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1. Hidden order in condensed matter physics.

2. Hidden orders with intertwined multipolar structure in rare-earth
triangular lattice magnets.

3. Discovery of intertwined multipolar order in TmMgGa0O4
(“dry product” with Yao Shen, Jun Zhao)

Changle Liu, Yaodong Li, Gang Chen*, Phys. Rev. B, 98, 045119 (2018)
Yaodong Li, Xiaogun Wang, Gang Chen*, Phys. Rev. B, 94, 201114(R) (2016)
Yao Shen, Changle Liu, ....., Gang Chen*, Jun Zhao*, arXiv 1810.05054 (2018)




There is no field theory, no exotic phenomenon,
no fractionalization, no topological order, etc in this talk.
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Hidden order in condensed matter
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 Hidden order: “dark matter” in CMT

* URu,SI,
e Second order transition at ~17K, AS~ 0.42 RIn2
* Order parameters unknown after decades




Nature of hidden orders

1. Magnetic multipolar order
Quadrupolar order
Octupolar order

2. Electric multipolar order

3. Orbital order

How to probe these hidden orders?




Rare-earth triangular lattice magnets




A rare-earth triangular lattice quantum spin liguid: YbMgGaOa4
collaboration with QM Zhang, Jun Zhao, Yuesheng Li, Yaodong Li

YbMgGaO,
a~34A4

e
Qingming Zhang
(Renmin)

e Hastings-Oshikawa-Lieb-Shultz-Mattis theorem.

e Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015).

e This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2.
e |tis the first clear observation of T2/3 heat capacity. (needs comment.)

¢ |nelastic neutron scattering is consistent with spinon Fermi surface results.

e We think it is a spinon Fermi surface U(1) QSL.

Inelastic neutron scattering performed by Jun Zhao’s group and M Mourigal’s group




YMGO is not alone: lots of isostructural materials

Compound Magneticion  Space group Local moment Ocw (K) Magnetic transition Frustration para. f  Refs.
YbMgGaO,  Yb’t(4f") R3m Kramers doublet —4 PM down to 60 mK f > 66 [4]
CeCd;P; Ce*t4 H P6;/mmc Kramers doublet —60 PM down to 0.48 K f > 200 [5]
CeZn;P; Ce’t4 h P63/ mmc Kramers doublet —6.6 AFM order at 0.8 K f =8.2 [7]
CeZn;As; Ce’T(4fh P65 /mmc Kramers doublet —62 Unknown Unknown [8]
PrZn;As; Prit (4 ) P63 /mmc Non-Kramers doublet —18 Unknown Unknown [8]
NdZn;As; Nd** (4 £3) P65 /mmc Kramers doublet —11 Unknown Unknown [8]
YD Li, XQ Wang, GC*, PRB 94, 035107 (2016)
KBaRE(BO,),

Magnetism in the KBaRE(BOs), (RE=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm,
Yb, Lu) series: materials with a triangular rare earth lattice

M. B. Sanders, F. A. Cevallos, R. J. Cava
Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Many ternary chalcogenides NaRES?2 , NaRESe2 , KRES2 , KRESe?2 ,
KRETe2 , RbRES?2 , RbRESe2 , RbRETe2 , CsRES2 , CsRESe2, etc.)

C Liu, YD Li, GC*, PRB 98, 045119 (2018)
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Model Hamiltonian for all cases

CHANGLE LIU, YAO-DONG LI, AND GANG CHEN PHYSICAL REVII

TABLE I. The relevant spin Hamiltonians for three different doublets on the triangular lattice. The models for th
and the dipole-octupole doublet have been obtained in the previous works.

Local doublets The nearest-neighbor spin Hamiltonians on the triangular lattice

Usual Kramers doublet H=Y ]SS5+ Jo(SFS; 4+ 878 + Jaa(vy STST + v 8 S)—1
(V58 = vii STSS + Si (v ST — viy S

Dipole-octupole doublet H=5 ., J.SS5+ J.SiS7 +J,8 87 + J,.(S°S) + 57 S5)

Non-Kramers doublet H =73 i JoS7 S5+ Jo(S7 ST + 8787 + Jox(yiy ST ST+ v58787)




Model for non-Kramers doublets
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in which, y;; 1s a bond-dependent phase factor, and takes 1,

e'*™/3 and e~"?"/3 on the a,,a,, and a3 bond (see Fig. 2),

Time reversal symmetry forbids the coupling
between transverse and Ising components.



Kitaev Interaction
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Kitaev material beyond iridates: the advantage of f electrons.

pointed out in Fei-Ye Li, YD Li, ..., GC, arXiv 2016, PRB 2017



Non-Kramers doublets: intertwined multipolar orders

Stripey

-1

J+/Jzz

We first notice that in the model, the spin rotation around the
z direction by 7 /4 transforms ST — i §* and the couplings
in the model transform as

JZZ —> JZZ, J:|: —> J:|:, J:|::|: —> —J:|::|:. (2)

combined consequence of geometrical frustration
and multipolar nature of the local moments




Non-Kramers doublets: intertwined multipolar orders

TABLE II. The list of ordered phases in the phase diagram of Fig. 3.

States Order types Elastic neutron
Fyy pure quadrupolar no Bragg peak
120° Néel pure quadrupolar no Bragg peak
Stripe, pure quadrupolar no Bragg peak
AF,Fyy intertwined multipolar Bragg peak at K
AF,AF,, intertwined multipolar Bragg peak at K
AF,Stripe, intertwined multipolar Bragg peak at K
(a) F, (b) Stripe, (c) Néel,,




Quantum order by disorder Changle Liu

Fudan
s. Assuming spins with sublattice index s has the direction magnetic Brillouin zone. H, can be diagonalized via a
pointing along the unit vector nyg, one can always associate two standard Bogoliubov transformation W(k) = T, ®(k) where
unit vectors uy - ng = 0 and vy, = n; X u, so that ny, u; and v,
are orthogonal with each other. Then we perform Holstein- O(k) = [Byys - - - »Bx M,,Bikl, . ,,Bik M]T, (10)

Primakoff transformation for the spin operator S,
and Tx € SUM ,M). Here SU(M,M) refers to indefinite

n, S, =S — le[s b, 4) special unitary group that is defined as [43]
1 SUM,M)={g € Coyxam : ' Xg = X,detg =1}, (11
(W +iV,) - Spy = (28 — bl bey) s, (5) WARDT (g & Lo g 3¢ = 2, detg =1, (LU
! where X is the metric tensor and given as
(W5 — iVy) - Sps = bl (28 — bl bry)?. (6)
Ivxm 0
After performing Fourier transformation L= 0 —Lysm ) (12)
b — M Z by o Resk 7 It1s straightforward to prove that such transformation preserves
BTV N L=k ’ the boson commutation rules. The diagonalized Hamiltonian
keBz reads
the spin Hamiltonian can be rewritten in terms of boson 1 1
bilinears as Hgy, = Eo + 2 Z [cp(k)TE(k)cb(k) — Etf h(k)}
keBZ
H =E-+123qmmmmwmyfﬂmm (8) :
sw 0 D L 2 ’ =FEy+ E, + Z a)kSlBkSIBks’ (13)
keBZ —
keBZ
where E is the mean-field energy, where E(k) = diag[w). . . . .0 .0kl - . 0—1ny] and
W) = [byy, - by b g bl () I
Kl KMk kM E = 3" w[EK) — h(K)] (14)
and h(K) is a 2M x 2M Hermitian matrix, and BZ is the keBZ




Quantum order by disorder

Fudan
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FIG. 5. Energy per spin taking into account quantum zero-
point energy vs the azimuth angle 6 of spins for (a) the F,,
state and (b) the 120° N¢éel,, state. Here we take the param-
eter Jp =0.4J,, Jir =0.4J, for the F,, state and parameter
Jr =09/, Jr+ = 0.2/, for the Néel,, state. The zero-point energy
is calculated within the linear spin-wave method.
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The idea of non-commutative observables

To detect intertwined multipolar orders, one can combine
both elastic and inelastic neutron scattering measurements.

SZZ(q,w > 0)

+00
27TN Z/ dr ezq(r —r;)— la)t<SZ(O)SZ(t)>

as if one is doing polarized neutron scattering measurements.




Detection of the intertwined multipolar orders: excitations
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Selection rules

selection rule associated with the symmetry generated by
W — T—a1+az ® eiﬂ Zj Sj ’ (18)

where T_, 14, denotes the lattice translation by —a; 4 a,. The
Hamiltonian stays invariant under W, [W,H ] =0.

From now on, we introduce the notation s and 5 to denote
the sublattice pair that is interchanged under the action of W.
In the labeling of Fig. 4, we find that A = B,C = D,E = F.

For the elementary excitations, the effect of W is such that

Stripe, : Why W' = €Oy 5,5 = A, B, (19)

Stripe AF. : Whi W' = e ?®b 5, s = A, ..., F, (20)

where ¢(K) = —k, + k.
The eigenmodes of W take bonding/antibonding form,

Ok,s,+ = bk s £ bk 5, (21)
whose eigenvalues are
Wog s o Wi = e ®qy (4. (22)

Since W is a symmetry of the Hamiltonian, the energy
eigenmodes are separate linear combinations of oy g 4,

/8k,t,:|: — Z Ct,sOKk s, + + dt,saik,s,i, (23)
s

and
Wk e Wi = 2By, 1. (24)

The =+ branches do not mix, since they have distinct eigenvalues
under W.
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$¥(q.w > 0) =Y (0] Y Si(—q. — w)n)(n] Y _ Si(q.»)|0)

n s=1 s=1

M M
o< Y 8 — (€0 — €))(0] D (bg.s + by )Iny(nl Y (b_q.s + b} IO}
n s=1 s=1

M M
o Y 8 — (€0 — €01 D (gt + 0l g DIn)(n Y (g +ad, )I0).
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It is thus obvious that the contribution is nonzero if and only
if |n) 1s created by the Py , 4 operators. The By, _ states are
not accessible. As a result, the S*-S* correlation function only
measures coherent excitations with even parity. The odd parity
excitations, instead, are present in $*-S* and §”-S§” correlation
functions.




Discovery of intertwined multipolar order in
mMMgGaO4

=

Yao Shen Jun Zhao
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approximately thought as non-Kramers doublets
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The presence of well-defined spin wave indicates
the presence of the hidden order !
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iIson with theory
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Summary

1. The interplay between geometrical frustration and multipolar local
moments leads to rich phases and excitations.

2. The manifestation of the hidden multipolar orders is rather non-
trivial, both in the static and dynamic measurements.

3. The non-commutative observables/operators can be used to reveal
the dynamics of hidden orders. This is general and can be adapted to
many other hidden order systems.

4. Finally, the non-trivial Berry phase effect has not yet been discussed.
This thought has been hinted in Kivelson's recent work (PNAS 2018).




