level (see Fig. 2). To illustrate 190

the idea [54], we consider the U1A01 state where the spinon 191

Hamiltonian has the form H U1A01
MF =

∑
k hαβ(k)f †

kαfkβ in the 192

momentum space and h(k) is a 2×2 matrix with 193

h(k) = d0(k)I2×2 +
3∑

µ=1

dµ(k)σµ. (20)

For this band structure there are nondegenerate band touchings 194

at &, M , and K points that are protected by the PSG of the 195

U1A01 state. Under the operation S6, the PSG demands that 196

spinons transform as 197

fk↑ → −e−iπ/3f
†
−S−1

6 k,↓, (21)

fk↓ → eiπ/3f
†
−S−1

6 k,↑. (22)

Applying S6 three times and keeping HMF invariant, we require 198

h(k) = −[σ yh(k)σ y]T , (23)

which forces d0(k) = 0. The time-reversal symmetry 199

(T = iσ y ⊗ I2×2K) further requires that dµ(k) = −dµ(−k). 200

Thus we have symmetry-protected band touchings with h(k) = 201

0 at the time-reversal invariant momenta & and M . The K 202

points are invariant under C2 and S6 because the spinon 203

particle-hole transformation is involved for S6 Appendix C. 204

Using those two symmetries, we further establish the band 205

touching at the K points. Likewise, for the U1A11 state, the 206

PSG demands the band touchings at & and M points. Because 207

there are only two spinon bands for the U1A states, these band 208

touchings generically occur at the spinon Fermi level. 209
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FIG. 3. (a) S(q,!) along the high-symmetry momentum
lines from HU1A00

MF with t2 = 0.2t1. The spinon bandwidth
B = 9.6t1. (b) The RPA corrected SRPA(q,!) along the
high symmetry momentum lines. We have set the parame-
ters in the spin model to be J±/Jzz = 0.915, J±±/Jzz = 0.35,
and Jz±/Jzz = 0.2. The ratio Jzz/t1 is obtained from
Refs. [33, 36] and fixed to be 1.0 for concreteness.

⇥Sz

r0 + Sz

r(�
⇤
rr0S

+
r0 � �rr0S

�
r0)] is the microscopic spin

model that was introduced in Refs. 33 and 35, and �rr0

is a bond-dependent phase factor due to the spin-orbit-
entangled nature of the Yb moments [35, 46]. For the
specific choice of exchange couplings with J± = 0.915J

zz

in the following, we find the minimum variational energy
Evar = �0.39J

zz

and occurs at t2 = 0.2t1 [46]. Here, the
expectation values of the J±± and J

z± interactions sim-
ply vanish, and this is an artifact of the free spinon mean-
field theory with the isotropic hoppings in Eq. (14). We
here establish that the U1A00 state is a spinon Fermi
surface U(1) QSL.

Spectroscopic properties.—For the U1A00 state, the
dynamic spin structure essentially detects the spinon
particle-hole excitation across the Fermi surface. The
information about the Fermi surface is encoded in the
profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon
mean-field theory [46] (see Fig. 3a). Qualitatively similar
to the mean-field theory with only first neighbor spinon
hoppings, the improved free-spinon mean-field theory of
HU1A00

MF captures the crucial features of the inelastic neu-
tron scattering results [36, 37]. The spinon particle-hole
continuum covers a large portion of the Brillouin zone,
and vanishes beyond the spinon bandwidth. More im-
portantly, the “V-shape” upper excitation edge near the
� point in Fig. 3a was clearly observed in the experi-
ments [36, 37], and the slope of the “V-shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, HU1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry
that is brought by the J±± and J

z± interactions. To
incorporate the J±± and J

z± interactions, we here follow
the phenomenological treatment for the “t-J” model in
the context of cuprate superconductors [58] and consider
H = HU1A00

MF +H 0
spin, where H 0

spin are the J±± and J
z±

interactions. In the parton construction, H 0
spin is treated

as the spinon interactions and thus introduces the spin
rotational symmetry breaking. With a random phase

approximation (RPA) for the interactionH 0
spin, we obtain

the dynamic spin susceptibility [58]

�RPA(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (16)

where �0 is the free-spinon susceptibility, and J (q) is
the exchange matrix from H 0

spin [46]. The renormalized

SRPA(q,!) can be read o↵ from �RPA via SRPA(q,!) =

� 1
⇡

Im
⇥
�RPA(q,!)

⇤+�
and is plotted in Fig. 3b.

The very precise values of J±± and J
z± cannot be de-

termined from the existing data-rich neutron scattering
experiment in a strong field normal to the triangular
plane. This is partly due to the experimental resolu-
tion and others [46], and is also due to the fact that
the linear spin wave spectrum for the field normal to
the plane is independent of J

z± and is not quite sen-
sitive to J±± [35, 39]. In Fig. 3b, instead, we choose
(J±±, Jz±) to fall into the disordered region of the phase
diagram in Ref. [35] where the quantum fluctuations are
expected to be strong [35, 46]. While the free spinon
theory already captures the main features of the neutron
scattering data [36, 37], the anisotropic spin interaction
H 0

spin, included by RPA, merely redistributes the spectral
weight in the momentum space. We find in Fig. 3b that,
the low-energy spectral weight at M is slightly enhanced,
a feature observed in Refs. 36 and 37. From our choice
of the parameters, it is plausible that this peak results
from the proximity to a phase with a stripe-like magnetic
order [35, 36, 39, 46].
Discussion.—We have demonstrated that the spinon

Fermi surface U(1) QSL gives a consistent explanation
of the inelastic neutron scattering result in YbMgGaO4.
Moreover, the anisotropic spin interaction, slightly en-
hances the spectral weight at the M points. The
U(1) gauge fluctuation in the spinon Fermi surface U(1)
QSL [42, 43] was suggested to be the cause for the sub-
linear temperature dependence of the heat capacity in
YbMgGaO4 [35, 36, 39, 44].
In YbMgGaO4, the exchange coupling between the Yb

moments is relatively weak [33]. It is feasible to fully po-
larize the spin with experimentally accessible magnetic
fields [35, 37, 39]. The polarized state is a simple prod-
uct state with short-range quantum entanglement. Since
the ground state of YbMgGaO4 is expected to be ex-
otic [36, 39], there is a quantum phase transition from an
exotic state with long-range quantum entanglement to a
simple product state with short-range quantum entan-
glement as one increases the magnetic field. This field-
driven transition is necessarily a unconventional tran-
sition beyond the traditional Landau’s paradigm and
has not been studied in the previous spin liquid candi-
dates [59–62]. The smooth growth of the magnetization
with varying external fields indicates a continuous tran-
sition [33]. Since we propose YbMgGaO4 to be a spinon
Fermi surface U(1) QSL and gapless, the transition would
be associated with the openning of the spin gap at the

7

FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.

The representation is chosen to be �(1,2,3,4,5) = (�x ⌦
1,�z ⌦ 1,�y ⌦ ⌧x,�y ⌦ ⌧y,�y ⌦ ⌧z). �a and �ab is odd
under time reversal except when a = 4 or b = 4. The
Hamiltonian is thus

h(k) =
5X

a=1

d
a

(k)�a +
5X

a<b=1

d
ab

(k)�ab (71)

For the U1B00 state,
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p
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y

/2),
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/2),

d5(k) = �2t01 sin(kx),
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/2),
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p
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/2). (72)

B. The U1B01 state
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3t2 sin(3kx/2 +

p
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/2),
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3k

y

/2). (73)

C. The U1B10 state

d3(k) = �
p
3t1 sin

⇥
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�
p
3k

y

)/2
⇤
,

d4(k) =
p
3t1 cos

⇥
(k

x

+
p
3k

y

)/2
⇤
,

d23(k) = �t1 sin
⇥
(k

x

�
p
3k

y

)/2
⇤
,

d24(k) = �t1 cos
⇥
(k

x

+
p
3k

y

)/2
⇤
,

d25(k) = 2t1 sin kx. (74)
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FIG. 1. (a-e) Dynamic spin structure factor for the free spinon theory of the U1A00 state with di↵erent values of t2/t1. (f-h)
The evolution of SRPA(q,!) as a function of J±±. In all subfigures, the energy transfer is normalized against the corresponding
bandwidth B. The parameter ↵ is defined as J
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where we have omitted J±± and J
z± because they do not

conserve spin, therefore their contribution to Evar is zero.
This is an artifact of the free spinon theory of HU1A00

MF
that only includes isotropic spinon hoppings for the first
two neighbors.

As we describe in the main text, we treat the J±± and
J
z± interaction as the spinon interaction. We include

the spinon interaction and compute the dynamic spin
susceptibility by a standard random phase approximation
(RPA). The RPA susceptibility is given by

�(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (69)

where J (q) is the spin exchange matrix from H 0
spin

J (q) =

0

BB@

0 �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 0 (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (70)

with uq = cos(q · a1), vq = 1
2 (cos(q · a2) + cos(q · a3)),

and wq = 1
2 (cos(q · a2)� cos(q · a3)).

V. THE U1B STATES

In this section we use PSG to determine the free spinon
mean-field Hamiltonian for the U1B states to the first and
second spinon hoppings. In Fig. 2, we further present
their spectroscopic features for comparison. Like the
notation for U1As, the U1B states are also labeled by
U1Bn

C2nC6 .

A. The U1B00 state

For ⇡-flux states, the dynamic spin structure factor has
a enhanced periodicity due to anticommutative lattice
translations. A direct consequence of the periodicity is
that � and M become equivalent, and the V-shaped upper
excitation edge in Ref. 2 cannot be reproduced for the
U1B states.
We choose the spinon basis in the momentum space

fk,I = (f
A,k,", fB,k,", fA,k,#, fB,k,#)

T , where A and B
denote the two inequivalent sites in each unit cell due
to ⇡-flux.
The Hamiltonian is written in terms of the Dirac ma-

trices �a and their anticommutators �ab = [�a,�b]/(2i).
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Two major questions so far

1. Whether the continuum represents the fractionalized  
    spinon excitation? Probably most important !  
   
            discussed in 
            Y-D Li, GC, arXiv:1703.01876              
            PhysRevB, 96, 075105

2.   What is the physical origin of the QSL physics ?
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Our Roadmap

1. Detect fractionalized excitations, i.e. spinons  
    a) detect the fractionalization.  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2. Detect the emergent U(1) gauge field ? 

3.   Detect the spinon-gauge coupling (i.e. Lorentz coupling) ?
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Explore the weak field regime

Detecting Spin Fractionalization in a Spinon Fermi Surface Spin Liquid:
Prediction and Application for YbMgGaO4

Yao-Dong Li1 and Gang Chen1,2⇤
1
State Key Laboratory of Surface Physics, Department of Physics,

Center for Field Theory & Particle Physics, Fudan University, Shanghai, 200433, P.R.China and

2
Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, P.R.China

(Dated: March 7, 2017)

Continuing the recent proposal of the spinon Fermi surface U(1) spin liquid state for YbMgGaO4 in
Yao-Dong Li, et al, arXiv:1612.03447 and Yao Shen, et al, Nature 2016, we explore the experimental
consequences of the external magnetic fields on this exotic state. Specifically, we focus on the
weak field regime where the spin liquid state is preserved and the fractionalized spinon excitations
remain to be a good description of the magnetic excitations. From the spin-1/2 nature of the
spinon excitation, we predict the unique features of spinon continuum when the magnetic field is
applied to the system. Due to the small energy scale of the rare-earth magnets, our proposal for
the spectral weight shifts in the magnetic fields can be immediately tested by inelastic neutron
scattering experiments. Several other experimental aspects about the spinon Fermi surface and
spinon excitations are discussed and proposed. Our work provides a new way to examine the
fractionalized spinon excitation and the candidate spin liquid states in the rare-earth magnets like
YbMgGaO4.

I. INTRODUCTION

A quantum spin liquid (QSL) is an exotic quantum
phase of matter that carries long-range quantum en-
tanglements and is often characterized by the emergent
gauge structure and the fractionalized spin excitation1–3.
The experimental search of QSLs has lasted for forty
years since the original proposal by Anderson in 19734,5.
Many QSL candidate materials have been proposed, but
the confirmation of QSLs has not been achieved in any
of these materials. Recently, a rare-earth triangular lat-
tice antiferromagnet YbMgGaO4, that was first discov-
ered in the powder form6, is proposed as the first QSL
candidate in the strong spin-orbit-coupled Mott insulator
with odd electron fillings7–11. This proposal is compat-
ible with the more fundamental view based on the time
reversal symmetry and quantum entanglements7–9,11,12.
Due to the unprecedented experimental advantage such
as the availability of large high-quality single-crystal sam-
ples7, YbMgGaO4 may stand out as another important
QSL candidate for which a variety of experimental tech-
niques can be implemented and the theoretical proposal
and ideas may be directly tested.

The Yb local moments in YbMgGaO4 remain disor-
dered down to the lowest measured temperature at which
the magnetic entropy is almost exhausted6,9,13,14. The
low-temperature heat capacity has a sub-linear temper-
ature dependence6,14,15 that is close to the C

v

/ T 2/3

behavior for the spinon Fermi surface U(1) QSL16–18.
More substantially, the dynamic spin structure, that is
measured by the inelastic neutron scattering on single-
crystal samples9,14, shows a reasonable agreement with
the theoretical prediction for the spinon Fermi surface
state9,11,16–18.

There are two major questions concerning the candi-
date QSL state in YbMgGaO4. The first and probably
the most crucial one is whether the excitation continuum

from the inelastic neutron scattering is truly a spinon
continuum and represents the spin quantum number frac-
tionalization. The second question is the microscopic
mechanism for the QSL behavior of YbMgGaO4. It was
suggested that the anisotropic interaction of the local
moments, due to the spin-orbit entanglement, could en-
hance the quantum fluctuation and destabilize the mag-
netically ordered phases7,8,10. This observation was first
proposed as one possible mechanism for the QSL behav-
ior in YbMgGaO4

7,8, and explained in details in Refs. 8
and 10. Both questions have been partially addressed
by the mean-field theory analysis9 and the later pro-
jective symmetry analysis 9,11 that identify the spinon
Fermi surface U(1) QSL as the candidate ground state
for YbMgGaO4. Clearly, this exotic state provides a con-
sistent explanation for both thermodynamic and spectro-
scopic behaviors of YbMgGaO4

9.

Ideally, it would be nice to directly solve our micro-
scopic spin model and see if one can obtain any QSL
ground state in the phase diagram, then both questions
may be completely resolved. Due to the complication of
the model, this is di�cult even numerically8,11. In this
work, instead of directly tackling the anisotropic spin
model8,10,19, we work on the spinon mean-field Hamil-
tonian9,11 and address the first question about how to
detect or confirm the very existence of the fractionalized
spinon excitations in YbMgGaO4. We propose a sim-
ple experimental scheme to test the spin quantum num-
ber fractionalization and confirm the spinon excitation.
We suggest to apply a weak external magnetic field and
study the spectral weight shifts of the dynamic spin struc-
ture factor. The splitting of the degenerate spinon bands
by the magnetic field is directly revealed by the spinon
particle-hole continuum that is detected by the dynamic
spin structure factor. We show that the persistance of
the spinon continuum, the spectral weight shifts and the
spectral crossing around the � point, the existence of the

YD Li, GC, arXiv: 1703.01876  
PhysRevB, 96, 075105

Reasonable, Feasible, and Predictable.
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(Fudan) 

Gang Chen’s theory group 
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Extended Data Figure 5 | Calculation of the zero-flux Hamiltonian.  
a, Spinon dispersion ωk of the zero-flux Hamiltonian. The grey plane 
marks the Fermi level at ω =  0; its intersection with the band gives the 
Fermi surface. The light orange hexagon represents the projection of the 
first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
along high-symmetry directions. A reciprocal lattice unit (r.l.u.) is used 

here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
indicated momenta (marked by arrows in b). e, Measured constant-Q 
scans at the indicated momenta. The dashed line is the incoherent elastic 
line for Ef =  4 meV.
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FIG. 4. Energy-dependent curves of the dynamic spin struc-
ture factor at (a) � and (b) �0 (see Fig. 1d). Right at �,
there is a narrow Zeeman peak for nonzero fields whose po-
sition shifts with the field. Away from �, there is a broad
continuum corresponding to the spinon particle-hole excita-
tions. Note that the very low-energy part of spectral weight is
underestimated in the mean-field theory due to the neglecting
of the gauge fluctation.

low energies. For example, the Yukawa coupling between
the fermionic spinons and the gapless U(1) gauge pho-
ton would give rise a self-energy correction to the spinon
Green’s function and thus enhance the low-energy density
of states16,17. Therefore, the inelastic neutron scattering
process that excites the spinon particle-hole pair, would
have an enhanced spectral weight at low energies. This
property is not captured in the spinon mean-field the-
ory. We thus expect the very low energy spectral weights
in Figs. 2,4 and also in Fig. 5 to be enhanced when the
gauge flucutation is included. Moreover, the slight en-
hancement of the overall bandwidth of the spinon contin-
uum in the field is probably a mean-field artifact as well
because the bandwidth should be set by the exchange
interaction of the system.

V. THE RPA CORRECTION FROM THE
ANISOTROPIC INTERACTION

As we have proposed in Ref. 8, the anisotropic spin
exchange terms J±± and J

z± from the strong SOC in
Eq. (3) is likely to play an important role in stabiliz-
ing the QSL ground state. The SOC is further sug-
gested to be responsible for the weak spectral peak at
the M point9–11. Here we consider the e↵ect of the
anisotropic spin interaction on the dynamic spin struc-
ture factors following a phenomenological approach in-
troduced in Refs. 11 and 22. Starting from the free-
spinon theory HMFh and the corresponding susceptibil-
ity �0(q,!), we treat the anisotropic interaction H 0

spin as
perturbations. The resulting magnetic susceptibility is
calculated in the random phase approximation (RPA)22,

�RPA(q,!) = [1� �0(q,!)J (q)]�1�0(q,!), (9)

FIG. 5. Dynamic spin structure factors for the interacting
spinon theory with external magnetic field along z-direction
up to 0.6B, where the interaction is given by H 0

Spin.

where J (q) is the exchange matrix from H 0
spin,

J (q) =
0

BB@

2 (uq � vq) J±± �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 2 (vq � uq) J±± (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (10)

with uq = cos(q · a1), vq = 1
2 [cos(q · a2) + cos(q · a3)],

and wq = 1
2 [cos(q · a2)� cos(q · a3)].

The RPA corrected dynamic spin structure factor
is related �RPA(q,!) by the equation SRPA(q,!) =
� 1

⇡

Im[�RPA(q,!)]+�. The renormalized dynamic spin
structure factor SRPA(q,!) is shown in the Fig. 5, where
we choose the parameters to be J

z±/t1 = 0.2, J±±/t1 =
0.35. From the results we conclude that the anisotropic
exchange terms merely redistribute the spectral weight
within the Brillouin zone and leave the qualitative fea-
tures in the vicinity of the � point mentioned in previous
sections una↵ected.

Zero-field particle-hole continuum
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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upper and lower excitation edges under the weak mag-
netic field represent unique properties of the spinon ex-
citation for the spinon Fermi surface state, and thus pro-
vide a sharp experimental prediction for the identification
of the spinon excitation with respect to the spinon Fermi
surface.

The remaining part of the paper is organized as follows.
In Sec. II, we explain our view on the magnetic excitation
continuum and the weak spectral weight in the inelastic
neutron scattering results on YbMgGaO4 and motivate
our approach in this paper. In Sec. III, we justify the
mean-field Hamiltonian in the magnetic field. In Sec. IV,
we obtain the dynamic spin structure factor from the free
spinon theory in the magnetic field and explain the spec-
tral weight shifts. In Sec. V, we repeat the calculation in
Sec. IV with a RPA calculation that includes the spinon
interactions. Finally in Sec. VI, we conclude with a dis-
cussion about various future experimental direction for
the spinon Fermi surface state.

II. THE SPINON FERMI SURFACE STATE

We start with the fermionic parton construction for
the spin operator with S

i

= 1
2f

†
i↵

�
↵�

f
i�

, where f†
i↵

(f
i↵

)
creates (annihilates) one spinon with spin ↵(=", #) at the
site i and � = (�x,�y,�z) is a vector of Pauli matrices.
This construction is further supplemented by a Hilbert
space constraint

P
↵

f†
i↵

f
i↵

= 1. At the mean-field level,
the following spinon Hamiltonian,

HMF = �t1
X

hiji,↵

f†
i↵

f
j↵

� t2
X

hhijii,↵

f†
i↵

f
j↵

�µ
X

i,↵

f†
i↵

f
i↵

(1)

was proposed for YbMgGaO4 and gives a large spinon
Fermi surface9,11. Here the chemical potential µ is in-
troduced to impose the Hilbert space constraint. It was
found that the spinon particle-hole excitation of this sim-
ple state provides a consistent magnetic excitation con-
tinuum with the inelastic neutron scattering experiments.
Moreover, the anisotropic spin interaction, that is in-
cluded into the the spinon mean-field theory by a ran-
dom phase approximation (RPA), gives a weak spectral
peak at the M points, which is also consistent with the
experimental observation.

The spinon continuum is much more important than
the weak spectral peak. The spectral peak at certain
momenta merely represents some collective mode of the
spinons that is enhanced by the residual and short-range
interaction between the fermionic spinons, and is quite
common for example in the Fermi liquids of electrons as
an analogy. Nevertheless, the spectral peak does provide
hints about the form of the microscopic interactions. In
contrast, the spinon continuum is a consequence of the
spin quantum number fractionalization that reveals the
defining nature of QSLs.

FIG. 1. (Color online.) (a) The Yb triangular lattice with
a1,a2,a3 bonds. (b) The spinon band structure for� = 0.6B
and t2/t1 = 0.2 (this value is optimized for the variational en-
ergy; see main text). (c) A schematic illustration of the spinon
band structure and the particle-hole excitation for the zero
momentum transfer. (d) The Brillouin zone of the triangular
lattice, with high-symmetry points and the basis vectors (in
r.l.u. coordinates) highlighted.

Since we think the spinon continuum is more impor-
tant and the spinon continuum is already obtained by
the free-spinon theory of HMF, our approach will mostly
rely on the free-spinon mean-field theory and focus more
on the spinon continuum rather than the weak spectral
peak. The (short-range) anisotropic spin interaction will
be included into the free-spinon theory in the later parts
of the paper. The coupling to the gapless U(1) gauge
photon is not included throught this paper. This spin-
gauge coupling has an important e↵ect on the low-energy
properties of the system16,17.

III. COUPLING TO THE MAGNETIC FIELD

Unlike the electron, the fermionic spinon is a charge
neutral object and does not couple to the external mag-
netic field via the Lorentz coupling. Here, we point out
that the prior theory on the organic spin liquid ma-
terial20 -(ET)2Cu2(CN)3 has actually invoked the in-
teresting Lorentz coupling of the spinons to the exter-
nal magnetic field indirectly through the internal U(1)
gauge flux21. This is because the the organic material
-(ET)2Cu2(CN)3 is in the weak Mott regime where the
charge gap is small and the four-spin ring exchange in-
teraction can be significant18. It is the four-spin ring
exchange that connects and transfers the external mag-
netic flux to the internal emergent U(1) gauge flux21.
In contrast, the 4f electrons of the Yb ions are in the
strong Mott regime and is very localized. As we have ex-
plained, the e↵ective spin S

i

arises from the strong spin-
orbit coupling (SOC) and crystal electric field splitting,

Magnetic field splits the spin-up and down spinon bands, different from the organics

Strong Mott regime: only Zeeman coupling to field
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Organic spin liquids?

formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is

(a) 

b 

c 
0 

(b) 

(c) 

t' t 

c 

0 
a* 
a 

FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  

kappa−H3(Cat-EDT-TTF)2 a new one!

Gang Chen’s theory group 

Gang Chen’s theory group



3

and the four-spin ring exchange is strongly suppressed
due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
field of the spinons in the organic spin liquid does not ap-
ply to YbMgGaO4. Although the strong magnetic field
fully polarizes the Yb local moments along the field di-
rection and thus destabilizes the spin liquid state, in the
weak field regime, the field does not change the spin liq-
uid ground state and the spinon remains to be a valid
description of the magnetic excitation. From the above
argument, if YbMgGaO4 ground state is a spinon Fermi
surface QSL, the appropriate spinon mean-field Hamilto-
nian for YbMgGaO4 in a weak external magnetic field
should be

HMFh = �t1
X
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f†
i↵

f
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, (2)

where only Zeeman coupling is needed, and g
z

is the
Landé factors for the field normal to the triangular plane,
respectively. The mean-field Hamiltonian in Eq. (2) will
be the basis of the analysis below.

IV. SPECTRAL WEIGHT SHIFTS FROM THE
FREE-SPINON THEORY

For each magnetic field, the spinon hopping and the
chemical potential in Eq. (2) need to be re-determined
by optimizing the variational energy of the microscopic
spin Hamiltonian HSpin-h that is

HSpin-h =
X

hiji

⇥
J
zz

Sz

i

Sz

j

+ J±(S
+
i

S�
j

+ S�
i

S+
j

)

+J±±(�
ij

S+
i

S+
j

+ �⇤
ij

S�
i

S�
j

)

� iJ
z±
2

�
(�⇤

ij

S+
i

� �
ij

S�
i

)Sz

j

+ hi $ ji
�⇤

�
X

i

g
z

µBhz

Sz

i

. (3)

Here �
ij

’s are the bond-dependent phase variables that
arises from the spin-orbit coupling of the Yb 4f elec-
trons7,8,10,11, and �

ij

= 1, ei2⇡/3, e�i2⇡/3 for ij along the
a1, a2, a3 bond, respectively. Throughout the paper, we
set J± = 0.915J

zz

. The z-direction magnetic field shifts
the chemical potential for the spin-" and spin-# spinons
up and down such that the spinon excitations are given
by

⇠"(k) = ✏(k)� µ" ⌘ ✏(k)� (µ +
g
z

µBhz

2
), (4)

⇠#(k) = ✏(k)� µ# ⌘ ✏(k)� (µ � g
z

µBhz

2
), (5)

where ✏(k) is the dispersion that is obtained from the
first line of Eq. (2). In Fig. 1, we plot the mean-field

FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-

Prediction for dynamic spin structure factor

We predict:  
1. The system remains gapless and spinon continuum persists  
2. spectral weight shifts  
3. the spectral crossing at Gamma point  
4. the presence of lower and upper excitation edges

Very different from magnon in the field !! 
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(Fig. 2b). Moreover, the high-field spin-wave spectrum shows a clearly distinct dispersion from that in the low field regime
(Fig. 2a). This further indicates that the low-field continuum cannot be magnon excitations.

We propose that the modulation of the spectral weights of the continuum in the low field regime is consistent with the
previously predicted behavior of the spinon Fermi surface QSL state under magnetic fields29. In the weak field regime,
the proposed zero-field spinon Fermi surface QSL state is expected to persist and the spinon remains to be a valid de-
scription of the magnetic excitation29, which is confirmed by our data that continuum excitations are observed at all energy
measured. It was previously shown in ref. 29 that, the degenerate spinon bands are split and the splitting is given by the
Zeeman energy. The mean-field results for the specific parameter choice of the present experiment are given in details in
Supplemental Materials. In an inelastic neutron scattering measurement, the neutron energy-momentum loss creates the
spin excitation that at the mean-field level corresponds to both the inter-band and intra-band particle-hole excitation of the
spinons. The particle-hole excitation continuum of the spinons persists into the weak field regime. In particular, for zero
momentum transfer of the neutron, the relevant particle-hole excitation would simply be the vertical inter-band excitation
between the spin-up and spin-down spinon bands and leads to the spectral peak at the � point and the Zeeman-split en-
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(Fig. 2b). Moreover, the high-field spin-wave spectrum shows a clearly distinct dispersion from that in the low field regime
(Fig. 2a). This further indicates that the low-field continuum cannot be magnon excitations.

We propose that the modulation of the spectral weights of the continuum in the low field regime is consistent with the
previously predicted behavior of the spinon Fermi surface QSL state under magnetic fields29. In the weak field regime,
the proposed zero-field spinon Fermi surface QSL state is expected to persist and the spinon remains to be a valid de-
scription of the magnetic excitation29, which is confirmed by our data that continuum excitations are observed at all energy
measured. It was previously shown in ref. 29 that, the degenerate spinon bands are split and the splitting is given by the
Zeeman energy. The mean-field results for the specific parameter choice of the present experiment are given in details in
Supplemental Materials. In an inelastic neutron scattering measurement, the neutron energy-momentum loss creates the
spin excitation that at the mean-field level corresponds to both the inter-band and intra-band particle-hole excitation of the
spinons. The particle-hole excitation continuum of the spinons persists into the weak field regime. In particular, for zero
momentum transfer of the neutron, the relevant particle-hole excitation would simply be the vertical inter-band excitation
between the spin-up and spin-down spinon bands and leads to the spectral peak at the � point and the Zeeman-split en-
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indicate the boundaries of inter-band (X-shaped edges around 0.6 meV) and intra-band (V-shaped edges below 0.4 meV) excitations. b,
Contour plot of the energy dependent intensity in the nearly polarized state at 9.5 T. The colour scale is shown in linear scale. c, Sketch
of reciprocal space. The dashed lines indicate the Brillouin zone boundaries. d, The split spinon band structure along high-symmetry
points (vertical dashed lines) in momentum space. t is the spinon hopping. The blue and orange bands are of spin-# and spin-" spinons,
respectively. The horizontal dotted line indicates the Fermi level. The solid arrows indicate the spin-flipped inter-band particle-hole
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TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Abstract 

 We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE= Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare 

earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-

3m. Physical property measurements indicate the compounds display predominantly 

antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 

K. The ideal 2D rare earth triangular layers in this structure type make it a potential model 

system for investigating magnetic frustration in rare-earth-based materials.  

 

 

 

 

 

 

 

 

 

 

Figure 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Gang Chen’s theory group 

Gang Chen’s theory group



Summary

1. We propose YbMgGaO4 to be a spin-orbit-coupled spin liquid. 

2. The signature of spin fractionalization has been discovered and interpreted as 
spinons.  

3. Predictions have been made for the weakly magnetized regime. It can be 
immediately tested by inelastic neutron.  It has been confirmed in Jun Zhao’s 
recent experiment. 
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