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Hidden order in condensed matter
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Nature of hidden orders

1.	  Magne)c	  mul)polar	  order	  
Quadrupolar	  order	  
Octupolar	  order 

2.	  Electric	  mul)polar	  order	   

3.	  Orbital	  order	  
…	  

How	  to	  probe	  these	  hidden	  orders?	  
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. (needs comment.) 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We think it is a spinon Fermi surface U(1) QSL.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Qingming Zhang 
(Renmin)

Inelastic neutron scattering performed by Jun Zhao’s group and M Mourigal’s group 

collaboration with QM Zhang, Jun Zhao, Yuesheng Li, Yaodong Li
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YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that
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FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Abstract 

 We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE= Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare 

earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-

3m. Physical property measurements indicate the compounds display predominantly 

antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 

K. The ideal 2D rare earth triangular layers in this structure type make it a potential model 

system for investigating magnetic frustration in rare-earth-based materials.  
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YMGO is not alone: lots of isostructural materials

Many ternary chalcogenides NaRES2 , NaRESe2 , KRES2 , KRESe2 ,  
KRETe2 , RbRES2 , RbRESe2 , RbRETe2 , CsRES2 , CsRESe2, etc.) 

C Liu, YD Li, GC*, PRB 98, 045119 (2018)
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Model Hamiltonian for all cases

CHANGLE LIU, YAO-DONG LI, AND GANG CHEN PHYSICAL REVIEW B 98, 045119 (2018)

TABLE I. The relevant spin Hamiltonians for three different doublets on the triangular lattice. The models for the usual Kramers doublet
and the dipole-octupole doublet have been obtained in the previous works.

Local doublets The nearest-neighbor spin Hamiltonians on the triangular lattice Reference

Usual Kramers doublet H =
∑

⟨ij ⟩ JzzS
z
i S

z
j + J±(S+

i S−
j + S−

i S+
j ) + J±±(γij S

+
i S+

j + γ ∗
ij S

−
i S−

j )− iJz±
2 Refs. [3,4]

[(γ ∗
ij S

+
i − γij S

−
i )Sz

j + Sz
i (γ ∗

ij S
+
j − γij S

−
j )]

Dipole-octupole doublet H =
∑

⟨ij ⟩ JzS
z
i S

z
j + JxS

x
i Sx

j + JyS
y
i S

y
j + Jyz(Sz

i S
y
j + S

y
i Sz

j ) Ref. [10]
Non-Kramers doublet H =

∑
⟨ij ⟩ JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j ) + J±±(γij S

+
i S+

j + γ ∗
ij S

−
i S−

j ) This paper

relevant for the spin liquid candidate YbMgGaO4 and many
other rare-earth triangular lattice magnets with Kramers ion.
In this paper, we turn our attention to the non-Kramers doublet
on the triangular lattice that has been advocated in the end
of Ref. [4], and complete the full list of the microscopic spin
models for the triangular lattice rare-earth magnets. Unlike the
usual Kramers doublets, the mixed multipolar natures of spin
components for the non-Kramers doublets greatly simplify
the spin Hamiltonian. For the non-Kramers doublets [33–35],
the longitudinal spin component behaves as the magnetic
dipole moment, while the transverse spin components behave
as the magnetic quadrupole moment. Therefore, the time-
reversal symmetry and the hermiticity condition forbid the cou-
pling between the longitudinal and the transverse components.
Moreover, the ordering in the longitudinal spin components
and the ordering in the transverse components have to be
distinct and necessarily correspond to different phases and
phase transitions. The purpose of this paper is to understand
the intertwined multipolar ordering structures and the relevant
experimental phenomena for the non-Kramers doublets on the
triangular lattice.

The magnetic dipolar order can be directly visible through
the conventional magnetic measurements such as the NMR and
neutron diffraction experiments. The magnetic quadrupolar
order (or, equivalently, spin nematicity) preserves the time-
reversal symmetry and is often not quite visible in such
conventional measurements. However, the dipole component
that is orthogonal to the quadrupole component could then
create quantum fluctuations for the quadrupole component
and lead to coherent spin wave excitations. This orthogonal
effect allows the detection of the spin wave spectra via the
inelastic neutron scattering measurements. If the quadrupolar
order breaks the translation symmetry and enlarges the unit
cell, the symmetry-breaking pattern may not be quite visible
in the static measurement, but is clear in the dynamic mea-
surements. Thus, we study the magnetic excitations in the
multipolar ordered phases. We establish the key connections
between the underlying multipolar structure and the features
in the excitation spectra. The orthogonal effect of the dipole
component on the quadrupole component further lies in the
coupling to the external magnetic field. The magnetic field
only couples linearly to the dipole component and, thus,
the magnetization and the magnetic susceptibility indirectly
suggest the underlying quadrupolar order and transition.

The following part of the paper is organized as follows. In
Sec. II, we propose the relevant physical model for the non-
Kramers doublets on a triangular lattice and explain the phys-
ical significance of the spin operators. In Sec. III, we employ
several different methods to obtain the full phase diagram of

this model. Since many states have an emergentU (1) symmetry
at the mean-field level, in Sec. IV, we study the quantum order
by disorder phenomena for two representative states on our
phase diagram. In Sec. V, we study the dynamic properties of
the distinct phases that can serve as the experimental probes of
the underlying multipolar orders. In Sec. VI, we point out the
unique magnetization process due to the selective coupling
of the moments to the external magnetic field. Finally, in
Sec. VII, we discuss the experimental detection of various
phases and summarize with a materials’ survey. In Appendix A,
we explain the relevance of the model to the Kitaev interaction.
In Appendix B, we give the explanation of the non-Kramers
doublet for the case of the spin-1 moments. In Appendix C, we
show the complete spin wave dispersions for different phases.

II. MODEL HAMILTONIAN

Apart from YbMgGaO4, RCd3P3, RZn3P3, RCd3As3,
RZn3As3, KBaR(BO3)2, and many ternary chalcogenides
(LiRSe2, NaRS2, NaRSe2, KRS2, KRSe2, KRTe2, RbRS2,
RbRSe2, RbRTe2, CsRS2, CsRSe2, CsRTe2, etc.) are known
to have the rare-earth local moments on the triangular lattices,
where R is the rare-earth atom. These chemical properties
of the rare-earth atoms are quite similar, and thus it is often
possible to substitute one for the other. A rare-earth ion, such
as Yb3+ and Sm3+, that contains odd number of electrons is the
Kramers’ ion and forms a ground-state doublet whose twofold
degeneracy is protected by the time-reversal symmetry and the
Kramers’ theorem. A non-Kramers ion like Pr3+ and Tb3+

contains an even number of electrons per site (see Fig. 1). The
spin-orbit coupling of the 4f electrons entangles the total spin
moment and the orbital angular momentum, and leads to a total
moment J that is an integer. The crystal electric field then splits
the 2J + 1 fold degeneracy and sometimes leads to a twofold
degenerate ground-state doublet. Although both Kramers dou-
blet and non-Kramers doublet are two-dimensional irreducible
representations of the point group, the twofold degeneracy of
the Kramers doublets is further protected by the time-reversal
symmetry, and the degeneracy of the non-Kramers doublets
is merely protected by the lattice symmetry. For these non-
Kramers doublets, one then introduces an effective spin-1/2
operator, Si , that acts on the twofold degenerate ground-state
doublet at each lattice site (see Appendix B for a more detailed
discussion for a specific case.)

Although the effective spin-1/2 operator is introduced to
describe the non-Kramers doublet, the actual wave functions
of the non-Kramers doublets are still integer spins in nature.
As a result, the transformation of these effective spin-1/2
operators for the non-Kramers doublet is quite different from

045119-2
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Model for non-Kramers doublets
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FIG. 2. (a) The triangular lattice with three distinct neighboring
bonds and interactions. The phase parameter γij depends on the bond
orientation, which reflects the spin-orbit-entangled nature of the local
moments. (b) The definition of the Brillouin zone for the triangular
lattice.

the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
y
i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
∑

⟨ij⟩
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γij S
+
i S+

j + γ ∗
ij S

−
i S−

j ), (1)

in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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lattice.
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To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
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In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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Motivated by the rapid experimental progress on the spin-orbit-coupled Mott insulators, we propose and study
a generic spin model that describes the interaction between the non-Kramers doublets on a triangular lattice and is
relevant for triangular lattice rare-earth magnets. We predict that the system supports both pure quadrupolar orders
and intertwined multipolar orders in the phase diagram. Besides the multipolar orders, we explore the magnetic
excitations to reveal the dynamic properties of the systems. Due to the peculiar properties of the non-Kramers
doublets and the selective coupling to the magnetic field, we further study the magnetization process of the
system in the magnetic field. We point out the selective measurements of the static and dynamic properties of
the intertwined multipolarness in the neutron scattering, NMR, and µSR probes and predict the experimental
consequences. The relevance to the existing materials such as TmMgGaO4, Pr-based, and Tb-based magnets,
and many ternary chalcogenides is discussed. Our results not only illustrate the rich physics and the promising
direction in the interplay between strong spin-orbit-entangled multipole moments and the geometrical frustration,
but also provide a general idea to use noncommutative observables to reveal the dynamics of the hidden orders.
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I. INTRODUCTION

There has been intensive activity and interest in correlated
matters with strong spin-orbit coupling [1]. Various interesting
quantum phases have been proposed, and the emergence of
these rich phases is impossible in the absence of the strong spin-
orbit coupling. More substantially, the abundance of candidate
materials allows a rapid experimental progress of this field. In
fact, the physical models for many relevant physical systems
have not yet been constructed and thus not been explored
carefully. This requires the knowledge of the microscopic
nature of the relevant degrees of freedom. To establish the
connection with the experimental observables, one needs to
further understand the appearance of the physical properties
for different phases of these newly constructed models. In
this paper, we carry out these thoughts and study the spin-
orbit-coupled Mott insulators with non-Kramers doublets on a
triangular lattice.

Since the discovery and the proposal of the spin liquid
candidate material YbMgGaO4 [2–9], the triangular lattice
rare-earth magnets have received more attention recently
[4,10–24]. Many isostructural rare-earth magnets such as
RCd3P3, RZn3P3, RCd3As3, RZn3As3 [25–27], KBaR(BO3)2
[28] (R is a rare-earth atom), and many ternary chalcogenides
[29,30] are now proposed. In these systems, the rare-earth
atoms form a perfect triangular lattice. The combination of the
spin-orbit coupling of the 4f electrons and the crystal electric
field creates a local ground-state doublet that is described

*gangchen.physics@gmail.com

by an effective spin-1/2 local moment at each rare-earth
site. These rare-earth local moments then interact with each
other and describe the low-temperature magnetic properties
of the system. In most cases, the superexchange interaction is
short-ranged, and nearest-neighbor exchange interaction with
further neighbor dipolar interaction is sufficient due to the
strong spatial localization of the 4f electron wave function.
These materials provide a natural setting to study the inter-
play between strong spin-orbit entanglement and geometrical
frustration in both theory and experiments.

In the list of relevant physical models for the rare-earth
triangular lattice magnets, we have explored the usual Kramers
doublets and the dipole-octupole doublets [31,32] in the
previous works [4,10]. In particular, the anisotropic spin model
[4,7] for the usual Kramers doublets was suggested to be

FIG. 1. The combination of spin-orbit coupling and the D3d

crystal electric field generates a non-Kramers doublet ground state
for the Pr3+ ion. Here SOC refers to spin-orbit coupling, and CEF
refers to crystal electric field. Other ions such as Tm3+ and Tb3+

could potentially support non-Kramers doublets.
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FIG. 2. (a) The triangular lattice with three distinct neighboring
bonds and interactions. The phase parameter γij depends on the bond
orientation, which reflects the spin-orbit-entangled nature of the local
moments. (b) The definition of the Brillouin zone for the triangular
lattice.

the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
y
i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
∑

⟨ij⟩
JzzS

z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γij S
+
i S+

j + γ ∗
ij S

−
i S−

j ), (1)

in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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the effective spin-1/2 operators for the Kramers doublet un-
der the time-reversal symmetry. Specifically, the longitudinal
component, Sz

i , is odd under time reversal and transforms as
a magnetic dipole moment, and the transverse components,
Sx

i and S
y
i , are even under time reversal and transform as

the magnetic quadrupolar moment. Therefore, the generic
symmetry-allowed spin Hamiltonian that describes the interac-
tion between the non-Kramers doublets on the triangular lattice
is simpler than the one for the Kramers doublets and is given
as [4]

H =
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in which, γij is a bond-dependent phase factor, and takes 1,
ei2π/3 and e−i2π/3 on the a1,a2, and a3 bond (see Fig. 2),
respectively. As shown in Table I, this model differs from the
Kramers doublet model by the absence of the coupling between
the transverse components and the longitudinal component.

Besides the standard expression of the model in Eq. (1), in
Appendix A we further recast the model into a different form
where the Kitaev interaction is explicitly shown.

III. PHASE DIAGRAM

In this section, we carry out several complementary ap-
proaches to determine the classical or mean-field phase di-
agram of the spin model defined in Eq. (1). The model is
apparently frustrated, and a complicated phase diagram is
expected.

We first notice that in the model, the spin rotation around the
z direction by π/4 transforms S± → ∓iS± and the couplings
in the model transform as

Jzz → Jzz, J± → J±, J±± → −J±±. (2)

Therefore, we can focus on the J±± > 0 region of the phase
diagram. Moreover, as most relevant materials are antiferro-
magnets, we choose Jzz > 0 in our analysis for the reason that
will be clear later. Our results are summarized in Fig. 3 and
Table II.

FIG. 3. The mean-field ground state phase diagram of the model
in Eq. (1) with Jzz > 0. We find the Stripey state for large J±±
regardless of the sign of J±, the Fxy state for large negative J±, and
the Néel state for a large and positive J±. Thick curves refer to first-
order transitions, and thinner curves refer to second-order transitions.
The dashed phase boundaries are determined by comparing the
energy of AFzStripey states with those of AFzFxy and AFzAFxy. The
transitions across the dashed lines are complicated and may involve
other competing states that are not well captured by our mean-field
approach. The spin configurations of all ordered states are illustrated
in Fig. 4.

A. Pure quadrupolar orders

To start with, we tackle this model in the spirit of a
Weiss-type mean-field approach. This approach is qualitatively
correct if the ground state of the spin model supports long-
range orders with local on-site order parameters. This approach
often provides some very basic information about the ground-
state properties of the system. Within this approach, we treat the
spin as a classical vector and optimize the energy by choosing a
proper spin configuration. The classical spin vector is subjected
to a local constraint |Si | = S, and is thus often difficult to deal
with. One can nevertheless try to solve for the ground state of
the mean-field Hamiltonian with a relaxed global constraint,∑

i S2
i = NS2, where N is total number of spins, which does

not necessarily respect the local spin constraint. When it does,
this state is the actual classical ground state of the classical spin
Hamiltonian. This method is often known as Luttinger-Tisza
method [36].

In most parts of the phase diagram, the Luttinger-Tisza
method can correctly reproduce the classical ground state. In
the regimes where the method fails, we adopt a multisublattice
mean-field ansatz to minimize the ground state energy. This
approach is obviously simplified and cannot capture some of
the more complicated magnetic orders or absence of magnetic
orders due to strong frustration. The phase diagram obtained
from mean-field theory is shown in Fig. 3. We found a family
of long-range ordered phases as illustrated in Fig. 4. When
one of the couplings is dominant, the frustration is suppressed,
and the Luttinger-Tisza method works out well. This is the
regime in which either J± or J±± is dominant, and we
have
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TABLE II. The list of ordered phases in the phase diagram of Fig. 3.

States Order types Elastic neutron

Fxy pure quadrupolar no Bragg peak
120◦ Néel pure quadrupolar no Bragg peak
Stripey pure quadrupolar no Bragg peak
AFzFxy intertwined multipolar Bragg peak at K
AFzAFxy intertwined multipolar Bragg peak at K
AFzStripey intertwined multipolar Bragg peak at K

(1) Fxy state when J± is large and negative. The ordering
wave vector is at ! point. In this state, the quadrupole
components Sx and Sy align in the same direction in xy
plane. At the mean-field level, this state has an emergent U (1)
degeneracy under the global rotation of an arbitrary angle
about Sz. This is a bit surprising here since the microscopic
model only has a discrete lattice symmetry due to the spin-orbit
coupling. Thus, the emergent continuous degeneracy here
and below is completely accidental, and quantum fluctuation
beyond the mean-field theory should lift this degeneracy. This
is the well-known order by quantum disorder. Moreover, due to
this emergent continuous degeneracy, the excitation spectrum
with respect to the quadrupolar order would have a pseudo-
Goldstone mode that is nearly gapless. In Sec. IV, we carry
out an explicit calculation to discuss this order by quantum
disorder in this regime.

(a) Fxy (c) Néelxy(b) Stripey
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FIG. 4. Real-space spin configurations of the mean-field ground
states found in Fig. 3. (a) The ferromagnetic quadrupolar order with
spins aligned in xy plane, which we name the Fxy order. There is a
global U (1) degeneracy in the xy plane. (b) The antiferromagnetic
quadrupolar stripe order with spins aligned in y direction, which we
dub Stripey. (c), (d) The AFzFxy and AFzAFxy orders in Fig. 3 for
small J±± and small J±. Both orders have a three-sublattice structure,
consistent with results from Refs. [37–39]. As in (b), the component
in xy plane has a global U (1) degeneracy for reasons explained in
the text. (e) The 120◦-Néel order stabilized by a large positive J±. In
all figures, we draw the coordinate system of the spin space to help
visualization. The coordinate system of the real space always takes
the same convention in Fig. 2.

(2) Stripey order when J±± is large. In this state, the
quadrupolar component Sy is aligned in alternating directions
for alternating rows of spins. The ordering wave vector is at M
point. The spin-wave excitation is in general fully gapped.

(3) 120◦ Néel state with pure quadrupolar orders appears
as the ground-state in the large J± regime. In this state, spins
lie in the xy plane and each spin is arranged 120◦ to its
nearest neighbor, thus the ordering wave vector occurs at the
K point. The state has nonvanishing quadrupolar components
Sx and Sy . We find that this state has degenerate energies under
effective spin rotation of arbitrary angle about Sz, so this state
has emergent U (1) degeneracy. For the same reason as the Fxy
state, there would be a pseudo-Goldstone mode at ! point.

The Néel and Fxy orders can be understood in the XXZ limit,
where a large antiferromagnetic J± induces the Néel order with
the three-sublattice structure, and a large ferromagnetic J±
stabilizes the ferromagnetic order. The somewhat surprising
emergent U (1) symmetry is due to the canceling γij phase
factors of the anisotropic spin coupling term J±±. The above
three phases are purely quadrupolar orders, and are completely
hidden in the magnetization measurements. Since they are
absent of dipolar orders, even the elastic neutron scattering
measurement cannot resolve these states. The dipolar spin
component Sz, however, can create a coherent spin-wave ex-
citation with respect to the quadrupolar ordered phases. Thus,
despite the seemingly absence in the conventional magnetiza-
tion measurements, the quadrupolar orders can nevertheless be
detected via the inelastic neutron scattering experiments. We
will explore this in Sec. IV.

B. Intertwined multipolar orders

Next we focus on the case with dominant Jzz that is
presumably the most frustrated regime and thus supports strong
quantum fluctuations. We here implement a traditional self-
consistent Weiss mean-field theory by replacing the generic
pair-wise spin interactions as

S
µ
i Sν

j →
〈
S

µ
i

〉
Sν

j + S
µ
i

〈
Sν

j

〉
−

〈
S

µ
i

〉〈
Sν

j

〉
, (3)

where ⟨Sµ
i ⟩ is the order parameter of the mean-field state and

should be solved self-consistently. For this purpose, one first
needs to set up a mean-field ansatz for the order parameters.
From the experience of the XXZ model, one should at least
choose a three-sublattice mean-field ansatz. Here, to be a bit
more general, we choose a six-sublattice mean-field ansatz for
some parameter regime. The local stability of the ground state
is examined by the spin wave calculation. If the mean-field
ground state is locally unstable, the spin wave spectra will no
longer be real and positive.

Within this self-consistent mean-field approach, we find
three types of intertwined multipolar long-range orders that
are depicted in Figs. 3 and 4 and listed below,

(1) AFzFxy for negative J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and ferromagnetically ordered quadrupolar Sx,y

components. There is an emergent U (1) degeneracy generated
by the spin rotation about tne Sz direction.
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TABLE II. The list of ordered phases in the phase diagram of Fig. 3.

States Order types Elastic neutron

Fxy pure quadrupolar no Bragg peak
120◦ Néel pure quadrupolar no Bragg peak
Stripey pure quadrupolar no Bragg peak
AFzFxy intertwined multipolar Bragg peak at K
AFzAFxy intertwined multipolar Bragg peak at K
AFzStripey intertwined multipolar Bragg peak at K

(1) Fxy state when J± is large and negative. The ordering
wave vector is at ! point. In this state, the quadrupole
components Sx and Sy align in the same direction in xy
plane. At the mean-field level, this state has an emergent U (1)
degeneracy under the global rotation of an arbitrary angle
about Sz. This is a bit surprising here since the microscopic
model only has a discrete lattice symmetry due to the spin-orbit
coupling. Thus, the emergent continuous degeneracy here
and below is completely accidental, and quantum fluctuation
beyond the mean-field theory should lift this degeneracy. This
is the well-known order by quantum disorder. Moreover, due to
this emergent continuous degeneracy, the excitation spectrum
with respect to the quadrupolar order would have a pseudo-
Goldstone mode that is nearly gapless. In Sec. IV, we carry
out an explicit calculation to discuss this order by quantum
disorder in this regime.
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FIG. 4. Real-space spin configurations of the mean-field ground
states found in Fig. 3. (a) The ferromagnetic quadrupolar order with
spins aligned in xy plane, which we name the Fxy order. There is a
global U (1) degeneracy in the xy plane. (b) The antiferromagnetic
quadrupolar stripe order with spins aligned in y direction, which we
dub Stripey. (c), (d) The AFzFxy and AFzAFxy orders in Fig. 3 for
small J±± and small J±. Both orders have a three-sublattice structure,
consistent with results from Refs. [37–39]. As in (b), the component
in xy plane has a global U (1) degeneracy for reasons explained in
the text. (e) The 120◦-Néel order stabilized by a large positive J±. In
all figures, we draw the coordinate system of the spin space to help
visualization. The coordinate system of the real space always takes
the same convention in Fig. 2.

(2) Stripey order when J±± is large. In this state, the
quadrupolar component Sy is aligned in alternating directions
for alternating rows of spins. The ordering wave vector is at M
point. The spin-wave excitation is in general fully gapped.

(3) 120◦ Néel state with pure quadrupolar orders appears
as the ground-state in the large J± regime. In this state, spins
lie in the xy plane and each spin is arranged 120◦ to its
nearest neighbor, thus the ordering wave vector occurs at the
K point. The state has nonvanishing quadrupolar components
Sx and Sy . We find that this state has degenerate energies under
effective spin rotation of arbitrary angle about Sz, so this state
has emergent U (1) degeneracy. For the same reason as the Fxy
state, there would be a pseudo-Goldstone mode at ! point.

The Néel and Fxy orders can be understood in the XXZ limit,
where a large antiferromagnetic J± induces the Néel order with
the three-sublattice structure, and a large ferromagnetic J±
stabilizes the ferromagnetic order. The somewhat surprising
emergent U (1) symmetry is due to the canceling γij phase
factors of the anisotropic spin coupling term J±±. The above
three phases are purely quadrupolar orders, and are completely
hidden in the magnetization measurements. Since they are
absent of dipolar orders, even the elastic neutron scattering
measurement cannot resolve these states. The dipolar spin
component Sz, however, can create a coherent spin-wave ex-
citation with respect to the quadrupolar ordered phases. Thus,
despite the seemingly absence in the conventional magnetiza-
tion measurements, the quadrupolar orders can nevertheless be
detected via the inelastic neutron scattering experiments. We
will explore this in Sec. IV.

B. Intertwined multipolar orders

Next we focus on the case with dominant Jzz that is
presumably the most frustrated regime and thus supports strong
quantum fluctuations. We here implement a traditional self-
consistent Weiss mean-field theory by replacing the generic
pair-wise spin interactions as
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〉
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〈
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〉
−

〈
S

µ
i
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Sν
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〉
, (3)

where ⟨Sµ
i ⟩ is the order parameter of the mean-field state and

should be solved self-consistently. For this purpose, one first
needs to set up a mean-field ansatz for the order parameters.
From the experience of the XXZ model, one should at least
choose a three-sublattice mean-field ansatz. Here, to be a bit
more general, we choose a six-sublattice mean-field ansatz for
some parameter regime. The local stability of the ground state
is examined by the spin wave calculation. If the mean-field
ground state is locally unstable, the spin wave spectra will no
longer be real and positive.

Within this self-consistent mean-field approach, we find
three types of intertwined multipolar long-range orders that
are depicted in Figs. 3 and 4 and listed below,

(1) AFzFxy for negative J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and ferromagnetically ordered quadrupolar Sx,y

components. There is an emergent U (1) degeneracy generated
by the spin rotation about tne Sz direction.
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Here we present our linear spin-wave method that applies
to multisublattice configurations [40–42]. Let us assume that
the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
Primakoff transformation for the spin operator Srs ,

ns · Srs = S − b†
rsbrs , (4)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs , (5)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (6)

After performing Fourier transformation

brs =
√

M

N

∑

k∈BZ

bkse
iRrs ·k, (7)

the spin Hamiltonian can be rewritten in terms of boson
bilinears as

Hsw = E0 + 1
2

∑

k∈BZ

[
!(k)†h(k)!(k) − 1

2
tr h(k)

]
, (8)

where E0 is the mean-field energy,

!(k) = [bk1, . . . ,bkM,b
†
−k1, . . . ,b

†
−kM ]T , (9)

and h(k) is a 2M × 2M Hermitian matrix, and BZ is the
magnetic Brillouin zone. Hsw can be diagonalized via a
standard Bogoliubov transformation !(k) = Tk"(k) where

"(k) = [βk1, . . . ,βkM,β
†
−k1, . . . ,β

†
−kM ]T , (10)

and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]

SU (M,M) = {g ∈ C2M×2M : g†$g = $, det g = 1}, (11)

where $ is the metric tensor and given as

$ =
(

IM×M 0
0 −IM×M

)
. (12)

It is straightforward to prove that such transformation preserves
the boson commutation rules. The diagonalized Hamiltonian
reads

Hsw = E0 + 1
2

∑

k∈BZ

[
"(k)†E(k)"(k) − 1

2
tr h(k)

]

= E0 + Er +
∑

k∈BZ

ωksβ
†
ksβks , (13)

where E(k) = diag[ωk1, . . . ,ωkM,ω−k1, . . . ,ω−kM ] and

Er = 1
4

∑

k∈BZ

tr [E(k) − h(k)] (14)

is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞

−∞
dt eiq·(ri−rj )−iωt

〈
Sz

i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes
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Here we present our linear spin-wave method that applies
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the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
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and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]
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where $ is the metric tensor and given as
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reads
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is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞
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dt eiq·(ri−rj )−iωt

〈
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i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes
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(2) AFzAFxy for positive J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of
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FIG. 5. Energy per spin taking into account quantum zero-
point energy vs the azimuth angle θ of spins for (a) the Fxy

state and (b) the 120◦ Néelxy state. Here we take the param-
eter J± = 0.4Jzz, J±± = 0.4Jzz for the Fxy state and parameter
J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
is calculated within the linear spin-wave method.

the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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(2) AFzAFxy for positive J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of
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FIG. 5. Energy per spin taking into account quantum zero-
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state and (b) the 120◦ Néelxy state. Here we take the param-
eter J± = 0.4Jzz, J±± = 0.4Jzz for the Fxy state and parameter
J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
is calculated within the linear spin-wave method.

the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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(2) AFzAFxy for positive J± and small J±±. In this state,
the spins have both nonzero antiferromagnetically ordered
dipolar Sz and antiferromagnetically ordered quadrupolar Sx,y

components. This state also has the emergent U (1) degeneracy
in the xy plane of the spin space.

(3) AFzStripey at larger J±±. This phase is found proximate
to Stripey phase via the second-order transition. It has a similar
pattern with the Stripey state where the quadrupolar moment
Sy orders in the stripelike pattern. It also develops magnetic
order in the dipole component Sz.

All the above states carry intertwined multipolar orders,
supporting both dipolar and quadrupolar orders. Here we
provide the physical understanding for the emergence of these
interesting orders. The AFzFxy and AFzAFxy states are found to
be the exact ground states in the XXZ limit where J±± = 0, and
are known as the supersolid orders in this limit, for which both
the “boson density” Sz and the “superfluid order parameters”
Sx,y are nonvanishing. These supersolid orders are no longer
the exact ground states for small values of J±±. Moreover,
the notion of “supersolidity” is ill-defined because the J±±
interaction explicitly breaks the U (1) spin rotational symmetry
of the XXZ model. In fact, with a small J±± near the XXZ
limit, the AFzFxy and AFzAFxy states become unstable from
our linear spin wave calculation and may turn into some
incommensurate states. The incommensurate states are not
well captured by our self-consistent mean-field approach that
assumes commensurate states from the starting point. In the
phase diagram, we nevertheless label the small J±± regime
with the supersolid orders (AFzFxy and AFzAFxy states).

The AFzStripey state has intertwined dipolar Sz order and
quadrupolar Sy order that result from the competition between
J±± and Jzz. In the Ising limit with J±± ≪ Jzz, it is well-known
that the ground-state manifold is extensively degenerate: the
energy of a state is minimized as long as in each triangle
Ising spins are not simultaneously parallel to each other. In
the supersolid orders, this is manifested in the spin pattern
where the signs of the Sz component is (+, − ,−) or (+, + ,−)
in each triangle. Away from the Ising limit, a nonzero J±±
allows the system to fluctuate within the extensively degenerate
manifold of Ising spins, and therefore lifts the extensive de-
generacy. This is quite analogous to the effect of the transverse
field on top of the antiferromagnetic Ising interaction on the
triangular lattice. The ground state in our case is such that
the quadrupolar Sy component is maximized and ordered in a
stripelike pattern to optimize the J±± term, while the dipolar
Sz component orders in such a pattern where the signs of the Sz

component is (+, − ,0) in each triangle. As we show in Fig. 4,
the combined structure of the dipolar and quadrupolar orders
has a six-sublattice structure.

Unlike the pure quadrupolar order in the previous sub-
section, the intertwined multipolar orders are not completely
invisible in the conventional magnetic measurement. The
multiple-sublattice structure of the dipolar components can be
detected through the usual bulk magnetization measurements
such as NMR, µSR, and elastic neutron scattering measure-
ments. Again, the quadrupolar orders hide themselves from
such measurements. Thus, the intertwined multipolarness is
only partially visible.

Here, the presence of the intertwined multipolar order in
this part of the phase diagram results from the combination of
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point energy vs the azimuth angle θ of spins for (a) the Fxy

state and (b) the 120◦ Néelxy state. Here we take the param-
eter J± = 0.4Jzz, J±± = 0.4Jzz for the Fxy state and parameter
J± = 0.9Jzz, J±± = 0.2Jzz for the Néelxy state. The zero-point energy
is calculated within the linear spin-wave method.

the geometrical frustration and the multipolar nature of the
local moment. With only geometrical frustration, the system
would simply support the conventional magnetic orders. With
only spin-orbit-entangled local moments and the multipolar
structure of the local moment, the system would not give an
intertwined multipolar ordering structure. It is the combination
of the geometrical frustration and the multipolar nature of
the local moment that gives rise to the intertwined multipolar
ordering structure.

IV. QUANTUM ORDER BY DISORDER

As we describe in previous sections, the system has only
discrete spin-rotational symmetries, thus it is a bit counterin-
tuitive that all phases except for Stripey phase in the mean-field
phase diagram host emergent continuous U (1) degeneracies in
the xy plane of the spin space. These continuous degeneracies
are due to nontrivial bond-dependent γij phase factors in the
J±± interactions. It should be noted that these continuous
degeneracies are presented only at mean-field level, and in
general should be lifted by quantum fluctuations. Here we
study the quantum fluctuation in the Fxy state as an example.
In the Fxy state, the mean-field state has spins align in xy
plane with an arbitrary azimuth angle θ with respect to the
x axis. If we take into account quantum fluctuations, these
degenerate states will have different zero-point energies so
that the degeneracy is lifted. This effect can be captured in the
linear spin-wave theory. For J±± > 0, it is shown in Fig. 5
that the quantum fluctuation selects the ground state with
θ = nπ/3 (n ∈ Z) such that the spins align along the bond
orientations in the Fxy state. For the 120◦ Néel state, similar
results are obtained, and the spins are aligned along the bond
orientations. For other states with continuous degeneracies, we
expect similar degeneracy breaking.
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Here we present our linear spin-wave method that applies
to multisublattice configurations [40–42]. Let us assume that
the system has M-sublattice magnetic order. Each spin can be
labeled by the magnetic unit cell index r and sublattice index
s. Assuming spins with sublattice index s has the direction
pointing along the unit vector ns , one can always associate two
unit vectors us · ns = 0 and vs = ns × us so that ns , us and vs

are orthogonal with each other. Then we perform Holstein-
Primakoff transformation for the spin operator Srs ,

ns · Srs = S − b†
rsbrs , (4)

(us + ivs) · Srs = (2S − b†
rsbrs)

1
2 brs , (5)

(us − ivs) · Srs = b†
rs(2S − b†

rsbrs)
1
2 . (6)

After performing Fourier transformation

brs =
√

M

N

∑

k∈BZ

bkse
iRrs ·k, (7)

the spin Hamiltonian can be rewritten in terms of boson
bilinears as

Hsw = E0 + 1
2

∑

k∈BZ

[
!(k)†h(k)!(k) − 1

2
tr h(k)

]
, (8)

where E0 is the mean-field energy,

!(k) = [bk1, . . . ,bkM,b
†
−k1, . . . ,b

†
−kM ]T , (9)

and h(k) is a 2M × 2M Hermitian matrix, and BZ is the
magnetic Brillouin zone. Hsw can be diagonalized via a
standard Bogoliubov transformation !(k) = Tk"(k) where

"(k) = [βk1, . . . ,βkM,β
†
−k1, . . . ,β

†
−kM ]T , (10)

and Tk ∈ SU (M,M). Here SU (M,M) refers to indefinite
special unitary group that is defined as [43]

SU (M,M) = {g ∈ C2M×2M : g†$g = $, det g = 1}, (11)

where $ is the metric tensor and given as

$ =
(

IM×M 0
0 −IM×M

)
. (12)

It is straightforward to prove that such transformation preserves
the boson commutation rules. The diagonalized Hamiltonian
reads

Hsw = E0 + 1
2

∑
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[
"(k)†E(k)"(k) − 1

2
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]

= E0 + Er +
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where E(k) = diag[ωk1, . . . ,ωkM,ω−k1, . . . ,ω−kM ] and

Er = 1
4

∑
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is the zero-point energy correction due to quantum fluctuations.
Using this result, we obtain the quantum selection of the
quadrupolar order in the Fxy state and the 120◦ Néel state.

Besides the quantum fluctuations, the continuous degener-
acy could also be lifted by other interactions that are present in
these systems. Due to the strong localization of the rare-earth
electrons, further neighbor superexchange interactions can
be quite small compared to nearest neighbors. However, the
dipolar interaction between the Sz components can sometimes
play some role. This Ising-like dipolar interaction may even
modify the magnetic ground-state orders. We will examine
the effect of the dipolar interaction on the anisotropic spin
exchange interaction of the non-Kramers doublets in the future
work.

V. DETECTION OF MULTIPOLAR ORDERS
AND EXCITATIONS

As we have already indicated in the previous sections, the
quadrupolar order is not directly visible from the conventional
magnetic measurement. Instead, the dynamical measurement
is able to observe the consequence of the quadrupolar orders.
What is essential here is the noncommutative relation between
the dipole component and the quadrupole component. It is this
property that manifests the dynamics of the quadrupolar order
in the Sz correlator. The dipole component, Sz, couples linearly
with the external magnetic field. Likewise, the neutron spin
would only couple to the dipole moment Sz at the linear order.
Therefore, the inelastic neutron scattering would measure the
Sz-Sz correlation,

Szz(q,ω > 0)

= 1
2πN

∑

ij

∫ +∞

−∞
dt eiq·(ri−rj )−iωt

〈
Sz

i (0)Sz
j (t)

〉
. (15)

In this section, we discuss the dynamic information of the
system that is encoded in the inelastic neutron scattering
measurements.

The remarkable feature of the selective coupling of the
neutron spins to the magnetic moments greatly facilitates
the identification of the intertwined multipolar orders. One
can separately read off signatures of the ordering of dipole
and quadrupole moments from elastic and inelastic neutron
scattering measurements, respectively. The latter is because
the Sz moment creates spin-flipping events on the quadrupole
moments and thus creates coherent spin-wave excitations.
These excitations then carry the information about the un-
derlying quadrupolar ordering structures. Thus, although the
quadrupolar moments do not directly couple to the magnetic
field, the quadrupolar excitations can be indirectly probed. The
dynamic spin structure factor, which is defined in Eq. (15)
and measured by inelastic neutron scattering, encodes the
dispersion and intensity of the quadrupolar excitations. In
the following, we use the linear spin-wave theory to calculate
the dynamic spin structure factor. We follow Ref. [42] and find
that at zero temperature the dynamic spin structure factor takes
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FIG. 6. Dynamic spin structure factors for the phases discussed in Sec. III, obtained from the linear spin-wave theory. The representative
parameters for different subfigures are given. The plots here are intensity plots. We also plot the full spin-wave dispersions in Appendix C.

components of the local moment, the magnetization is influ-
enced by the underlying quadrupolar order. The behavior of
the magnetization should provide information about the hidden
quadrupolar order that is otherwise not directly measurable. To
explore this idea, we first introduce the magnetic field to the
system so that we have

Hh = H − gµBh
∑

i

Sz
i

≡ H − B
∑

i

Sz
i . (26)

From the expression of the above Hamiltonian, one can
immediately read off the Curie-Weiss temperature. Because
the external magnetic field only couples to the Sz component
of the local moment, the Curie-Weiss temperature only reflects
the Jzz interaction, i.e.,

!CW = − 3
2Jzz. (27)

The impact of the underlying quadrupolar order on the
magnetization should be most clear for the pure quadrupolar
ordered phase. Here, we explore the physics on the Stripey
state. The field will polarize the dipolar moments and suppress
the quadrupolar ordering. In Fig. 7, we choose the coupling
constants deep in the antiferroquadrupolar Stripey phase, where
J± = 0.1Jzz and J±± = 1.0Jzz. The mean-field ansatz is cho-
sen to take care of the uniform Sz magnetization,

⟨Si⟩ ≡
[
mx

i ,m
y
i ,m

z
i

]T = [0,eiM·Ri my,mz]T , (28)

where M = (0,2π/
√

3) is the ordering wave vector for the
Stripey state, and my , mz real numbers subject to the constraint
|⟨Si⟩| = S for all sites i.

From the mean-field analysis, we plot the magnetization
at zero and finite temperatures for different strengths of

transverse fields. In addition, the magnetic susceptibility and
the dependence of the ordering temperature on the strength
of the magnetic field are shown together in Fig. 7. We first
discuss the zero field susceptibility χ zz [see Fig. 7(a)]. Because
of the lack of dipolar ordering, there is a constant χ zz below
Tc, and smoothly decays below Tc, obeying the Curie-Weiss
law. In particular, it does not develop a peak across the
finite-temperature transition at Tc, because the quadrupolar
order paramter is “hidden” to the magnetic field. This is to
be contrasted with the case of Kramers doublets, where the
susceptibily shows a critical behavior at Tc.

The magnetic field suppresses the antiferroquadrupolar
order. This is because the magnetization does not commute
with the quadrupolar order parameter Sy . When the field
polarizes the magnetization, the quantum fluctuation of the
quadrupolar orders is enhanced and thereby reducing the
ordering temperature. This physics has also been suggested for
the electronic multipolar orders in intermetallic compounds
TmAu2 and TmAg2, where the lattice strain is introduced
to control the electronic quadrupolar order [35]. Here we
introduce the magnetic field to control the magnetization. In
Figs. 7(b) and 7(c), we explicitly show this result from our
mean-field theory.

Above the critical field Bc, the quadrupolar order is com-
pletely suppressed, and the dipolar moments are polarized
by the field. The Z2 symmetry is generated by the rotation
operation

Û ≡ eiπSz

. (29)

It is spontaneously broken in the antiferroquadrupolar ground
states by ⟨Sy⟩ and is restored in the fully magnetized state.
Around Bc, we expect a quantum critical region and quantum
phase transition due to the breaking of the Z2 symmetry. Al-
though the order parameter Sy cannot be directly measured, the
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the form

Szz(k,ω > 0)

= S

2M

M∑

s=1

[T †
k Uz(Uz)†Tk]s+M,s+Mδ(ω − ωks), (16)

where the 2M-dimensional vector Uz is defined as

Uz =
[
uz

1 + ivz
1,u

z
2 + ivz

2, . . . ,u
z
M + ivz

M,

× uz
1 − ivz

1,u
z
2 − ivz

2, . . . ,u
z
M − ivz

M

]T
. (17)

Here, we have neglected the two-magnon process in the above
expression.

Our results are displayed in Fig. 6. The gapless modes in
the figures are pseudo-Goldstone modes that arise from the
emergent continuous degeneracy at the mean-field level and the
linear spin-wave treatment. High-order quantum fluctuations
would create a minigap for these modes. Despite that, we
expect a T 2 heat capacity behavior for the temperature regime
above the minigap energy scale in the ordered phase.

For our model that describes the spin-1/2 degrees of
freedom, the number of magnon branches should be equal to
the number of sublattices in the corresponding ordered phase.
However, surprisingly, we find that for two-sublattice Stripey
and six-sublattice AFzStripey structures, we can see only see
one and three bands, respectively, which implies that half of
the bands are completely invisible in the Sz-Sz correlator (see
Appendix C for a comparison). The underlying reason is the

selection rule associated with the symmetry generated by

Ŵ = T−a1+a2 ⊗ eiπ
∑

j Sz
j , (18)

where T−a1+a2 denotes the lattice translation by −a1 + a2. The
Hamiltonian stays invariant under Ŵ , [Ŵ ,H ] = 0.

From now on, we introduce the notation s and s̄ to denote
the sublattice pair that is interchanged under the action of Ŵ .
In the labeling of Fig. 4, we find that Ā = B,C̄ = D,Ē = F .

For the elementary excitations, the effect of Ŵ is such that

Stripey : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A,B, (19)

StripeyAFz : Ŵbk,sŴ
† = eiφ(k)bk,s̄ ,s = A, . . . ,F, (20)

where φ(k) = −kx + ky .
The eigenmodes of Ŵ take bonding/antibonding form,

αk,s,± = bk,s ± bk,s̄ , (21)

whose eigenvalues are

Ŵαk,s,±Ŵ † = ±eiφ(k)αk,s,±. (22)

Since Ŵ is a symmetry of the Hamiltonian, the energy
eigenmodes are separate linear combinations of αk,s,±,

βk,t,± =
∑

s

ct,sαk,s,± + dt,sα
†
−k,s,±, (23)

and

Ŵβk,t,±Ŵ † = ±eiφ(k)βk,t,±. (24)

The±branches do not mix, since they have distinct eigenvalues
under Ŵ .

On the other hand, we can make a spectral representation
of Eq. (15) as follows:

Szz(q,ω > 0) =
∑

n

⟨0|
M∑

s=1

Sz
s (−q, − ω)|n⟩⟨n|

M∑

s=1

Sz
s (q,ω)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(bq,s + b
†
−q,s)|n⟩⟨n|

M∑

s=1

(b−q,s + b†
q,s)|0⟩

∝
∑

n

δ(ω − (ϵn − ϵ0))⟨0|
M∑

s=1

(αq,s,+ + α
†
−q,s,+)|n⟩⟨n|

M∑

s=1

(α−q,s,+ + α
†
q,s,+)|0⟩. (25)

It is thus obvious that the contribution is nonzero if and only
if |n⟩ is created by the βk,t,+ operators. The βk,t,− states are
not accessible. As a result, the Sz-Sz correlation function only
measures coherent excitations with even parity. The odd parity
excitations, instead, are present in Sx-Sx and Sy-Sy correlation
functions.

The elastic neutron scattering measurement directly probes
the magnetic ground state of the Sz components. The ordering
wave vector of the dipolar moment Sz will be the magnetic
Bragg peak in the static spin structure factor. For states with
pure quadrupolar orders like Fxy, Stripey, and Néelxy, there
is no dipolar ordering and the ground state does not break
time-reversal symmetry, so there are no Bragg peaks in static

spin structure factors. For states with intertwined multipolar
orders such as AFzFxy, AFzAFxy, and AFzStripey, however, the
dipolar components order into a multisublattice pattern. The
unit cell for the dipolar order is effectively enlarged, and hence
one should observe the magnetic Bragg peaks at the K point
in the Brillouin zone.

VI. THE MAGNETIZATION PROCESS

The peculiar property of the quadrupolar order and the
non-Kramers doublets also lies in the magnetization process
of the system under the external magnetic field. Although
the magnetic field does not directly couple to the quadrupole
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Ŵαk,s,±Ŵ † = ±eiφ(k)αk,s,±. (22)
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.
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Figure 1. Magnetic susceptibility, heat capacity and magnetizations of TmMgGaO4. a, Temperature dependence of the magnetic suscep-

tibility � measured under ZFC and FC with external fields of 10 kOe applied along and perpendicular to the c axis. The inset shows the linear

fitting of the inverse susceptibility with Curie-Weiss temperature of -19.1 K. b, Field dependence of the magnetization at T = 2 K. Linear

fitting of the magnetization at high field gives Lande-g factor of 12.11(5) (solid blue line). c, Magnetic heat capacity and the corresponding

magnetic entropy measured under zero field. The phonon contribution is subtracted by measuring the non-magnetic reference compound

LuMgGaO4. A Schottky anomaly is observed below 0.4 K which contributes partially to the calculated entropy. d, Constant energy cuts across

the magnetic dipolar Bragg peak Q = (1/3, 1/3, 0) along transverse direction at di↵erent temperatures. e, Temperature dependence of the fitted

peak amplitudes of the Bragg peak at Q = (1/3, 1/3, 0). f, Constant energy cuts across the magnetic multipolar Bragg peak Q = (1, 0, 0) along

transverse direction at di↵erent temperatures. g, Temperature dependence of the elastic signal at Q = (1, 0, 0). The solid and dashed lines in

d-g are guides to the eye. h, i, Momentum dependence of the magnetic Bragg peak at the indicated temperature. The di↵usive signals at the

up-left corner are the elastic contamination from the sample environment close to the direct beam which is absent in inelastic channel. Similar

spurion is also available in Fig. 2a due to its low energy. The white dashed lines indicate the zone boundaries. j, L dependence of the elastic

signals around Q = (1/3, -2/3, 0). k, Schematic of the three-sublattice magnetic structure of TmMgGaO4. The data shown in d, f and g are

collected on PANDA and the data in h-j are measured on LET. In e both the data collected on PANDA and LET are presented. The wave

vector Q is defined as Q = Ha⇤ + Kb⇤ + Lc⇤; arb. unit, arbitrary unit; r.l.u. reciprocal lattice unit; cts/min, counts per minute.

The presence of well-defined spin wave indicates  
the presence of the hidden order !

Well-defined spin wave
11

0 0.4 0.8
(H, H, 0) (r.l.u.)

-1

0

1

(-K
, K

, 0
) (

r.l
.u

.)

E = 0.1±0.05 meV
a

0

4

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.2±0.05 meV
b

0

0.8

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.3±0.05 meV
c

0

0.6

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.5±0.05 meV
d

0

0.6

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.9±0.05 meV
e

0

0.3

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 1.5±0.05 meV
f

0

0.2

Intensity (a. u.)

0 0.4 0.8
(H, H, 0) (r.l.u.)

-1

0

1

(-K
, K

, 0
) (

r.l
.u

.)

E = 0.1 meV
g

0

4

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.2 meV
h

0

0.8

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.3 meV
i

0

0.6

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.5 meV
j

0

0.6

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 0.9 meV
k

0

0.3

0 0.4 0.8
(H, H, 0) (r.l.u.)

E = 1.5 meV
l

0

0.2

Intensity (a. u.)

Figure 2. Measured and calculated momentum dependence of the spin excitations in TmMgGaO4 at the indicated energies and

T = 0.05 K. a-f, Contour plots of the constant energy slices in neutron experiments. Clear spin wave stemmed from K points can be seen. The

weak signals near Q = (0,0,0) in a are the elastic contamination from the sample environment close to the direct beam.g-l, Calculated spin

excitations using the model specified in the text. The dashed lines indicate the zone boundaries. The measurements were performed on LET

spectrometer with Ei = 4.8 meV. All the data are presented without background subtractions or symmetrizing.
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Figure 3. Observed and calculated spin wave dispersion in TmMgGaO4 at T = 0.05 K. a, Intensity of the spin-excitation spectra as a

function of momentum and energy transfer along the high-symmetry directions illustrated by the black solid lines in d with Ei = 4.8 meV. The

strong signal around the zero energy transfer comes from the elastic incoherent scattering. b, The spectral intensity calculated by LSW with

Jzz
1 = 0.57 meV, Jzz

2 = 0.026 meV and h = 0.776 meV [15]. The calculated result is convoluted with Gaussian distribution with width of 0.25

meV. c, Energy-momentum (E-k) slice along high-symmetry points illustrated by the grey lines in d with Ei = 1.7 meV. The white dashed

lines stand for the high-symmetry points. d, Sketch of the reciprocal space. Black dashed lines indicate the Brillouin zone boundaries.
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Figure 3. Observed and calculated spin wave dispersion in TmMgGaO4 at T = 0.05 K. a, Intensity of the spin-excitation spectra as a

function of momentum and energy transfer along the high-symmetry directions illustrated by the black solid lines in d with Ei = 4.8 meV. The

strong signal around the zero energy transfer comes from the elastic incoherent scattering. b, The spectral intensity calculated by LSW with

Jzz
1 = 0.57 meV, Jzz

2 = 0.026 meV and h = 0.776 meV [15]. The calculated result is convoluted with Gaussian distribution with width of 0.25

meV. c, Energy-momentum (E-k) slice along high-symmetry points illustrated by the grey lines in d with Ei = 1.7 meV. The white dashed

lines stand for the high-symmetry points. d, Sketch of the reciprocal space. Black dashed lines indicate the Brillouin zone boundaries.
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Summary

1.	  The	  interplay	  between	  geometrical	  frustration	  and	  multipolar	  local	  
moments	  leads	  to	  rich	  phases	  and	  excitations.	  	  

2.	  The	  manifestation	  of	  the	  hidden	  multipolar	  orders	  is	  rather	  non-‐
trivial,	  both	  in	  the	  static	  and	  dynamic	  measurements.	  

3.	  The	  non-‐commutative	  observables/operators	  can	  be	  used	  to	  reveal	  
the	  dynamics	  of	  hidden	  orders.	  This	  is	  general	  and	  can	  be	  adapted	  to	  
many	  other	  hidden	  order	  systems.	  

4.	  Finally,	  the	  non-‐trivial	  Berry	  phase	  effect	  has	  not	  yet	  been	  discussed.	  	  
	  	  	  	  This	  thought	  has	  been	  hinted	  in	  Kivelson’s	  recent	  work	  (PNAS	  2018).
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