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two-electron -> Cooper pair -> superconductor (odd/even parity)! 
1/2 electron  -> Majorana fermion -> topo quantum computation 
spin-1/2 chain -> gapless, 
spin-1 chain -> Haldane gap  
topological insulator -> Z2 topological invariant  
Z2 topological order, Z2 quantum spin liquid …… 
fermion doubling theorem, two Weyl nodes in Weyl semimetal  
single-layer graphene vs bilayer-layer graphene… 

two (not 3) neutron stars emerge……

2-electron -> cooper pairs condense , 
superconductor,


Z2 topological invariant for time-reversal invariant 
topological insulator 


haldane chain, 


s-wave 

p-wave

odd/even parity superconductor 


前⼏几天 报告的 2个中⼦子星的合并
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Classical spin ice ( NOT a spin liquid ! )

Pauling entropy in spin ice

2-in 2-out  
spin ice rule

2-in 2-out  
water ice rule
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H H=
Dy2Ti2O7

Ramirez, etc, Science 1999
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Lattice gauge theory for U(1) spin liquid
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TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
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> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
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and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s
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T s
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, (5)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

3rd order degenerate perturbation 
(Hermele, Fisher, Balents 2004)
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for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)
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QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)
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QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.
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rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
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ory through the XXZ model but emphasize the model-
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz
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(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9
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FIG. 2. (Color online.) The diamond lattice formed by the
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hopping for a specific gauge choice for the ⇡ flux. (b) The
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that are marked by 1�, 2�, 3� and 4�, experience the U(1)
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for quantum Monte Carlo simulation and is thus less ex-
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stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
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QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
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QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
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tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
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hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
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for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
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remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

= ±1

If K < 0, curlA = ⇡

If K > 0, curlA = 0

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

2

“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H

big

= H
spin

⌦ H
Q

,
where H

spin

=
N

N

H
1/2

is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H

big

to the subspace H, in which

Qr = ⌘r
X

µ

szr,r+⌘reµ
, (2)

where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr

counts the number of spinons. The restriction of Qr, �r

and �†
r to H exactly reproduces all matrix elements of

the original H
spin

, with the replacements

S+r,r+eµ
= �†

r s
+

r,r+eµ
�r+eµ , Szr,r+eµ

= szr,r+eµ
. (3)

Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes

H =
X

r2I,II

J
zz

2
Q2

r � J±

8
<

:
X

r2I

X

µ,⌫ 6=µ

�†
r+eµ

�r+e⌫
s�r,r+eµ

s+r,r+e⌫
+

X

r2II

X

µ,⌫ 6=µ

�†
r�eµ

�r�e⌫
s+r,r�eµ

s�r,r�e⌫

9
=

; (4)

�J
z±

8
<

:
X

r2I

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�r+e⌫

szr,r+eµ
s+r,r+e⌫

+ h.c.
⌘
+

X

r2II

X

µ,⌫ 6=µ

⇣
�⇤
µ⌫

�†
r�e⌫

�
r

szr,r�eµ
s+r,r�e⌫

+ h.c.
⌘
9
=

;+ const..

The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-
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Pi flux means crystal symmetry fractionalization

3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
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We now explore the sepctroscopic consequence of the
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the spinons in the U(1)
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QSL. To reveal the property
of the spinon continuum, we consider a generic two-
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the following, we apply the approach that was developed
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their crystal momenta suggest that, there is an enhanced
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tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
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periodicity enhancement is a rather unique property of
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QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
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The U(1)
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QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
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i
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
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Sz

i
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j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
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gauge fixing condition enlarges the unit cell for the
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/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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�iĀrir

0
j i, (20)

where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.
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V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q
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; z
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i, where q
A

is
the total crystal momentum of this state and z
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repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that
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where T
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is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,
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the following relations for the crystal momentum of the
these states,

q
B

= q
A

+ 2⇡(100), (17)

q
C

= q
A

+ 2⇡(010), (18)

q
D

= q
A

+ 2⇡(001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spec-
tral periodicity such that

L

m

(q) = L

m

(q+ 2⇡(100))

= L

m

(q+ 2⇡(010))

= L

m

(q+ 2⇡(001)), (20)

where L

m

(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠
µ

(Q · R), (21)

where R 2 I sublattice of the dual diamond lattice, and
R+ e

µ

2 II sublattice of the dual diamond lattice with
e
µ

(µ = 0, 1, 2, 3) the nearest-neighbor vectors connecting
two sublattices. Here e

0

= 1

4

(111), e
1

= 1

4

(11̄1̄), e
2

=
1

4

(1̄11̄), e
3

= 1

4

(1̄1̄1), (⇠
0

, ⇠
1

, ⇠
2

, ⇠
3

) = (0, 1, 1, 0) and Q =
2⇡(100).

Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,

H
MFT

= �t
X

hRR0i

e�i2⇡h↵RR0 i�†
R�R0 � µ

X

R

�†
R�R,(22)

where the “monopole” spectrum is found to be

⌦+
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FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.

where C

µ

= cos q
µ

(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.
From the momentum and the energy conservation, we
have for the two “monopoles”

q = q
1

+ q
2

+Q, (23)

E = ⌦i1
j1
(q

1

) + ⌦i2
j2
(q

2

), (24)

where q and E are the momentum and energy transfer
of the neutrons, q

1

and q
2

are the crystal momenta of
the two “monopoles”, and the o↵set Q arises from the
dual gauge link that is present in the “monopole” cur-
rent. The minimum (maximum) of the energy E is ob-
tained when i

1

= i
2

= � and j
1

= j
2

= + (i
1

= i
2

= +
and j

1

= j
2

= +). In Fig. 2, we depict the upper and
lower excitation edges of the “monopole” continuum for
a specific choice of “monopole” hopping and chemical po-
tential. Clearly, the spectral periodicity is enhanced in
both plots.
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VI. DISCUSSION

A. Non-Kramers doublets

We discuss the application of our results to vari-
ous pyrochlore ice systems. We begin with the non-
Kramers doublets. The continuous excitations have ac-
tually been observed from the INS measurements on
Pr

2

Zr
2

O
7

, Tb
2

Ti
2

O
7

and Pr
2

Hf
2

O
7

32,60,61. In partic-
ular, in the INS result for Pr

2

Hf
2

O
7

60, besides the very
low-energy features that seem to resemble the suppressed
spectral intensity of the photon mode, there exists a
broad excitation continuum extending to higher ener-
gies. This continuum may be attributed to the ran-
dom strain e↵ect that has already been suggested to
Pr

2

Zr
2

O
7

32,43,62. Nevertheless, the random strain ef-
fect was also suggested to create quantum entanglement
and induce U(1) QSL phase in non-Kramers doublet sys-
tems43. Therefore, if the underlying systems realize the
U(1) QSL, according to our theory, these mysterious con-
tinuous excitations may at least contain the contribution
from the two-“monopole” continuum that is predicted in
this work.

How does one verify the above claim of the “monopole”
continuum in the INS measurement? We here propose
a scheme to exclude the presence of the spinon contin-
uum in the INS result by conducting a thermal transport
measurement. Spinons are higher energy excitations, and
their contribution to thermal conductivity should appear
at higher temperatures63. If one observes that the energy
scale of the continuum in the INS measurement is clearly
lower than the temperature scale where the spinons con-
tribute to the thermal conductivity, one could then con-
clude the presence of the spinon excitation in the thermal
conductivity results and the absence of the spinon exci-
tation in the continuum of the INS results. The direct
measurement would be the confirmation of the enhanced
spectral periodicity of the “monopole” continnum in the
momentum space. This may be di�cult as the low-energy
photon excitation is also present in the low-energy INS
data. Thus, the higher energy part of the “monopole”
continnum may provide more useful information. It is
certainly very exciting if all the three excitations, spinon,
“magnetic monopole”, and gauge photon are confirmed
by a combination of the INS and the thermal transport
measurements.

For the “monopoles continuum”, probably the most
positive side in this identification of “monopole contin-
uum” is that weak external magnetic field can be used to
manipulate the “monopole” continuum. With weak mag-
netic fields, the U(1) QSL will not be destroyed, and the
“magnetic monopole” remains to be a valid description
of the excitation of the system. However, the external
magnetic field, that only couples linearly to the Sz com-
ponents, polarizes Sz slightly and thereby modifies the
background dual U(1) gauge flux that is experienced by
the “monopole”. As a result, the “monopole” band would
probably develop a Hofstadter band64, and the spectral

Properties U(1)0,⇡ QSL U(1)
⇡,⇡

QSL

spinon flux 0 ⇡

“monopole” flux ⇡ ⇡

spinon continuum not enhanced enhanced

“monopole” continuum enhanced enhanced

TABLE II. A classification of distinct U(1) QSLs from the
symmetry classification patterns of the spinons and the “mag-
netic monopoles”. The first subindex refers to the flux that is
experienced by the spinon hopping around the hexagon pla-
quette on the diamond lattice (see the second row), while the
second subindex refers to the flux that is experienced by the
“monopole” hopping around the hexagon plaquette on the
dual diamond lattice (see the third row). In the table, “en-
hanced” and “not enhanced” refer to the spectral periodicity
of the related excitation continuum.

structure of the “monopole” continuum is modified. How
this “monopole” continuum is modulated depends on the
orientation and the amplitude of the external magnetic
fields. The detailed behavior of the “monopole” contin-
uum in the weak field will be explored in future works.

B. Kramers doublets and numerical simulation

As for the usual Kramers doublets2,5,28, all the three
components of the local moments are odd under the time
reversal symmetry, and the neutron spin would couple
to all of them. Therefore, the INS results on the U(1)
QSL with the usual Kramers doublets would also detect
the spin flipping events out of the spin ice manifold and
measure the spinon continuum in addition to the gauge
photon and the “monopole” continuum. As we have al-
ready pointed out in the previous sections, the visibility
of the “monopole” continuum in the INS data depends
on how much weight of the “monopole” continuum, and
may vary for di↵erent materials.
If the neutron energy transfer is located within the

“monopole” continuum, the spectral periodicity would
experience an enhancement. If the neutron energy trans-
fer is located in the spinon continuum, the spectral peri-
odicity is enhanced (not enhanced) if the spinon experi-
ences a background ⇡ (0) flux on the diamond lattice42.
The U(1) QSL has been explored by quantum Monte

carlo simulation, and the photon mode was identified in
the Sz correlation function45–47. It might be of interest
to introduce further Sz interactions to possibly enhance
and manifest the “monopole” continuum in the Sz cor-
relation13.

C. A classification of the U(1) QSLs

Finally, let us remark on the translation symmetry
fractionalization patterns for the U(1) QSLs. In this
work, we have focused on the “magnetic monopole” exci-

One can think about the symmetry fractionalization  
pattern of “fermionic dyons”.
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Fractionalized crystal momentum for  
the spinons and magnetic monopoles

3D U(1) spin liquid / topological order  

Fractionalization: fractionalized & deconfined excitation  
Maxwell field theory with compact U(1) gauge structure
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Suggestion 1: combine thermal transport with inelastic neutron
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Suggestion 2: effect of the external magnetic field 3

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

HZeeman = ~B ·
X

i

Sz
i ẑi

The weak magnetic field polarizes Sz slightly, and thus modifies  
the background electric field distribution. This further modulates  
monopole band structure, creating “Hofstadter” monopole band,  
which may be detectable in inelastic neutron. 

THz can also do the job, but only at Gamma point.
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Summary
1. We point out the existence of “magnetic monopole continuum” in the  

   U(1) quantum spin liquid, and monopole is purely quantum origin. 

2. We point out that the “magnetic monopole” always experiences 
   a Pi flux, and thus supports enhanced spectral periodicity with folded  
   Brillouin zone, while spinons most of the time experience Pi flux.
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
          ( R. Sibille, et al, arXiv 1706.03604). 

          Gang Chen, Phys. Rev. B 96, 085136 (2017)
Gang Chen, arXiv 1706.04333 (2017) 
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