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We investigate novel phases that emerge from the interplay of electron correlations and strong spin-orbit
interactions. We focus on describing the topological semimetal, a three-dimensional phase of a magnetic solid,
and argue that it may be realized in a class of pyrochlore iridates (such as Y2Ir2O7) based on calculations using
the LDA + U method. This state is a three-dimensional analog of graphene with linearly dispersing excitations
and provides a condensed-matter realization of Weyl fermions that obeys a two-component Dirac equation. It
also exhibits remarkable topological properties manifested by surface states in the form of Fermi arcs, which
are impossible to realize in purely two-dimensional band structures. For intermediate correlation strengths, we
find this to be the ground state of the pyrochlore iridates, coexisting with noncollinear magnetic order. A narrow
window of magnetic “axion” insulator may also be present. An applied magnetic field is found to induce a
metallic ground state.
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Previously, some of the most striking phenomena in solids,
such as high-temperature superconductivity1 and colossal
magnetoresistance,2 were found in transition-metal systems
involving 3d orbitals with strong electron correlations. Now
it has been realized that in 4d and 5d systems, whose orbitals
are spatially more extended, a regime of intermediate corre-
lation appears. Moreover, they display significant spin-orbit
coupling, which modifies their electronic structure as recently
verified in Sr2IrO4 (Ref. 3). This is a largely unexplored
domain, but already tantalizing new phenomena have been
glimpsed. For example, in the 5d iridium-based magnetic
insulator, Na4Ir3O8 (Ref. 4), a disordered ground state persists
down to the lowest measured temperatures, making it a prime
candidate for a quantum spin liquid.5

It is known that strong spin-orbit interactions can lead to a
novel phase of matter, the topological insulator.6 However, the
bismuth-based experimental realizations uncovered so far have
weak electron correlations. Recently, it was pointed out that
the iridium oxides (iridates) are promising candidates to realize
topological insulators7 and that iridium-based pyrochlores in
particular8 provide a unique opportunity to study the interplay
of Coulomb interactions, spin-orbit coupling, and the band
topology of solids.

The main focus of our work is the pyrochlore iridates,
which have the general formula A2Ir2O7, where A = yttrium
or a lanthanide element. Experiments on these materials
indicate magnetic order.9,10 Thus, the possible phases have
not been treated in the theory of topological insulators, which
assumes time-reversal symmetry. A rather different, but also
unusual phase, the topological semimetal is predicted by our
LSDA + U + SO (where LSDA stands for local-spin-density
approximation and SO stands for spin orbit) calculations in
a range of parameters appropriate to the iridates. This phase
has linearly dispersing excitations at the chemical potential,
analogous to graphene,11 but occurs inside a fully three-
dimensional magnetic solid. The small density of states leads
to a vanishing conductivity at low temperatures. Each mode

in this metal is described by a two-component wave-function
(described by the “Weyl equation,” the two-component analog
of the Dirac equation), describing a point where two bands
touch. The Weyl equation is used in particle physics to describe
the chiral and massless behavior of neutrinos (in limits where
their small mass can be neglected). Hence, we also call it the
“Weyl semimetal.”

Weyl fermions can be assigned a chirality; that is, they are
either left or right handed. These modes cannot be gapped
unless they mix with a fermion of opposite handedness, which
is located at a different point in the Brillouin zone. Thus the
gaplessness of Weyl fermions is absolute provided momentum
is conserved;12 it does not require any fine-tuning or symmetry.
These modes are most robust in systems with magnetic order.
They do not exist at all if both time reversal and inversion
symmetry are present, for example, in bismuth. There, in
contrast, Dirac fermions with four-component wave functions
appear, which are typically gapped.

A key property of the Weyl semimetal phase studied in this
work is its unusual surface states, reminiscent of topological
insulators. Since the bulk fermi surface only consists of a set
of momentum points, surface states can be defined for nearly
every surface momentum and take the shape of “Fermi arcs”
in the surface Brillouin zone that stretch between Weyl points.

The “axion insulator” phase can emerge when the Weyl
points annihilate in pairs as the correlations are reduced. This
phase shows a topological magnetoelectric effect,13 captured
by the magnetoelectric parameter θ = π , whose value is
protected by the inversion symmetry, which is respected in
our system. The name axion insulator refers to the analogy
with the axion vacuum in particle physics.14

In the pyrochlore iridates both the A and the Ir atoms
are located on a network of corner-sharing tetrahedra.15,16

Pioneering experiments17 revealed an evolution of ground-
state properties with increasing radius of the A ion, which is
believed to tune electron correlations. While A = Pr is metal-
lic, A = Y is an insulator at low temperatures. Subsequently,
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Topology, the mathematical description of the robust-
ness of form, appears throughout physics, and provides
strong constraints on many physical systems. It has long
been known that it plays a key role in understanding the
exotic phenomena of the quantum Hall e�ect. Recently,
it has been found to generate robust and interesting bulk
and surface phenomena in “ordinary” band insulators de-
scribed by the old Bloch theory of solids. Such “topolog-
ical insulators,” insulating in the bulk and metallic on
the surface, occur in the presence of strong spin-orbit
coupling in certain crystals, with unbroken time-reversal
symmetry [1].

It is usually believed that such topological physics is
obliterated in materials where magnetic ordering breaks
time-reversal symmetry. This is by far the most com-
mon fate for transition-metal compounds that manage
to be insulators—so called “Mott insulators,” which owe
their lack of conduction to the strong Coulomb repul-
sion between electrons. In an article appearing in Phys-

ical Review B, Xiangang Wan from Nanjing University,
China, and collaborators from the University of Califor-
nia and the Lawrence Berkeley National Laboratory, US,
show that this is not necessarily the case, and describe a
remarkable electronic structure with topological aspects
that is unique to such (antiferro-)magnetic materials [2].
The state they describe is remarkable in possessing in-
teresting low-energy electron states in the bulk and at
the surface, linked by topology. In contrast, topological
insulators, like quantum Hall states, possess low-energy
electronic states only at the surface.

The theory of Wan et al., which uses the LDA+U nu-
merical method, is a type of mean field theory. As such,
the low-energy quasiparticle excitations are described
simply by noninteracting electrons in a background elec-
trostatic potential and, in the case of a magnetically or-
dered phase, by a spatially periodic exchange field. It is
possible to follow the evolution of the electronic states as

a function of the U parameter, which is used to model
the strength of Coulomb correlations. They apply the
technique to iridium pyrochlores, R2Ir2O7, where R is
a rare earth element. These materials are known to ex-
hibit metal-insulator transitions (see, e.g., Ref. [3]), in-
dicating substantial correlations, and are characterized
by strong spin-orbit coupling due to the heavy element
Ir (iridium). In the intermediate range of U, which they
suggest is relevant for these compounds, Wan et al. find
an antiferromagnetic ground state with the band struc-
ture of a “zero-gap semimetal,” in which the conduction
and valence bands “kiss” at a discrete number (24!) of
momenta. The dispersion of the bands approaching each
touching point is linear, reminiscent of massless Dirac
fermions such as those observed in graphene.

This would be interesting in itself, but there are im-
portant di�erences from graphene. Because of the anti-
ferromagnetism, time-reversal symmetry is broken, and
as a consequence, despite the centrosymmetric nature of
the crystals in question, the bands are nondegenerate.
Thus two—and only two—states are degenerate at each
touching point, unlike in graphene where there are four.
In fact, the kissing bands found by Wan et al. are an
example of accidental degeneracy in quantum mechanics,
a subject discussed in the early days of quantum the-
ory by von Neumann and Wigner (1929), and applied
to band theory by Herring (1937). The phenomenon of
level repulsion in quantum mechanics tends to prevent
such band crossings. To force two levels to be degen-
erate, one must consider the 2 ◊ 2 Hamiltonian matrix
projected into this subspace: not only must the two di-
agonal elements be made equal, the two o�-diagonal ele-
ments must be made to vanish. This requires three real
parameters to be tuned to achieve degeneracy. Thus,
without additional symmetry constraints, such acciden-
tal degeneracies are vanishingly improbable in one and
two dimensions, but can occur as isolated points in mo-
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2
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FIG. 4. (Color online) Semimetallic nature of the state at U =
1.5 eV according to the LSDA + U + SO method. (a) Calculated
energy bands in the plane Kz = 0 with band parities shown; (b) energy
bands in the plane kz = 0.6π/a, where a Weyl point is predicted to
exist. The lighter-shaded plane is at the Fermi level. (c) Locations
of the Weyl points in the three-dimensional Brillouin zone (Ref. 29)
(nine are shown, indicated by the circled + or − signs).

the parity eigenvalues. Note that all the magnetic structures
considered above preserve inversion (or parity) symmetry. In
the Brillouin zone [see Fig. 4(c)] of the fcc lattice the TRIMs
correspond to the " = (0, 0, 0), and X, Y,Z [=2π/a(1, 0, 0)
and permutations] points and four L points [π/a(1, 1, 1) and
equivalent points]. The TRIM parities of the top four occupied
bands, in order of increasing energy, are shown in Table II.
Note that, although by symmetry all L points are equivalent,
the choice of inversion center at an iridium site singles out one
of them, L′. With that choice the parities at L′ and the other
three L points are the opposite of one another. The parities
of the all-in/all-out state remains unchanged above U > Uc ∼
1.8 eV and is shown in the top row under U = 2 eV. This
pattern of parities helps to understand the nature of the phase:
The parities are the same as for a site-localized picture of this
phase, where each site has an electron with a fixed moment
along the ordering direction. Due to the possibility of such a
local description of this magnetic insulator, we term it the Mott
phase.

Intermediate correlations. For the same all-in/all-out mag-
netic configuration, at smaller U = 1.5 eV, the band structure

TABLE II. Calculated parities of states at TRIMs for several
electronic phases of the iridates. Only the top four filled levels are
shown, in order of increasing energy.

Phase " X, Y,Z L′ L (×3)
U = 2.0, all-in (Mott) ++++ + − − + + − − − −+++
U = 1.5, all-in (Dirac) ++++ + − − + + − − + −++ −

along high-symmetry lines [see Fig. 3(b)] also appears to be
insulating, and at first sight one may conclude that this is
an extension of the Mott insulator. However, a closer look
using the parities reveals that a phase transition has occurred.
At the L points, an occupied level and an unoccupied level
with opposite parities have switched places. It can readily
be argued that only one of the two phases adjacent to the
U where this crossing happens can be insulating (see the
Appendix). Since the large U phase is found to be smoothly
connected to a gapped Mott phase, it is reasonable to assume
the smaller U phase is the noninsulating one. This is also
borne out by the LSDA + U + SO band structure. A detailed
analysis perturbing about this transition point (also in the k · p
subsection) allows us to show that this phase is expected to be
a Weyl semimetal with 24 Weyl nodes in all.

Indeed, in the LSDA + U + SO band structure at U =
1.5 eV, we find a three-dimensional Dirac crossing located
within the "-X-L plane of the Brillouin zone. This is illustrated
in Fig. 4 and corresponds to the k vector (0.52,0.52,0.3)2π/a.
There also are five additional Weyl points in the proximity of
the point L related by symmetry (three are just inside each of
the two opposite hexagonal faces of the Brillouin zone, which
are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L
point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π
insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl
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are identified with one another) When U increases, these points
move toward each other and annihilate all together at the L
point close to U = 1.8 eV. This is how the Mott phase is born
from the Weyl phase. Since we expect that for Ir 5d states the
actual value of the Coulomb repulsion should be somewhere
within the range 1 eV < U < 2 eV, we thus conclude that the
ground state of the Y2Ir2O7 is most likely the semimetallic
state with the Fermi surface characterized by a set of Weyl
points but in proximity to a Mott insulating state. Both phases
can be switched to a normal metal if Ir moments are collinearly
ordered by a magnetic field.

Possible axion insulator phase. At lower values of U a
second gapped phase with special properties may appear. This
phase can be characterized in terms of its magnetoelectric re-
sponse. Recall that in the presence of time-reversal symmetry,
topological insulators are nonmagnetic band insulators with
protected surface states.6 When the surface states are elimi-
nated by adding, for example, magnetic moments only on the
surface, a quantized magnetoelectric response is obtained:13

A magnetic field induces a polarization, P = θ e2

2πh
B, with the

coefficient θ only defined modulo 2π . The values of θ are
limited by time reversal, which transforms θ → −θ . Apart
from the trivial solution θ = 0, the ambiguity in the definition
of θ allows also for θ = π , and this occurs in topological
insulators θ = π . In magnetic insulators, θ is in general no
longer quantized.30 However, when inversion symmetry is
retained, θ is quantized again. An insulator with the value
θ = π may be termed an axion insulator.

What is the appropriate description of the pyrochlore
iridates? As described elsewhere,21 the condition for θ = π
insulators with only inversion symmetry, when deduced from
the parities, turns out to be the same as the Fu-Kane formula,
for time-reversal symmetric insulators;31,32 that is, if the total
number of filled states of negative parity at all TRIMs taken
together is twice an odd integer, then θ = π . Otherwise, θ = 0.

For the Mott insulator, at large U , the charge physics must
be trivial and so we must have θ = 0. Next, since the Weyl
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state for this subsystem [see Fig. 5(b)]. Hence, this surface state
crosses zero energy somewhere on the surface Brillouin zone
kλ0 . Such a state can be obtained for every curve enclosing
the Weyl point. Thus, at zero energy, there is a Fermi line in
the surface Brillouin zone, that terminates at the Weyl point
momenta [see Fig. 5(c)]. An arc beginning on a Weyl point
of chirality c has to terminate on a Weyl point of the opposite
chirality. Clearly, the net chirality of the Weyl points within
the (λ, kz) torus was a key input in determining the number of
these states. If Weyl points of opposite chirality line up along
the kz direction, then there is a cancellation and no surface
states are expected.

In the calculations for Y2Ir2O7, at U = 1.5 eV, a Dirac
(or Weyl) node is found to occur at the momentum
(0.52,0.52,0.30)2π/a (in the coordinate system aligned with
the cubic lattice of the crystal) and equivalent points (see
Fig. 4). They can be thought of as occurring on the edges of a
cube, with a pair of Dirac nodes of opposite chirality occupying
each edge, as, for example, the points (0.52,0.52,0.30)2π/a
and (0.52,0.52,−0.30)2π/a. For the case of U = 1.5 eV, the
sides of this cube have the length 0.52(4π/a). Thus, the (111)
and (110) surfaces would have surface states connecting the
projected Weyl points [see Fig. 6 for the (110) surface states
and the theoretical expectation for the (111) surface]. If, on
the other hand, we consider the surface orthogonal to the (001)
direction, Weyl points of opposite chirality are projected to the
same surface momentum along the edges of the cube. Thus,
no protected states are expected for this surface.

To verify these theoretical considerations, we have con-
structed a tight-binding model which has features seen in our
electronic structure calculations for Y2Ir2O7. The calculated
(110) surface band structure for the slab of 128 atoms together
with the sketch of the obtained Fermi arcs is shown in Fig. 6.
This figure shows Fermi arcs from both the front and the back
face of the slab, so there are twice as many arcs coming out of
each Weyl point as predicted for a single surface.

The tight-binding model considers only t2g orbitals of Ir
atoms in the global coordinate system. Since Ir atoms form
a tetrahedral network (see Fig. 2), each pair of nearest-
neighboring atoms forms a corresponding σ -like bond whose
hopping integral is denoted as t and another two π -like
bonds whose hopping integrals are denoted as t ′. To sim-
ulate the appearance of the Weyl point it is essential to
include next-nearest-neighbor interactions between t2g orbitals
which are denoted as t ′′. With the parameters t = 0.2, t ′ =
0.5t , t ′′ = −0.2t , the value of the on-site spin-orbit coupling
equal to 2.5t and the applied on-site “Zeeman” splitting of 0.1t
between states parallel and antiparallel to the local quantization
axis of the all-in/all-out configuration we can roughly model
the bulk Weyl semimetal state; when this model is solved on a
lattice with a boundary, the surface states shown in the figure
appear.

V. DISCUSSION

We now discuss how the present theoretical description
compares with experimental facts. We propose that the low-
temperature state of Y2Ir2O7 (and also possibly of A =
Eu, Sm, and Nd iridates) is a Weyl semimetal, with all-
in/all-out magnetic order. This is broadly consistent with the

FIG. 6. (Color online) Surface states. The calculated surface
energy bands correspond to the (110) surface of the pyrochlore
iridate Y2Ir2O7. A tight-binding approximation has been used to
simulate the bulk band structure with three-dimensional Weyl points
as found by our LSDA + U + SO calculation. The plot corresponds
to diagonalizing 128 atoms slab with two surfaces. The upper inset
shows a sketch of the deduced Fermi arcs connecting projected
bulk Weyl points of opposite chirality. The inset below sketches the
theoretically expected surface states on the (111) surface at the Fermi
energy (surface band structure not shown for this case).

interconnection between insulating behavior and magnetism
observed experimentally.9,10 It is also consistent with being
proximate to a metallic phase on lowering the correlation
strength, such as A = Pr (Ref. 17). In the clean limit, a three-
dimensional Weyl semimetal is an electrical insulator and can
potentially account for the observed electrical resistivity. The
noncollinear magnetic order proposed has Ising symmetry
and could undergo a continuous ordering transition. The
observed “spin-glass”-like magnetic signature could perhaps
arise from defects like magnetic domain walls. A direct probe
of magnetism is currently lacking and would shed light on this
key question. At lower values of U , the system may realize
an “axion insulator” phase with a magnetoelectric response
θ = π , although within our calculations (which are known to
underestimate stability of such gapped phases) a Fermi surface
appears before this happens.

In summary, a theoretical phase diagram for the physical
system is shown in Fig. 1 as a function of U and applied
magnetic field, which leads to a metallic state beyond a critical
field. The precise nature of these phase transformations is not
addressed in the present study.

Note: An experimental paper35 appeared recently in which
it is found that the spins in a related compound (Eu2Ir2O7) form
a regularly ordered state rather than a spin-glass, consistent
with our results. It would be interesting to learn whether this
compound is a Weyl metal or not.
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
e2

12h
|%|
v

. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
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. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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Chern number of a WP is not changed by T(k), WPs of different type 
can be chiral/anti-chiral partners of each other. The number of WPs of 
a certain type can be odd, but the total number of WPs must be even 
(for example, there can be one WP1 and one WP2).

We now describe WTe2, a material we identified to host the new 
WPs. The crystal structure of WTe2 is orthorhombic with space group 
Pmn21 ( )C v2

7 . Its primitive unit cell contains four formula units. The 
atomic structure is layered, with single layers of W separated from each 
other by Te bilayers and stacked along the z axis (see Supplementary 
Information). The distance between adjacent W atoms is considerably 
smaller along the x axis than it is along the y or z axes, creating strong 
anisotropy. The unit cell has two reflection symmetries: a mirror in the 
y–z plane myz and a glide plane gxz formed by a reflection in the x–z 
plane followed by a translation by (0.5, 0, 0.5). Combined, they form a 
non-symmorphic twofold rotation C2 (that is, a twofold rotation that 
is combined with a translation by a fraction of a lattice constant), which 
is important in the following symmetry arguments.

The result of band-structure calculations (see Supplementary 
Information) without spin–orbit coupling (SOC) is shown in Fig. 2a 
along the Γ–X direction, where an intermediate point Σ = (0.375, 0, 
0) is introduced. In addition to electron and hole pockets, 16 WPs per 
spin are found in WTe2 in the absence of SOC (not shown in Fig. 2a).  
Half of these points occur at points of low symmetry with kz ≠ 0; the 
other half appear in the kz = 0 plane, where the product of time rever-
sal and C2 (C2T = C2T) forms a little group. Generically, degeneracies 
on high-symmetry planes are forbidden; however, owing to the C2T 
symmetry, twofold degeneracies are locally stable at points in the kz = 0 
plane. On the Γ–X line, the spectrum is generally gapped with a band-
gap of approximately 1 meV, separating valence and conduction bands; 
see Fig. 2a.

Accounting for spin, but without SOC, bands become doubly degen-
erate, owing to opposite spin projections. This degeneracy doubles the 
topological charge of each WP because, by SU(2) symmetry, WPs 
corresponding to opposite spins have identical topological charge. 
Infinitesimal SOC cannot gap these WPs, giving a general criterion 
by which to search for Weyl semimetals: WPs are first found without 
SOC on the high-symmetry planes; the effects of SOC on these WPs 
are studied separately.

In WTe2 SOC is not small. When turned on, it preserves electron 
and hole pockets, but substantially changes the structure of WPs. At 
intermediate SOC, WPs move, emerging or annihilating in pairs of 
opposite chirality. At full SOC, all WPs with kz ≠ 0 are annihilated. 
In the kz = 0 plane, double degeneracies at isolated k points are still 
allowed by symmetry. Eight such gapless points are found, formed by 
the topmost valence and lowest conduction bands at full SOC. A pair of 
such points is shown in Fig. 2c. The other three pairs are related to this 
one by reflections. Energetically, both points are located only slightly 
(0.052 eV and 0.058 eV) above the Fermi energy EF; see Supplementary 
Information for details.

Establishing degeneracies of bands (and the existence of WPs) com-
putationally (or by inspection) is prone to finite-size effects: a point 
thought to be a degeneracy point might turn out to have a minuscule 
gap upon increasing computational precision. To rigorously establish 
the presence of WPs, we performed many tests that involve computing 
topological indices. The topological charge (± 1) of each WP was found 
using an extension of the Wilson-loop and hybrid-Wannier-centres 
methods20,21 to type-II Weyl semimetals. Z2 topological indices were 
also computed on several planes (including those in both standard and 
non-standard geometries) in the Brillouin zone. In total, these tests not 
only proved the existence of WPs, but also elucidated the structure of 
the Berry-flux connection between WPs and of the Fermi arcs on the 
surface of WTe2. The resultant Fermi-arc structure is consistent with 
the calculations presented below. A detailed description of topological 
indices and ways to obtain them are found in Supplementary 
Information.

To check the nature of the WPs, we obtained the energy spec-
trum around them from first-principles calculations and fitted it to 
the theoretical model derived by symmetry analysis (Supplementary 
Information). Considering only linear terms in ki—the momentum rel-
ative to the position of the WP—the spectrum in equation (1) becomes

ε ( )= + ± +( + ) + ( + )± k Ak Bk e k ak ck bk dkx y z x y x y
2 2 2 2

The values of the parameters A, B, a, b, c, d and e are given in the 
Supplementary Information. The kinetic component of the energy 
dominates along the line connecting this WP to its nearest neighbour 
(see Fig. 2c and Supplementary Information). We thus conclude that 
WTe2 is a type-II Weyl semimetal.

We now discuss the Fermi surface topology and possible topolog-
ical Lifshitz transitions in WTe2. The evolution of the Fermi surface 
obtained from first-principles calculations is shown in Fig. 3 for differ-
ent values of EF. Owing to reflection symmetries, only part of the kz = 0 
plane of the Fermi surface is shown. For EF = 0 eV, the Fermi surface is 
formed of two pairs of electron pockets and two pairs of hole pockets 
(eight pockets in total), which are separated in momentum space. For 
each pair, the larger pocket completely encloses the smaller one, in 
agreement with experiments22. This property is illustrated in Fig. 3a, 
where four halved pockets (two electron and two hole) are shown. The 
other halves are obtained by the glide reflection gxz, and the remaining 
four pockets with kx > 0 are obtained by the mirror reflection myz. All 
Fermi surfaces have zero Chern numbers when EF = 0.

When EF is raised, two additional electron pockets appear; the 
previously existing electron pockets persist. The hole pockets shrink 
quickly, two disappearing completely. Each of the remaining two split 
into two disconnected pockets. As a result, there are six electron pock-
ets and four hole pockets in total (see Fig. 3b). When the Fermi level  
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Figure 1 | Possible types of Weyl semimetals. a, Type-I WP with a point-
like Fermi surface. b, A type-II WP appears as the contact point between 
electron and hole pockets. The grey plane corresponds to the position of 
the Fermi level, and the blue (red) lines mark the boundaries of the hole 
(electron) pockets.
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Figure 2 | Band structure of WTe2. a, Band structure of WTe2 without 
SOC. A fraction of the Γ–X segment is shown: the point Σ  has coordinates 
(0.375, 0, 0). A bandgap of approximately 1 meV is shown in the inset, 
signalling a gapless point nearby. b, Band structure of WTe2 with SOC. 
c, One of the four pairs of WPs is shown along the line K–K′ , where 
K = (0.1208, 0.0562, 0) and K′ = (0.1226, 0.0238, 0). Their locations are 
designated in reduced coordinates (in units of reciprocal lattice constants).
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Chern number of a WP is not changed by T(k), WPs of different type 
can be chiral/anti-chiral partners of each other. The number of WPs of 
a certain type can be odd, but the total number of WPs must be even 
(for example, there can be one WP1 and one WP2).

We now describe WTe2, a material we identified to host the new 
WPs. The crystal structure of WTe2 is orthorhombic with space group 
Pmn21 ( )C v2

7 . Its primitive unit cell contains four formula units. The 
atomic structure is layered, with single layers of W separated from each 
other by Te bilayers and stacked along the z axis (see Supplementary 
Information). The distance between adjacent W atoms is considerably 
smaller along the x axis than it is along the y or z axes, creating strong 
anisotropy. The unit cell has two reflection symmetries: a mirror in the 
y–z plane myz and a glide plane gxz formed by a reflection in the x–z 
plane followed by a translation by (0.5, 0, 0.5). Combined, they form a 
non-symmorphic twofold rotation C2 (that is, a twofold rotation that 
is combined with a translation by a fraction of a lattice constant), which 
is important in the following symmetry arguments.

The result of band-structure calculations (see Supplementary 
Information) without spin–orbit coupling (SOC) is shown in Fig. 2a 
along the Γ–X direction, where an intermediate point Σ = (0.375, 0, 
0) is introduced. In addition to electron and hole pockets, 16 WPs per 
spin are found in WTe2 in the absence of SOC (not shown in Fig. 2a).  
Half of these points occur at points of low symmetry with kz ≠ 0; the 
other half appear in the kz = 0 plane, where the product of time rever-
sal and C2 (C2T = C2T) forms a little group. Generically, degeneracies 
on high-symmetry planes are forbidden; however, owing to the C2T 
symmetry, twofold degeneracies are locally stable at points in the kz = 0 
plane. On the Γ–X line, the spectrum is generally gapped with a band-
gap of approximately 1 meV, separating valence and conduction bands; 
see Fig. 2a.

Accounting for spin, but without SOC, bands become doubly degen-
erate, owing to opposite spin projections. This degeneracy doubles the 
topological charge of each WP because, by SU(2) symmetry, WPs 
corresponding to opposite spins have identical topological charge. 
Infinitesimal SOC cannot gap these WPs, giving a general criterion 
by which to search for Weyl semimetals: WPs are first found without 
SOC on the high-symmetry planes; the effects of SOC on these WPs 
are studied separately.

In WTe2 SOC is not small. When turned on, it preserves electron 
and hole pockets, but substantially changes the structure of WPs. At 
intermediate SOC, WPs move, emerging or annihilating in pairs of 
opposite chirality. At full SOC, all WPs with kz ≠ 0 are annihilated. 
In the kz = 0 plane, double degeneracies at isolated k points are still 
allowed by symmetry. Eight such gapless points are found, formed by 
the topmost valence and lowest conduction bands at full SOC. A pair of 
such points is shown in Fig. 2c. The other three pairs are related to this 
one by reflections. Energetically, both points are located only slightly 
(0.052 eV and 0.058 eV) above the Fermi energy EF; see Supplementary 
Information for details.

Establishing degeneracies of bands (and the existence of WPs) com-
putationally (or by inspection) is prone to finite-size effects: a point 
thought to be a degeneracy point might turn out to have a minuscule 
gap upon increasing computational precision. To rigorously establish 
the presence of WPs, we performed many tests that involve computing 
topological indices. The topological charge (± 1) of each WP was found 
using an extension of the Wilson-loop and hybrid-Wannier-centres 
methods20,21 to type-II Weyl semimetals. Z2 topological indices were 
also computed on several planes (including those in both standard and 
non-standard geometries) in the Brillouin zone. In total, these tests not 
only proved the existence of WPs, but also elucidated the structure of 
the Berry-flux connection between WPs and of the Fermi arcs on the 
surface of WTe2. The resultant Fermi-arc structure is consistent with 
the calculations presented below. A detailed description of topological 
indices and ways to obtain them are found in Supplementary 
Information.

To check the nature of the WPs, we obtained the energy spec-
trum around them from first-principles calculations and fitted it to 
the theoretical model derived by symmetry analysis (Supplementary 
Information). Considering only linear terms in ki—the momentum rel-
ative to the position of the WP—the spectrum in equation (1) becomes

ε ( )= + ± +( + ) + ( + )± k Ak Bk e k ak ck bk dkx y z x y x y
2 2 2 2

The values of the parameters A, B, a, b, c, d and e are given in the 
Supplementary Information. The kinetic component of the energy 
dominates along the line connecting this WP to its nearest neighbour 
(see Fig. 2c and Supplementary Information). We thus conclude that 
WTe2 is a type-II Weyl semimetal.

We now discuss the Fermi surface topology and possible topolog-
ical Lifshitz transitions in WTe2. The evolution of the Fermi surface 
obtained from first-principles calculations is shown in Fig. 3 for differ-
ent values of EF. Owing to reflection symmetries, only part of the kz = 0 
plane of the Fermi surface is shown. For EF = 0 eV, the Fermi surface is 
formed of two pairs of electron pockets and two pairs of hole pockets 
(eight pockets in total), which are separated in momentum space. For 
each pair, the larger pocket completely encloses the smaller one, in 
agreement with experiments22. This property is illustrated in Fig. 3a, 
where four halved pockets (two electron and two hole) are shown. The 
other halves are obtained by the glide reflection gxz, and the remaining 
four pockets with kx > 0 are obtained by the mirror reflection myz. All 
Fermi surfaces have zero Chern numbers when EF = 0.

When EF is raised, two additional electron pockets appear; the 
previously existing electron pockets persist. The hole pockets shrink 
quickly, two disappearing completely. Each of the remaining two split 
into two disconnected pockets. As a result, there are six electron pock-
ets and four hole pockets in total (see Fig. 3b). When the Fermi level  
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Figure 1 | Possible types of Weyl semimetals. a, Type-I WP with a point-
like Fermi surface. b, A type-II WP appears as the contact point between 
electron and hole pockets. The grey plane corresponds to the position of 
the Fermi level, and the blue (red) lines mark the boundaries of the hole 
(electron) pockets.
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Figure 2 | Band structure of WTe2. a, Band structure of WTe2 without 
SOC. A fraction of the Γ–X segment is shown: the point Σ  has coordinates 
(0.375, 0, 0). A bandgap of approximately 1 meV is shown in the inset, 
signalling a gapless point nearby. b, Band structure of WTe2 with SOC. 
c, One of the four pairs of WPs is shown along the line K–K′ , where 
K = (0.1208, 0.0562, 0) and K′ = (0.1226, 0.0238, 0). Their locations are 
designated in reduced coordinates (in units of reciprocal lattice constants).
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Type-II Weyl semimetals
Alexey A. Soluyanov1, Dominik Gresch1, Zhijun Wang2, QuanSheng Wu1, Matthias Troyer1, Xi Dai3 & B. Andrei Bernevig2

Fermions—elementary particles such as electrons—are classified as 
Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been 
observed experimentally until the recent discovery of condensed 
matter systems such as topological superconductors and semimetals, 
in which they arise as low-energy excitations1–6. Here we propose 
the existence of a previously overlooked type of Weyl fermion that 
emerges at the boundary between electron and hole pockets in a new 
phase of matter. This particle was missed by Weyl7 because it breaks 
the stringent Lorentz symmetry in high-energy physics. Lorentz 
invariance, however, is not present in condensed matter physics, 
and by generalizing the Dirac equation, we find the new type of 
Weyl fermion. In particular, whereas Weyl semimetals—materials 
hosting Weyl fermions—were previously thought to have standard 
Weyl points with a point-like Fermi surface (which we refer to as 
type-I), we discover a type-II Weyl point, which is still a protected 
crossing, but appears at the contact of electron and hole pockets in 
type-II Weyl semimetals. We predict that WTe2 is an example of 
a topological semimetal hosting the new particle as a low-energy 
excitation around such a type-II Weyl point. The existence of type-II 
Weyl points in WTe2 means that many of its physical properties are 
very different to those of standard Weyl semimetals with point-like 
Fermi surfaces.

The band structure of some metals has non-trivial topological fea-
tures2. Of such metals, the ones with vanishingly small density of states 
at the Fermi level—semimetals—stand out. For these materials, a dis-
tinction between topologically protected surface states and bulk metal-
lic states can be made and their Fermi surfaces can be topologically 
characterized, unlike the case for metals, which have many states at the 
Fermi level. Two kinds of topological semimetals have attracted spe-
cial attention: Dirac and Weyl semimetals. In these materials, a linear 
crossing of two (Weyl) or four (Dirac) bands occurs at the Fermi level 
(see Fig. 1a). The effective Hamiltonian for these crossings is given by 
the Weyl or gapless-Dirac equation, respectively. The Weyl crossings 
are protected from gapping, owing to the massless nature of the Weyl 
fermion. In the following, we limit the discussion to Weyl crossings 
only, although our results also hold for Dirac crossings.

The appearance of Weyl points (WPs) is possible only if the product 
of parity and time reversal is not a symmetry of the structure. When 
present, a WP acts as a topological charge—either a source or a sink of 
Berry curvature. A Fermi surface enclosing a WP has a well-defined 
Chern number, corresponding to the topological charge of this WP. 
Because the net charge must vanish in the entire Brillouin zone, WPs 
always come in pairs; they are stable to weak perturbations and are 
annihilated only in pairs of opposite charge. A large number of unusual 
physical phenomena are associated with Weyl topological semimet-
als, including the existence of open Fermi arcs in the surface Fermi  
surface1,8 and various magnetotransport anomalies9–15.

Weyl semimetals with broken time-reversal symmetry have been 
predicted to exist in several materials1,16,17, but these predictions have 
yet to be experimentally verified. More recently, the Weyl semimetal 
was predicted to exist in inversion-breaking single-crystal non- 
magnetic materials of the TaAs class3,4; this prediction has since been 
verified experimentally5,6.

Weyl semimetals were previously thought to have a point-like 
Fermi surface at the WP. We refer to these as type-I WPs (WP1s), to 
distinguish them from the new type-II WPs (WP2s) that exist at the 
boundaries between electron and hole pockets, as illustrated in Fig. 1b.  
We discuss general conditions for WP2s to appear, and present evi-
dence that WTe2—the material with the largest never-saturating 
magnetoresistance reported18 so far—is an example of the new type 
of topological semimetal hosting eight WP2s. These WP2s come in 
two quartets located 0.052 eV and 0.058 eV above the Fermi level. 
We present topological arguments that prove the existence of the 
new topological semimetal phase in WTe2. We provide evidence of  
doping-driven topological Lifshitz transitions, which are characteristic 
of WP2s, as well as emerging Fermi arcs in the surface Fermi surface.

We start by considering the most general Hamiltonian describing 
a WP

∑ σ( )=
=
=

kH k A
i x y z

i ij j
, ,

j x y z0, , ,

where k is the wave vector in reciprocal space (crystal momentum vec-
tor), A is a 3 × 4 matrix of coefficients, σ0 is the 2 × 2 unit matrix and 
and σj, j = x, y, z are the three Pauli matrices. The energy spectrum is

∑ ∑ ∑ε ( )= ±
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
= ( )± ( )

( )
±

= = =
k k kk A k A T U

1i x y z
i i

j x y z i x y z
i ij

, ,
0

, , , ,

2

where T(k) and U(k) can be considered as the kinetic and potential 
components of the energy spectrum. T(k), which is linear in momen-
tum, tilts the cone-like spectrum ε±(k). This tilt breaks the Lorentz 
invariance of Weyl fermions in quantum field theory, but was previously 
considered unimportant. However, because Lorentz invariance does not 
need to be respected in condensed matter, its inclusion is important and 
leads to a finer classification of distinct Fermi surfaces, in correspond-
ence with the theory of quadric surfaces, which suggests that there are 
exactly two distinct types of WPs (see Supplementary Information).

If, for a particular direction in reciprocal space, T is dominant over 
U, the tilt becomes large enough to cause a WP to appear at the point 
where the open electron and hole pockets touch, contrary to the stand-
ard case of a point-like Fermi surface. Thus, the condition for a WP to 
be of type II is that there exists a direction k̂ for which ˆ ˆ( )> ( )k kT U . If 
such a direction does not exist, then the WP is of type I. The clear 
qualitative distinction between the Fermi surfaces of the two types of 
WPs leads to marked differences in the thermodynamics of the hosting 
materials and their response to magnetic fields. In particular, in con-
trast to a WP1, which exhibits a chiral anomaly9 for any direction of 
the magnetic field, the chiral anomaly appears in a WP2 only when the 
direction of the magnetic field is within a cone where |T(k)| > |U(k)|. 
If the field direction is outside this cone, then the Landau-level spec-
trum is gapped and has no chiral zero mode (see Supplementary 
Information).

On the lattice, the ‘no-go’ theorem19 guarantees that Weyl fermi-
ons appear in pairs with Chern numbers of opposite sign. Because the 
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We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl
semimetals. In the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl
nodes. In addition, there exists a novel type, dubbed “hybrid Weyl semimetal”, in which one Weyl
node is of type-I while the other is of type-II. For the hybrid Weyl semimetal, we further demonstrate
the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau
level structure and quantum oscillation, and discuss the material realization.

Introduction.—Since the theoretical and experimental
discovery of topological insulator1,2, the study of topolog-
ical states of matter has become one of the major topics
in condensed matter physics. Apart from the triumphs
of systems with full energy gaps, the concept and discov-
ery of Weyl semimetals (WSM) have stimulated intensive
activities in understanding the band topology for gapless
systems3–18. A WSM, in the original setting, has lin-
ear conic band crossings at the Fermi energy5. These
band crossing points, i.e., the “Weyl nodes”, behave like
sources and sinks of the Berry curvature in the momen-
tum space and are topologically protected. Based on
the bulk-boundary correspondence, the surface state of a
WSM takes the form of Fermi arc that connects a pair of
Weyl points with opposite chiralities5.

A novel type of structured Weyl node, dubbed type-
II, was recently discovered in WTe214 and a spin-orbit-
coupled superfluid15. In the original WSM, referred as
type-I, the Fermi surface is composed of discrete Weyl
points with emergent Lorentz invariance. In type-II
WSMs, the conic spectrum is tilted near the nodes,
and the emergent Lorentz invariance is broken. These
Lorentz-invariance-violating type-II Weyl nodes appear
at the contact points of the electron and hole pockets in
type-II WSMs. In all the previous works on type-I or
type-II WSMs, the two Weyl nodes in a pair with oppo-
site chiralities are of the same type14,19. One may wonder
whether it is possible to have a WSM such that one Weyl
node belongs to type-I whereas its chiral partner belongs
to type-II (see Fig. 1). In this paper, we analyze the
band topology of a concrete lattice model and demon-
strate that the proposed WSM phase with mixed types
of Weyl nodes can be realized in the concrete model. We
dub this special type of WSM “hybrid WSM”. Remark-
ably, it is possible to have a single isolated Weyl fermion

in the excitation spectrum of this hybrid WSM rather
than several pairs of Weyl fermions in the conventional
case. We explicitly show that the band structure con-

type-II

node

type-I

node

E

k

FIG. 1. (Color online.) A schematic band structure of a
hybrid WSM with a pair of Weyl nodes. The left (right) node
is a type-II (type-I) Weyl node. Generically, the energies of
these two Weyl nodes cannot be identical when both time
reversal and inversion symmetries are absent.

tains two Weyl nodes, whose types can be tuned sepa-
rately and independently. Therefore, our model provides
a simple platform to manipulate the energy-momentum
positions, the types of Weyl nodes, and the transitions
among di↵erent types of WSMs. We further explore the
unique Landau level structure and quantum oscillation of
the hybrid WSM. Based on our results, we propose that
the hybrid WSM may be found in magnetically ordered
non-centrosymmetric materials.

We start from the classification of the type I and type II
Weyl nodes following Ref. 14 and Ref. 15. Due to the lin-
ear band touching, the original pair of Weyl nodes with
opposite chiralities has an emergent Lorentz invariance
at low energies, and the gapless elementary excitation
near the nodes are often called “Weyl fermions”. The
Lorentz invariance, however, is broken by the lattice reg-
ularization that necessarily connects the two Weyl nodes
at high energy20. Significantly, this leads to the intact-
ness of anomalous Hall e↵ect but the breakdown of chiral
magnetic e↵ect. More seriously, the violation of Lorentz
invariance in condensed matter systems allows the tilting
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nodes. In addition, there exists a novel type, dubbed “hybrid Weyl semimetal”, in which one Weyl
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the bulk Fermi surfaces and the topologically protected surface states, analyze the unique Landau
level structure and quantum oscillation, and discuss the material realization.
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discovery of topological insulator1,2, the study of topolog-
ical states of matter has become one of the major topics
in condensed matter physics. Apart from the triumphs
of systems with full energy gaps, the concept and discov-
ery of Weyl semimetals (WSM) have stimulated intensive
activities in understanding the band topology for gapless
systems3–18. A WSM, in the original setting, has lin-
ear conic band crossings at the Fermi energy5. These
band crossing points, i.e., the “Weyl nodes”, behave like
sources and sinks of the Berry curvature in the momen-
tum space and are topologically protected. Based on
the bulk-boundary correspondence, the surface state of a
WSM takes the form of Fermi arc that connects a pair of
Weyl points with opposite chiralities5.

A novel type of structured Weyl node, dubbed type-
II, was recently discovered in WTe214 and a spin-orbit-
coupled superfluid15. In the original WSM, referred as
type-I, the Fermi surface is composed of discrete Weyl
points with emergent Lorentz invariance. In type-II
WSMs, the conic spectrum is tilted near the nodes,
and the emergent Lorentz invariance is broken. These
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at the contact points of the electron and hole pockets in
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site chiralities are of the same type14,19. One may wonder
whether it is possible to have a WSM such that one Weyl
node belongs to type-I whereas its chiral partner belongs
to type-II (see Fig. 1). In this paper, we analyze the
band topology of a concrete lattice model and demon-
strate that the proposed WSM phase with mixed types
of Weyl nodes can be realized in the concrete model. We
dub this special type of WSM “hybrid WSM”. Remark-
ably, it is possible to have a single isolated Weyl fermion

in the excitation spectrum of this hybrid WSM rather
than several pairs of Weyl fermions in the conventional
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hybrid WSM with a pair of Weyl nodes. The left (right) node
is a type-II (type-I) Weyl node. Generically, the energies of
these two Weyl nodes cannot be identical when both time
reversal and inversion symmetries are absent.

tains two Weyl nodes, whose types can be tuned sepa-
rately and independently. Therefore, our model provides
a simple platform to manipulate the energy-momentum
positions, the types of Weyl nodes, and the transitions
among di↵erent types of WSMs. We further explore the
unique Landau level structure and quantum oscillation of
the hybrid WSM. Based on our results, we propose that
the hybrid WSM may be found in magnetically ordered
non-centrosymmetric materials.

We start from the classification of the type I and type II
Weyl nodes following Ref. 14 and Ref. 15. Due to the lin-
ear band touching, the original pair of Weyl nodes with
opposite chiralities has an emergent Lorentz invariance
at low energies, and the gapless elementary excitation
near the nodes are often called “Weyl fermions”. The
Lorentz invariance, however, is broken by the lattice reg-
ularization that necessarily connects the two Weyl nodes
at high energy20. Significantly, this leads to the intact-
ness of anomalous Hall e↵ect but the breakdown of chiral
magnetic e↵ect. More seriously, the violation of Lorentz
invariance in condensed matter systems allows the tilting
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Evidence of Coulomb interaction induced Lifshitz transition 
and robust hybrid Weyl semimetal in Td MoTe2 

 

N. Xu1,*, Z. W. Wang2, A. Magrez3, P. Bugnon3, H. Berger3, C. E. Matt4,5, V. N. 

Strocov4, N. C. Plumb4, M. Radovic4, E. Pomjakushina6, K. Conder6, J. H. Dil3,4, J. 

Mesot3,4,5, R. Yu2, H. Ding7,8,* and M. Shi4,* 

 

1 Institute of Advanced Studies, Wuhan University, Wuhan 430072, China 
2 School of Physics and Technology, Wuhan University, Wuhan 430072, China 
3 Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, 

Switzerland 
4 Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland 
5 Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland 
6 Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 

Villigen, Switzerland 
7 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, 

Chinese Academy of Sciences, Beijing 100190, China 
8 Collaborative Innovation Center of Quantum Matter, Beijing, China 

  

* E-mail: nxu@whu.edu.cn,	dingh@iphy.ac.cn, ming.shi@psi.ch 

 

 

Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk 

electronic structure of Td MoTe2. We found that on-site Coulomb interaction 

leads to a Lifshitz transition, which is essential for a precise description of the 

electronic structure. A hybrid Weyl semimetal state with a pair of energy bands 

touching at both type-I and type-II Weyl nodes is indicated by	comparing the 

experimental data with theoretical calculations. Unveiling the importance of 

Coulomb interaction opens up a new route to comprehend the unique properties 

of MoTe2, and is significant for understanding the interplay between correlation 

effects, strong spin-orbit coupling and superconductivity in this van der Waals 

material.   
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Figure 4. Evolution of topological properties of MoTe2 induced by Coulomb 

interaction. a-b, Illustration of Type-II Weyl nodes in MoTe2 obtained from the DFT 

calculations using the lattice constants from Ref. [6] and [7], respectively. c, Weyl 

nodes in MoTe2 obtained from DFT+U calculations. Solid and open circles indicate 

type-I and type-II Weyl nodes, respectively. The blue and red colours represent 

different chirality. d, Band structure passing through both W1 and W2 from DFT+U 

calculations, which shows the hybrid Weyl semimetal state in MoTe2. The labeled 

points on the horizontal axis are A = (-0.36, 0.13, 0.08), B = (-0.18, 0.13, 0.08) and C 

= (-0.18, -0.01, -0.08) in the k-space with the unit of Å-1. e, The ARPES spectrum 

passing through W1 and along the kx direction.	For comparison, the calculated bands 

(green curves) are overlaid on top of the experimental data. f, Zoomed-in band 

structure from DFT+U calculations along kx through W1. g-h, Same as e, but along 
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range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.
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Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations

and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,

giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the

pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian

parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in

Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.

DOI: 10.1103/PhysRevX.1.021002 Subject Areas: Magnetism, Strongly Correlated Materials

Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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Recent work has highlighted remarkable effects of classical thermal fluctuations in the dipolar spin ice

compounds, such as ‘‘artificial magnetostatics,’’ manifesting as Coulombic power-law spin correlations

and particles behaving as diffusive ‘‘magnetic monopoles.’’ In this paper, we address quantum spin ice,

giving a unifying framework for the study of magnetism of a large class of magnetic compounds with the

pyrochlore structure, and, in particular, discuss Yb2Ti2O7, and extract its full set of Hamiltonian

parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in

Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.
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Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.
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Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin
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FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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FIG. 1. (Color online) (a) The breathing pyrochlore lattice. The
magnitude of the breathing has been exaggerated for visual effect.
(b) The breathing pyrochlore lattice interpolates between isolated
tetrahedra and the isotropic pyrochlore lattice. LiInCr4O8 is found at
Bf ∼ 0.1 while the related compound LiGaCr4O8 has Bf ∼ 0.6.

excitation at an energy consistent with those found in prior
measurements, with a linewidth that exceeds the excitation
energy. This implies that the spin gap is in fact filled with
magnetic states, and is thus only a pseudogap. The energy of
the inelastic excitation decreases upon cooling, but it does not
soften completely as T → Tp, immediately below which the
system exhibits dispersive excitations which may arise from
a nematic state. The overall behavior is ascribed to the action
of the two dominant perturbing terms present in the system,
the spin-lattice coupling and the breathing distortion, on the
highly degenerate manifold of states of the frustrated breathing
pyrochlore lattice.

I. SAMPLE SYNTHESIS AND EXPERIMENTAL

Powder samples of LiInCr4O8 were prepared by the solid-
state route reported in Ref. [8]. The samples were enriched
with 7Li to reduce neutron absorption. For the diffraction
experiments, performed on the D2B diffractometer at the
Institut Laue-Langevin (ILL), approximately 7 g of powder
were packed in a V can of diameter 9 mm. A neutron
wavelength λ = 1.59 Å was selected using the (335) reflection
of a Ge monochromator. To observe the structural changes on
passing through the phase transitions as clearly as possible, the
resolution was optimized by placing 10′ of collimation before
the monochromator, and by summing only the central pixels of
the 25-cm-high position-sensitive detectors preceding Rietveld
analysis. Measurements were carried out in the range 2–20 K,
spanning both transitions. All diffraction data were analyzed
using the programs of the FULLPROF suite [13].2 The high-
resolution diffraction measurements were supplemented by
lower-resolution polarized diffraction experiments performed
on the D7 spectrometer, also at the ILL. The same sample
was loaded in an Al can, and measured using λ = 4.8 Å
neutrons from the (002) reflection of a pyrolytic graphite
(PG) monochromator. The XYZ polarization analysis [14,15]
method was employed to separate the magnetic scattering from
the other components of the scattering cross section.

For the inelastic time-of-flight experiment, which was
carried out on the IN4 spectrometer (ILL), approximately 13
g of LiInCr4O8 powder were packed to a thickness of ∼2.5

2All the programs of the FULLPROF suite can be obtained at
http://www.ill.eu/sites/fullprof

mm in an Al sachet, which was mounted in a flat Cd frame
with a 23 × 40 mm opening. Wavelengths of λ = 2.2 Å (Ei =
16.9 meV) and λ = 1.59 Å (Ei = 32.4 meV) from, respec-
tively, the (002) and (004) reflections of a PG monochromator
were used to probe the excitation spectrum in the temperature
range 2–200 K. Background subtraction of the raw spectra was
performed assuming a transmission of approximately 70%.

II. STRUCTURE AND PHASE TRANSITIONS

We begin by discussing the structure LiInCr4O8 in its
high-temperature cubic phase. At T = 20 K, slightly above
both Tp and Tm, the diffraction pattern is indexed in the space
group F43̄m, consistent with previous work [8] [Fig. 2(a)].
The Rietveld refined lattice parameter is 8.403 47(3) Å and
the Cr x-position parameter is 0.3732(3). While a is smaller
than at room temperature [art = 8.4205(5) Å], x is larger
[xrt = 0.3719(3)], which translates into a slight reduction
in r ′/r = 1.047 versus (r ′/r)rt = 1.0515, and a consequent
increase in Bf . Another feature of the 20-K diffraction pattern
is the systematic broadening of the (00l) and (hk0) peaks with
respect to the (hhh) peaks, especially at large scattering angle
[Figs. 2(c) and 2(d)]. This anisotropic broadening is unlikely
to originate from particle size, given the cubic symmetry of
the material and angle dependence of the broadening, and is
hence probably related to the buildup of strain on approaching
the structural phase transition.

In order to model the strain, we employ the approach first
introduced in Ref. [16], and further developed in Ref. [17].
This assumes that the strains are described by Gaussian
fluctuations in the metric parameters of the lattice, permitting
their correlation to be described by a variance-covariance
matrix. The broadening of the Bragg peaks is then expressed as
a sum of quartic polynomials with coefficients SHKL, of which
only S400 and S220 are symmetry allowed for the m3̄m Laue
class. The anisotropic strain coefficients at 20 K are found to
be S400 = 0.056(2) and S220 = −0.054(2). Cooling to 18 K,
the SHKL increase to S400 = 0.088(3) and S220 = −0.082(3),
respectively. At 16 K∼ Tp, however, the diffraction pattern
is no longer indexed by the cubic F 4̄3m space group, as
evidenced by a large splitting of the (00l) and (hk0) peaks
[Fig. 2(c)].

From the lack of either splitting or broadening of the
(hhh) peaks in the T < Tp phase [Fig. 2(d)], the crystal
system of the low-temperature structure can be inferred to be
either orthorhombic or tetragonal. Furthermore, the complete
absence of shifts in these peaks remarkably implies that the
unit-cell volume is conserved in the transition, although the
statistics of the data do no allow us to exclude satellites
resulting from multiplication of the unit cell. At lower T , the
(00l) and (hk0) peak splittings increase continuously through
Tm, saturating towards the lowest measured temperature T = 2
K [Figs. 2(b) and 2(e)]. This implies that the phases at
Tm < T < Tp and T < Tm possess the same symmetry.

The splitting of the cubic (008) peak at 2 K [Fig. 2(b)]
reveals several interesting features of the low-T structure:
(i) the intensity is concentrated in two peaks, implying a
tetragonal crystal system, but (ii) some intensity persists
between the Bragg peaks and (iii) the widths remain con-
siderably larger than resolution. Observations (i) and (ii) can
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A unique type of frustrated lattice is found in two A-site ordered spinel oxides, LiGaCr4O8 and

LiInCr4O8. Because of the large size mismatch between Liþ and Ga3þ=In3þ ions at the A site, the

pyrochlore lattice, made up of Cr3þ ions carrying spin 3=2, becomes an alternating array of small and

large tetrahedra, i.e., a ‘‘breathing’’ pyrochlore lattice. We introduce a parameter, the breathing factor Bf,

which quantifies the degree of frustration in the pyrochlore lattice: Bf is defined as J0=J, where J0 and J
are nearest-neighbor magnetic interactions in the large and small tetrahedra, respectively. LiGaCr4O8 with

Bf " 0:6 shows magnetic susceptibility similar to that of conventional Cr spinel oxides such as ZnCr2O4.

In contrast, LiInCr4O8 with a small Bf " 0:1 exhibits a spin-gap behavior in its magnetic susceptibility,

suggesting a proximity to an exotic singlet ground state. Magnetic long-range order occurs at 13.8 and

15.9 K for LiGaCr4O8 and LiInCr4O8, respectively, in both cases likely owing to the coupling to structural

distortions.
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Transition metal oxides AB2O4 crystallizing in the spi-
nel structure provide us with a rich playground for studying
the physics of geometrical frustration. Transition metal B
atoms, which are octahedrally coordinated by oxide ions,
form a three-dimensional network of tetrahedra, i.e., the
pyrochlore lattice. Various interesting phenomena have
been observed arising from geometrical frustration con-
cerning the spin and charge degrees of freedom on this
lattice. Typical examples are the Verwey transition in
Fe3O4 [1,2], a heavy-Fermion state in LiV2O4 [3], and a
heptamer formation in AlV2O4 [4].

ACr2O4 with a nonmagnetic A2þ ion, such as Zn2þ,
Mg2þ, Cd2þ, or Hg2þ at the tetrahedral site, and with
Cr3þ ions at the octahedral site is of particular interest as
a frustrated spin system [5]. It is a Mott insulator with three
3d electrons localized at Cr3þ, yielding a localized S ¼
3=2 Heisenberg spin. Various magnitudes of antiferromag-
netic interactions occur between nearest-neighbor spins, as
evidenced by a range of negative Weiss temperatures of
#390, #370, #70, and #32 K for A ¼ Zn, Mg, Cd, and
Hg, respectively [6,7]. ACr2O4 undergoes antiferromag-
netic long-range order at 12, 12.4, 7.8, and 5.8 K, respec-
tively [6–8], which is accompanied by a lattice distortion
which lowers the crystal symmetry [8–10]. Plausibly, there
is an inherent structural instability in the spinel structure
that can couple with the spin degree of freedom so as to lift
the magnetic frustration.

In this Letter, we study two spinel oxides, LiGaCr4O8

and LiInCr4O8, which both contain two metal ions at the A
site. Joubert and Durif prepared them in 1966 [11] and
found that they crystallize in a modified spinel structure
with space group F !43m, a subgroup of Fd!3m for the
conventional spinel oxides; an inversion center at the

octahedral site present in Fd!3m is missing in F !43m. A
structural model was proposed in which Li and Ga=In
atoms alternately occupy the tetrahedral sites, resulting
in the zinc-blende-type arrangement, although structural
refinements were not performed [11]. This type of A-site
order is likely because it minimizes electrostatic energy
arising from the large difference in the valence states
between Liþ and Ga3þ=In3þ.
We are interested in the Cr pyrochlore lattices of these

compounds because the local chemical pressure caused by
the difference in ionic radii of Liþ and Ga3þ=In3þ should
result in the Cr4 tetrahedra expanding and contracting
alternately while keeping their shapes regular, as shown
in Fig. 1(b). We call this type of lattice the ‘‘breathing’’
pyrochlore lattice. The resulting modulation in bond
lengths produces two kinds of nearest-neighbor magnetic
interactions J and J0 without relieving frustration. The spin
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FIG. 1 (color online). (a) Crystal structure of LiGaCr4O8 and
LiInCr4O8. Coordination polyhedra made of oxide ions are
depicted. (b) Breathing pyrochlore lattice made of Cr3þ ions
embedded in the two compounds. Cr-Cr bonds on the small (filled
sticks) and large tetrahedra (open sticks) have bond lengths d and
d0 and antiferromagnetic interactions J and J0, respectively.
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the inversion center, and the whole lattice breaks into un-
equivalent upper-pointing and down-pointing tetrahedral
units (see Fig.X). In the recent experiments on the Cr-
based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as

H = J
X

hiji2u

Si · Sj + J 0
X

hiji2d

Si · Sj

+D
X

i

(Si · ẑi)2 , (1)

where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
ter ✓. Ncell is the number of unit cells. We have set D = 0.2J ,
J

0 = 0.6J (red star in fig.X) in (a) and D = 0.05J, J 0 = 0.6J
(green star in fig.X) in (b). (c) The ground state with ✓ = ⇡/2
(spins point to local ŷ). (d) The ground state with ✓ = 0
(spins point to local x̂).

obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as

S

cl
i ⌘ Sm̂i = S(cos ✓ x̂i + sin ✓ ŷi), (2)

where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the

Treating spins as classical vectors, simple algebra gives some rules for ground states

2

the inversion center, and the whole lattice breaks into un-
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based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as
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where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus

FIG. 2. (Color Online.) (a)(b) Quantum zero-point energy of
the linear spin wave Hamiltonian as a function of the parame-
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obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as
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where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and
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the inversion center, and the whole lattice breaks into un-
equivalent upper-pointing and down-pointing tetrahedral
units (see Fig.X). In the recent experiments on the Cr-
based breathing pyrochlore LiGaCr4O8 and LiInCr4O8,
it was found that the two systems have antiferromag-
netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
and �332K, and develop antiferromagnetic long-range
orders at much lower temperatures, TN = 14K and 16K,
respectively [7]. The suppressed ordering temperature
is a strong evidence of spin frustration in the system.
Motivated by the existing experiments, we study a re-
alistic and minimal model that describes the Cr3+ lo-
cal moment interaction, and address the nature of the
long-range magnetic order and the associated magnetic
excitations.

Model.

As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as
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(Si · ẑi)2 , (1)

where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus
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obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as
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where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and
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netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
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cal moment interaction, and address the nature of the
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As there is no orbital degeneracy for the 3d3 electron con-
figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
the spin-orbit coupling is weak, the interaction between
the local moments is primarily Heisenberg exchange. The
minimal spin model is given as
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where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.

P
i2u Si = 0 (

P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
the ground state of the exchange part is extensively de-
generate.

Ground states and quantum order by disorders.

We first consider the easy-axis spin anisotropy with D <
0. An easy-axis spin anisotropy favours the spin to be
aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus
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obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as
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where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and
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netic (AFM) Curie-Weiss temperatures, ⇥CW = �659K
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Motivated by the existing experiments, we study a re-
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figuration of Cr3+ ions, the orbital angular momentum
is fully quenched and the Cr3+ local moment is well de-
scribed by the total spin S = 3/2 via the Hund’s rule. As
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where we have supplemented the Heisenberg model with
a local spin anisotropy that is generically allowed by
the D3d point group symmetry at the Cr site. The
anisotropic direction ẑi is the local h111i direction that
points into the center of each tetrahedron and is speci-
fied for each sublattice [10]. Here J and J 0 are the ex-
change couplings between nearest-neighbour spins on the
up-pointing and down-pointing tetrahedra, respectively.
The large and negative Curie-Weiss temperatures of the
Cr-based breathing pyrochlores indicate the strong AFM
interactions, hence we take J > 0, J 0 > 0. Because the
up-pointing and the down-pointing tetrahedra have dif-
ferent sizes, one generally expects J 6= J 0. In this work,
however, we will study this model in a general parameter
setting. The AFM exchange interactions favor the total
spin on each up-pointing (down-pointing) tetrahedron to
be zero, i.e.
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P
i2d Si = 0). Like the clas-

sical Heisenberg model on the regular pyrochlore lattice,
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aligned with its local h111i axis. It turns out that this
condition can be satisfied simultaneously with the opti-
mization condition of the exchange interaction. We thus
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obtain a unique classical ground state (up to a 2-fold de-
generacy from the time reversal operation) that has an
“all-in all-out” magnetic order. The magnetic excitation
of this ordered state is fully gapped and the energy gap
(�) is simply set by the easy-axis spin anisotropy with
� = 3|D| [10].
With an easy-plane anisotropy (D > 0), the spin

prefers to orient in the local xy plane of the local coordi-
nate system at each sublattice. Remarkably, this require-
ment can also be satisfied simultaneously with the total
spins of each tetrahedron being zero. Moreover, there ex-
ists an accidental U(1) degeneracy of the classical ground
state that we parametrize as
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where x̂i (ŷi) is the unit vector along the local x (y)
axis in the local coordinate system at site i [10], the
unit vector m̂i points in the local xy plane, and the
angular variable ✓ captures the U(1) degeneracy. This
U(1) degeneracy is due to the partial lifting of the ex-
tensive degeneracy of the AFM exchange interactions
by the single-ion anisotropy. Because this accidental
U(1) degeneracy is not protected by any symmetry of
the Hamiltonian, we expect it to be eventually lifted
by quantum fluctuation of the spins. We study the
quantum order by disorder e↵ect of the Hamiltonian
within the linear spin wave theory. We introduce the
Holstein-Primarko↵ bosons to express the spin operators
as Si · m̂i = S � a†iai , Si · ẑi = (2S)1/2(ai + a†i )/2, and

Si · (m̂i ⇥ ẑi) = (2S)1/2(ai � a†i )/(2i). Keeping terms in
the spin Hamiltonian H up to the quadratic order in the

I,II have the same order, 
but are distinct topologically!

It is commonly thought that the spin ordering pattern of a
magnetic insulator uniquely specifies the state of the system1,
and indeed the ground state of such materials is usually

well-described by a simple product state of little fundamental
interest. However, in view of recent developments in the study of
topological properties of periodic media2,3, it is possible that
even such a product-like ground state can support topologically
non-trivial excited state band structure. Topological properties of
bands have been studied previously for electrons in solids
governed by Schrödinger’s equations2,3, for photons in dielectric
superlattices governed by Maxwell’s equations4,5, for phonons
governed by Newton’s equations4, and even for fractionalized
spinon excitation in spin liquids6,7. Here we apply these ideas to
magnons governed by the equations for spin waves in an ordered
antiferromagnet. We consider a concrete magnetic system,
namely, the Cr-based breathing pyrochlore, and explicitly
demonstrate that it supports Weyl magnon excitations with a
linear band touching in the spin-wave spectrum of the magnetic
ordered phase. The Weyl magnon is analogous to a Weyl
fermion8–11 in electronic systems, but has bosonic rather than
fermionic statistics, similar to Weyl points in photonic systems5.
In contrast to the other three categories of systems, the band
structure of magnons in antiferromagnets is highly tunable in situ
by application of readily available magnetic fields, which is a
consequence of the spontaneous symmetry breaking of the
antiferromagnet ground state and the relatively low-energy scale
for magnetic interactions in most solids. Thus one can envision
moving, creating and annihilating Weyl points in the laboratory
in a single experiment.

To explore Weyl magnons, we focus on a concrete and physical
model system, the breathing pyrochlore antiferromagnet. This is a
generalization of the common pyrochlore structure, which
consists of a network of corner sharing tetrahedra, with magnetic
ions at the corners. In the breathing pyrochlore, alternate
tetrahedra are uniformly expanded and contracted in size12–16.
As a result, the structure lacks an inversion center, and in
general up-pointing and down-pointing tetrahedral units are
inequivalent. We consider below a spin model for the breathing
pyrochlore, which generalizes and includes the uniform limit, and
displays Weyl points even in the uniform case. We obtain the full
phase diagram of this spin model and the magnetic excitations
in different phases. The experimental consequences of Weyl
magnons and the general conditions for their occurrence in spin
systems are predicted and discussed.

Results
Spin model. We consider Cr3þ ions in the breathing pyrochlore
lattice. There are several compounds with this structure,
including LiGaCr4O8 and LiInCr4O8, which have been recently
studied13,14. In this 3d3 electron configuration the orbital angular
momentum is fully quenched and the local moment is
well-described by the isotropic Heisenberg exchange and a total
spin S¼ 3/2 according to Hund’s rules. The minimal spin model
is given as

H ¼ J
X

ijh i2u

Si # Sjþ J 0
X

ijh i2d

Si # SjþD
X

i

Si # ẑið Þ2; ð1Þ

Since spin-orbit coupling is weak, the interaction between the
local moments is primarily where we have supplemented the
Heisenberg model with a local spin anisotropy17, which is
generically allowed by the D3d point group symmetry at the Cr
site. The anisotropic direction ẑi is the local [111] direction that
points into the center of each tetrahedron and is specified for each
sublattice (Methods). Here J and J0 are the exchange couplings
between the nearest-neighbour spins on the up-pointing and

down-pointing tetrahedra (Fig. 1), respectively. The large and
negative Curie–Weiss temperatures of the Cr-based breathing
pyrochlores indicate the strong atomic force microscopy
interactions, hence we take J40, J040. Because the up-pointing
and down-pointing tetrahedra have different sizes, one thus
expects JaJ0. In this work, however, we will study this model in a
general parameter setting. The atomic force microscopy exchange
interactions favour zero total spin on each up-pointing
(down-pointing) tetrahedron, that is,

P
i2u Si¼0 ð

P
i2d Si¼0Þ.

As for the regular pyrochlore lattice18, the classical ground state
of the exchange part of the Hamiltonian is extensively degenerate.

Ground states and quantum order by disorder. We first
consider easy-axis spin anisotropy with Do0. This favours the
spin to be aligned with its local [111] axis. It turns out that this
condition can be satisfied while simultaneously optimizing the
exchange interaction. This gives a unique classical ground state
(up to a 2-fold degeneracy from the time-reversal operation) that
has an all-in all-out magnetic order. The magnetic excitation of
this ordered state is fully gapped and the energy gap (D) is simply
set by the easy-axis spin anisotropy with D¼ 3|D| (Methods).

With the easy-plane anisotropy, D40, the spin prefers to
orient in the xy plane of the local coordinate system at each
sublattice. This requirement can also be satisfied while simulta-
neously optimizing the exchange. Moreover, there exists an
accidental U(1) degeneracy of the classical ground state that we
parametrize as

Scl
i & Sm̂i ¼ S cos y x̂iþ sin y ŷi

! "
; ð2Þ

where x̂i (ŷi) is the unit vector along the local x (y) axis in the
local coordinate system at site i (Methods), the unit vector m̂i
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Figure 1 | The breathing pyrochlore and the phase diagram.
(a) The breathing pyrochlore. The letter u(d) refers to the up-pointing
(down-pointing) tetrahedra and J(J0) indicates the nearest-neighbour
exchange couplings on the up-pointing (down-pointing) tetrahedra. (b) The
phase diagram. Regions I and II have the same magnetic order and belong
to the same phase, but the magnetic excitations of the two regions are
topologically distinct. Region III has a different magnetic order. The details
of the phase diagram are discussed in the main text.
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Holstein-Primarko↵ bosons, one can readily write down
the spin wave Hamiltonian as

Hsw =
P

k

P
µ,⌫ [Aµ⌫(k)a

†
k,µak,⌫ +Bµ⌫(k)a�k,µak,⌫

+B⇤
µ⌫(�k)a†k,µa

†
�k,⌫ ] + Ecl, (3)

where Ecl is the classical ground state energy, and Aµ⌫ ,
Bµ⌫ satisfy Aµ⌫(k) = A⇤

µ⌫(k), Bµ⌫(k) = Bµ⌫(�k) and
depend on the angular variable ✓. Although the clas-
sical energy Ecl is independent of ✓ due to the U(1)
degeneracy, the quantum zero point energy �E of the
spin wave modes depends on ✓ and is given by �E =P

k

P
µ

1
2 [!µ(k) � Aµµ(k)], where !µ(k) is the excita-

tion energy of the µ-th spin wave mode at momentum k

and is determined for every classical spin ground state.
The minimum of �E occurs at ✓ = ⇡/6 + n⇡/3 (n⇡/3)
with n 2 Z in region I and III (region II). The U(1)
degeneracy of the classical ground states is thus broken
by quantum fluctuations. This is the well-known phe-
nomenon known as “quantum order by disorder” [11–13].
The resulting state is a non-collinear state and the spin
is pointing along the local h112i (h11̄0i) lattice direction
at each sublattice in region I and III (region II).

To obtain the phase diagram in Fig.X, we have im-
plemented the semiclassical approach and included the
quantum fluctuation within the linear spin wave anal-
ysis. This treatment may underestimate the quantum
fluctuation in the parameter regimes when J � J 0, D or
J 0 � J,D. In these regimes, one may first consider the
tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these
regimes might be non-magnetic and will be addressed in
the future work. For the purpose of the current work, we
will focus on the ordered ground states in Fig.X.

Magnon Weyl nodes and surface states.

Although region I and III of the phase diagram have the
same magnetic ordering structure, the magnetic excita-
tions of the two regions are distinct in a topological man-
ner. Without losing any generality, we choose ✓ = ⇡/2
and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using the lin-
ear spin-wave theory, we obtain the magnetic excitation
spectrum with respect to this magnetic state in region I
and III. In Fig.X, we depict a representative excitation
spectrum along the high symmetry lines in the Brillouin
zone for region I.

Here we comment on the magnon spectrum in Fig.X.
First of all, the gapless mode of the spectrum is simply an
artifact of the linear spin-wave approximation. Because
there is no symmetry that protects the gapless mode, a
small gap would eventually be created when the inter-
action between the Holstein-Primarko↵ bosons is taken
into account. Secondly, the spectrum in Fig.X has a lin-
ear band touching at the momentum point from � to X.
In fact, as we show in Fig.X, there are in total four such

FIG. 3. (Color Online.) (a) The spin wave spectrum along
high symmetry momentum lines. (b) Four Weyl nodes are
located at (±k0, 0, 0), (0,±k0, 0) with k0 = 1.072⇡. Red and
blue indicate the opposite chirality. We have set D = 0.2J ,
J

0 = 0.6J and ✓ = ⇡/2 in the plots.

linear band touchings. These linear band touchings occur
at a finite energy and are the Weyl nodes of the magnon
spectrum. Just like the Weyl nodes in the electronic band
structure of Weyl semimetals [2], the magnon Weyl nodes
are sources and sinks of Berry curvatures and are char-
acterized by the chirality number that takes ±1. Unlike
the Weyl semimetal in the electron systems where one
can tune the Fermi energy to the Weyl nodes by varying
the electron density, the magnon Weyl nodes of our sys-
tem must appear at finite energies because of the bosonic
nature of magnons. Likewise, due to the bulk-edge cor-
respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
Once the magnon Weyl nodes emerge in the magnon

spectrum, they are robust and thus exist over a finite
regime in the parameter space. We find that the magnon
Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
dispersive Landau bands. Therefore, the magnetic field
can be used to manipulate the Weyl nodes. To demon-
strate this explicitly, we apply a magnetic field along the
global z direction. The magnetic field modifies the clas-
sical ground state and indirectly changes the spin-wave
Hamiltonian. As we show in Fig.X, ....
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respondence, the chiral surface magnon arc states also
appear at the finite energy and connect the bulk magnon
Weyl nodes with opposite chiralites (see Fig.X).
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Weyl nodes exist in region I. As one varies the couplings
towards the phase boundary with region III, the magnon
Weyl nodes move together, get annihilated in pairs and
disappear in the spectrum. In region III, there is no Weyl
band crossing, and this is what really distinguishes region
III from region I.
When we apply an external magnetic field to the sys-

tem, the spin only couples to the field via a Zeeman cou-
pling. This is quite di↵erent from the couplings to the
magnetic field of the Weyl semimetal in the electron sys-
tems where there exists an orbital coupling in addition
to the Zeeman coupling. Because of this di↵erence, the
magnetic field merely shifts the positions of the magnon
Weyl nodes for our system while in the electron systems
the magnetic field converts the Weyl band touchings into
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strate this explicitly, we apply a magnetic field along the
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Hamiltonian. As we show in Fig.X, ....
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FIG. 4. (Color Online.) Surface states of a slab (cut in [110]
direction) by setting D = 0.2J , J 0 = 0.6J and ✓ = ⇡/2. (a)
Surface band in surface Brillouin zone(k1-k2 plane). States
with E = EWeyl form (red) arcs connecting the projection of
Weyl nodes (Pink and Light Blue, only four nodes indepen-
dent). States near the two longer(shorter) arcs are localized
in one(another) boundary. The chiral semi-classical velocity
of states can be implied by the gradient of the band, there
is no net current in each boundary due to cancellation. (b)
Dispersion along (k,⇡) (Blue, Dashed line in (a)): projected
bulk spectrum(Blue), chiral edge states(Red), Eweyl(Dashed,
Green).

The magnon Weyl nodes are magnetic excitations, there-
fore, inelastic neutron scattering is an ideal tool to de-
tect the bulk magnon Weyl nodes as well as the surface
magnon arc states in the excitation spectrum. Because
of the surface dependence of the magnon arc states, one
could probe the system with di↵erent slab geometries and
surface orientations. Like the Weyl fermion, the Weyl
magnon can be potentially detected optically [? ]. As it
appears at finite energies, one necessarily needs to use the
pump-probe approach to measure the optical absorption.
In addition to the spectoscopic property, the presence of
the Weyl magnon spectrum may lead to thermal Hall
e↵ect, just like the Weyl fermion that gives rise to the
anomalous Hall current in the electron systems [14, 15].
Moreover, one could use magnetic field to control thermal
Hall signal despite the absence of the Lorentz coupling
of the spin to the external magnetic field.

Although the exisiting experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop AFM long-range or-
ders at low temperature [7, 8], the precise structures of
the magnetic order in these two systems are not yet clear.
Therefore, it is certainly of interest to confirm the mag-
netic order and detect possible Weyl magnon excitations
in these systems.

To summarize, we have studied a realistic spin model
on the Cr-based breathing pyrochlore lattice. We show
that the combination of the single-ion spin anisotropy
and the superexchange interaction leads to conventional
magnetic ordered ground states. We further find that the
magnetic excitations in a large parameter regime devel-
ops magnon Weyl nodes in the magnon spectrum.

Methods (to be filled).

Present the local coordinate systems

Present spin wave Hamiltonian for all-in all-out state
and plot the gapped spectrum

Present spin wave Hamiltonian for the other state and
plot the magnon spectrum that has no weyl nodes
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Tune Weyl nodes with magnetic field

However, there are some conditions under which Weyl points
are prohibited. In particular, many magnetically ordered systems
possess not time-reversal but a complex conjugation symmetry C.
This is the case for any Heisenberg Hamiltonian with a collinear
ordered ground state, but it can occur more generally. If, in
addition, the system possesses inversion symmetry P, then Weyl
points are prohibited. This can be understood from the Berry
curvature24,25, Om kð Þ¼iEmnl @nk @lkjh i, defined in terms of the
exact magnon eigenstates |ki of a given magnon band. The Berry
curvature is an effective magnetic field in momentum space, and a
Weyl point is defined as a delta-function source (divergence) of
this curvature. If P is valid, one has Om(k)¼Om($ k), while C
implies Om(k)¼ $Om($ k). Hence the combination requires
Om(k)¼ 0, prohibiting any Berry curvature at all, and also
obviously Weyl points.

This shows that in the simplest magnetically ordered systems,
Weyl points are not allowed. There may be other conditions
prohibiting Weyl points, or constraining them. A trivial condition
is that one needs at least two magnon bands to form Weyl points,
which prohibits them in some simple ferromagnets. In the case
studied in this paper a two-fold rotation axis locks the Weyl
points along the G–X axes. A full treatment of the necessary and
sufficient conditions for Weyl points may be part of a topological
spin-wave theory26,27, to be developed in the future.

Now we turn to experimental implications. The most natural
probe of the bulk magnon Weyl nodes as well as the surface
magnon arc states is inelastic neutron scattering. Because of the
surface dependence of the magnon arc states, one could study the
system with different slab geometries and surface orientations.
For example, for the [11!1] surfaces, one would observe two
disconnected arcs on both up and down surfaces (Fig. 4). In
contrast, one would observe two loops across the surface Brillouin
zone for the [110] surfaces because two pairs of Weyl nodes with
different chiralities are projected onto the same points (Methods).

The Weyl magnon can be potentially detected optically. Close
to the Weyl nodes, a vertical transition can occur with arbitrarily
small energy. Because the lower state is empty at zero temperature
in equilibrium, it may be beneficial to use a pump-probe
approach to measure the optical absorption. Then one may be
able to observe optical absorption at low frequency28, when the

lower magnon bands have enough population. In addition to the
spectroscopic property, the presence of the Weyl magnon
spectrum may lead to a thermal Hall effect, just like the Weyl
fermion that gives rise to the anomalous Hall current in electronic
systems29,30. Furthermore, one could use magnetic field to
control thermal Hall signal31–33 despite the absence of the
Lorentz coupling of the spin to the external magnetic field. Again
due to population effects, the thermal Hall signal from Weyl
magnons will be suppressed at low temperature, but could be
enhanced by optical pumping.

Although the existing experiments suggest that both
LiGaCr4O8 and LiInCr4O8 develop the antiferromagnetic
long-range orders at low temperature13,14, the precise structures
of the magnetic order in these two systems are not yet clear at this
stage. Therefore, it is certainly of interest to confirm the magnetic
order and detect possible Weyl magnon excitations in these
systems and other three dimensional Mott insulators with
long-range magnetic orders.

To summarize, we have studied a realistic spin model on
the Cr-based breathing pyrochlore lattice. We show that
the combination of the single-ion spin anisotropy and the
superexchange interaction leads to novel magnetically ordered
ground states. Remarkably, the magnetic excitations in a large
parameter regime develops magnon Weyl nodes in the magnon
spectrum. We expect that Weyl magnons may exist broadly in
many ordered magnets. We propose a number of experiments
that can test the presence of the Weyl magnons.

a

d e f

b c

Figure 5 | The evolution of Weyl nodes under the magnetic field. Applying a magnetic field along the global z direction, B¼Bẑ, Weyl nodes are shifted
but still in kz¼0 plane. They are annihilated at G when magnetic field is strong enough. Red and blue indicate the opposite chirality. (a,f): B¼0, 0.1J,
0.5J, 0.9J, 1.0J, 1.1J. We have set D¼0.2J, J0¼0.6J and y¼p/2.

Table 1 | The local axis for the four sublattices of the
breathing pyrochlore lattice.

l x̂l ŷl ẑl

1 1ffiffi
2
p !110½ & 1ffiffi

6
p !1!12½ & 1ffiffi

3
p 111½ &

2 1ffiffi
2
p !1!10½ & 1ffiffi

6
p !11!2
" #

1ffiffi
3
p 1!1!1½ &

3 1ffiffi
2
p 110½ & 1ffiffi

6
p 1!1!2
" #

1ffiffi
3
p !11!1½ &

4 1ffiffi
2
p 1!10½ & 1ffiffi

6
p 112½ & 1ffiffi

3
p !1!11½ &

The letter m refers to the sublattice, and x̂m ; ŷm ; ẑm
$ %

defines the local coordinate system at the
m-th sublattice.
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How to probe in a REAL experiment?

1. Neutron scattering: detect the Weyl nodes as well as the consequence  
(the surface arc states that connect the Weyl nodes).   

2.   Thermal Hall effect: magnon Weyl nodes contribute the thermal  
      currents that are tunable by external magnetic field.   

3.   Optically: as Weyl node must appear at finite energy, one needs to use  
      pump-probe measurement.  

COMPARE TO Weyl fermion in the electron system



Extension

Dirac magnons (Yuan Li, Chen Fang, Jingsheng Wen) vs Dirac electron 

nodal line magnon (??) vs nodal line semimetal 

Magnon topological insulator vs electron topological insulator 



Summary

We have studied a realistic spin model on the Cr-based breathing  
pyrochlore systems.  

We show that the combination of the single-ion spin anisotropy and  
the superexchange interaction leads to conventional magnetic order. 

We find the magnetic excitation in a large parameter regime develops 
magnon Weyl nodes in the magnon spectrum. 


