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Fractionalized charge excitation

FQHE is arguably the only existing topological order so far.

Chiral (Abelian) topological order 

Fractionalization: fractionalized & deconfined excitation  
Chern-Simon gauge structure

with charge U(1) symmetry: 
charge conservation

Symmetry makes topological order more visible in experiments. 

Symmetry renders extra 
quantum number to the 
fractionalized excitation or 
particle, such that these 
fractionalized quantum number 
can be detected experimentally. 
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Pyrochlore spin ice

RE2M2O7

OVer years, there are a lot of activity in 
spin ice system. 


spin ice is realized in rare earth 
pyrochlore systems, where the rare 
earth ions 

form pyrochlore lattice and 

host the Ising spin. because of the 
crystal field effect, the ising spin 

points either into or out of the center of 
the tetrahedron


The interaction between the ising is 
AFM, it favor 2 spin in 2 spin out of the 
tetrahedra. This is the 2-in 2-out spin 
ice rule. 


Beucase of the analog relation with H 
position in water ice, each O has 4 H 
near it, 2 are close, 2 are further. 
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Classical spin ice

Pauling entropy in spin ice, 
Ramirez, etc, Science 1999
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Toy model and U(1) quantum spin liquid
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•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a U(1) quantum spin liquid !

+ · · · · · · Hermele, Fisher, Balents, 
PRB 2004

flip 6 spins on the hexagon
or

Ring exchange

quantum  
tunneling

1. But classical spin ice is purely 
classical and  is not a new phase of 
matter. It is smoothly connected to the 
high temperature paramagnetic phase. 


2. In contrast, quantum spin ice is a 
new quantum phase of matter. 
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2!. It can be obtained by translating one ‘‘up-pointing’’ tet-
rahedron "shown on the right of Fig. 2! through the fcc Bra-
vais lattice vectors R!n0a0"n1a1"n2a2. We choose a0
!x, a1!x/2"!3y/2, and a2!x/2"y/2!3"!2/3z. Basis
vectors for the reciprocal lattice are defined by bi
!!2#$ i jkaj#ak , so that ai•bj!2#% i j . The four sites in
each unit cell are distinguished by an index i!0, . . . ,3, as
indicated in Fig. 2. Lattice sites are denoted either by single
italic letters such as i or by pairs (R,i) when we wish to
specify the position of a site within the unit cell.
Up to a constant the Hamiltonian can be written as a sum

over tetrahedra:

H!
J
2 &

t
"St!2, "1!

where St!& i!tSi is the total spin on the tetrahedron t. Fol-
lowing the analysis of a generalized kagomé Heisenberg an-
tiferromagnet in Ref. 9, we introduce easy-axis exchange an-
isotropy:
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t
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'i j(

"Si
"S j

$"H.c.!, "4!

where Jz%J! . This reduces the global SU(2) invariance to
U(1)#Z2. We first consider the point J!!0, where H re-
duces to a classical Ising model, with ground states specified
by St

z!0 on all tetrahedra. It was argued by Anderson23 that,
almost identically to Pauling’s model for water ice,24 this
Ising model has an extensive ground-state degeneracy "i.e.,
finite T!0 entropy per site!.
A small J!&0 introduces quantum fluctuations and lifts

the extensive degeneracy; this splitting is encapsulated in an
effective Hamiltonian using standard techniques of perturba-

tion theory. The first-order contribution is easily seen to van-
ish. We will need to go to third order, where we have the
general expression

He f f!"1$P!!$H!
P
HI

H!"H!
P
HI

H!
P
HI

H!""1$P!.

"5!

Here P projects onto the orthogonal complement of the
ground-state manifold. To describe the processes contribut-
ing in Eq. "5!, it is useful to work in the standard hard-core
boson language for the spins, where Sz!'1/2 corresponds
to the presence/absence of a boson. Each term in H! hops
bosons along nearest-neighbor bonds; acting on a state in the
low-energy manifold, each hop creates two tetrahedra with
St
z)0. At second order in H!, bosons can hop and then
return along the same bond *Fig. 3"a!+. This can always oc-
cur on four bonds in every tetrahedron, thus giving only a
constant contribution to the energy. At third order another
constant contribution arises from single bosons "or holes!
hopping around triangular faces *Fig. 3"b!+. There is also a
nontrivial ring exchange process acting on the hexagonal
plaquettes "see Fig. 2!, where hexagons containing three
evenly spaced bosons can be rotated as shown in Fig. 3"c!.
The resulting effective Hamiltonian is

He f f!"J!
2 /Jz!"J! /Jz$1 !Nt

"Jring&̋ "S1
"S2

$S3
"S4

$S5
"S6

$"H.c.!, "6!

where Nt is the total number of tetrahedra, Jring!3J!
3 /2Jz

2

and the sum is over hexagonal plaquettes. The labeling of the
spin operators inside the sum is given by moving around
each hexagon in an arbitrary direction. Note that *He f f ,St

z+
!0, as must be true for any effective Hamiltonian acting in
the low-energy manifold, whatever the form of H!.
We focus on the extreme easy-axis limit described by

He f f , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground-state manifold.

FIG. 2. The pyrochlore lattice "left! and one up-pointing tetra-
hedron "right!. One sublattice of tetrahedra is shaded and the other
transparent. The thickened bonds show the location of a pyrochlore
hexagon. Each such hexagon is a member of one of four orienta-
tions of kagomé lattice planes. The numbering of sites in the up-
pointing tetrahedron on the right is the convention used in the text.
For i!0,1,2, the fcc Bravais lattice vector ai points in the direction
given by looking from site 3 to site i.

FIG. 3. Depiction of the processes contributing to the third-
order degenerate perturbation theory for the easy-axis pyrochlore
Heisenberg antiferromagnet. Processes "a! and "b! give only trivial
constant shifts of the energy. Process "c! leads to an XY ring ex-
change term acting on hexagonal plaquettes.
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Ring exchange and a unitary transformation

While these will not affect universal properties, they can
matter for the short-distance correlation functions of some
microscopic operators. This can be understood formally by a
more sophisticated execution of the perturbation theory in J!

that accounts for splitting of the low-energy manifold and
mixing of higher states on an equal footing.25 The main re-
sult is that the problem at finite Jz can be mapped, by a
unitary transformation, order by order in J! onto a trans-
formed Hamiltonian acting only within the low-energy mani-
fold where St

z!0. This mapping accounts for finite Jz by
generating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these correc-
tions for simplicity and use only the results of the standard
degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a unitary transformation. On any given
site we can make the transformation Sz→Sz and S"

→#S" by making a ! rotation about the z axis in spin
space. One transformation with the desired effect, consisting
of ! rotations on a pattern of sites, is

Si
z→Si

z , "7#

SRi
" →exp" iQi•R#SRi

" , "8#

where Q0!Q1!(b1$b2)/2 and Q2!Q3!0.
After this transformation the Hamiltonian takes the form

Hp!#Jring$̋ "S1
$S2

#S3
$S4

#S5
$S6

#$H.c.#, "9#

where the constant terms have been dropped. Models similar
to this one on the kagomé,9 square,26,27 triangular,28 and
other lattices,11 where XY ring exchange of spins or bosons
is a dominant term, have recently been shown to exhibit a
variety of unusual phases and critical behavior. The physics
of the pyrochlore ring exchange model should be accessible
to quantum Monte Carlo studies; while the original Hamil-
tonian in Eq. "2# has a sign problem, Hp does not.

Hp can be reinterpreted as a quantum dimer model on the
diamond lattice "Fig. 4#, with two dimers touching every site.
To see this, observe that the centers of the pyrochlore tetra-
hedra form a diamond lattice. Each nearest-neighbor dia-
mond link passes through exactly one pyrochlore site, so we
can reinterpret the pyrochlore spins as diamond link vari-
ables. The smallest closed loops in this lattice contain six
links and correspond to the pyrochlore hexagons. We say a
dimer is present on a given bond if Si

z!1/2 or absent if Si
z

!#1/2. St
z!0 becomes the constraint that every diamond

site touches two dimers, and the ring exchange move is the
most local dynamics preserving this constraint. Each term in
Hp acts on a ‘‘flippable’’ hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Nonflippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer models

generically have a point in their parameter space where it is
possible to write down the exact ground-state wave
function.21 To reach this point in our model, we add the term
HV!VNf , where Nf is the number of flippable hexagons.

The RK point obtains for HRK!Hp$JringN f "i.e., V
!Jring), and the ground state is an equal-weight superposi-
tion of all possible dimer coverings of the lattice that satisfy
the constraint of two dimers touching every site. In the spin
language, this wave function can be written as the projection
of a transverse ferromagnet:

!%RK&!"1#P#'
i

!Si
x!1/2&, "10#

where, as in Eq. "5#, (1#P) projects onto the St
z!0 mani-

fold. For completeness, we also express Nf in terms of spin
operators: Nf!$˝P f lip(˝), where P f lip(˝) gives unity
acting on a flippable hexagon and zero otherwise. One has

P f lip"˝ #! $
(!"1

'
j!˝ " 12$("#1 # jS j

z# . "11#

We will be interested in the properties of the generalized ring
model Hp$HV in the vicinity of the soluble point.

B. Cubic model

Largely to simplify the geometry of the presentation, we
introduce an alternate model that we find has many of the
same properties as its pyrochlore analog. The model is the
QDM on the cubic lattice, with three dimers touching every
site. We consider only the most local dynamics, which ro-
tates the configuration on square plaquettes with two dimers
on opposite sides, and the corresponding Rokhsar-Kivelson
potential that counts flippable squares. Reversing the map-
ping above, we can also think of this as a spin model with
S!1/2 on the links of a cubic lattice, or, equivalently, on the
sites of a lattice of corner-sharing octahedra with their cen-
ters at the cubic sites "Fig. 5#. The octahedra play the role of
the pyrochlore tetrahedra, with the total spin on each Soct

z

!0. We denote cubic sites by boldface letters like r and
identify the links by specifying either pairs of adjacent sites,
or one site and the direction of the link. For example, the link

FIG. 4. A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons. These
are the shortest possible closed paths on the diamond lattice. The
hexagon with three thickened bonds depicts the dimer positions on
a flippable hexagon. The alternating full and empty bonds corre-
spond to alternating up and down spins.
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modynamics, transport, and spectroscopy; therefore U(1)
fractionalization may be easier to find in experiments. Such
states, thus far realized in large-N spin models18 and bosonic
Hubbard-type models,10–12 arise as the deconfined or Cou-
lomb phase of compact U(1) lattice gauge theory. While
most work on spin liquids has focused on d!2, motivated
by the cuprates and the conventional wisdom that quantum
fluctuations are more effective at destroying long-range order
in low dimensions, the U(1) spin liquid only occurs in d
"3; for d!2 the Coulomb phase of compact U(1) gauge
theory #with gapped matter$ is always unstable due to instan-
ton effects.19
Both models are of intrinsic interest as examples of trac-

table but nontrivial frustrated magnets. The pyrochlore
model is particularly appealing due to its simplicity: its deri-
vation begins with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet. Taking the limit of large easy-axis exchange
anisotropy Jz"J! simplifies the problem by breaking the
spectrum into extensively degenerate manifolds with large
separations of O(Jz). It is then possible to write an effective
Hamiltonian describing the splitting of the low-energy mani-
fold, using standard techniques of degenerate perturbation
theory in J! . This effective Hamiltonian has a U(1) gauge
structure, which forms the foundation for our subsequent
analysis.20 Another point of view, equivalent at the level of
perturbation theory but perhaps with broader implications in
more general scenarios, is that the low-energy sector of the
model is unitarily equivalent to a U(1) gauge theory. It is
not obvious how to treat the resulting model analytically, but
upon addition of an extra six-site interaction term it can be
tuned to a soluble point where it is possible to write an exact
ground-state wave function with no further approximations.
The models can be reinterpreted as quantum dimer models
#QDM’s$, and the extra term as the analog of the Rokhsar-
Kivelson #RK$ potential in the square lattice QDM.21 As will
be explained in detail below, the properties of the soluble
point allow us to locate the U(1) spin liquid adjacent to it.
Since this state is stable to all zero-temperature perturba-
tions, it persists over a finite extent of the phase diagram
#Fig. 1$. Furthermore, stability to large but finite Jz implies
that the U(1) gauge structure persists in the absence of mi-
croscopic local symmetries and is truly emergent. On the
purely theoretical side, we believe these models give the first
examples of U(1) gauge theories that have a deconfining
phase even in the limit of infinitely strong bare coupling. The
first such Z2 gauge theory was discovered only recently by
Moessner and Sondhi.8
The effective theory of the U(1) spin liquid and the

soluble RK point is simply Gaussian quantum electrodynam-
ics #QED$. At the RK point, which is itself a special decon-
fined limit of the generic phase, the ‘‘electric stiffness,’’ or
coefficient of E2 in the Hamiltonian, vanishes. This is a
higher-dimensional generalization of the effective picture of
the square lattice QDM in terms of a coarse-grained height
field.22
The U(1) spin liquid has power-law correlations with

nontrivial angular dependence, U(1) topological order, and
supports gapped Sz!1/2 spinons, a gapped topological point
defect #the ‘‘magnetic’’ monopole$, and a gapless Sz!0 col-

lective mode corresponding to the photon of the gauge
theory. The latter excitation makes an additive T3 contribu-
tion to the low-temperature specific heat and should affect
various other low-energy properties of U(1)-fractionalized
phases %either the U(1) spin liquid, or phases with coexisting
conventional and topological order&. If such a phase exists in
a real material, we speculate that it may be possible to probe
‘‘photons’’ with photons via Raman scattering.

A. Outline

We begin Sec. II with a derivation of the pyrochlore
model starting from the Heisenberg antiferromagnet. In Sec.
II B the cubic #or corner-sharing octahedra$ model is dis-
cussed. The remainder of Sec. II is concerned with demon-
strating the equivalence of the spin models to frustrated com-
pact U(1) gauge theories and developing a useful lattice
version of electric-magnetic duality.
Beginning from the dual description, Sec. III develops the

effective description of the U(1) spin liquid and the soluble
point in terms of Gaussian quantum electrodynamics. Cor-
rections to effective action and to the scaling equalities be-
tween microscopic and effective degrees of freedom are dis-
cussed in Sec. III C. Section IV contains a discussion of the
universal properties of the U(1) spin liquid, including its
U(1) topological order. In Sec. V we present our analysis of
the soluble point ground-state wave function, which gives
strong support for the validity of our effective picture. We
conclude in Sec. VI with a discussion of open issues, focus-
ing on the challenging problems of understanding this phys-
ics in a broader range of models and looking for
U(1)-fractionalized phases in real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore model

We begin with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet on the pyrochlore lattice. This structure is a
three-dimensional network of corner-sharing tetrahedra #Fig.

FIG. 1. Phase diagram for both models. The parameter V/Jring
is the relative strength of the Rokhsar-Kivelson potential and the
XY ring exchange that obtains in the easy-axis limit of the Heisen-
berg model. The soluble point is located at V/Jring!1, which is a
special deconfined point of the adjacent U(1) spin liquid. Just to
the right of the soluble point the models go into an Ising ordered
state. Sufficiently far to the left we expect Ising order, while at
intermediate values of V/Jring states with broken translation sym-
metry but no magnetic order are also possible. Immediately to the
left of the soluble point, the U(1) spin liquid exists over a finite
#but unknown$ extent of the phase diagram.
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Theoretical expectation

J?
JzU(1)0 QSL

Transverse
spin order|

U(1)pi QSL
J? = 0

Related by unitary transformation  
(Hermele, Fisher, Balents 2004)



Excitations in the U(1) QSL

Spinon deconfinement

SpinonJzz

energy

Magnetic monopoles
J3
±

J2
zz

gapless  
gauge photon

•  No LRO, no symmetry breaking, cannot be understood in Landau’s paradigm!  

•  The right description is in terms of fractionalization and emergent gauge structure.

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Figs from Moessner&Schiffer,2009

as quantum spin ice is a disordered state,

there is no long range order, no symmeetry breaking, it is 
a new phase of matter and cannot be understood 

in the landau’s paradigm of symmetry breaking theory. 
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Equivalence of “notations”

What does inelastic neutron scattering measure in quantum spin ices?

Gang Chen1,2⇤
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

has classical 
analogue

} purely quantum,
no classical analogue

“Magnetic monopole” is probably closer in spirit to Dirac’s monopole (1931). 
One has to confirm that “magnetic monopole” is emergent excitation,  

rather than a fictitious particle.

What piece of experimental info indicates these exotic and emergent particles?

Gang Chen’s theory group 
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Important question 
What are sharp physical observables to confirm U(1) QSL ?

I(!) ⇠ !

Nic Shannon, etc 2012, 
Savary, Balents, 2012

low energy scale suppressed intensity

heat capacity (Savary & Balents):  
1000 times larger than phonon!



Our answer: 

the spectral periodicity of the spinon/monopole continuum
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
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rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)
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QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

regular periodicity enlarged periodicity

Enlarged periodicity is like the fractional charge in FQHE.

Gang Chen, PRB 96, 085136, (2017) 
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2. Symmetry fractionalization in spinons and spectrum



Realistic models
• Usual Kramers’ doublet and non-Kramers’ doublet  

 

•  Dipole-octupole doublet

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Use the XXZ model to illustrate the universal physics

J?
JzU(1) QSL

Transverse
spin order

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0
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the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
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> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes
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X
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where K = 24J3
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2
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and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
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.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have
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We consider possible exotic ground states of quantum spin ice as realized in rare earth pyrochlores. Prior work
[Savary and Balents, Phys. Rev. Lett. 108, 037202 (2012).] introduced a gauge mean-field theory (gMFT) to
treat spin or pseudospin Hamiltonians for such systems, reformulated as a problem of bosonic spinons coupled
to a U (1) gauge field. We extend gMFT to treat the most general nearest-neighbor exchange Hamiltonian, which
contains a further exchange interaction. This term leads to interactions between spinons and requires a significant
extension of gMFT, which we provide. As an application, we focus especially on the non-Kramers materials
Pr2T M2O7 (T M = Sn, Zr, Hf, and Ir), for which the additional term is especially important, but for which an
Ising-planar exchange coupling discussed previously is forbidden by time-reversal symmetry. In this case, when
the planar XY exchange is unfrustrated, we perform a full analysis and find three quantum ground states: a U (1)
quantum spin liquid (QSL), an antiferroquadrupolar ordered state and a noncoplanar ferroquadrupolar ordered
one. We also consider the case of frustrated XY exchange, and find that it favors a π -flux QSL, with an emergent
line degeneracy of low-energy spinon excitations. This feature greatly enhances the stability of the QSL with
respect to classical ordering.
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I. INTRODUCTION

The quest for quantum spin liquid (QSL) ground states,
exotic phases of matter with emergent gauge structure
and quasiparticles carrying fractional quantum numbers,1 is
an ongoing endeavour in condensed-matter physics. Well-
studied candidates include some two-dimensional organic
crystals2 and some inorganic kagome systems such as
herbertsmithite.3 Among three-dimensional materials, experi-
mental candidates include several magnetic pyrochlore oxides4

and hyperkagome-lattice magnets.5 Classical spin liquids have
been realized in the spin ices,6 in which the spins reside on a
pyrochlore lattice and interact via a dominant classical Ising
coupling. It has been shown theoretically that a weak quantum-
mechanical perturbation does not produce long-range order in
the ground state.7 Instead, it lifts the macroscopic degeneracy
of the spin-ice manifold, leaving gapless photon excitations
describable by an emergent U (1) gauge field. The photon
exists in a so-called Coulomb phase or U (1) spin liquid
phase, which is stable to all weak perturbations, at zero
temperature.

To describe the low-energy physics of magnetic py-
rochlore oxides associated with local magnetic doublets of
rare-earth ions, a minimal pseudospin-1/2 model can be
introduced on symmetry grounds8 [see Eq. (1)]. It has also
been derived microscopically using superexchange theory
for various materials.9–11 This model successfully explains
spin correlations experimentally observed in Yb2Ti2O7.

8,12

As can be seen from the general form of Eq. (1), these
comparisons between theory and experiment also reveal that
putative continuous rotational symmetry of the pseudospins is
broken by a significant level of magnetic anisotropy. Moreover,
at least for Yb2Ti2O7 and possibly for other materials, the Ising
interaction remains dominant, in which case the physics is that
of a quantum variant of spin ice.13 At a phenomenological

level, recent experimental findings suggest the relevance of the
Coulomb phase physics in real rare-earth magnetic pyrochlore
oxides.8,12,14

Based on this observation, detailed analyses of the non-
perturbative stability of the Coulomb phase and the possible
existence of other phases and phase transitions are called
for. It must be noted that this is a very complex problem;
the general pseudospin Hamiltonian in Eq. (1) contains
four exchange constants: the Ising exchange Jzz, and three
quantum terms J±, Jz±, and J±±. Assuming we start from
the classically frustrated spin-ice case Jzz > 0, one then has
three dimensionless couplings J±/Jzz, Jz±/Jzz, and J±±/Jzz,
forming a three-dimensional (3D) phase space even at zero
temperature. The development of a comprehensive theory of
this full 3D phase space is a challenging task.

A method for analysis of this problem was developed in
Ref. 15, based on a gauge theory reformulation of the problem
on a dual diamond lattice. There, the original Hamiltonian was
re-expressed as a problem of bosonic spinons hopping in the
background of a fluctuating compact U (1) gauge field. This
problem was subsequently approximated using a mean-field
theory. In that work, this gauge mean-field theory (gMFT)
was applied to the corner of the phase diagram approximately
appropriate to Yb2Ti2O7, with, in our (and their) notation,
J±± = 0, and J± > 0. Both the expected U (1) QSL phase
and an additional exotic state, a Coulomb ferromagnet,
were found, though somewhat limited in their domain of
stability.

Here we extend the theoretical formalism to allow us to
fully treat the most generic nearest-neighbor pseudospin-1/2
Hamiltonian [i.e., the fully general form of Eq. (1)]. This
requires some significant technical extensions to the analysis
in Ref. 15. In particular, the term J±± induces interactions
amongst the spinons, which may induce pairing and other
effects. Furthermore, in the case J± < 0, a nonzero average
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mental candidates include several magnetic pyrochlore oxides4

and hyperkagome-lattice magnets.5 Classical spin liquids have
been realized in the spin ices,6 in which the spins reside on a
pyrochlore lattice and interact via a dominant classical Ising
coupling. It has been shown theoretically that a weak quantum-
mechanical perturbation does not produce long-range order in
the ground state.7 Instead, it lifts the macroscopic degeneracy
of the spin-ice manifold, leaving gapless photon excitations
describable by an emergent U (1) gauge field. The photon
exists in a so-called Coulomb phase or U (1) spin liquid
phase, which is stable to all weak perturbations, at zero
temperature.

To describe the low-energy physics of magnetic py-
rochlore oxides associated with local magnetic doublets of
rare-earth ions, a minimal pseudospin-1/2 model can be
introduced on symmetry grounds8 [see Eq. (1)]. It has also
been derived microscopically using superexchange theory
for various materials.9–11 This model successfully explains
spin correlations experimentally observed in Yb2Ti2O7.

8,12

As can be seen from the general form of Eq. (1), these
comparisons between theory and experiment also reveal that
putative continuous rotational symmetry of the pseudospins is
broken by a significant level of magnetic anisotropy. Moreover,
at least for Yb2Ti2O7 and possibly for other materials, the Ising
interaction remains dominant, in which case the physics is that
of a quantum variant of spin ice.13 At a phenomenological

level, recent experimental findings suggest the relevance of the
Coulomb phase physics in real rare-earth magnetic pyrochlore
oxides.8,12,14

Based on this observation, detailed analyses of the non-
perturbative stability of the Coulomb phase and the possible
existence of other phases and phase transitions are called
for. It must be noted that this is a very complex problem;
the general pseudospin Hamiltonian in Eq. (1) contains
four exchange constants: the Ising exchange Jzz, and three
quantum terms J±, Jz±, and J±±. Assuming we start from
the classically frustrated spin-ice case Jzz > 0, one then has
three dimensionless couplings J±/Jzz, Jz±/Jzz, and J±±/Jzz,
forming a three-dimensional (3D) phase space even at zero
temperature. The development of a comprehensive theory of
this full 3D phase space is a challenging task.

A method for analysis of this problem was developed in
Ref. 15, based on a gauge theory reformulation of the problem
on a dual diamond lattice. There, the original Hamiltonian was
re-expressed as a problem of bosonic spinons hopping in the
background of a fluctuating compact U (1) gauge field. This
problem was subsequently approximated using a mean-field
theory. In that work, this gauge mean-field theory (gMFT)
was applied to the corner of the phase diagram approximately
appropriate to Yb2Ti2O7, with, in our (and their) notation,
J±± = 0, and J± > 0. Both the expected U (1) QSL phase
and an additional exotic state, a Coulomb ferromagnet,
were found, though somewhat limited in their domain of
stability.

Here we extend the theoretical formalism to allow us to
fully treat the most generic nearest-neighbor pseudospin-1/2
Hamiltonian [i.e., the fully general form of Eq. (1)]. This
requires some significant technical extensions to the analysis
in Ref. 15. In particular, the term J±± induces interactions
amongst the spinons, which may induce pairing and other
effects. Furthermore, in the case J± < 0, a nonzero average
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the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
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> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J
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,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X
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cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
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and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
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rr027d
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
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dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz
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When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
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For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
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from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.
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T s

µ

, (5)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

⇡
3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

= ±1

If K < 0, curlA = ⇡

If K > 0, curlA = 0

Gang Chen’s theory group 

Gang Chen’s theory group



Pi flux means crystal symmetry fractionalization

3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
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⌫

= �T s

⌫
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. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫
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µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)
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2 (1)T
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1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
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ied. It was shown that the U(1)
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theless, the early study does show the quantitative sta-
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their crystal momenta suggest that, there is an enhanced
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QSL, the spectral periodic-
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QSL and is absent in U(1)0 QSL. We emphasize
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the spinon 1 of the state |ai to generate the other three
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|bi = T s
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their crystal momenta suggest that, there is an enhanced
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the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

But elastic neutron scattering will NOT see extra Bragg peak.



Calculation to demonstrate the above prediction
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iArr0 . The XXZ model is ex-
pressed as
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�†
r�r0e�iArr0 , (17)

where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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q
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+ c2
x

s2
z

)
1
2

�
,(18)

!II,±(k) =
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
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i cor-
relator via the INS. From the relation
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
relator via the INS. From the relation
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =
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rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)
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integral method and is given as9
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where c
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/2), s
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= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.
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V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

Lower excitation edge of spinon continuum  
within the gauge MFT calculation
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

has classical 
analogue

} purely quantum,
no classical analogue

“Magnetic monopole” is probably closer in spirit to Dirac’s monopole (1931). 
One has to confirm that “magnetic monopole” is emergent excitation,  

rather than a fictitious particle.
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two-electron -> Cooper pair -> superconductor (odd/even parity)! 
1/2 electron  -> Majorana fermion -> topo quantum computation 
spin-1/2 chain -> gapless, 
spin-1 chain -> Haldane gap  
topological insulator -> Z2 topological invariant  
Z2 topological order, Z2 quantum spin liquid …… 
fermion doubling theorem, two Weyl nodes in Weyl semimetal  
single-layer graphene vs bilayer-layer graphene… 

two (not 3) neutron stars emerge……

2-electron -> cooper pairs condense , 
superconductor,


Z2 topological invariant for time-reversal invariant 
topological insulator 
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s-wave 

p-wave

odd/even parity superconductor 
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We study the U(1) quantum spin liquid on the pyrochlore spin ice systems. For the non-Kramers
doublets such as Pr3+ and Tb3+, we point out that the inelastic neutron scattering result not only
detects the low-energy gauge photon, but also contains the continuum of the “magnetic monopole”
excitations. Unlike the spinons, these “magnetic monopoles” are purely of quantum origin and have
no classical analogue. We further point out that the “magnetic monopole” experiences a background
dual “⇡” flux due to the spin-1/2 nature of the local moment when the “monopole” hops on the
dual diamond lattice. We then predict that the “monopole” continuum has an enhanced spectral
periodicity with a folded Brillouin zone. This prediction can be examined among the existing data on
the non-Kramers doublet spin liquid candidate materials like Pr2TM2O7 and Tb2TM2O7 (with TM
= “transition metal”). The application to the Kramers doublet systems and numerical simulation
is further discussed. Finally, we present a general classification of distinct symmetry enriched U(1)
quantum spin liquids based on the translation symmetry fractionalization patterns of “monopoles”
and “spinons”.

I. INTRODUCTION

There has been a tremendous activity in the field of py-
rochlore ice materials1–43. The motivation of this exciting
area is to search for the three-dimensional U(1) quantum
spin liquid (QSL). The existence of this exotic quantum
phase of matter has been firmly established by the theo-
retical studies of the relevant and even realistic spin mod-
els on the pyrochlore lattice2,3,5,6,12,29,44–47. The exper-
imental confirmation of this interesting phase of matter,
however, is still open. Even if this phase may have al-
ready existed in some candidate materials, the firm iden-
tification of this exotic phase requires the strong mutual
feedback between the experimental progress and the the-
oretical development that provides and clarifies unique
and clear physical observables for the experiments.

The pyrochlore spin ice U(1) QSL is described by the
emergent compact U(1) lattice gauge theory with de-
confined and fractionalized excitations5,44. There are
three elementary excitations, namely, spinon, “magnetic
monopole”, and gauge photon in this U(1) QSL. Here the
nomenclature for the excitations follows from the original
work by Hermele, Fisher and Balents44 (see Table. I). To
confirm the realization of the U(1) QSL, one would need
at least observe one such emergent and exotic excitation.
Inelastic neutron scattering, that is a spectroscopic mea-
surement, is likely to provide much richer information
than any other experimental probes for the pyrochlore
spin ice systems28. It is thus of great importance to un-
derstand how the neutron moments are coupled to the
microscopic degrees of freedom and how the inelastic neu-
tron scattering (INS) results are related to the emergent
and exotic properties of the pyrochlore ice U(1) QSL. It
is this purpose that motivates our work in this paper.

We mainly deal with the non-Kramers doublets in most
parts of this paper. For a non-Kramers doublet4,50 that
is described by a pseudospin-1/2 operator S, the time re-

versal symmetry, T , acts rather peculiarly such that6,13,

T : Sx,y ! Sx,y, Sz ! �Sz. (1)

This property means the neutron moments would merely
pick up the Sz component and naturally measure the Sz

correlation. By examining the connection with the emer-
gent variables such as gauge fields and matter fields, we
point out that, the Sz correlation should detect the gauge
photons as well as the “magnetic monopoles”. The “mag-
netic monopole” is the topological defect of the emer-
gent vector gauge potential in the compact U(1) quan-
tum electrodynamics and has no classical analogue. Even
though the spinon and the “magnetic monopole” can be
interchanged by the electromagnetic duality of the lattice
gauge theory, the “magnetic monopole” might be more
close in spirit to the Dirac’s magnetic monopole

51 from
the original definition and theory of the pyrochlore U(1)
QSL44. The existence of the “magnetic monopole” is one
of the key properties of the compact U(1) lattice gauge
theory52 and the pyrochlore ice U(1) QSL44, and it is
of great importance to demonstrate that the “magnetic
monopole” is a real physical entity rather than any arti-
ficial or fictitious excitation.

Excitations (notation 1) Excitations (notation 2)

Spinon Magnetic monopole

“Magnetic monopole” Electric monopole

Gauge photon Gauge photon

TABLE I. Two di↵erent but equivalent notations for the exci-
tations in the pyrochlore ice U(1) QSL. The notation 1 was in-
troduced in Ref. 44 and is adopted in this paper. The notation
2 can be found in Ref. 48, and the magnetic monopole in this
notation has a classical analogue that is a defect tetrahedron
with either “3-in 1-out” or “1-in 3-out” spin configurations49.

In contrast, the Tb ion in Tb2Ti2O7, Pr ion in Pr2Ir2O7, Pr2Sn2O7, Pr2Zr2O7, etc, 
are non-Kramers doublets

Kramers doublet: e.g. Yb ion in Yb2Ti2O7

Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �T : Sx ! �Sx, Sy ! �Sy, Sz ! �Sz

CEF

(unusual example is dipole-octupole doublet in Ce2Sn2O7 and Nd2Zr2O7),  
YP Huang, GC, Hermele, PRL 2014; YD Li, GC, PRB2016, YD Li, GC, PRB 2017
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the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

Gang Chen, arXiv:1706.04333

Low energy theory
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
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where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
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The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.
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emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx
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we here keep only the nearest-neighbor “monopole” hop-
ping.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,
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where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory
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where L
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(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠
µ

(Q · R), (21)
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Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,
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where C

µ

= cos q
µ

(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.

FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.

From the momentum and the energy conservation, we
have for the two “monopoles”
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where q and E are the momentum and energy transfer
of the neutrons, q
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and q
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are the crystal momenta of
the two “monopoles”, and the o↵set Q arises from the
dual gauge link that is present in the “monopole” cur-
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= +). In Fig. 2, we depict the upper and
lower excitation edges of the “monopole” continuum for
a specific choice of “monopole” hopping and chemical po-
tential. Clearly, the spectral periodicity is enhanced in
both plots.

VI. DISCUSSION

A. Non-Kramers doublets

We discuss the application of our results to vari-
ous pyrochlore ice systems. We begin with the non-
Kramers doublets. The continuous excitations have ac-
tually been observed from the INS measurements on
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Suggestion 2: effect of the external magnetic field 3

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,
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where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
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interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
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and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s
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the momentum space. This may be difficult as the low-energy
photon excitation is also present in the low-energy INS data.
Thus, the higher energy part of the “monopole” continuum may
provide more useful information. It is certainly very exciting if
all three excitations, spinon, “magnetic monopole,” and gauge
photon, are confirmed by a combination of the INS and the
thermal transport measurements.

For the “monopole continuum,” probably the most positive
side in this identification of “monopole continuum” is that a
weak external magnetic field can be used to manipulate the
“monopole” continuum. With weak magnetic fields, the U (1)
QSL will not be destroyed, and the “magnetic monopole”
remains to be a valid description of the excitation of the
system. However, the external magnetic field, which only
couples linearly to the Sz components, polarizes Sz slightly
and thereby modifies the background dual U (1) gauge flux that
is experienced by the “monopole.” As a result, the “monopole”
band would probably develop a Hofstadter band [65], and the
spectral structure of the “monopole” continuum is modified.
How this “monopole” continuum is modulated depends on the
orientation and amplitude of the external magnetic fields. The
detailed behavior of the “monopole” continuum in the weak
field will be explored in future works.

B. Kramers doublets and numerical simulation

As for the usual Kramers doublets [2,5,28], all three
components of the local moments are odd under the time
reversal symmetry, and the neutron spin would couple to all
of them. Therefore, the INS results on the U (1) QSL with the
usual Kramers doublets would also detect the spin flipping
events out of the spin ice manifold and measure the spinon
continuum in addition to the gauge photon and the “monopole”
continuum. As we have already pointed out in the previous
sections, the visibility of the “monopole” continuum in the
INS data depends on the weight of the “monopole” continuum,
and may vary for different materials.

If the neutron energy transfer is located within the
“monopole” continuum, the spectral periodicity would experi-
ence an enhancement. If the neutron energy transfer is located
in the spinon continuum, the spectral periodicity is enhanced
(not enhanced) if the spinon experiences a background π (0)
flux on the diamond lattice [42].

The U (1) QSL has been explored by quantum Monte
Carlo simulation, and the photon mode was identified in
the Sz correlation function [47–49]. It might be of interest
to introduce further Sz interactions to possibly enhance and
manifest the “monopole” continuum in the Sz correlation [13].

C. Classification of the U(1) QSLs

Finally, let us remark on the translation symmetry frac-
tionalization patterns for the U (1) QSLs. In this work, we

TABLE II. Classification of distinct U (1) QSLs from the sym-
metry classification patterns of the spinons and the “magnetic
monopoles.” The first subindex refers to the flux that is experienced
by the spinon hopping around the hexagon plaquette on the diamond
lattice (see the second row), while the second subindex refers to
the flux that is experienced by the “monopole” hopping around the
hexagon plaquette on the dual diamond lattice (see the third row).
“Enhanced” and “not enhanced” refer to the spectral periodicity of
the related excitation continuum.

Properties U (1)0,π QSL U (1)π,π QSL

Spinon flux 0 π

“Monopole” flux π π

Spinon continuum Not enhanced Enhanced
‘Mmonopole” continuum Enhanced Enhanced

have focused on the “magnetic monopole” excitation and
found that the “magnetic monopole” experiences a background
dual U (1) flux on the dual diamond lattice. In the previous
work [42], we studied the spectral periodicity and the trans-
lation symmetry fractionalization for the spinon excitation.
The combination of the “magnetic monopole” and the spinon
symmetry fractionalization patterns results in a classification
of the distinct symmetry enriched U (1) QSLs in Table II.
Like the classification scheme that was developed for the
two-dimensional Z2 QSLs and applied to the Z2 toric code
model [66], one could use the result in Table II to further
establish the translation symmetry fractionalization for the
(fermionic) dyon that is a bound state of the spinon and
the “monopole.” Our classification not only helps improve
the understanding of the crystal symmetry fractionalization
in the U (1) QSLs, but also provides unique and detectable
experimental signatures for the U (1) QSLs.
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Motivated by the rapid experimental progress of quantum spin ice materials, we study the dy-
namical properties of pyrochlore spin ice in the U(1) spin liquid phases. In particular, we focus on
the spinon excitations that appear in high energies and show up as an excitation continuum in the
dynamic spin structure factor. The keen connection between the crystal symmetry fractionalization
of the spinons and the spectral periodicity of the spinon continuum is emphasized and explicitly
demonstrated. The enhanced spectral periodicity of the spinon continuum provides a sharp physical
observable to detect the spin quantum number fractionalization and U(1) spin liquid. Our prediction
can be immediately examined by inelastic neutron scattering experiments among quantum spin ice
materials with Kramers’ doublets. Further application to the non-Kramers’ doublets is discussed.

I. INTRODUCTION

The three-dimensional (3D) U(1) quantum spin liquid
(QSL) is an exotic quantum state of matter and is charac-
terized by fractionalized spinon excitation and emergent
U(1) gauge structure1. Since the spinons are gapped, the
low-energy property of the state is described by a com-
pact U(1) quantum electrodynamics in 3D1. This inter-
esting state was proposed more than one decade ago1–3.
Recently, there has been a very active search of this ex-
otic state among the rare-earth pyrochlore quantum spin
ice (QSI)4 materials5–39. Despite the abundance of QSI
materials and possible experimental evidences, the iden-
tification of U(1) QSL has not been achieved in any can-
didate material.

To confirm the U(1) QSL, one needs to identify
the emergent gauge structure and/or the fractionalized
spinon excitation. From the theoretical perspective,
these two things are related since the fractionalized ex-
citation naturally emerges in the deconfined phase of
the lattice gauge theory. Thus, identifying the emer-
gent gauge structure and finding the fractionalized spinon
excitations are equivalent. For the realistic pyrochlore
QSIs, the gauge photon and the spinon have drastically
di↵erent energy scales1,8,9. The gauge photon is the very
low energy excitation that operates on the spin ice man-
ifold28,35, while the spinons are the much higher energy
excitations that violate the spin ice rule1. Practically
speaking, the large energy-scale di↵erence between the
gauge photon and spinons suggests that the spinon exci-
tation might be a better experimental direction to search
for. Therefore, we focus on the experimental signature
of the spinon excitation and explore the spectral struc-
ture of the spinon continuum in the U(1) QSL in this
paper. In particular, we point out that the emergent
background U(1) gauge flux of the ground state enriches
the U(1) QSLs by creating distinct translational symme-
try fractionalization for the spinons. In the case that the
spinon experiences a ⇡ background flux, there is an en-
hanced spectral periodicity in the spinon continuum that
can be revealed by the dynamic spin structure factor in

an inelastic neutron scattering (INS) measurement. The
enhanced spectral periodicity is certainly not a property of
a conventional paramagnet and thus represents an unique

experimental signature of the U(1) QSL with ⇡ flux.
The following part of the paper is organized as follows.

In Sec. II, we introduce the XXZ model as the parent
model to extract the ⇡-flux U(1) QSL in the frustrated
and perturbative regime. In Sec. III, we explain the
translational symmetry fractionalization and predict its
consequence on the spectral periodicity of the spinon con-
tinuum. In Sec. IV, we explictly compute the spinon con-
tinuum with the parton-gauge contruction for the XXZ
model. In Sec. V, we discuss the candidate materials and
the related experimental consequences.

II. MODEL HAMILTONIAN AND
PERTURBATIVE ANALYSIS

We start with the spin-1/2 XXZ model on the py-
rochlore lattice. This model is the parent model for

FIG. 1. (Color online.) The schematic phase diagram of the
XXZ model on the pyrochlore lattice. The AFM0 stands for
the magnetic ordered state that is proximate to the U(1)0
QSL40. The colored region refers to the QSI regime. The solid
lines indicate a finite temperature magnetic ordering transi-
tion. The dashed line indicates the crossover temperature to
the spin ice regime. See the main text and Tab. I for details.
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Summary

1. We point out the existence of “magnetic monopole continuum” in the  
   U(1) quantum spin liquid, and monopole is purely quantum origin. 

2. We further point out that the “magnetic monopole” always experiences 
   a Pi flux, and thus supports enhanced spectral periodicity with folded  
   Brillouin zone.
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
  ( R. Sibille, et al, arXiv 1706.03604 Nature Physics). 
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