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FIG. 1: (Color online) Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b) 6H-B, and
(c) 3C. Solid curves are the best fits obtained from Rietveld refinements using FullProf. Schematic crystal structures for the
Ba3NiSb2O9 polytypes: (d) 6H-A, (e) 6H-B, and (f) 3C, red octahedra represents Sb(M’) site and blue octahedra represents
Ni2/3Sb1/3(M) site. Magnetic lattices composed of Ni2+ ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.

ers of the Ni triangular lattice are displaced with respect
to each other in a way that the Ni ion in one layer is pro-
jected towards the center of the triangle formed by the
Ni ions in the adjacent layers along the c-axis, as shown
in Fig. 1(h). The instability of the 6H-A phase should
arise from the fact that high pressures tend to reduce the
Sb5+-Sb5+ distance and therefore partially relieve strong
electrostatic repulsion by exchanging Ni with one of the
Sb atoms. Battle et al. reported a similar structure for
the 6H-B phase [25], but with no physical characteriza-
tion.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure.
This 3C phase was obtained under 9 GPa and at a tem-
perature of 1000 ◦C kept for 30 min. Its XRD pattern
(Fig. 1(c)) is best described as a double-perovskite in
a Ba2MM’O6 model with the cubic space group Fm-3m
having a lattice parameter a = 8.1552(2) Å. The refine-
ment shows a full-ordered arrangement of Ni2/3Sb1/3 and
Sb atoms at the M and M’ sites (Fig. 1(f)), respectively.
Therefore the Ni2/3Sb1/3 sites form a network of edge-
shared tetrahedra, as shown in Fig. 1(i). Instead of
adopting a primitive perovskite structure in which the
Ni2+ and Sb5+ ions are randomly distributed, the pre-
ferred double-perovskite structure should be attributed
to the large difference in charges between the Ni2+ and
the Sb5+ ions.

All three samples are insulators with the room temper-
ature resistance higher than 20 MΩ. The DC magnetic
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FIG. 2: (Color online) (a) Temperature dependencies of the
DC magnetic susceptibility (χ) for the Ba3NiSb2O9 poly-
types. Inset: Temperature dependencies of 1/χ. The solid
lines on 1/χ data represent Curie-Weiss fits. For 6H-B phase,
χ (open squares) is obtained by subtracting 1.7% Ni2+ or-
phan spin’s contribution (crosses) from the as measured data
(solid squares).

susceptibility (χ(T ), Fig. 2) for all three compounds was
measured under a field H = 5000 Oe. For each com-
pound, one does not observe any difference between the
data measured under zero-field-cooled (ZFC) and that
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FIG. 3: (Color online) (a) Temperature dependencies for the
magnetic specific heat (CM ) for all three Ba3NiSb2O9 poly-
types. Solid lines are the fits as described in the main text.
Inset: variation in magnetic entropy ∆S below 30 K.

measured under field-cooled (FC) conditions. The 6H-A
sample exhibits a cusp-like anomaly at the antiferromag-
netic ordering temperature TN = 13.5 K, as previously
reported [24]. On the other hand, neither the 6H-B nor
the 3C phase show any sign of long range magnetic order
down to 2 K. For the 6H-B phase, we have subtracted
the Curie contribution provided by 1.7 % Ni2+ of orphan
spins from the as measured data. This percentage of
Ni2+ orphan spins was calculated from fitting the spe-
cific heat data[26]. After this subtraction, χ(T ) for the
6H-B phase (open squares in Fig. 2) basically saturates
below 25 K with a saturation value χ0 ∼ 0.013 emu/mol.
The fittings of the high-temperature region of χ−1(T ) to
the Curie-Weiss law show that all three compounds have
the same value for effective moment, µeff ∼ 3.54 µB, as
seen from the fact that all three χ−1(T ) curves are ba-
sically parallel to each other (insert of Fig. 2). This
value gives a g-factor of 2.5, which is close to the typical
value for Ni2+ ions with spin-orbital coupling[27]. The
Curie-Weiss temperatures, θCW, obtained for the 6H-A,
6H-B, and 3C phases are -116.9(4) K, -75.6(6) K, and
-182.5(3) K, respectively, indicating dominant antiferro-
magnetic interactions for all compounds.

The magnetic specific-heat (CM , Fig. 3) for each com-
pound was obtained by subtracting the heat capacity of
the non-magnetic compound Ba3ZnSb2O9 ordered in the
6H-A, 6H-B, and 3C phases, respectively, which are used
here as lattice standards. For the 6H-B phase a Schottky
anomaly due to 1.7% of Ni2+ orphan spins was also sub-
tracted, see Supplemental Materials[26]. For the 6H-A
phase, CM shows a sharp peak around TN = 13.5 K. On
the other hand, for both the 6H-B and the 3C phases,
CM which emerges from around 30 K, shows a broad
peak around 13 K with no sign for long-range magnetic-
order down to T = 0.35 K. For the 6H-B and the 3C

phases, CM is not at all affected by the application of
a magnetic field as large as H = 9 T. Below 30 K, the
associated change in magnetic entropy (inset of Fig. 3)
is 5.0 J/mol-K, 3.7 J/mol-K, and 2.0 J/mol-K for the
6H-A, 6H-B, and the 3C phase, respectively. These val-
ues correspond respectively, to 55%, 41%, and 22% of
R ln(3) for a S = 1 system, where R is the gas constant.
The remarkable result is that CM at low temperatures
for all three phases follows a γTα behavior, but with a
distinct value of α for each phase. As shown in Fig. 3,
a linear fit of CM plotted in a log-log scale yields respec-
tively, γ = 2.0(1) mJ/mol-K4 and α = 3.0(2) for the
6H-A phase in the range 1.8 ≤ T ≤ 10 K, γ = 168(3)
mJ/mol-K2 with α = 1.0(1) for the 6H-B phase when
0.35 ≤ T ≤ 7 K, and γ = 30(2) mJ/mol-K3 with α =
2.0(1) for 3C phase within 0.35 ≤ T ≤ 5 K.
Both the susceptibility and the specific heat show no

evidence for magnetic ordering down to T = 0.35 K for ei-
ther the 6H-B or the 3C phase, despite moderately strong
antiferromagnetic interactions. The 41% (6H-B) and the
22% (3C) change in magnetic entropy also indicates a
high degeneracy of low-energy states at low tempera-
tures. These behaviors suggest that both the 6H-B and
3C phases are candidates for spin liquid behavior. For
the 6H-A phase, the CM ∝ T 3 behavior observed below
TN is typical for 3D magnons [28]. This indicates that
besides the intra-layer magnetic interactions within the
Ni2+ triangular lattice, the inter-layer coupling is also
relevant for this phase. As for the 6H-B phase, on the
other hand, the relative shift of the two nearest Ni2+ tri-
angular layers leads to a frustrated inter-layer magnetic
coupling, which prevents 3D long-range magnetic-order.
The linear-T dependent CM of the 6H-B phase is unusual
for a magnetic insulator having a 2D frustrated lattice.
Naively, for a 2D lattice one would expect CM to display
a T 2 dependence given by a linearly dispersive low-energy
mode [19].
In fact, a series of recent low temperature studies re-

veal that CM ∝ γT , with a considerable large value for γ,
is a common feature among QSL candidates [11, 29, 30].
For example, ET[11], dmit[29], and Ba3CuSb2O9[30], all
composed of a S = 1/2 triangular lattice, display γ =
12.0 mJ/mol-K2, 19.9 mJ/mol-K2, and 43.4 mJ/mol-
K2, respectively. It has been proposed theoretically that
magnetic excitations or quasiparticles called spinons can
lead to a Fermi surface even in a Mott insulator, which
yields a linear term in the specific heat after the U(1)
gauge fluctuation is suppressed due to partial pairing on
the fermi surface[31]. The observation of a saturation
in χ(T ) for 6H-B phase enables us to calculate the Wil-
son ratio, RW = [4π2kB2χ0]/[3(gµB)2γ]. One obtains a
value of 5.6 by using χ0 = 0.013 emu/mol and γ = 168
mJ/mol-K2. In metals, a Pauli-like paramagnetic suscep-
tibility and a linear-T dependent heat capacity, as seen
for the 6H-B phase at lower temperatures, which leads
to a concomitant RW in the order of unity, are conven-
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FIG. 1: (Color online) Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b) 6H-B, and
(c) 3C. Solid curves are the best fits obtained from Rietveld refinements using FullProf. Schematic crystal structures for the
Ba3NiSb2O9 polytypes: (d) 6H-A, (e) 6H-B, and (f) 3C, red octahedra represents Sb(M’) site and blue octahedra represents
Ni2/3Sb1/3(M) site. Magnetic lattices composed of Ni2+ ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.

ers of the Ni triangular lattice are displaced with respect
to each other in a way that the Ni ion in one layer is pro-
jected towards the center of the triangle formed by the
Ni ions in the adjacent layers along the c-axis, as shown
in Fig. 1(h). The instability of the 6H-A phase should
arise from the fact that high pressures tend to reduce the
Sb5+-Sb5+ distance and therefore partially relieve strong
electrostatic repulsion by exchanging Ni with one of the
Sb atoms. Battle et al. reported a similar structure for
the 6H-B phase [25], but with no physical characteriza-
tion.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure.
This 3C phase was obtained under 9 GPa and at a tem-
perature of 1000 ◦C kept for 30 min. Its XRD pattern
(Fig. 1(c)) is best described as a double-perovskite in
a Ba2MM’O6 model with the cubic space group Fm-3m
having a lattice parameter a = 8.1552(2) Å. The refine-
ment shows a full-ordered arrangement of Ni2/3Sb1/3 and
Sb atoms at the M and M’ sites (Fig. 1(f)), respectively.
Therefore the Ni2/3Sb1/3 sites form a network of edge-
shared tetrahedra, as shown in Fig. 1(i). Instead of
adopting a primitive perovskite structure in which the
Ni2+ and Sb5+ ions are randomly distributed, the pre-
ferred double-perovskite structure should be attributed
to the large difference in charges between the Ni2+ and
the Sb5+ ions.

All three samples are insulators with the room temper-
ature resistance higher than 20 MΩ. The DC magnetic
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FIG. 2: (Color online) (a) Temperature dependencies of the
DC magnetic susceptibility (χ) for the Ba3NiSb2O9 poly-
types. Inset: Temperature dependencies of 1/χ. The solid
lines on 1/χ data represent Curie-Weiss fits. For 6H-B phase,
χ (open squares) is obtained by subtracting 1.7% Ni2+ or-
phan spin’s contribution (crosses) from the as measured data
(solid squares).

susceptibility (χ(T ), Fig. 2) for all three compounds was
measured under a field H = 5000 Oe. For each com-
pound, one does not observe any difference between the
data measured under zero-field-cooled (ZFC) and that
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Exotic S = 1 spin liquid state with fermionic excitations on triangular lattice

Maksym Serbyn, T. Senthil, and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Dated: August 23, 2011)

Motivated by recent experiments on the material Ba3NiSb2O9 we consider a spin-one quantum
antiferromagnet on a triangular lattice with the Heisenberg bilinear and biquadratic exchange inter-
actions and a single-ion anisotropy. Using a fermionic “triplon” representation for spins, we study
the phase diagram within mean field theory. In addition to a fully gapped spin-liquid ground state,
we find a state where one gapless triplon mode with Fermi surface coexists with d + id topological
pairing of the other triplons. Despite the existence of a Fermi surface, this ground state has fully
gapped bulk spin excitations. Such a state has linear in temperature specific heat and constant in
plane spin susceptibility, with an unusually high Wilson ratio.

PACS numbers: 71.27.+a, 75.10.Jm, 75.10.Kt, 75.30.Kz

Spin liquid (SL) is a long sought exotic state of matter
proposed by Anderson [1], where long range magnetic or-
der is destroyed by quantum fluctuations at zero temper-
ature. A number of materials have been discovered which
are promising candidates for two-dimensional S = 1/2
SL state [2]. More recently, possible SL materials with
S = 1 have been discussed. One example is the insulating
spin-1 quantum magnet on a triangular lattice, NiGa2S4,
reported by Nakatsuji et al [3]. This material motivated
a number of theoretical papers proposing different mi-
croscopic realizations of S = 1 SL [4–7]. Recently high
pressure synthesis of the two-dimensional triangular mag-
net Ba3NiSb2O9 [8] has produced two new phases which
possibly realize two and three-dimensional S = 1 SL. In
particular the 6H-B phase, described as a triangular lat-
tice of Ni2+ ions, shows no magnetic ordering down to
T = 350 mK along with linear in temperature specific
heat (with unusually high coefficient) and constant spin
susceptibility. The metal-like behavior of specific heat
and spin susceptibility observed in the insulating 6H-A
phase suggest the presence of quasiparticle excitations
with a Fermi surface.
Motivated by this newly discovered material, in the

present Letter we propose a new candidate SL ground
state with exotic physical properties. Our model system
consists of quantum S = 1 spins forming a triangular
lattice. For simplicity, we consider only nearest neighbor
interactions. The general form of Hamiltonian can be
written as

H =
∑

⟨ij⟩

[JS⃗i · S⃗j +K(S⃗i · S⃗j)
2] +D

∑

i

(Sz
i )

2, (1)

where we included Heisenberg exchange interaction with
coupling J > 0 and biquadratic exchange with cou-
pling K. In addition we allow easy-plane or easy-axis
type of anisotropy controlled by the parameter D, but
we neglect this anisotropy in the couplings J and K
since it is presumably small for transition metals. The
Hamiltonian (1) has been considered in the literature in
limits when the anisotropy is either zero or dominates

FIG. 1. Schematic representation of the ground state in dif-
ferent limits of the Hamiltonian (1). White arrows represent
average spin; arrows with discs indicate the director of the
nematic order parameter. Details are discussed in the text.

over other couplings, or there are longer range compet-
ing exchange couplings. Fig. 1 summarizes known results
for the ground state (GS) phase diagram in a schematic
way. There are three different phases on the line of zero
anisotropy D = 0 [9–12]: in the range K = −0.4J . . . J
GS is 120◦-degree antiferromagnet (AFM). For larger
negative K system favors collinear ferro-nematic (FN)
order, i.e. nematic order that does not break lattice
translational symmetry. In this state the average spin
vanishes ⟨S⃗⟩ = 0, but full spin rotation symmetry is
broken down to rotations around an axis specified by
the director vector d (see Refs. [10, 11] and discussion
below). For positive K > J the ground state is de-
scribed by aniferro-nematic (AFN) order. In this state
director vectors di on three different sublattices are or-
thogonal to each other (see Fig. 1), thus breaking lattice
translation symmetry. In the extreme case of easy-plane
anisotropy (D ≫ J, |K|), the GS is a trivial product
of states of |Sz = 0⟩ on all sites, corresponding to the
trivial single-site FN order. For large but negative D,
implying extreme easy axis anisotropy, only two states
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we find a state where one gapless triplon mode with Fermi surface coexists with d + id topological
pairing of the other triplons. Despite the existence of a Fermi surface, this ground state has fully
gapped bulk spin excitations. Such a state has linear in temperature specific heat and constant in
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proposed by Anderson [1], where long range magnetic or-
der is destroyed by quantum fluctuations at zero temper-
ature. A number of materials have been discovered which
are promising candidates for two-dimensional S = 1/2
SL state [2]. More recently, possible SL materials with
S = 1 have been discussed. One example is the insulating
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reported by Nakatsuji et al [3]. This material motivated
a number of theoretical papers proposing different mi-
croscopic realizations of S = 1 SL [4–7]. Recently high
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net Ba3NiSb2O9 [8] has produced two new phases which
possibly realize two and three-dimensional S = 1 SL. In
particular the 6H-B phase, described as a triangular lat-
tice of Ni2+ ions, shows no magnetic ordering down to
T = 350 mK along with linear in temperature specific
heat (with unusually high coefficient) and constant spin
susceptibility. The metal-like behavior of specific heat
and spin susceptibility observed in the insulating 6H-A
phase suggest the presence of quasiparticle excitations
with a Fermi surface.
Motivated by this newly discovered material, in the

present Letter we propose a new candidate SL ground
state with exotic physical properties. Our model system
consists of quantum S = 1 spins forming a triangular
lattice. For simplicity, we consider only nearest neighbor
interactions. The general form of Hamiltonian can be
written as

H =
∑

⟨ij⟩

[JS⃗i · S⃗j +K(S⃗i · S⃗j)
2] +D

∑

i

(Sz
i )

2, (1)

where we included Heisenberg exchange interaction with
coupling J > 0 and biquadratic exchange with cou-
pling K. In addition we allow easy-plane or easy-axis
type of anisotropy controlled by the parameter D, but
we neglect this anisotropy in the couplings J and K
since it is presumably small for transition metals. The
Hamiltonian (1) has been considered in the literature in
limits when the anisotropy is either zero or dominates

FIG. 1. Schematic representation of the ground state in dif-
ferent limits of the Hamiltonian (1). White arrows represent
average spin; arrows with discs indicate the director of the
nematic order parameter. Details are discussed in the text.

over other couplings, or there are longer range compet-
ing exchange couplings. Fig. 1 summarizes known results
for the ground state (GS) phase diagram in a schematic
way. There are three different phases on the line of zero
anisotropy D = 0 [9–12]: in the range K = −0.4J . . . J
GS is 120◦-degree antiferromagnet (AFM). For larger
negative K system favors collinear ferro-nematic (FN)
order, i.e. nematic order that does not break lattice
translational symmetry. In this state the average spin
vanishes ⟨S⃗⟩ = 0, but full spin rotation symmetry is
broken down to rotations around an axis specified by
the director vector d (see Refs. [10, 11] and discussion
below). For positive K > J the ground state is de-
scribed by aniferro-nematic (AFN) order. In this state
director vectors di on three different sublattices are or-
thogonal to each other (see Fig. 1), thus breaking lattice
translation symmetry. In the extreme case of easy-plane
anisotropy (D ≫ J, |K|), the GS is a trivial product
of states of |Sz = 0⟩ on all sites, corresponding to the
trivial single-site FN order. For large but negative D,
implying extreme easy axis anisotropy, only two states
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with Sz = ±1 on each site survive. This system can be
described by a spin-1/2 XXZ model with all exchange
couplings being antiferromagnetic if 2J > K > 0 or with
Jz being frustrating and J⊥ ferromagnetic if K < 0. In
both cases there is spin density wave ordering of the z-
component of the spin in the GS, supplemented by planar
AFN order in former and collinear nematic order in the
latter case [13].
Physically for Ba3NiSb2O9 we may expect the ex-

change coupling J to be the largest with J > |K|, |D|.
Both signs of D seems plausible. Likewise it is not known
what sign of the biquadratic exchangeK is realized, even
though negative K can be obtained from large U expan-
sion of certain multi-orbital Hubbard model or from cou-
pling to phonons. Therefore in what follows we study
the phase diagram of Hamiltonian (1) for both signs of
D and K but will assume |D|, |K| < J . Except of very
small |D|, this is outside of the regions of known GS’s
shown in Fig. 1. In order to to get access to the (RVB-
like) state with fermion excitations, we use the fermion
representation of the spin [6]. After this we study result-
ing phase diagram in the mean field approximation.
Fermion representation. The spin operator is conve-

niently represented via a set of three operators called
triplons which are labeled by index α = x, y, z. In earlier
papers [7, 9] these operators were bosons, but here we
use fermions [6] written as a vector f⃗i = (fix, fiy, fiz)T ,

S⃗i = −if⃗ †
i × f⃗i, f⃗ †

i · f⃗i = 1. (2)

In terms of Sz eigenstates, we used the following basis to
represent the states of S = 1, |x⟩ = i(|1⟩ − | − 1⟩)/

√
2,

|y⟩ = (|1⟩ + | − 1⟩)/
√
2, |z⟩ = −i|0⟩, since it facilitates

the handling of the biquadratic term in the Hamiltonian.
Eq. (2) also imposes a constraint of single occupation in
order to exclude unphysical states from the Hilbert space.
In the mean field theory this constraint will be relaxed
to hold only on average. There are two possible choices
of constraint for spin-one system: the particle represen-
tation that we used above and the hole representation
f⃗ †
i · f⃗i = 2. In contrast to the case of S = 1/2, these
are not equivalent. Nevertheless, they can be mapped
into each other by particle-hole transformation plus a
change of the sign of hopping. Therefore we consider
only particle representation but do not restrict hopping
to be positive to include the hole representation [14].
The chosen spin representation has U(1) redundancy

remaining [6, 14]: one can multiply f⃗i by a phase fac-
tor leaving the spin intact. In addition, in the absence
of D there is a spin rotation symmetry, realized by the
simultaneous rotation of the vectors f⃗i and (f⃗ †

i )
T . Non-

zero anisotropy D breaks full spin rotation symmetry to
rotation symmetry in xy-plane supplemented by the re-
flection of spin along z-axis.
The bilinear term is expressed via fermions as S⃗i · S⃗j =

(f⃗ †
i · f⃗ †

j )(f⃗i · f⃗j) + f⃗ †
i (f⃗i · f⃗

†
j )f⃗j . Using the constraint f⃗ †

i ·

f⃗i = 1, the biquadratic term also can be expressed as a
product of four fermion operators [9], (S⃗i · S⃗j)2 = 1 −
(f⃗ †

i · f⃗
†
j )(f⃗i · f⃗j). Adding a Lagrange multiplier to enforce

the single occupancy constraint (2) on average, we have

H =
∑

⟨ij⟩

[Jf⃗ †
i (f⃗i · f⃗

†
j )f⃗j + (J −K)(f⃗ †

i · f⃗
†
j )(f⃗i · f⃗j) +K]

+
∑

i

[µ(1− f⃗ †
i · f⃗i) +D(1− f †

izfiz)], (3)

Mean field results. Having expressed the Hamiltonian
via fermion operators we study the mean field phase dia-
gram of our model. To unambiguously decouple quartic
fermion terms, we use the Feynman variational princi-
ple [15, 16] which is equivalent to the trial wave functions
approach. We define an action based on the Hamilto-

nian (3), S =
∫ β
0
dτ

[
∑

i f
†
iα(∂τ − µ)fiα +H

]

, as well as

the trial quadratic action, S̃, with H replaced by H̃,

H̃ =
∑

⟨ij⟩

[f⃗ †
i Tij f⃗j + f⃗ †

iAij f⃗
†
j +H.c.] +

∑

i

f⃗ †
i tif⃗i. (4)

The mean field parameters Tij , Aij , and ti are de-
termined from the stationary points of the functional
Ψ[S̃] = ⟨S − S̃⟩S̃ − log Z̃,

Tαβ
ij = −J δαβ⟨f †

jκfiκ⟩+ (J −K)⟨f †
jαfiβ⟩,
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odd channel, since it is possible only with odd orbital
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rameter ∆e ∼ ⟨(f⃗i × f⃗j)z⟩ = ⟨fixfjy − fiyfjx⟩ is allowed.
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Both signs of D seems plausible. Likewise it is not known
what sign of the biquadratic exchangeK is realized, even
though negative K can be obtained from large U expan-
sion of certain multi-orbital Hubbard model or from cou-
pling to phonons. Therefore in what follows we study
the phase diagram of Hamiltonian (1) for both signs of
D and K but will assume |D|, |K| < J . Except of very
small |D|, this is outside of the regions of known GS’s
shown in Fig. 1. In order to to get access to the (RVB-
like) state with fermion excitations, we use the fermion
representation of the spin [6]. After this we study result-
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niently represented via a set of three operators called
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FIG. 2. The phase boundary between SL GS’s with p+ip and
d + id pairing. (a) The spin susceptibility χ̃xx in the d + id
phase as a function of D/J for K/J = 0.55. The susceptibility
is normalized by the average density of states, ν̄ = (νx+νz)/2,
where νx is calculated without the gap. (b) Gapped (dashed
red line) and ungapped (blue line) Fermi surfaces of x, y, and
z-fermions for K/J = 0.55, D/J = 0.8.

modes at the boundaries. The physics of these modes
will be discussed elsewhere.
The combination of gapless excitations with topolog-

ical pairing gives rise to a number of unusual physical
properties, that may explain the results of the recent ex-
periment [8]. Due to ungapped fz excitations the spe-
cific heat depends linearly on temperature near T = 0,
C = π2k2BνzT/3, where νz is the density of states of
fiz at the Fermi surface. Due to Higgs mechanism the
gauge field is massive and does not modify the linear in
T behavior of the specific heat. The spin susceptibility
exhibits more exotic behavior: due to the pairing of x
and y-fermions the zz-component χzz = 0. On the other
hand, χxx is finite and depends on the anisotropy D.
For D smaller than the gap, χ̃xx = χxx/(µBg)2 ≈ νz,
and approaches a factor two larger value χ̃xx ≈ 2νz,
when D is much larger than the gap. This difference
by factor 2 is approximate, valid in the limit of con-
stant gap and density of states. The behavior of χ̃xx

is shown in Fig. 2 (a). We calculate Wilson ratio de-
fined as RW = (4π2k2B)/(3g

2µ2
B)(χ̄T )/C, and obtain

RW = 8/3 ≈ 2.66 for the case of small anisotropy, and
RW → 16/3 ≈ 5.33 for large anisotropy. Note that we
take the average susceptibility χ̄ = 2/3χxx to account for
the polycrystalline nature of the sample. The latter value
gives surprisingly good agreement with the Wilson ratio
observed experimentally, RW ≈ 5.63. We also calculated
the imaginary part of the spin susceptibility. Since two
out of three fermions are gapped, Imχαα(ω,q) vanishes
for temperatures and frequencies smaller than the gap
for all α. This implies the NMR relaxation 1/(T1T ) is
exponentially small for temperatures below the pairing

scale. These results tell us that the Fermi surface as-
sociated with fz [see Fig. 2 (b)] should be viewed very
differently than the spinon Fermi surface in the S = 1/2
SL which carries spin-1/2 quantum numbers and leads
to gapless spin-1 excitations. In our case Sz = 1 exci-
tations are gapped even though the static spin suscep-
tibility χxx,χyy ̸= 0 and the specific heat has linear T
dependence.

Finally, we discuss experiments that could confirm the
proposed ground state. Measurement of the spin suscep-
tibility for single crystal or oriented powder samples is
of great interest in order to test our prediction of strong
anisotropy. We also predict an exponentially activated
behavior for 1/(T1T ) which may be surprising in view of
the linear T behavior of the specific heat.
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Motivated by recent experiments on material Ba3NiSb2O9, we propose two novel spin liquid
phases (A and B) for spin-1 systems on a triangular lattice. At the mean field level, both spin
liquid phases have gapless fermionic spinon excitations with quadratic band touching, thus in both
phases the spin susceptibility and γ = Cv/T saturate to a constant at zero temperature, which
are consistent with the experimental results on Ba3NiSb2O9. On the lattice scale, these spin liquid
phases have Sp(4) ∼ SO(5) gauge fluctuation; while in the long wavelength limit this Sp(4) gauge
symmetry is broken down to U(1)×Z2 in type A spin liquid phase, and broken down to Z4 in type
B phase. We also demonstrate that the A phase is the parent state of the ferro-quadrupole state,
nematic state, and the noncollinear spin density wave state.

PACS numbers:

A quantum spin liquid (QSL) is a ground state of an in-
sulating magnet with vanishing static local moments and
exotic emergent excitations.[1] Within spin wave theory
for the simplest Heisenberg Hamiltonians, quantum fluc-
tuations rapidly decrease with increasing spin quantum
number S, so it is often believed that QSLs may occur
only in the extreme case of S =1/2 spins. Indeed, the
most promising empirical QSL materials are comprised
of spin-1/2 moments[2–7]. However, when the Hamilto-
nian deviates from the Heisenberg form, quantum effects
can be enhanced also for higher spin, leading to ground
states beyond the usual magnetically ordered ones. The-
oretically, biquadratic and other higher order exchange
terms have been argued to favor multipolar ordered and
QSL states in particular materials, such as the triangu-
lar lattice spin-1 magnet NiGa2S4 [8–12] and certain or-
dered double perovskites[13]. Quite unexpectedly, recent
experiments have evidenced QSL behavior in the spin-1
magnet Ba3NiSb2O9, with spins residing on triangular
lattices with AB stacking.[14] Although the Curie-Weiss
temperature of this material is θCW ∼ −75K, no mag-
netic ordering or phase transition was observed down to
a temperature of 0.35K, approximately 200 times lower
than |θCW |. The low temperature thermodynamics of
this material is strikingly similar to that of the geomet-
rically similar spin-1/2 organic triangular lattice QSLs
[5, 15–17]. In particular, the spin susceptibility χ and lin-
ear coefficient of specific heat γ = cv/T in Ba3NiSb2O9

both saturate to constants at low temperature [14].
Most theoretical approaches to QSLs rely on slave par-

ticle methods, and/or wave functions which correspond
to slave particles. While these approaches have been ex-
tensively developed for S =1/2 systems, there has been
little theoretical work on them for the S =1 case. We con-
sider this here. To sharpen the discussion, we assume the
presence of SU(2) spin symmetry, and seek QSL states
in this framework which match the basic phenomenology

so far observed in the low temperature thermodynamics.
One way of studying spin-1 system is by introducing

three flavors of fermionic spinon fα (α = 1−3) as follows
[18, 19]: Ŝa = f †

αS
a
αβfβ, and Sa are three spin-1 matri-

ces. In order to guarantee the equivalence of the spin
Hilbert space and the spinon Hilbert space, one must
impose the gauge constraint

∑

α f †
i,αfi,α = 1, fixing the

spinon density locally to 1/3-filling. At the mean field
level, the spinon fα forms a Fermi surface whose area is
1/3 of the Brillouin zone. A spinon Fermi surface seems
to be consistent with constant χ and γ observed experi-
mentally. However, beyond the mean field theory, due to
the single occupancy constraint, the spinon fermi surface
is coupled to a dynamical U(1) gauge field. This U(1)
gauge field has a “dressed” over-damped z = 3 dynam-
ics due to its coupling to the Fermi surface, which leads
to a γ = Cv/T ∼ T−1/3 at low temperature [20, 21],
inconsistent with experiment. One solution of this prob-
lem is to introduce pairing of the spinons in the mean
field state. This has its own difficulties: either a gap
is induced and impurities must be invoked to restore the
proper thermodynamics,[22] or spin-rotational symmetry
must be strongly broken.[18]
General Formalism

We start instead by representing the spin-1 operators
in the following way:

Ŝµ
i =

1

2

∑

α,β=↑,↓

∑

a=1,2

f †
α,a,iσ

µ
αβfβ,a,i. (1)

Here σµ are three spin-1/2 Pauli matrices. Each spinon
fα,a has two indices: α =↑, ↓ denotes spin and a = 1, 2
is an “orbital” quantum number. Thus we can consider
not only the usual spin SU(2) rotations in the α − β
space, but also orbital SU(2) transformations in the a−b
space. Matching with the spin Hilbert space requires not
only constraining the total fermion number to half-filling

2

(two fermions per site), but also requiring each site to be
an orbital SU(2) singlet, which guarantees that the spin
space is a symmetric spin-1 representation:

n̂i =
∑

a=1,2

∑

α=↑,↓

f †
α,a,ifα,a,i = 2,

τ̂µ =
∑

α,a,b

f †
α,a,iτ

µ
abfα,b,i = 0. (2)

Here τµab are three Pauli matrices that operate on the
orbital indices. A similar slave fermion formalism with
orbital indices was introduced in Ref. [23], and it was ap-
plied to two-orbital SU(N) magnets that can be realized
in Alkaline earth cold atoms [24–26].
Due to these two independent constraints in Eq. 2, the

spinon fα,a appears to have the following U(1)× SU(2)
gauge symmetries:

U(1)c : fα,a,i → eiθifα,a,i;

SU(2)o : fα,a,i → [eiθ⃗i·τ⃗/2]abfα,b,i. (3)

By rewriting fα,a,i in terms of Majorana fermions η as
follows, however, a larger gauge symmetry is exposed:

fα,a,i =
1

2
(ηα,a,1,i + iηα,a,2,i). (4)

On every site, ηi has in total three two-component
spaces, making the maximal possible transformation
on ηi SO(8). Within this SO(8), the spin SU(2)
transformations are generated by the three operators
(σxλy, σy, σzλy), where the Pauli matrices λa op-
erate on the two-component space (Re[f ], Im[f ]). The
total gauge symmetry on η is the maximal subgroup
of SO(8) that commutes with the spin-SU(2) operators.
This is Sp(4) ∼ SO(5) generated by the ten matrices
Γab = 1

2i [Γa,Γb], where

Γ1 = σyτyλz , Γ2 = σyτyλx, Γ3 = τyλy ,

Γ4 = τz , Γ5 = τx. (5)

These Γa with a = 1 · · · 5 define five gamma matrices that
satisfy the Clifford algebra {Γa,Γb} = 2δab. Γab and Γa

are all 8×8 hermitian matrices. Γab are all antisymmetric
and imaginary, while Γa are symmetric.
We consider a spin-1 Heisenberg model on the triangu-

lar lattice with both nearest neighbor and 2nd neighbor
antiferromagnetic couplings. Based on the above spinon
representation of spin-1 operators, the Heisenberg model
can be rewritten as follows:

∑

i,j,µ

Jij Ŝ
µ
i Ŝ

µ
j ∼

∑

i,j,µ

Jijf
†
α,a,iσ

µ
αβfβ,a,if

†
γ,b,jσ

µ
γρfρ,b,j

∼ −2Jij∆̂
∗
ab,ji∆̂ba,ji +Const,

∆̂ab,ji = εαβfα,a,jfβ,b,i. (6)

Decoupling through a hopping term is also possible, but
we do not pursue this here. To analyze Eq. (6), we adopt
a mean field ansatz with nonzero pairing ⟨∆̂ab,ji⟩, so that
the spinon fα,a fills a mean field band structure. To im-
prove beyond mean field, a variational spin wave function
may be obtained by projecting the mean field ground
state to satisfy Eq. (2):

|Gspin⟩ =
∏

i

P(n̂i = 2)⊗ P(τ̂µi = 0)|fα,a⟩. (7)

The general formalism discussed above can describe
many novel spin liquid states, with various different
gauge fluctuations that are subgroups of Sp(4). Here
we focus on simple states which satisfy the phenomenol-
ogy of Ba3NiSb2O9[14], and in particular demand linear
specific heat and constant susceptibility. We consider the
following ansatz, which is a d+id pairing state of spinons:

⟨∆̂ab,(i,i+ê)⟩ =
(

δab∆
(m)
1 + τzab∆

(m)
2

)

(ex + iey)
2, (8)

where ê is any of the nearest-neighbor or 2nd neighbor
unit vectors, and ∆(m) with m = 1, 2 denotes the pairing
amplitude on the nearest and 2nd neighbor links respec-
tively. This is a spin singlet but orbital triplet. Because
the pair wave function vanishes when two spinons are on
the same site, such states may be particularly insensitive
to the projection in Eq. 7.
Continuum theory: In the majority of the paper, we

consider the case with ∆(m)
2 = 0. Then, expanded at

k⃗ = 0, the low energy mean field Hamiltonian reads

H ∼ ηt{(∂2
x − ∂2

y)Γ13 + 2∂x∂yΓ23}η,

Γ13 = −σyλx, Γ23 = σyλz . (9)

This mean field Hamiltonian has quadratic band-
touching at k⃗ = 0. Using the same method as intro-
duced in Ref. [27], one can verify that this mean field
Hamiltonian breaks the Sp(4) gauge symmetry down to
a U(1)× Z2 gauge symmetry:

ηi → eiθiΓ45ηi,

ηi → Qiηi, Qi ∈ {1, Γ4}. (10)

Notice that the U(1) and Z2 gauge transformations do
not commute with each other.
In addition to the quadratic band touching at k⃗ = 0,

depending on ∆(m), there are multiple Dirac points in
the Brillouin zone. For instance, when ∆(2) < ∆(1),
there are Dirac points at the Brillouin zone corners
Q⃗ = ±(4π/3, 0). A complex Dirac fermion field ψ at
momentum Q⃗ = (4π/3, 0) can be defined as

ηr⃗ = ψr⃗e
iQ⃗·r⃗ + ψ†

r⃗e
−iQ⃗·r⃗. (11)

2
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µ
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µ
j ∼

∑

i,j,µ

Jijf
†
α,a,iσ

µ
αβfβ,a,if

†
γ,b,jσ

µ
γρfρ,b,j

∼ −2Jij∆̂
∗
ab,ji∆̂ba,ji +Const,

∆̂ab,ji = εαβfα,a,jfβ,b,i. (6)

Decoupling through a hopping term is also possible, but
we do not pursue this here. To analyze Eq. (6), we adopt
a mean field ansatz with nonzero pairing ⟨∆̂ab,ji⟩, so that
the spinon fα,a fills a mean field band structure. To im-
prove beyond mean field, a variational spin wave function
may be obtained by projecting the mean field ground
state to satisfy Eq. (2):

|Gspin⟩ =
∏

i

P(n̂i = 2)⊗ P(τ̂µi = 0)|fα,a⟩. (7)

The general formalism discussed above can describe
many novel spin liquid states, with various different
gauge fluctuations that are subgroups of Sp(4). Here
we focus on simple states which satisfy the phenomenol-
ogy of Ba3NiSb2O9[14], and in particular demand linear
specific heat and constant susceptibility. We consider the
following ansatz, which is a d+id pairing state of spinons:

⟨∆̂ab,(i,i+ê)⟩ =
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a b

FIG. 1: a, The spin liquid we are considering contains a
quadratic band touching at k⃗ = 0 (hexagon), and Dirac points
(squares) at the corners of the Brillouin zone. b, with a
nonzero and small nematic order N1 > 0, the quadratic band
touching is split into two Dirac points, and the locations of
the other Dirac points are shifted.

transformation η → Γ4η, so it is a headless nematic direc-
tor. The physical order parameter is actually a bilinear
of d⃗, which corresponds to the ferro-quadrupoletensor

Qµν =
1

2
⟨Ŝµ

i Ŝ
ν
i + Ŝν

i Ŝ
µ
i ⟩ −

2

3
δµν = dµdν −

|d⃗|2

3
δµν .(16)

Spatial nematic order, in which lattice rotation symmetry
is broken but time-reversal and spin symmetry are pre-
served, is described by N1 andN2. Order of this type was
suggested for S=1 triangular antiferromagnets in Ref.[9],
but also can be realized by spontaneous formation of Hal-
dane chains. The spin-chirality order parameter C is less
obvious from a microscopic perspective, but is a fluctu-
ating order for this QSL state.
At the mean field level, the equal time correlation

of spin chirality, nematic, and spin density wave order
parameters all fall off as 1/r4; the correlation of spin
quadrupole order parameter falls off as 1/r8. The U(1)
gauge fluctuation will modify the scaling dimension of the
order parameters, and its correction can be calculated
systematically using a 1/N expansion. We will leave this
calculation to future studies.
Potential instabilities: One potential instability of this

spin liquid state is instanton (monopole) proliferation of
the compact U(1) gauge field. However, due to screen-
ing by the gapless fermions, the instantons are greatly
suppressed. By analogy with the theory of the algebraic
spin liquid [28] (in which the z = 1 gauge field is similarly
strongly coupled to Dirac fermions), we expect the spin
liquid phase here to be similarly stable in principle.
Furthermore, the mean field Hamiltonian Eq. 17 is sub-

ject to perturbations such as four-fermion interactions,
which are marginal perturbations at the quadratic band
touching according to naive power-counting. These four-
fermion interactions can modify the correlation functions
of the order parameters discussed above. The renormal-
ization group may lead to weak run-away flow of these
four-fermion interactions, which eventually can break the

symmetry of the system, and develop one of the orders
in Eq. 15.
If one of these orders develops, it can completely or

partially gap the fermions and introduce interesting ef-
fects. Nonzero spin nematic order, d⃗ ̸= 0, gaps out the
quadratic band touching and Dirac fermion ψ. Depend-
ing on the sign of a2 and b2, a nonzero d⃗ drives the mean
field band structure of spinon into either a quantum spin
Hall type of topological insulator or a topologically trivial
insulator. If the system is in a quantum spin Hall topo-
logical insulator, assuming d⃗ is ordered along ẑ direction,
the quantized flux of U(1) gauge field aµΓ45 would carry
spin Sz. Since the 2+1d photon phase of the U(1) gauge
field is the condensate of gauge flux, the U(1) spin rota-
tion around ẑ axis is spontaneously broken in the pho-
ton phase, thus eventually the spin SU(2) symmetry is
broken down to a discrete subgroup i.e. there are in to-
tal three Goldstone modes instead of two. If the spinon
band insulator has trivial topology, then the system is
in an ordinary ferro-quadrupolar phase as discussed in
Ref. [9, 10].
Weak spatial nematic order does not open a gap

but only splits the quadratic band touching into Dirac
fermions at two different momenta (Fig. 1); the original
Dirac fermions ψ also shift. When the nematic order
magnitude is very strong, above some critical value, all
the Dirac fermions meet and annihilate in pairs, and the
spinons become fully gapped.
Spin chirality order, which breaks time-reversal and

reflection symmetries, gaps out both the quadratic band
touching and the Dirac points. Depending on the sign
of a4 and b4, a nonzero spin chirality order can drive the
spinons into a topological Chern insulator, or a topolog-
ically trivial band insulator with the same symmetry. In
the former case, one obtains a chiral spin liquid, in which
the U(1) gauge field aµΓ45 acquires a Chern-Simons term
after integrating out the fermions. In the topologically
trivial band insulator, the U(1) gauge field will become
confined by instanton proliferation.
Other phases: For S = 1 spins, we may also consider

another state with ∆(m)
1 and ∆(m)

2 both nonzero, and

|∆(m)
1 | ̸= |∆(m)

2 |. In this case, the spinons have two dif-

ferent bands both with quadratic band touching at k⃗ = 0,
but they have different band curvature:

H ∼ ηt{(∂2
x − ∂2

y)(AΓ13 +BΓ25)

+ 2∂x∂y(AΓ23 −BΓ15)}η. (17)

A and B are two linear combinations of pairing ampli-
tudes on nearest and 2nd neighbor links. In this state,
the gauge symmetry is broken down to Z4:

ηi → Qiηi, Qi ∈ {±1, ±Γ4}. (18)

The Z4 gauge field has a deconfined phase in 2+1 dimen-
sion, and this state is thus clearly locally stable. It also
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FIG. 3: Magnetic contribution to the specific heat (CM ) for the 6H-B phase after subtraction of
the CP from the isostructural Zn-sample as well as the Schottky contribution (CSch-orp.) from the
Ni2+ orphan spins.

traces taken under 0 T and 9 T.

As discussed in the main text, the contribution to the DC magnetic susceptibility χ(T )

of this 1.7% Ni2+ orphan spins was subtracted from the as measured susceptibility for the

6H-B phase to show the intrinsic susceptibility of the Ni2+ triangular lattice. This intrinsic

susceptibility is found to reach a nearly constant value below T ∼ 25 K, as discussed in the

main text.
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the c-axis. However, for the 6H-B phase, the nearest two layers of the Ni triangular lattice

are displaced with respect to each other in a way that the Ni ion in one layer is projected

towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite

in a Ba2MM’O6 model with the cubic space group Fm-3m having a lattice parameter a =

4
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FIG. 1: Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b)
6H-B, and (c) 3C. Solid curves are the best fits obtained from Rietveld refinements using FullProf.
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ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.

the c-axis. However, for the 6H-B phase, the nearest two layers of the Ni triangular lattice

are displaced with respect to each other in a way that the Ni ion in one layer is projected

towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite

in a Ba2MM’O6 model with the cubic space group Fm-3m having a lattice parameter a =
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FIG. 3: (Color online) (a) Temperature dependencies for the
magnetic specific heat (CM ) for all three Ba3NiSb2O9 poly-
types. Solid lines are the fits as described in the main text.
Inset: variation in magnetic entropy ∆S below 30 K.

measured under field-cooled (FC) conditions. The 6H-A
sample exhibits a cusp-like anomaly at the antiferromag-
netic ordering temperature TN = 13.5 K, as previously
reported [24]. On the other hand, neither the 6H-B nor
the 3C phase show any sign of long range magnetic order
down to 2 K. For the 6H-B phase, we have subtracted
the Curie contribution provided by 1.7 % Ni2+ of orphan
spins from the as measured data. This percentage of
Ni2+ orphan spins was calculated from fitting the spe-
cific heat data[26]. After this subtraction, χ(T ) for the
6H-B phase (open squares in Fig. 2) basically saturates
below 25 K with a saturation value χ0 ∼ 0.013 emu/mol.
The fittings of the high-temperature region of χ−1(T ) to
the Curie-Weiss law show that all three compounds have
the same value for effective moment, µeff ∼ 3.54 µB, as
seen from the fact that all three χ−1(T ) curves are ba-
sically parallel to each other (insert of Fig. 2). This
value gives a g-factor of 2.5, which is close to the typical
value for Ni2+ ions with spin-orbital coupling[27]. The
Curie-Weiss temperatures, θCW, obtained for the 6H-A,
6H-B, and 3C phases are -116.9(4) K, -75.6(6) K, and
-182.5(3) K, respectively, indicating dominant antiferro-
magnetic interactions for all compounds.

The magnetic specific-heat (CM , Fig. 3) for each com-
pound was obtained by subtracting the heat capacity of
the non-magnetic compound Ba3ZnSb2O9 ordered in the
6H-A, 6H-B, and 3C phases, respectively, which are used
here as lattice standards. For the 6H-B phase a Schottky
anomaly due to 1.7% of Ni2+ orphan spins was also sub-
tracted, see Supplemental Materials[26]. For the 6H-A
phase, CM shows a sharp peak around TN = 13.5 K. On
the other hand, for both the 6H-B and the 3C phases,
CM which emerges from around 30 K, shows a broad
peak around 13 K with no sign for long-range magnetic-
order down to T = 0.35 K. For the 6H-B and the 3C

phases, CM is not at all affected by the application of
a magnetic field as large as H = 9 T. Below 30 K, the
associated change in magnetic entropy (inset of Fig. 3)
is 5.0 J/mol-K, 3.7 J/mol-K, and 2.0 J/mol-K for the
6H-A, 6H-B, and the 3C phase, respectively. These val-
ues correspond respectively, to 55%, 41%, and 22% of
R ln(3) for a S = 1 system, where R is the gas constant.
The remarkable result is that CM at low temperatures
for all three phases follows a γTα behavior, but with a
distinct value of α for each phase. As shown in Fig. 3,
a linear fit of CM plotted in a log-log scale yields respec-
tively, γ = 2.0(1) mJ/mol-K4 and α = 3.0(2) for the
6H-A phase in the range 1.8 ≤ T ≤ 10 K, γ = 168(3)
mJ/mol-K2 with α = 1.0(1) for the 6H-B phase when
0.35 ≤ T ≤ 7 K, and γ = 30(2) mJ/mol-K3 with α =
2.0(1) for 3C phase within 0.35 ≤ T ≤ 5 K.
Both the susceptibility and the specific heat show no

evidence for magnetic ordering down to T = 0.35 K for ei-
ther the 6H-B or the 3C phase, despite moderately strong
antiferromagnetic interactions. The 41% (6H-B) and the
22% (3C) change in magnetic entropy also indicates a
high degeneracy of low-energy states at low tempera-
tures. These behaviors suggest that both the 6H-B and
3C phases are candidates for spin liquid behavior. For
the 6H-A phase, the CM ∝ T 3 behavior observed below
TN is typical for 3D magnons [28]. This indicates that
besides the intra-layer magnetic interactions within the
Ni2+ triangular lattice, the inter-layer coupling is also
relevant for this phase. As for the 6H-B phase, on the
other hand, the relative shift of the two nearest Ni2+ tri-
angular layers leads to a frustrated inter-layer magnetic
coupling, which prevents 3D long-range magnetic-order.
The linear-T dependent CM of the 6H-B phase is unusual
for a magnetic insulator having a 2D frustrated lattice.
Naively, for a 2D lattice one would expect CM to display
a T 2 dependence given by a linearly dispersive low-energy
mode [19].
In fact, a series of recent low temperature studies re-

veal that CM ∝ γT , with a considerable large value for γ,
is a common feature among QSL candidates [11, 29, 30].
For example, ET[11], dmit[29], and Ba3CuSb2O9[30], all
composed of a S = 1/2 triangular lattice, display γ =
12.0 mJ/mol-K2, 19.9 mJ/mol-K2, and 43.4 mJ/mol-
K2, respectively. It has been proposed theoretically that
magnetic excitations or quasiparticles called spinons can
lead to a Fermi surface even in a Mott insulator, which
yields a linear term in the specific heat after the U(1)
gauge fluctuation is suppressed due to partial pairing on
the fermi surface[31]. The observation of a saturation
in χ(T ) for 6H-B phase enables us to calculate the Wil-
son ratio, RW = [4π2kB2χ0]/[3(gµB)2γ]. One obtains a
value of 5.6 by using χ0 = 0.013 emu/mol and γ = 168
mJ/mol-K2. In metals, a Pauli-like paramagnetic suscep-
tibility and a linear-T dependent heat capacity, as seen
for the 6H-B phase at lower temperatures, which leads
to a concomitant RW in the order of unity, are conven-

�CW = �75.6K
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Model 2

interlayer exchange path goes through one more oxygen than
intralayer coupling, the multiplicity of the former is 6 times
larger than the latter. In addition, in a structurally similar
material 6H-A-Ba3NiSb2O9 with long range magnetic order
specific heat at low temperature is observed to behave as
Cv(T ) ⇤ T 3, which indicates non-negligible interlayer cou-
pling. Therefore, we also include the interlayer coupling for
6H-B. As we will show in the following, this interlayer cou-
pling plays an important role in understanding the thermody-
namics properties of the material. The resulting exchange
model is therefore given on the triangular multilayer with
Hamiltonian,

Hex = J1
⇧

⌃ij⌥⇥AB

Si · Sj + J2
⇧

⌃ij⌥⇥AA or BB

Si · Sj , (1)

in which, the first sum is for the interlayer exchange between
nearest neighboring (NN) sites on neighboring A and B lay-
ers, the second sum is for the intralayer exchange between
NN sites within the same layer. In contrast to Ref. 21, we do
not include the NN biquadratic exchange (that can arise from
high order perturbation of the Hubbard model or effectively
from spin-lattice interaction), that we expect to be strongly
subdominant to the exchange Hex. As illustrated in Fig. 1,
the interlayer (intralayer) exchange on a triangular bilayer can
be viewed as the nearest neighbor (next nearest neighbor) ex-
change on a single honeycomb layer.

Besides the exchange, we also add the single-ion
anisotropy. The magnetic ion Ni2+ carries a spin S = 1 which
admits single-ion anisotropy in a non-cubic environment. The
space group symmetry P63mc of 6H-B restricts the single-ion
anisotropy to have the following form,

Hani = D
⇧

i

(Sz
i )

2, (2)

where z direction is normal to the triangular plane. Since
an easy-axis anisotropy is more likely to favor magnetic or-
der, we then expect an easy-plane anisotropy with D > 0 for
6H-B. Furthermore, as the spin susceptibility is observed to
saturate at around 25K[20], with a high temperature mean-
field theory we establish that this saturation point is set by
the coupling D and thus expect D to be comparable to the
exchange that is related to Curie-Weiss temperature �CW =
�75.5K[20].

Minimal model for 6H-B—Our minimal model now
contains two competing terms, exchange and single-ion
anisotropy,

Hmin = Hex +Hani. (3)

For this minimal Hamiltonian, we implement high tempera-
ture series expansion and extract the Curie-Weiss tempera-
ture. We thereby find that �z

CW = �[4(J1 + J2) + D/3]
and �⇤

CW = �[4(J1 + J2) � D/6] for magnetic field ap-
plied along and perpendicular to the z axis, respectively. With
a powder sample in experiment[20], after a powder average

we have �av
CW = �4(J1 + J2) which is independent of the

anisotropy parameter D.
For the minimal Hamiltonian in Eq. (3), when the single-

ion anisotropy Hani dominates with D ⇧ J1, J2, the ground
state is a uniform quantum paramagnetic (QP) state with spin
state at each site |Sz = 0 . In the opposite limit of the dom-
inant exchange, we expect the ground state to be magneti-
cally ordered. Applying Luttinger-Tisza method[24] gives the
classical ground state spin configurations with the ordering
wavevector qz = 0 and spin orient in xy plane. With qz = 0,
the exchange is equivalent to a J1eff-J2 model on a 2D hon-
eycomb lattice with J1eff = 2J1[23]. When J1 > 3J2, the
classical ground state is a usual Néel state. When J1 < 3J2,
the classical ground state is degenerate with degenerate spin
spiral wavevectors q⇤ = (qx, qy) satisfying,

⇧

{b}

cos(q⇤ · b) = (
J1
J2

)2 � 3, (4)

in which, {b} are 6 next-nearest neighbor (NNN) lattice vec-
tors of the honeycomb lattice. The degenerate wavevectors
form contour curves in momentum space. Moreover, in the
limit of J1 ⌅ J2, this spin spiral reduces a commensurate
spiral state corresponding to the familiar 120o of the decou-
pled A and B triangle lattices. Quantum fluctuations lift the
degeneracy of these classical spin-spiral ground states, select-
ing states characterized by a discrete set of q’s around which
the quantum zero-point energy is minimized. Remarkably, the
classical ground states favored by the quantum fluctuation do
not vary upon introducing the single-ion anisotropy. The op-
timal spin spiral wavevectors are given by[23]

q⇤ =
⇤
0,

2↵
3
cos�1

�
(
J1
2J2

)2 � 5

4

⇥⌅
, if 1 <

J1
J2

< 3 (5)

q⇤ =
�
2 cos�1(

J1
2J2

+
1

2
),

2�↵
3

⇥
, if

J1
J2

< 1, (6)

the other five equivalent wavevectors are obtained by �/3 ro-
tations of the above results. Generally, these states are incom-
mensurate spin spirals.

Mean field theory from the ordered regime—Starting from
the magnetic ordered phase, the existence and properties of
the phase transition can be analyzed within a standard mean-
field theory (MFT). We decouple the exchange interaction into
an effective Zeeman field which is then self-consistently de-
termined for each sublattice. We parameterize the spin order
as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+ ⇥)x̂+ sin(q · r+ ⇥)ŷ]. (7)

in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2, the 120o state and the incom-
mensurate spin spiral state for J1 < 3J2. Zero-temperature
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in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
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Spin S = 1 “Quantum spin liquid”: quantum criticality in 6H-B-Ba3NiSb2O9
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We present a minimal model for a recently discovered material 6H-B-Ba3NiSb2O9 which was proposed as
a candidate for S = 1 quantum spin liquid on a triangular lattice. Our spin-1 model lies on a stacked mul-
tilayer triangular lattice. In our minimal model, we point out the competition between Heisenberg exchange
interactions, which favor magnetic ordering, and the easy-plane single-ion anisotropy, which favors a uniform
quantum paramagnetic state with Sz = 0 state at each site. We argue that the system is close to the quantum
critical point separating these two phases and on the quantum paramagnetic phase side. Viewing the system as a
three dimensional multilayer structure, we find that the frustrated interlayer and intralayer exchange interaction
induces nodal lines of low energy spin excitations at the quantum critical point. Moreover, due to the quasi-2D
nature of the system and proximity to the quantum critical point, we show there exists a broad intermediate tem-
perature regime with linear temperature dependence of specific heat. Various other predictions and suggestions
for experiments are discussed.

PACS numbers: 71.70.Ej,71.70.Gm,75.10.-b

In recent years there have been a lot of theoretical and
experimental activities in the search of quantum spin liquid
(QSL), a novel state of matter in which quantum fluctuation
prevents conventional magnetic ordering down to zero tem-
perature. Although realization of QSL in theoretical models
has been well established[1, 2], direct experimental confir-
mation is still lacking. To date many compounds have been
proposed as promising candidates of QSL[3–13]. Some of
these putative candidates are understandable in terms of in-
teresting but of a more conventional explanation[14]. For ex-
ample, the 2D “QSL” in Cs2CuCl4 originates from quasi-1D
nature of the system[15, 16]; the 2D “QSL” in NiGa2S4 comes
from the existence of magnetic quadrupolar order[17]; the 3D
“QSL” in FeSc2S4 is due to the proximitiy to a quantum crit-
ical point between a local singlet and a magnetically ordered
state[18, 19].

Recently two high pressure sequences of the material
Ba3NiSb2O9 have been proposed as two candidates for quan-
tum spin liquid[20]. In particular, 6H-B-Ba3NiSb2O9 (6H-
B) has magnetic ions Ni2+ forming triangular layers with lo-
cal spin moment S = 1. The Curie-Weiss temperature is
�CW = �75.5K and no sign of magnetic ordering is detected
down to 0.35K, which indicates a strong frustration. A lin-
ear temperature dependence of specific heat and constant spin
susceptibility at low temperature with a large Wilson ratio of
5.6 have been found[20]. To account for these experiments,
Ref. 21 proposed an exotic state in which one gapless triplon
mode with Fermi surface coexists with d+id topological pair-
ing of the other triplons. More recently, Ref. 22 proposed
another two novel QSLs and both liquid phases have gapless
fermionic spinon excitations with quadratic band touching. In
contrast to these two proposals, in this Letter we argue that
the 6H-B data can be understood in a less intriguing way. We
argue that the ”QSL” behavior arises as a crossover inside the
quantum paramagnetic state in the proximity of a quantum
critical point (QCP) between a magnetically ordered phase
favored by the exchange and a quantum paramagnetic (QP)

phase induced by single-ion anisotropy.
In 6H-B, the Ni2+ triangular layers have an A-B stacking

with the lattice sites on one layer projecting to the centers of
the triangle plaquettes on the neighboring layers (see Fig. 1).
Our minimal model includes the interlayer (J1) and intralayer
(J2) exchange interactions and a single-ion spin anisotropy.
Treating the two neighboring triangular layers as the two sub-
lattices of a honeycomb lattice, we view the system as a multi-
layer honeycomb lattice. Therefore, when the exchange dom-
inates, the classical ground state is highly degenerate[23].
Quantum fluctuation lifts the degeneracy and favors coplanar
spiral order. With a strong onsite easy plane spin anisotropy, a
quantum paramagnetic ground state is favored, separated from
the magnetic state by a QCP. We propose that 6H-B is close to
this QCP and on the QP side. The constant spin susceptibil-
ity arises from the explicit breaking of spin rotation symmetry
by the single-ion anisotropy and powder nature of these sam-
ples. More notably, we interpret the observed linear tempera-
ture dependence of specific heat as an intermediate regime that
arises from the presence of low energy gapless excitations at
the QCP and the approximate quasi-2D nature of the system.

A

B

B

J2

J1

J2
A

J1

FIG. 1. (Color online) The bilayer triangular lattice (on left) is equiv-
alent to a single layer honeycomb lattice (on right). A (in dark red)
and B (in light blue) denote two triangular latttice (on left) or two
sublattices of honeycomb lattice (on right). J1, J2 are interlayer and
intralayer exchange, respectively.

Hamiltonian for 6H-B—We consider both the interlayer
and intralayer exchange interaction for 6H-B. Although the
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mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =

⌅
D⇤D⌅ e�S�i

P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,

⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

2

interlayer exchange path goes through one more oxygen than
intralayer coupling, the multiplicity of the former is 6 times
larger than the latter. In addition, in a structurally similar
material 6H-A-Ba3NiSb2O9 with long range magnetic order
specific heat at low temperature is observed to behave as
Cv(T ) ⇤ T 3, which indicates non-negligible interlayer cou-
pling. Therefore, we also include the interlayer coupling for
6H-B. As we will show in the following, this interlayer cou-
pling plays an important role in understanding the thermody-
namics properties of the material. The resulting exchange
model is therefore given on the triangular multilayer with
Hamiltonian,

Hex = J1
⇧

⌃ij⌥⇥AB

Si · Sj + J2
⇧

⌃ij⌥⇥AA or BB

Si · Sj , (1)

in which, the first sum is for the interlayer exchange between
nearest neighboring (NN) sites on neighboring A and B lay-
ers, the second sum is for the intralayer exchange between
NN sites within the same layer. In contrast to Ref. 21, we do
not include the NN biquadratic exchange (that can arise from
high order perturbation of the Hubbard model or effectively
from spin-lattice interaction), that we expect to be strongly
subdominant to the exchange Hex. As illustrated in Fig. 1,
the interlayer (intralayer) exchange on a triangular bilayer can
be viewed as the nearest neighbor (next nearest neighbor) ex-
change on a single honeycomb layer.

Besides the exchange, we also add the single-ion
anisotropy. The magnetic ion Ni2+ carries a spin S = 1 which
admits single-ion anisotropy in a non-cubic environment. The
space group symmetry P63mc of 6H-B restricts the single-ion
anisotropy to have the following form,

Hani = D
⇧

i

(Sz
i )

2, (2)

where z direction is normal to the triangular plane. Since
an easy-axis anisotropy is more likely to favor magnetic or-
der, we then expect an easy-plane anisotropy with D > 0 for
6H-B. Furthermore, as the spin susceptibility is observed to
saturate at around 25K[20], with a high temperature mean-
field theory we establish that this saturation point is set by
the coupling D and thus expect D to be comparable to the
exchange that is related to Curie-Weiss temperature �CW =
�75.5K[20].

Minimal model for 6H-B—Our minimal model now
contains two competing terms, exchange and single-ion
anisotropy,

Hmin = Hex +Hani. (3)

For this minimal Hamiltonian, we implement high tempera-
ture series expansion and extract the Curie-Weiss tempera-
ture. We thereby find that �z

CW = �[4(J1 + J2) + D/3]
and �⇤

CW = �[4(J1 + J2) � D/6] for magnetic field ap-
plied along and perpendicular to the z axis, respectively. With
a powder sample in experiment[20], after a powder average

we have �av
CW = �4(J1 + J2) which is independent of the

anisotropy parameter D.
For the minimal Hamiltonian in Eq. (3), when the single-

ion anisotropy Hani dominates with D ⇧ J1, J2, the ground
state is a uniform quantum paramagnetic (QP) state with spin
state at each site |Sz = 0 . In the opposite limit of the dom-
inant exchange, we expect the ground state to be magneti-
cally ordered. Applying Luttinger-Tisza method[24] gives the
classical ground state spin configurations with the ordering
wavevector qz = 0 and spin orient in xy plane. With qz = 0,
the exchange is equivalent to a J1eff-J2 model on a 2D hon-
eycomb lattice with J1eff = 2J1[23]. When J1 > 3J2, the
classical ground state is a usual Néel state. When J1 < 3J2,
the classical ground state is degenerate with degenerate spin
spiral wavevectors q⇤ = (qx, qy) satisfying,

⇧

{b}

cos(q⇤ · b) = (
J1
J2

)2 � 3, (4)

in which, {b} are 6 next-nearest neighbor (NNN) lattice vec-
tors of the honeycomb lattice. The degenerate wavevectors
form contour curves in momentum space. Moreover, in the
limit of J1 ⌅ J2, this spin spiral reduces a commensurate
spiral state corresponding to the familiar 120o of the decou-
pled A and B triangle lattices. Quantum fluctuations lift the
degeneracy of these classical spin-spiral ground states, select-
ing states characterized by a discrete set of q’s around which
the quantum zero-point energy is minimized. Remarkably, the
classical ground states favored by the quantum fluctuation do
not vary upon introducing the single-ion anisotropy. The op-
timal spin spiral wavevectors are given by[23]

q⇤ =
⇤
0,

2↵
3
cos�1

�
(
J1
2J2

)2 � 5

4

⇥⌅
, if 1 <

J1
J2

< 3 (5)

q⇤ =
�
2 cos�1(

J1
2J2

+
1

2
),

2�↵
3

⇥
, if

J1
J2

< 1, (6)

the other five equivalent wavevectors are obtained by �/3 ro-
tations of the above results. Generally, these states are incom-
mensurate spin spirals.

Mean field theory from the ordered regime—Starting from
the magnetic ordered phase, the existence and properties of
the phase transition can be analyzed within a standard mean-
field theory (MFT). We decouple the exchange interaction into
an effective Zeeman field which is then self-consistently de-
termined for each sublattice. We parameterize the spin order
as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+ ⇥)x̂+ sin(q · r+ ⇥)ŷ]. (7)

in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2, the 120o state and the incom-
mensurate spin spiral state for J1 < 3J2. Zero-temperature
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FIG. 1: (Color online) Left panel: Real space basis vectors
for the honeycomb lattice. Right panel: Momentum space
picture depicting the manifold of classically degenerate spiral
wavevectors for J2/J1=0.3 (red, thin solid), J2/J1=0.5 (pur-
ple, dash-dotted), and J2/J1=0.7 (green, dashed). Also indi-
cated by purple (solid) dots are the six distinct spiral wavevec-
tors lying on this manifold which are favored by quantum
fluctuations. Black (thick solid) hexagon indicates the first
Brillouin zone of the lattice.

B. Spin wave fluctuations

We calculate leading quantum corrections using
Holstein-Primakoff (HP) spin wave theory. We begin by
defining new spin operators S̃ via

⎛

⎝

S̃x
ℓ (r)

S̃y
ℓ (r)

S̃z
ℓ (r)

⎞

⎠ =

⎛

⎝

cos θℓ(r) 0 − sin θℓ(r)
0 1 0

sin θℓ(r) 0 cos θℓ(r)

⎞

⎠

⎛

⎝

Sx
ℓ (r)

Sy
ℓ (r)

Sz
ℓ (r)

⎞

⎠ (8)

where ℓ = 1, 2 labels the sublattice, θ1(r) = Q · r, and
θ2(r) = Q ·r+φ. Reexpressing the Hamiltonian in terms
of these new spin operators and rewriting these spin op-
erators in terms of HP bosons, we arrive at the following
Hamiltonian which includes the leading spin wave cor-
rection to the classical ground state energy,

Hqu = Ecl + 2S
∑

k>0

[

b⃗†kMkb⃗k − 2Ak

]

. (9)

Here b⃗† =
(

b†1(k) b
†
2(k) b1(−k) b2(−k)

)

,
∑

k>0 indicates
that the sum runs over half the first Brillouin zone (so
that k and −k are not both included), and the Hamilto-
nian matrix Mk takes the form

Mk =

⎛

⎜

⎝

Ak Bk Ck Dk

B∗
k Ak D∗

k Ck

Ck Dk Ak Bk

D∗
k Ck B∗

k Ak

⎞

⎟

⎠
, (10)

with explicit expressions for Ak-Dk given in Appendix
A. Diagonalizing this problem via a generalized Bogoli-
ubov transformation, we obtain the spin wave corrected
ground energy as

Equ = Ecl + 2S
∑

k>0

[λ−(k) + λ+(k)− 2Ak] (11)
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FIG. 2: Plot of the spin wave correction to the energy per site
∆E=(Equ−Ecl)/N (in units of J1) as a function of J2/J1.

The eigenvalues λ±(k) are given by

λ±(k) =
√

αk ± βk (12)

where

αk = A2
k − C2

k + |Bk|2 − |Dk|2, (13)

βk =
√

4|AkBk−CkDk|2+(DkB∗
k−BkD∗

k)
2. (14)

For J2 = 0, it is known from quantum Monte Carlo
simulations that this model has long range Néel order.13

We have checked that the Néel state energy for S = 1/2
is, for J2 = 0, in good agreement with recent quantum
Monte Carlo simulations in the valence bond basis.21

The quantum correction to the classical ground state
energy is responsible for selecting a unique quantum
ground state from the manifold of classically degenerate
ground states. Minimizing this energy correction over
the classical ground state manifold, Q∗, we find the fol-
lowing results for the spiral wavevector Q∗∗, which is
selected by quantum fluctuations, with the resulting φ∗∗

being determined by Eqns.(6,7).
For 1/6 < J2/J1 < 1/2: The ground state is a spiral

state S1, with

Q∗∗
b = cos−1(

J2
1

16J2
2

−
5

4
) (15)

Q∗∗
a = 0 (16)

While the above relations specify a single spiral state,
there are a total of six symmetry related spirals, the other
five being obtained by 2π/6 rotations of the above Q∗∗.
For 1/2 < J2/J1 < ∞: The ground state is a different

spiral state S2, with

Q∗∗
b = π − cos−1(

J1
4J2

+
1

2
) (17)

Q∗∗
a = 2 cos−1(

J1
4J2

+
1

2
) (18)

There are six symmetry related S2 spirals, the other five
being obtained by 2π/6 rotations of the above Q∗∗. The
spin wave correction to the ground state energy is shown
in Fig. (2).
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interlayer exchange path goes through one more oxygen than
intralayer coupling, the multiplicity of the former is 6 times
larger than the latter. In addition, in a structurally similar
material 6H-A-Ba3NiSb2O9 with long range magnetic order
specific heat at low temperature is observed to behave as
Cv(T ) ⇤ T 3, which indicates non-negligible interlayer cou-
pling. Therefore, we also include the interlayer coupling for
6H-B. As we will show in the following, this interlayer cou-
pling plays an important role in understanding the thermody-
namics properties of the material. The resulting exchange
model is therefore given on the triangular multilayer with
Hamiltonian,

Hex = J1
⇧

⌃ij⌥⇥AB

Si · Sj + J2
⇧

⌃ij⌥⇥AA or BB

Si · Sj , (1)

in which, the first sum is for the interlayer exchange between
nearest neighboring (NN) sites on neighboring A and B lay-
ers, the second sum is for the intralayer exchange between
NN sites within the same layer. In contrast to Ref. 21, we do
not include the NN biquadratic exchange (that can arise from
high order perturbation of the Hubbard model or effectively
from spin-lattice interaction), that we expect to be strongly
subdominant to the exchange Hex. As illustrated in Fig. 1,
the interlayer (intralayer) exchange on a triangular bilayer can
be viewed as the nearest neighbor (next nearest neighbor) ex-
change on a single honeycomb layer.

Besides the exchange, we also add the single-ion
anisotropy. The magnetic ion Ni2+ carries a spin S = 1 which
admits single-ion anisotropy in a non-cubic environment. The
space group symmetry P63mc of 6H-B restricts the single-ion
anisotropy to have the following form,

Hani = D
⇧

i

(Sz
i )

2, (2)

where z direction is normal to the triangular plane. Since
an easy-axis anisotropy is more likely to favor magnetic or-
der, we then expect an easy-plane anisotropy with D > 0 for
6H-B. Furthermore, as the spin susceptibility is observed to
saturate at around 25K[20], with a high temperature mean-
field theory we establish that this saturation point is set by
the coupling D and thus expect D to be comparable to the
exchange that is related to Curie-Weiss temperature �CW =
�75.5K[20].

Minimal model for 6H-B—Our minimal model now
contains two competing terms, exchange and single-ion
anisotropy,

Hmin = Hex +Hani. (3)

For this minimal Hamiltonian, we implement high tempera-
ture series expansion and extract the Curie-Weiss tempera-
ture. We thereby find that �z

CW = �[4(J1 + J2) + D/3]
and �⇤

CW = �[4(J1 + J2) � D/6] for magnetic field ap-
plied along and perpendicular to the z axis, respectively. With
a powder sample in experiment[20], after a powder average

we have �av
CW = �4(J1 + J2) which is independent of the

anisotropy parameter D.
For the minimal Hamiltonian in Eq. (3), when the single-

ion anisotropy Hani dominates with D ⇧ J1, J2, the ground
state is a uniform quantum paramagnetic (QP) state with spin
state at each site |Sz = 0 . In the opposite limit of the dom-
inant exchange, we expect the ground state to be magneti-
cally ordered. Applying Luttinger-Tisza method[24] gives the
classical ground state spin configurations with the ordering
wavevector qz = 0 and spin orient in xy plane. With qz = 0,
the exchange is equivalent to a J1eff-J2 model on a 2D hon-
eycomb lattice with J1eff = 2J1[23]. When J1 > 3J2, the
classical ground state is a usual Néel state. When J1 < 3J2,
the classical ground state is degenerate with degenerate spin
spiral wavevectors q⇤ = (qx, qy) satisfying,

⇧

{b}

cos(q⇤ · b) = (
J1
J2

)2 � 3, (4)

in which, {b} are 6 next-nearest neighbor (NNN) lattice vec-
tors of the honeycomb lattice. The degenerate wavevectors
form contour curves in momentum space. Moreover, in the
limit of J1 ⌅ J2, this spin spiral reduces a commensurate
spiral state corresponding to the familiar 120o of the decou-
pled A and B triangle lattices. Quantum fluctuations lift the
degeneracy of these classical spin-spiral ground states, select-
ing states characterized by a discrete set of q’s around which
the quantum zero-point energy is minimized. Remarkably, the
classical ground states favored by the quantum fluctuation do
not vary upon introducing the single-ion anisotropy. The op-
timal spin spiral wavevectors are given by[23]

q⇤ =
⇤
0,

2↵
3
cos�1

�
(
J1
2J2

)2 � 5

4

⇥⌅
, if 1 <

J1
J2

< 3 (5)

q⇤ =
�
2 cos�1(

J1
2J2

+
1

2
),

2�↵
3

⇥
, if

J1
J2

< 1, (6)

the other five equivalent wavevectors are obtained by �/3 ro-
tations of the above results. Generally, these states are incom-
mensurate spin spirals.

Mean field theory from the ordered regime—Starting from
the magnetic ordered phase, the existence and properties of
the phase transition can be analyzed within a standard mean-
field theory (MFT). We decouple the exchange interaction into
an effective Zeeman field which is then self-consistently de-
termined for each sublattice. We parameterize the spin order
as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+ ⇥)x̂+ sin(q · r+ ⇥)ŷ]. (7)

in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2, the 120o state and the incom-
mensurate spin spiral state for J1 < 3J2. Zero-temperature
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interlayer exchange path goes through one more oxygen than
intralayer coupling, the multiplicity of the former is 6 times
larger than the latter. In addition, in a structurally similar
material 6H-A-Ba3NiSb2O9 with long range magnetic order
specific heat at low temperature is observed to behave as
Cv(T ) ⇤ T 3, which indicates non-negligible interlayer cou-
pling. Therefore, we also include the interlayer coupling for
6H-B. As we will show in the following, this interlayer cou-
pling plays an important role in understanding the thermody-
namics properties of the material. The resulting exchange
model is therefore given on the triangular multilayer with
Hamiltonian,

Hex = J1
⇧

⌃ij⌥⇥AB

Si · Sj + J2
⇧

⌃ij⌥⇥AA or BB

Si · Sj , (1)

in which, the first sum is for the interlayer exchange between
nearest neighboring (NN) sites on neighboring A and B lay-
ers, the second sum is for the intralayer exchange between
NN sites within the same layer. In contrast to Ref. 21, we do
not include the NN biquadratic exchange (that can arise from
high order perturbation of the Hubbard model or effectively
from spin-lattice interaction), that we expect to be strongly
subdominant to the exchange Hex. As illustrated in Fig. 1,
the interlayer (intralayer) exchange on a triangular bilayer can
be viewed as the nearest neighbor (next nearest neighbor) ex-
change on a single honeycomb layer.

Besides the exchange, we also add the single-ion
anisotropy. The magnetic ion Ni2+ carries a spin S = 1 which
admits single-ion anisotropy in a non-cubic environment. The
space group symmetry P63mc of 6H-B restricts the single-ion
anisotropy to have the following form,

Hani = D
⇧

i

(Sz
i )

2, (2)

where z direction is normal to the triangular plane. Since
an easy-axis anisotropy is more likely to favor magnetic or-
der, we then expect an easy-plane anisotropy with D > 0 for
6H-B. Furthermore, as the spin susceptibility is observed to
saturate at around 25K[20], with a high temperature mean-
field theory we establish that this saturation point is set by
the coupling D and thus expect D to be comparable to the
exchange that is related to Curie-Weiss temperature �CW =
�75.5K[20].

Minimal model for 6H-B—Our minimal model now
contains two competing terms, exchange and single-ion
anisotropy,

Hmin = Hex +Hani. (3)

For this minimal Hamiltonian, we implement high tempera-
ture series expansion and extract the Curie-Weiss tempera-
ture. We thereby find that �z

CW = �[4(J1 + J2) + D/3]
and �⇤

CW = �[4(J1 + J2) � D/6] for magnetic field ap-
plied along and perpendicular to the z axis, respectively. With
a powder sample in experiment[20], after a powder average

we have �av
CW = �4(J1 + J2) which is independent of the

anisotropy parameter D.
For the minimal Hamiltonian in Eq. (3), when the single-

ion anisotropy Hani dominates with D ⇧ J1, J2, the ground
state is a uniform quantum paramagnetic (QP) state with spin
state at each site |Sz = 0 . In the opposite limit of the dom-
inant exchange, we expect the ground state to be magneti-
cally ordered. Applying Luttinger-Tisza method[24] gives the
classical ground state spin configurations with the ordering
wavevector qz = 0 and spin orient in xy plane. With qz = 0,
the exchange is equivalent to a J1eff-J2 model on a 2D hon-
eycomb lattice with J1eff = 2J1[23]. When J1 > 3J2, the
classical ground state is a usual Néel state. When J1 < 3J2,
the classical ground state is degenerate with degenerate spin
spiral wavevectors q⇤ = (qx, qy) satisfying,

⇧

{b}

cos(q⇤ · b) = (
J1
J2

)2 � 3, (4)

in which, {b} are 6 next-nearest neighbor (NNN) lattice vec-
tors of the honeycomb lattice. The degenerate wavevectors
form contour curves in momentum space. Moreover, in the
limit of J1 ⌅ J2, this spin spiral reduces a commensurate
spiral state corresponding to the familiar 120o of the decou-
pled A and B triangle lattices. Quantum fluctuations lift the
degeneracy of these classical spin-spiral ground states, select-
ing states characterized by a discrete set of q’s around which
the quantum zero-point energy is minimized. Remarkably, the
classical ground states favored by the quantum fluctuation do
not vary upon introducing the single-ion anisotropy. The op-
timal spin spiral wavevectors are given by[23]

q⇤ =
⇤
0,

2↵
3
cos�1

�
(
J1
2J2

)2 � 5

4

⇥⌅
, if 1 <

J1
J2

< 3 (5)

q⇤ =
�
2 cos�1(

J1
2J2

+
1

2
),

2�↵
3

⇥
, if

J1
J2

< 1, (6)

the other five equivalent wavevectors are obtained by �/3 ro-
tations of the above results. Generally, these states are incom-
mensurate spin spirals.

Mean field theory from the ordered regime—Starting from
the magnetic ordered phase, the existence and properties of
the phase transition can be analyzed within a standard mean-
field theory (MFT). We decouple the exchange interaction into
an effective Zeeman field which is then self-consistently de-
termined for each sublattice. We parameterize the spin order
as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+ ⇥)x̂+ sin(q · r+ ⇥)ŷ]. (7)

in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2, the 120o state and the incom-
mensurate spin spiral state for J1 < 3J2. Zero-temperature

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
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We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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D + 12J1 + 12J2
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In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
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When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2
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(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
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2ei⇧i , the rotor Hamiltonian

reads
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =
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We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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Néel

QP

J1/J2

D

J1 + J2

6H-B

0 1 2 3 40

1

2

3

4

FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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magnetic order parameter is

M =
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2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
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D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av
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In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,
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When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
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�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2
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J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
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2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
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We can now introduce a saddle-point approximation. By as-
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“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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In the vincinity of QCP—We next turn to the discussion of
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working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av
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In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2
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(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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Z =
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P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
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2ei⇧i , the rotor Hamiltonian

reads
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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suming all the ⌅i are equal at the saddle point and i⌅i =
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av
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In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =
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P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
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2ei⇧i , the rotor Hamiltonian

reads
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =
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P
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We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧
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with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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2µ0(gµB)2

D + 12J1 + 12J2
. (9)
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)

IC

Néel
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
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For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av
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In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
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where, we have represented ei⇧i by the unimodular field ⇤⇤
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
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�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2
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rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
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where, we have represented ei⇧i by the unimodular field ⇤⇤
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J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
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Néel

QP

J1/J2

D

J1 + J2

6H-B

0 1 2 3 40

1

2

3

4

FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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mean field theory yields that in the vicinity of the QCP the
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with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with
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mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
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2ei⇧i , the rotor Hamiltonian

reads
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,
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Jij⇤
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where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,
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We can now introduce a saddle-point approximation. By as-
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2
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(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
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. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
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In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
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where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =
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We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
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When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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vanishing J1, and Dc = 6J2 + 2J2
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J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
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Z =

⌅
D⇤D⌅ e�S�i

P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,

⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)

IC

Néel
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
tions in k

x

-k
y

plane with k
z

= 0 at the QCP. (a) J1 = 1.2J2, Dc

=
2.79J2, (b) J1 = J2, Dc

= 2.456J2, (c) J1 = 0.7J2, Dc

= 2.33J2,
(d) J1 = 0, D

c

= 2.01J2. Lattice constants in xy plane are set to be
1. (e) and the hexagon in (c) is the Brillouin zone (BZ) of the honey-
comb lattice. When J1 > J2, the nodal line is centered in the middle
of BZ. When J1 < J2, the nodal lines are centered around and even-
tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
(d) and (e) indicates the locations of the momenta with energy scale
�

c

(see the text).

little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥

A�1T� + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� ⇥c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
A�1T 2 + v2q2

e⇥
�

A�1T 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇤ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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FIG. 4. (Color online) The temperature dependence of specific heat.
In the plot, J1 = 0.15J2. The critical D

c

= 2.018J2. For the curves
in the plot, from top to bottom D = 2.02J2, 2.12J2, 2.22J2, 2.32J2.
The dash lines are the linear fit for a range of data points.

Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇤ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP
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FIG. 1: (Color online) Left panel: Real space basis vectors
for the honeycomb lattice. Right panel: Momentum space
picture depicting the manifold of classically degenerate spiral
wavevectors for J2/J1=0.3 (red, thin solid), J2/J1=0.5 (pur-
ple, dash-dotted), and J2/J1=0.7 (green, dashed). Also indi-
cated by purple (solid) dots are the six distinct spiral wavevec-
tors lying on this manifold which are favored by quantum
fluctuations. Black (thick solid) hexagon indicates the first
Brillouin zone of the lattice.

B. Spin wave fluctuations

We calculate leading quantum corrections using
Holstein-Primakoff (HP) spin wave theory. We begin by
defining new spin operators S̃ via

⎛

⎝

S̃x
ℓ (r)

S̃y
ℓ (r)

S̃z
ℓ (r)

⎞

⎠ =

⎛

⎝

cos θℓ(r) 0 − sin θℓ(r)
0 1 0

sin θℓ(r) 0 cos θℓ(r)

⎞

⎠

⎛

⎝

Sx
ℓ (r)

Sy
ℓ (r)

Sz
ℓ (r)

⎞

⎠ (8)

where ℓ = 1, 2 labels the sublattice, θ1(r) = Q · r, and
θ2(r) = Q ·r+φ. Reexpressing the Hamiltonian in terms
of these new spin operators and rewriting these spin op-
erators in terms of HP bosons, we arrive at the following
Hamiltonian which includes the leading spin wave cor-
rection to the classical ground state energy,

Hqu = Ecl + 2S
∑

k>0

[

b⃗†kMkb⃗k − 2Ak

]

. (9)

Here b⃗† =
(

b†1(k) b
†
2(k) b1(−k) b2(−k)

)

,
∑

k>0 indicates
that the sum runs over half the first Brillouin zone (so
that k and −k are not both included), and the Hamilto-
nian matrix Mk takes the form

Mk =

⎛

⎜

⎝

Ak Bk Ck Dk

B∗
k Ak D∗

k Ck

Ck Dk Ak Bk

D∗
k Ck B∗

k Ak

⎞

⎟

⎠
, (10)

with explicit expressions for Ak-Dk given in Appendix
A. Diagonalizing this problem via a generalized Bogoli-
ubov transformation, we obtain the spin wave corrected
ground energy as

Equ = Ecl + 2S
∑

k>0

[λ−(k) + λ+(k)− 2Ak] (11)
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FIG. 2: Plot of the spin wave correction to the energy per site
∆E=(Equ−Ecl)/N (in units of J1) as a function of J2/J1.

The eigenvalues λ±(k) are given by

λ±(k) =
√

αk ± βk (12)

where

αk = A2
k − C2

k + |Bk|2 − |Dk|2, (13)

βk =
√

4|AkBk−CkDk|2+(DkB∗
k−BkD∗

k)
2. (14)

For J2 = 0, it is known from quantum Monte Carlo
simulations that this model has long range Néel order.13

We have checked that the Néel state energy for S = 1/2
is, for J2 = 0, in good agreement with recent quantum
Monte Carlo simulations in the valence bond basis.21

The quantum correction to the classical ground state
energy is responsible for selecting a unique quantum
ground state from the manifold of classically degenerate
ground states. Minimizing this energy correction over
the classical ground state manifold, Q∗, we find the fol-
lowing results for the spiral wavevector Q∗∗, which is
selected by quantum fluctuations, with the resulting φ∗∗

being determined by Eqns.(6,7).
For 1/6 < J2/J1 < 1/2: The ground state is a spiral

state S1, with

Q∗∗
b = cos−1(

J2
1

16J2
2

−
5

4
) (15)

Q∗∗
a = 0 (16)

While the above relations specify a single spiral state,
there are a total of six symmetry related spirals, the other
five being obtained by 2π/6 rotations of the above Q∗∗.
For 1/2 < J2/J1 < ∞: The ground state is a different

spiral state S2, with

Q∗∗
b = π − cos−1(

J1
4J2

+
1

2
) (17)

Q∗∗
a = 2 cos−1(

J1
4J2

+
1

2
) (18)

There are six symmetry related S2 spirals, the other five
being obtained by 2π/6 rotations of the above Q∗∗. The
spin wave correction to the ground state energy is shown
in Fig. (2).
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
tions in k

x

-k
y

plane with k
z

= 0 at the QCP. (a) J1 = 1.2J2, Dc

=
2.79J2, (b) J1 = J2, Dc

= 2.456J2, (c) J1 = 0.7J2, Dc

= 2.33J2,
(d) J1 = 0, D

c

= 2.01J2. Lattice constants in xy plane are set to be
1. (e) and the hexagon in (c) is the Brillouin zone (BZ) of the honey-
comb lattice. When J1 > J2, the nodal line is centered in the middle
of BZ. When J1 < J2, the nodal lines are centered around and even-
tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
(d) and (e) indicates the locations of the momenta with energy scale
�

c

(see the text).

little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥

A�1T� + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� ⇥c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
A�1T 2 + v2q2

e⇥
�

A�1T 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇤ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇤ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP
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of BZ. When J1 < J2, the nodal lines are centered around and even-
tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
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(see the text).

little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥

A�1T� + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� ⇥c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
A�1T 2 + v2q2

e⇥
�

A�1T 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇤ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇤ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP
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(d) and (e) indicates the locations of the momenta with energy scale
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little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� ⇥c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
A�1T 2 + v2q2

e�
�

A�1T 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇥ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇥ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =

⌅
D⇤D⌅ e�S�i

P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,

⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� �c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
�

cAT 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇥ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇥ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP
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little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A
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coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃
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⇥
cAT 2 + v2q2

e�
�

cAT 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇥ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇥ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =

⌅
D⇤D⌅ e�S�i

P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,

⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
tions in k

x

-k
y

plane with k
z

= 0 at the QCP. (a) J1 = 1.2J2, Dc

=
2.79J2, (b) J1 = J2, Dc

= 2.456J2, (c) J1 = 0.7J2, Dc

= 2.33J2,
(d) J1 = 0, D

c

= 2.01J2. Lattice constants in xy plane are set to be
1. (e) and the hexagon in (c) is the Brillouin zone (BZ) of the honey-
comb lattice. When J1 > J2, the nodal line is centered in the middle
of BZ. When J1 < J2, the nodal lines are centered around and even-
tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
(d) and (e) indicates the locations of the momenta with energy scale
�

c

(see the text).

of BZ (see Fig. 3(c,d)) and are effected very little by the tem-
perature dependence of the self energy. Therefore, the part of
spin excitations with ⇤± > ⇧⇥c gives a nearly constant con-
tribution to the left hand side (LHS) of the SPE in Eq. (14).
The spin excitations with ⇤± < ⇧⇥c are near the BZ corners
and can be approximated as

⇤±(q) ⇧
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. Here, since �1(T ) ⌅ J2 in this temper-
ature range, the weak temperature dependence of v2 can be
neglected and we have v2 ⇤ 3DJ2 � 9J2

2/2. As a result, the
SPE can now be approximated as

4⌃A

� ⇤⇥c

q

coth(�
⇥

A�1(T ) + v2q2/2)⇥
A�1(T ) + v2q2

+ const = 2,

(17)
where the integrand includes the contribution from the spin
excitations in the vicinity of BZ corners with ⇤± . ⇧⇥c

and the “const” is from the contribution of the spin excita-
tion with ⇤± & ⇧⇥c. The integrand on the LHS of Eq. (17)
can be expressed as a function f( T

⇤⇥c
, A�1(T )

T 2 ) that only de-
pends on two dimensionless parameters T

⇤⇥c
and A�1(T )

T 2 .
From Eq. (17), the integrand or f( T

⇤⇥c
, A�1(T )

T 2 ) should have
a rather weak temperature dependence. So, we expect that,
�1(T ) ⇧ c T 2 (with c a constant coefficient) and the inte-
grand reduces to a constant that depends on the coefficient c
in the limit of T ⌅ ⇧⇥c. This result is also confirmed by nu-
merically solving the SPE Eq. (14) at different temperatures.
With �1(T ) ⇧ c T 2, we immediately obtain the low energy
spin excitations ⇤±(k) and the internal energy for this temper-
ature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
⌥

cAT 2+v2q2 � 1
⌃ T 2 (18)

which naturally leads to Cv ⌃ T for wz ⌅ T ⌅ ⇧⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇥ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌃ T . At even lower temperature T . wz , Cv ⌃ T ⇥ with
⌅ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
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FIG. 3. (Color online) The evolution of the low-energy spin excita-
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= 0 at the QCP. (a) J1 = 1.2J2, Dc

=
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= 2.33J2,
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of BZ. When J1 < J2, the nodal lines are centered around and even-
tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
(d) and (e) indicates the locations of the momenta with energy scale
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(see the text).

of BZ (see Fig. 3(c,d)) and are effected very little by the tem-
perature dependence of the self energy. Therefore, the part of
spin excitations with ⇤± > ⇧⇥c gives a nearly constant con-
tribution to the left hand side (LHS) of the SPE in Eq. (14).
The spin excitations with ⇤± < ⇧⇥c are near the BZ corners
and can be approximated as

⇤±(q) ⇧
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. Here, since �1(T ) ⌅ J2 in this temper-
ature range, the weak temperature dependence of v2 can be
neglected and we have v2 ⇤ 3DJ2 � 9J2

2/2. As a result, the
SPE can now be approximated as

4⌃A

� ⇤⇥c

q

coth(�
⇥

A�1(T ) + v2q2/2)⇥
A�1(T ) + v2q2

+ const = 2,

(17)
where the integrand includes the contribution from the spin
excitations in the vicinity of BZ corners with ⇤± . ⇧⇥c

and the “const” is from the contribution of the spin excita-
tion with ⇤± & ⇧⇥c. The integrand on the LHS of Eq. (17)
can be expressed as a function f( T

⇤⇥c
, A�1(T )

T 2 ) that only de-
pends on two dimensionless parameters T

⇤⇥c
and A�1(T )

T 2 .
From Eq. (17), the integrand or f( T

⇤⇥c
, A�1(T )

T 2 ) should have
a rather weak temperature dependence. So, we expect that,
�1(T ) ⇧ c T 2 (with c a constant coefficient) and the inte-
grand reduces to a constant that depends on the coefficient c
in the limit of T ⌅ ⇧⇥c. This result is also confirmed by nu-
merically solving the SPE Eq. (14) at different temperatures.
With �1(T ) ⇧ c T 2, we immediately obtain the low energy
spin excitations ⇤±(k) and the internal energy for this temper-
ature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
⌥

cAT 2+v2q2 � 1
⌃ T 2 (18)

which naturally leads to Cv ⌃ T for wz ⌅ T ⌅ ⇧⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇥ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌃ T . At even lower temperature T . wz , Cv ⌃ T ⇥ with
⌅ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
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(see the text).

of BZ (see Fig. 3(c,d)) and are effected very little by the tem-
perature dependence of the self energy. Therefore, the part of
spin excitations with ⇤± > ⇧⇥c gives a nearly constant con-
tribution to the left hand side (LHS) of the SPE in Eq. (14).
The spin excitations with ⇤± < ⇧⇥c are near the BZ corners
and can be approximated as

⇤±(q) ⇧
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. Here, since �1(T ) ⌅ J2 in this temper-
ature range, the weak temperature dependence of v2 can be
neglected and we have v2 ⇤ 3DJ2 � 9J2

2/2. As a result, the
SPE can now be approximated as
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A�1(T ) + v2q2

+ const = 2,

(17)
where the integrand includes the contribution from the spin
excitations in the vicinity of BZ corners with ⇤± . ⇧⇥c

and the “const” is from the contribution of the spin excita-
tion with ⇤± & ⇧⇥c. The integrand on the LHS of Eq. (17)
can be expressed as a function f( T

⇤⇥c
, A�1(T )

T 2 ) that only de-
pends on two dimensionless parameters T

⇤⇥c
and A�1(T )

T 2 .
From Eq. (17), the integrand or f( T

⇤⇥c
, A�1(T )

T 2 ) should have
a rather weak temperature dependence. So, we expect that,
�1(T ) ⇧ c T 2 (with c a constant coefficient) and the inte-
grand reduces to a constant that depends on the coefficient c
in the limit of T ⌅ ⇧⇥c. This result is also confirmed by nu-
merically solving the SPE Eq. (14) at different temperatures.
With �1(T ) ⇧ c T 2, we immediately obtain the low energy
spin excitations ⇤±(k) and the internal energy for this temper-
ature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
⌥

cAT 2+v2q2 � 1
⌃ T 2 (18)

which naturally leads to Cv ⌃ T for wz ⌅ T ⌅ ⇧⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇥ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌃ T . At even lower temperature T . wz , Cv ⌃ T ⇥ with
⌅ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
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of BZ (see Fig. 3(c,d)) and are effected very little by the tem-
perature dependence of the self energy. Therefore, the part of
spin excitations with ⇤± > ⇧⇥c gives a nearly constant con-
tribution to the left hand side (LHS) of the SPE in Eq. (14).
The spin excitations with ⇤± < ⇧⇥c are near the BZ corners
and can be approximated as

⇤±(q) ⇧
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. Here, since �1(T ) ⌅ J2 in this temper-
ature range, the weak temperature dependence of v2 can be
neglected and we have v2 ⇤ 3DJ2 � 9J2

2/2. As a result, the
SPE can now be approximated as
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coth(�
⇥

A�1(T ) + v2q2/2)⇥
A�1(T ) + v2q2

+ const = 2,

(17)
where the integrand includes the contribution from the spin
excitations in the vicinity of BZ corners with ⇤± . ⇧⇥c

and the “const” is from the contribution of the spin excita-
tion with ⇤± & ⇧⇥c. The integrand on the LHS of Eq. (17)
can be expressed as a function f( T

⇤⇥c
, A�1(T )

T 2 ) that only de-
pends on two dimensionless parameters T

⇤⇥c
and A�1(T )

T 2 .
From Eq. (17), the integrand or f( T

⇤⇥c
, A�1(T )

T 2 ) should have
a rather weak temperature dependence. So, we expect that,
�1(T ) ⇧ c T 2 (with c a constant coefficient) and the inte-
grand reduces to a constant that depends on the coefficient c
in the limit of T ⌅ ⇧⇥c. This result is also confirmed by nu-
merically solving the SPE Eq. (14) at different temperatures.
With �1(T ) ⇧ c T 2, we immediately obtain the low energy
spin excitations ⇤±(k) and the internal energy for this temper-
ature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
⌥

cAT 2+v2q2 � 1
⌃ T 2 (18)

which naturally leads to Cv ⌃ T for wz ⌅ T ⌅ ⇧⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇥ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌃ T . At even lower temperature T . wz , Cv ⌃ T ⇥ with
⌅ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-

3

mean field theory yields that in the vicinity of the QCP the
magnetic order parameter is

M =
⇧

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility is vanishing.
For field applied along x axis, the zero-temperature suscepti-
bility saturates to a constant with

 ⇧(T ⌥ 0) =
2µ0(gµB)2

D + 12J1 + 12J2
. (9)

In a powder sample (studied in experiments), spin susceptibil-
ity averages to  av

0 = 2 ⇧
0 /3.

In the vincinity of QCP—We next turn to the discussion of
the quantum phase transition from the QP side. Rather than
working with spin models, it will be particularly convenient
to instead model this easy-plane systems with rotor variables,
introducing an integer-valued field ni and 2⌥-periodic phase
variable �i, which satisfy [�i, nj ] = i⇥ij . Upon making the
mapping, Sz

i ⌥ ni and S+
i ⌥

⌘
2ei⇧i , the rotor Hamiltonian

reads

Hrotor =
1

2

⇥

ij

Jij [2 cos(�i � �j) + ninj ] +
⇥

i

Dn2
i . (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0, due to large
anisotropy D in the QP phase we can safely let ni take ar-
bitrary integer values. With standard coherent state path in-
tegral, we integrate out the field ni and obtain the partition
function,

Z =

⌅
D⇤

⇤

i

⇥(|⇤i|2 � 1)e�S (11)

with

S =

⌅

⌅

⇥

k

(4DI+ 2Jk)
�1
µ⇤ ✏⌅⇤

⇤
µ,k✏⌅⇤⇤,�k +

⇥

ij

Jij⇤
⇤
i⇤j

(12)
where, we have represented ei⇧i by the unimodular field ⇤⇤

i ,
J (k) is the 2 ⇤ 2 exchange coupling matrix written in mo-
mentum space and µ, ⌃ are the sublattice indices and I is a
2 ⇤ 2 identity matrix. We introduce Lagrange multipliers to
enforce the constraints on ⇤i,

Z =

⌅
D⇤D⌅ e�S�i

P
i �i(|�i|2�1). (13)

We can now introduce a saddle-point approximation. By as-
suming all the ⌅i are equal at the saddle point and i⌅i =

��(T ), we integrate out the ⇤ field and obtain the saddle-
point equation (SPE) for �(T ) in QP phase,

⇥

i=±

⌅

k

2D + si(k)

⇤i(k)
coth(�⇤i(k)/2) = 2, (14)

in which, s±(k) =
�

{b} J2 cos(k · b) ± |J1(1 +

eikz )
�

{a} e
ik·a| are two eigenvalues of J (k) with {a} the

3 NN lattice vectors of honeycomb lattice, and ⇤±(k) are two
low energy spin excitations,

⇤±(k) =
⇧
(4D + 2s±(k))(�(T ) + s±(k)). (15)
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FIG. 2. (Color online) Zero temperature phase diagram deter-
mined from the SPE. In the figure, “IC”=incommensurate spin order,
“Néel”= Néel state, “QP”=quantum paramagnet. Shaded region (in
blue) is the expected parameter regime for the 6H-B compound.

When the left hand side (LHS) of the SPE Eq. (14) is less
than 2, the rotor is condensed which signals the presence of
magnetic order. Therefore, we can readily obtain the criti-
cal Dc and the phase diagram at T = 0 (see Fig. 2). As
expected, Dc determined here is smaller than the one deter-
mined previously from Weiss type of MFT. In particular, Dc

is minimal for J1 = J2 which suggests largest frustration at
this point. At finite temperatures, �(T ) picks up a temper-
ature dependence. We now assume that, right at the QCP,
�(T ) = �0 +�1(T ), where, �0 = 3J2 + J2

1/J2 is the zero
temperature value and �1(T ) is the temperature dependent
piece. At the QCP and T = 0, as shown in Fig. 3(a-c) the low
energy spin mode ⇤�(k) develops gapless excitations which
form nodal lines that are identical to the contours of degener-
ate classical ground state spiral wavevectors in Eq. (4). Away
from zero temperature, the spin excitation ⇤±(k) picks up a
self energy from the temperature dependence of �(T ). One
should note that there are two different energy scales in the
system, characterized by the bandwidths (wxy and wz) in xy
plane and along z direction, respectively. Due to the approx-
imate quasi-2D nature of the material, we expect J1 ⇧ J2.
When T ⌃ wz , the system can be viewed as decoupled tri-
angular multilayers with T and J2 the only energy scales. We
now introduce an energy scale ⇥c with ⇥c � 2

⇧
J2(D � J2)

(see Fig. 3(d)). At the regime wz ⇧ T ⇧ ⇥c, the spin excita-
tions with energy above ⇥c come mostly from the dispersion
around the center of BZ (see Fig. 3(c,d)) and are effected very
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tions in k
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plane with k
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= 0 at the QCP. (a) J1 = 1.2J2, Dc

=
2.79J2, (b) J1 = J2, Dc
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1. (e) and the hexagon in (c) is the Brillouin zone (BZ) of the honey-
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tually shrink to the corners of BZ in the limit J1 ! 0. The “F” in
(d) and (e) indicates the locations of the momenta with energy scale
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(see the text).

of BZ (see Fig. 3(c,d)) and are effected very little by the tem-
perature dependence of the self energy. Therefore, the part of
spin excitations with ⇤± > ⇧⇥c gives a nearly constant con-
tribution to the left hand side (LHS) of the SPE in Eq. (14).
The spin excitations with ⇤± < ⇧⇥c are near the BZ corners
and can be approximated as

⇤±(q) ⇧
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. Here, since �1(T ) ⌅ J2 in this temper-
ature range, the weak temperature dependence of v2 can be
neglected and we have v2 ⇤ 3DJ2 � 9J2

2/2. As a result, the
SPE can now be approximated as

4⌃A

� ⇤⇥c

q

coth(�
⇥

A�1(T ) + v2q2/2)⇥
A�1(T ) + v2q2

+ const = 2,

(17)
where the integrand includes the contribution from the spin
excitations in the vicinity of BZ corners with ⇤± . ⇧⇥c

and the “const” is from the contribution of the spin excita-
tion with ⇤± & ⇧⇥c. The integrand on the LHS of Eq. (17)
can be expressed as a function f( T

⇤⇥c
, A�1(T )

T 2 ) that only de-
pends on two dimensionless parameters T

⇤⇥c
and A�1(T )

T 2 .
From Eq. (17), the integrand or f( T

⇤⇥c
, A�1(T )

T 2 ) should have
a rather weak temperature dependence. So, we expect that,
�1(T ) ⇧ c T 2 (with c a constant coefficient) and the inte-
grand reduces to a constant that depends on the coefficient c
in the limit of T ⌅ ⇧⇥c. This result is also confirmed by nu-
merically solving the SPE Eq. (14) at different temperatures.
With �1(T ) ⇧ c T 2, we immediately obtain the low energy
spin excitations ⇤±(k) and the internal energy for this temper-
ature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
⌥

cAT 2+v2q2 � 1
⌃ T 2 (18)

which naturally leads to Cv ⌃ T for wz ⌅ T ⌅ ⇧⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇥ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌃ T . At even lower temperature T . wz , Cv ⌃ T ⇥ with
⌅ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
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little by the temperature dependence of the self energy. There-
fore, the part of spin excitations with ⌅± > ⇥c gives a nearly
constant contribution to the left hand side (LHS) of the SPE
in Eq. (14). The spin excitations with ⌅± < ⇥c are near the
BZ corners and can be approximated as

⌅±(q) ⌃
⇥
A�1(T ) + v2q2 (16)

in which, q = (qx, qy) is measured from one BZ corner and
A = 4Dc � 2�0. As a result, the SPE can now be approxi-
mated as

4⌃A

� �c

q

coth(�
⇥
A�1(T ) + v2q2/2)⇥

A�1(T ) + v2q2
+ const = 2, (17)

where the integrand includes the contribution from the spin
excitations with ⌅± . ⇥c and the “const” is from the contri-
bution of the spin excitation with ⌅± & ⇥c. The integrand
on the LHS of Eq. (17) can be written as a scaling func-
tion Tf(⇥c/T,A�1(T )/T 2). From Eq. (17), the integrand
should have a rather weak temperature dependence. So, we

expect �1(T ) ⌃ c T 2 (with c a constant coefficient) and the
scaling function (or the integrand) reduces to a constant that
only depends on the coefficient c in the limit of ⇥c ⇧ T .
This result is also confirmed by numerically solving the SPE
Eq. (14) at different temperatures. With �1(T ) ⌃ c T 2, we
immediately obtain the low energy spin excitations ⌅±(k) and
the internal energy for this temperature range,

E ⇥ 8⌃

�

q

⇥
cAT 2 + v2q2

e�
�

cAT 2+v2q2 � 1
⌥ T 2 (18)

which naturally leads to Cv ⌥ T for wz ⌅ T ⌅ ⇥c. More-
over, even when D is larger than Dc, as long as D is not too
larger than Dc so that the energy gap ⇤ . wz is still satisfied,
there should still exist such an intermediate temperature range
of linear T specific heat. In fact, according to the dispersion in
Eq. (15), the presence of a large D actually broadens the sep-
aration between wz and ⇥c, which may give an even broader
temperature range of linear T specific heat. Therefore, even
when J1 is not very small compared to J2, the broadening ef-
fect of D may still lead to an intermediate linear T specific
heat regime. To confirm this result, we numerically solve for
the �(T ) at each temperature and compute the specific heat
that is depicted in Fig. 4. For all the four curves with different
D, there exists a broad intermediate temperature regime with
Cv ⌥ T . At even lower temperature T . wz , Cv ⌥ T ⇥ with
⇧ > 1 is generally expected due to the gapless nodal lines at
QCP.
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Discussion—Here we make predictions based on our pro-
posal that the system is proximate to a QCP on the QP side.
In the experiments of Ref. 20, spin susceptibility saturates
to a constant below 25K. The constant susceptibility is con-
sistent with our theoretical prediction in Eq. (9). One di-
rect test of our model is to repeat the susceptibility measure-
ments in single crystal samples where we predict ⌥z = 0 and
⌥⇥ = const. Experiments also find a power-law specific heat
Cv(T ) ⇥ ⇥T ⇥ with ⇧ ⇤ 1.0(1) for 0.35K < T < 7K[20]. As
shown in Fig. 4, this broad linear-T dependence of the specific
heat is naturally explained by the gapless excitation near QCP
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The synthesis and characterization of Ba3CuSb2O9, which has a layered array of Cu2þ spins in a

triangular lattice, are reported. The magnetic susceptibility and neutron scattering experiments of this

material show no magnetic ordering down to 0.2 K with a !CW ¼ #55 K. The magnetic specific heat

reveals a T-linear dependence with a " ¼ 43:4 mJK#2 mol#1 below 1.4 K. These observations suggest

that Ba3CuSb2O9 is a new quantum spin liquid candidate with a S ¼ 1=2 triangular lattice.

DOI: 10.1103/PhysRevLett.106.147204 PACS numbers: 75.40.Cx, 75.40.Gb, 75.45.+j, 78.70.Nx

One of the current thrusts of modern condensed matter
science has been the realization of an important model
compound known as the quantum spin liquid (QSL)
[1,2]. The existence of these materials, in which magnetic
spins remain quantum disordered in the limit of zero
Kelvin, underpins much of modern condensed matter
theory. Previous studies have shown that QSL ground
states tend to emerge in the geometrically frustrated mate-
rials, in which the interactions among the limited magnetic
degrees of freedom lead to a strong enhancement
of quantum fluctuations. For example, the organic
salts #-ðBEDT-TTFÞ2Cu2ðCNÞ3 [3,4] and
EtnMe4#nSb½PdðDMITÞ2'2 [5–7] with a S ¼ 1=2 triangu-
lar lattice, and ZnCu3ðOHÞ6Cl2 with a S ¼ 1=2 kagome
lattice [8,9] are all QSL candidates. While the study of the
QSL state in the organic compounds remains a hot topic,
there are very few inorganic materials identified as model
systems for QSL ground states. Many efforts to synthesize
spin liquids on triangular lattices in inorganic materials
have failed. In this Letter, we unveil a new candidate for a
spin liquid compound—Ba3CuSb2O9—in which Cu2þ

species form a geometrically frustrated triangular lattice.
The magnetic susceptibility and neutron scattering experi-
ments on this material show no magnetic ordering down to
0.2 K despite moderately strong antiferromagnetic inter-
actions with J ( 32 K. The magnetic specific heat reveals
a T-linear dependence with a " ¼ 43:4 mJK#2 mol#1

below 1.4 K, suggesting that a Fermi surface forms at finite
temperatures in this inorganic insulator. These behaviors fit
the predicted signatures of a spin liquid ground state with
low amounts of chemical disorder.

Polycrystalline Ba3CuSb2O9 samples were prepared by
a solid state reaction. Appropriate mixtures of BaCO3,
CuO and Sb2O5 were ground together, pressed into pellets,
and then calcined in air at 1070 )C for several days. The
crystal structure of this 6-H perovskite-related material

with a ¼ b ¼ 5:8090 !A and c ¼ 14:3210 !A can be repre-
sented as a framework consisting of corner-sharing SbO6

octahedra and face-sharing CuSbO9 bioctahedra, as shown
in Figs. 1(a) and 1(b). In the bioctahedra, the Cu and Sb
cations are well ordered [10]. The Cu ions occupy the 2b
Wyckoff site of space group P63mc, and this site forms the
triangular lattice in the ab plane [Fig. 1(c)]. Therefore, the
structure can be seen as a two-dimensional triangular
magnet; i.e., the Cu magnetic triangular lattices are mag-
netically separated by the two nonmagnetic Sb layers
[Fig. 1(b)]. The powder x-ray diffraction (XRD) data of
the as-prepared sample shows a single phase and no chemi-
cal disorder between Cu and Sb down to the few percent-
age level. The distance between two Cu ions in one triangle
from the XRD refinement is uniformly 5.809(1) Å.
The temperature dependence of the dc magnetic suscep-

tibility measured with $0H ¼ 0:5 T for Ba3CuSb2O9

shows no signature for a magnetic transition above 1.8 K,
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The synthesis and characterization of Ba3CuSb2O9, which has a layered array of Cu2þ spins in a

triangular lattice, are reported. The magnetic susceptibility and neutron scattering experiments of this

material show no magnetic ordering down to 0.2 K with a !CW ¼ #55 K. The magnetic specific heat

reveals a T-linear dependence with a " ¼ 43:4 mJK#2 mol#1 below 1.4 K. These observations suggest

that Ba3CuSb2O9 is a new quantum spin liquid candidate with a S ¼ 1=2 triangular lattice.
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One of the current thrusts of modern condensed matter
science has been the realization of an important model
compound known as the quantum spin liquid (QSL)
[1,2]. The existence of these materials, in which magnetic
spins remain quantum disordered in the limit of zero
Kelvin, underpins much of modern condensed matter
theory. Previous studies have shown that QSL ground
states tend to emerge in the geometrically frustrated mate-
rials, in which the interactions among the limited magnetic
degrees of freedom lead to a strong enhancement
of quantum fluctuations. For example, the organic
salts #-ðBEDT-TTFÞ2Cu2ðCNÞ3 [3,4] and
EtnMe4#nSb½PdðDMITÞ2'2 [5–7] with a S ¼ 1=2 triangu-
lar lattice, and ZnCu3ðOHÞ6Cl2 with a S ¼ 1=2 kagome
lattice [8,9] are all QSL candidates. While the study of the
QSL state in the organic compounds remains a hot topic,
there are very few inorganic materials identified as model
systems for QSL ground states. Many efforts to synthesize
spin liquids on triangular lattices in inorganic materials
have failed. In this Letter, we unveil a new candidate for a
spin liquid compound—Ba3CuSb2O9—in which Cu2þ

species form a geometrically frustrated triangular lattice.
The magnetic susceptibility and neutron scattering experi-
ments on this material show no magnetic ordering down to
0.2 K despite moderately strong antiferromagnetic inter-
actions with J ( 32 K. The magnetic specific heat reveals
a T-linear dependence with a " ¼ 43:4 mJK#2 mol#1

below 1.4 K, suggesting that a Fermi surface forms at finite
temperatures in this inorganic insulator. These behaviors fit
the predicted signatures of a spin liquid ground state with
low amounts of chemical disorder.

Polycrystalline Ba3CuSb2O9 samples were prepared by
a solid state reaction. Appropriate mixtures of BaCO3,
CuO and Sb2O5 were ground together, pressed into pellets,
and then calcined in air at 1070 )C for several days. The
crystal structure of this 6-H perovskite-related material

with a ¼ b ¼ 5:8090 !A and c ¼ 14:3210 !A can be repre-
sented as a framework consisting of corner-sharing SbO6

octahedra and face-sharing CuSbO9 bioctahedra, as shown
in Figs. 1(a) and 1(b). In the bioctahedra, the Cu and Sb
cations are well ordered [10]. The Cu ions occupy the 2b
Wyckoff site of space group P63mc, and this site forms the
triangular lattice in the ab plane [Fig. 1(c)]. Therefore, the
structure can be seen as a two-dimensional triangular
magnet; i.e., the Cu magnetic triangular lattices are mag-
netically separated by the two nonmagnetic Sb layers
[Fig. 1(b)]. The powder x-ray diffraction (XRD) data of
the as-prepared sample shows a single phase and no chemi-
cal disorder between Cu and Sb down to the few percent-
age level. The distance between two Cu ions in one triangle
from the XRD refinement is uniformly 5.809(1) Å.
The temperature dependence of the dc magnetic suscep-

tibility measured with $0H ¼ 0:5 T for Ba3CuSb2O9

shows no signature for a magnetic transition above 1.8 K,
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triangular lattice of Cu2þ in the ab plane.
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lattice [13]. Therefore, CP for Ba3CuSb2O9 includes four
contributions: the lattice, the Sb Schottky anomaly, the
Cu2þ orphan spins Schottky anomaly (CSch-orp:), and the
magnetic specific heat for the Cu2þ triangular lattice (CM).
The lattice and Sb contributions are deleted by subtracting
CP of the Ba3ZnSb2O9 sample. The remaining specific
heat is CP-Cu ¼ CM þ CSch-orp:. To separate CSch-orp:, we
have applied a similar analysis as described for the
Schottky anomaly arising from the Cu2þ orphan spins in
ZnCu3ðOHÞ6Cl2 [13] and defects in Zn-doped Y2BaNiO5

[14]. The difference was taken between the interpolated
CP-Cu curves measured at different fields. Figure 3(b)
shows the difference between the 0 and 9 T curves
!CP-Cu=T ¼ ½CP-Cuð0 TÞ–CP-Cuð9 TÞ&=T. This field-
dependent part can be modeled by a dilute uniform distri-
bution of zero-field split doublets, i.e., S ¼ 1=2 spins.
!CP-Cu=T was fitted with f½Cð!EH1Þ ' Cð!EH2Þ&=T,
where f is the fraction of doublets per unit cell (or the
percentage of the Cu2þ orphan spins) and Cð!EH1Þ and
Cð!EH2Þ are the Schottky anomalies from a S ¼ 1=2 spin
with level splittings !EH1 and !EH2, by applying mag-
netic fields H1 and H2, respectively. The best fit, as the
solid line shown in Fig. 3(b), results in f ¼ 4:8ð2Þ%. This
amount of the Cu2þ orphan spins is consistent with the
amount obtained from the refinement of the neutron dif-
fraction data. The obtained !EH is plotted in the inset of
Fig. 3(b). The linear fitting of !EH with !0H ( 1 T
results in a Zeeman splitting with g ) 2:1. The zero-field
splitting of the doublets is 0.98 K (0.089 meV).

These orphan spins have a characteristic inelastic neu-
tron scattering signature—namely, a Zeeman-like splitting
under applied fields. Figure 3(c) and 3(d) shows the inelas-
tic neutron scattering spectra forBa3CuSb2O9 at 0.2 K with
!0H ¼ 0 and 2 T. A small quasistatic component is readily
visible in the data, with a shoulder extending to higher
energies developing with increasing field. The spectra,
after correcting with a resolution convolution, can be fit as:

IðEÞ ¼ A"ðEÞ þ BðnðEÞ þ 1Þ E!EH"

ðE2 '!E2
HÞ2 þ E2"2 (1)

where the first Dirac term represents the incoherent nuclear
scattering and the second damped simple harmonic oscil-
lator term represents the quasistatic component (A and B
are proportionality coefficients). nðEÞ is the Bose factor
and " is the damping. The fitting parameters are !EH ¼
0:144 meV, " ¼ 0:316 for 0 T data, and !EH ¼
0:27 meV, " ¼ 0:36 for 2 T data. In Figs. 3(c) and 3(d),
the fits of the quasistatic component are shown as solid
lines. The values of the !EH obtained here are consistent
with the energy splitting obtained from the specific heat
analysis, as shown in the inset of Fig. 3(b), which indicates
that the excitations observed are due to orphan spins.

The magnetic specific heat (CM) of the Cu
2þ triangular

lattice is finally obtained by subtracting CSch-orp: ¼
fCð!EHÞ. The result for the data is shown in Fig. 4.

Several features are noteworthy: (i) CM shows no field
dependence with !0H * 9 T. (ii) The magnetic contribu-
tion of the specific heat becomes prominent at around 30 K,
which is where the magnetic susceptibility also deviates
from the Curie-Weiss behavior. (iii) CM=T shows a broad
peak around 5 K and becomes flat below 1.4 K [Fig. 4(a)].
(iv) The integrated magnetic entropy variation below 30 K
is 1:7 JK'1 mol'1, which is around 30% of R lnð2Þ for
S ¼ 1=2 system, where R is the gas constant. This feature
indicates a high degeneracy of low-energy states at low
temperatures. (v) As shown in Fig. 4(b) with the log-log
scale, between 1.4 and 4 K, CM can be fit as CM ¼ bT#

with b ¼ 37:0 mJK'3 mol'1 and # ¼ 1:83ð2Þ. This #
value is near 2.0, showing a quadratic temperature depen-
dence. At lower temperatures, between 0.35 and 1.4 K, CM

can be fit as CM ¼ $T# with $ ¼ 43:4 mJK'2 mol'1 and
# ¼ 0:99ð2Þ, giving a linear temperature dependence.
The susceptibility and specific heat both show no mag-

netic ordering down to 0.2 K for Ba3CuSb2O9 despite
moderately strong nearest neighbor antiferromagnetic
interactions with J + 32 K, which clearly places this
compound in the highly frustrated regime. The field-
independent CM is common in spin liquid candidates,
which should be resilient to moderate applied fields. This
behavior has also been observed for other spin liquid
candidates, such as NiGa2S4 with Ni2þ (S ¼ 1) triangular
lattice [15] and Na4Ir3O8 with Ir4þ (S ¼ 1=2) hyperka-
gome lattice [16]. On the other hand, the linear dependence
of CM is unusual for 2D frustrated lattices, which should
have a quadratic dependence for linearly dispersive
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Spiral spin liquid?

as indicated in Fig. 2(a). The temperature dependence of
the ac magnetic susceptibility [Fig. 2(b)] further shows no
sign of a magnetic transition down to 0.2 K. The neutron
powder diffraction pattern obtained at 0.2 K with ! ¼
1:8 !A on the Disk Chopper Spectrometer at the National
Institute of Standards and Technology [Fig. 2(c)] shows no
intensity change nor additional peaks from the 4 K data
(not shown here), indicating that there is no magnetic
transition nor structural distortion down to 0.2 K. This is
consistent with the ac susceptibility measurements. The
possibility of mixing between the Cu and Sb sites has been
tested by refinement of the neutron diffraction data. The
best refinement [Fig. 2(c), using FULLPROF with Rp " 5:0,
Rwp " 7:5, and "2 " 1:2] shows a full occupancy of Sb(1)
on the corner-sharing SbO6 octahedron sites and Cu on one
of the ordered bioctahedra sites. There is a slight amount of
site mixing [refined from the neutron data to be 5.1(4)%] of
the other ordered bioctahedra sites—Sb(2) sites are re-
placed by Cu ions. The dc magnetic susceptibility contri-
bution from this 5.1% Cu2þ orphan spins has been
calculated by a simple Curie law. The susceptibility, after
subtracting this contribution, is shown as open circles in
Fig. 2(a). Its inverse [inset of Fig. 2(a)] deviates from a
linear temperature dependence around 30 K. The Curie-
Weiss fit of this linear behavior at high temperature gives
a #CW ¼ $55 K and an effective moment $eff ¼
1:79$B=Cu, which is consistent with the expected value

for Cu2þ (S ¼ 1=2) ions. This $eff gives a Lande g factor
g ¼ 2:07 [again typical for Cu2þ (S ¼ 1=2) ions]. Using
this g value, the exchange interaction J is estimated to be
J=kB ¼ 32 K by fitting the data between 150 and 300 K to
the calculation for the spin 1=2 triangular lattice using a
high-temperature-series expansion (HTSE) [11]. As a con-
sistency check, another method was used to calculate J
based on mean-field theory, considering only z nearest-
neighbor ions coupled with exchange interactions. #CW is
given as ½$zJSðSþ 1Þ(=3kB (the Hamiltonian of the
Heisenberg model here is J

P
hi;jiSi ) Sj). For the S ¼ 1=2

triangular lattice with z ¼ 6, J=kB ¼ $2=3#CW ¼ 37 K,
which is consistent with the HTSE calculation.
Figure 3(a) shows the specific heat (CP) measured with a

Physical Property Measurement System at different fields
for Ba3CuSb2O9 and the nonmagnetic isostructural lattice
standard Ba3ZnSb2O9. The field-dependent specific heat
at low temperatures for the nonmagnetic Ba3ZnSb2O9

sample is due to a nuclear Schottky anomaly from the Sb
atoms [12], which is estimated to be of the order 10$5 *
10$3 J K$1 mol$1. CP of Ba3CuSb2O9 also shows a field-
dependent behavior at low temperatures; the shoulder of
CP gradually moves to higher temperatures with increasing
field. This anomaly is around 10$2 * 100 JK$1 mol$1,
which apparently is not due to the nuclear contribution
from Sb. On the other hand, the 5.1% of Cu2þ ions on the
Sb(2) sites could give rise to such a Schottky anomaly,
which also has been found for the Cu2þ orphan spins in the
spin liquid candidate ZnCu3ðOHÞ6Cl2 with Cu2þ kagome
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FIG. 2. (a) The temperature dependencies of the dc magnetic
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Ba3CuSb2O9 at 0.2 K. The solid curve is the best fit from the
Rietveld refinement using FULLPROF. The vertical marks indicate
the position of Bragg peaks, and the bottom curve shows the
difference between the observed and calculated intensities.
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lines are the fits described in the text, the solid lines show the
magnetic contribution.
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as indicated in Fig. 2(a). The temperature dependence of
the ac magnetic susceptibility [Fig. 2(b)] further shows no
sign of a magnetic transition down to 0.2 K. The neutron
powder diffraction pattern obtained at 0.2 K with ! ¼
1:8 !A on the Disk Chopper Spectrometer at the National
Institute of Standards and Technology [Fig. 2(c)] shows no
intensity change nor additional peaks from the 4 K data
(not shown here), indicating that there is no magnetic
transition nor structural distortion down to 0.2 K. This is
consistent with the ac susceptibility measurements. The
possibility of mixing between the Cu and Sb sites has been
tested by refinement of the neutron diffraction data. The
best refinement [Fig. 2(c), using FULLPROF with Rp " 5:0,
Rwp " 7:5, and "2 " 1:2] shows a full occupancy of Sb(1)
on the corner-sharing SbO6 octahedron sites and Cu on one
of the ordered bioctahedra sites. There is a slight amount of
site mixing [refined from the neutron data to be 5.1(4)%] of
the other ordered bioctahedra sites—Sb(2) sites are re-
placed by Cu ions. The dc magnetic susceptibility contri-
bution from this 5.1% Cu2þ orphan spins has been
calculated by a simple Curie law. The susceptibility, after
subtracting this contribution, is shown as open circles in
Fig. 2(a). Its inverse [inset of Fig. 2(a)] deviates from a
linear temperature dependence around 30 K. The Curie-
Weiss fit of this linear behavior at high temperature gives
a #CW ¼ $55 K and an effective moment $eff ¼
1:79$B=Cu, which is consistent with the expected value

for Cu2þ (S ¼ 1=2) ions. This $eff gives a Lande g factor
g ¼ 2:07 [again typical for Cu2þ (S ¼ 1=2) ions]. Using
this g value, the exchange interaction J is estimated to be
J=kB ¼ 32 K by fitting the data between 150 and 300 K to
the calculation for the spin 1=2 triangular lattice using a
high-temperature-series expansion (HTSE) [11]. As a con-
sistency check, another method was used to calculate J
based on mean-field theory, considering only z nearest-
neighbor ions coupled with exchange interactions. #CW is
given as ½$zJSðSþ 1Þ(=3kB (the Hamiltonian of the
Heisenberg model here is J

P
hi;jiSi ) Sj). For the S ¼ 1=2

triangular lattice with z ¼ 6, J=kB ¼ $2=3#CW ¼ 37 K,
which is consistent with the HTSE calculation.
Figure 3(a) shows the specific heat (CP) measured with a

Physical Property Measurement System at different fields
for Ba3CuSb2O9 and the nonmagnetic isostructural lattice
standard Ba3ZnSb2O9. The field-dependent specific heat
at low temperatures for the nonmagnetic Ba3ZnSb2O9

sample is due to a nuclear Schottky anomaly from the Sb
atoms [12], which is estimated to be of the order 10$5 *
10$3 J K$1 mol$1. CP of Ba3CuSb2O9 also shows a field-
dependent behavior at low temperatures; the shoulder of
CP gradually moves to higher temperatures with increasing
field. This anomaly is around 10$2 * 100 JK$1 mol$1,
which apparently is not due to the nuclear contribution
from Sb. On the other hand, the 5.1% of Cu2þ ions on the
Sb(2) sites could give rise to such a Schottky anomaly,
which also has been found for the Cu2þ orphan spins in the
spin liquid candidate ZnCu3ðOHÞ6Cl2 with Cu2þ kagome
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susceptibility ("0). (c) Neutron diffraction pattern (crosses) for
Ba3CuSb2O9 at 0.2 K. The solid curve is the best fit from the
Rietveld refinement using FULLPROF. The vertical marks indicate
the position of Bragg peaks, and the bottom curve shows the
difference between the observed and calculated intensities.
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lines are the fits described in the text, the solid lines show the
magnetic contribution.
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as indicated in Fig. 2(a). The temperature dependence of
the ac magnetic susceptibility [Fig. 2(b)] further shows no
sign of a magnetic transition down to 0.2 K. The neutron
powder diffraction pattern obtained at 0.2 K with ! ¼
1:8 !A on the Disk Chopper Spectrometer at the National
Institute of Standards and Technology [Fig. 2(c)] shows no
intensity change nor additional peaks from the 4 K data
(not shown here), indicating that there is no magnetic
transition nor structural distortion down to 0.2 K. This is
consistent with the ac susceptibility measurements. The
possibility of mixing between the Cu and Sb sites has been
tested by refinement of the neutron diffraction data. The
best refinement [Fig. 2(c), using FULLPROF with Rp " 5:0,
Rwp " 7:5, and "2 " 1:2] shows a full occupancy of Sb(1)
on the corner-sharing SbO6 octahedron sites and Cu on one
of the ordered bioctahedra sites. There is a slight amount of
site mixing [refined from the neutron data to be 5.1(4)%] of
the other ordered bioctahedra sites—Sb(2) sites are re-
placed by Cu ions. The dc magnetic susceptibility contri-
bution from this 5.1% Cu2þ orphan spins has been
calculated by a simple Curie law. The susceptibility, after
subtracting this contribution, is shown as open circles in
Fig. 2(a). Its inverse [inset of Fig. 2(a)] deviates from a
linear temperature dependence around 30 K. The Curie-
Weiss fit of this linear behavior at high temperature gives
a #CW ¼ $55 K and an effective moment $eff ¼
1:79$B=Cu, which is consistent with the expected value

for Cu2þ (S ¼ 1=2) ions. This $eff gives a Lande g factor
g ¼ 2:07 [again typical for Cu2þ (S ¼ 1=2) ions]. Using
this g value, the exchange interaction J is estimated to be
J=kB ¼ 32 K by fitting the data between 150 and 300 K to
the calculation for the spin 1=2 triangular lattice using a
high-temperature-series expansion (HTSE) [11]. As a con-
sistency check, another method was used to calculate J
based on mean-field theory, considering only z nearest-
neighbor ions coupled with exchange interactions. #CW is
given as ½$zJSðSþ 1Þ(=3kB (the Hamiltonian of the
Heisenberg model here is J

P
hi;jiSi ) Sj). For the S ¼ 1=2

triangular lattice with z ¼ 6, J=kB ¼ $2=3#CW ¼ 37 K,
which is consistent with the HTSE calculation.
Figure 3(a) shows the specific heat (CP) measured with a

Physical Property Measurement System at different fields
for Ba3CuSb2O9 and the nonmagnetic isostructural lattice
standard Ba3ZnSb2O9. The field-dependent specific heat
at low temperatures for the nonmagnetic Ba3ZnSb2O9

sample is due to a nuclear Schottky anomaly from the Sb
atoms [12], which is estimated to be of the order 10$5 *
10$3 J K$1 mol$1. CP of Ba3CuSb2O9 also shows a field-
dependent behavior at low temperatures; the shoulder of
CP gradually moves to higher temperatures with increasing
field. This anomaly is around 10$2 * 100 JK$1 mol$1,
which apparently is not due to the nuclear contribution
from Sb. On the other hand, the 5.1% of Cu2þ ions on the
Sb(2) sites could give rise to such a Schottky anomaly,
which also has been found for the Cu2þ orphan spins in the
spin liquid candidate ZnCu3ðOHÞ6Cl2 with Cu2þ kagome
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FIG. 2. (a) The temperature dependencies of the dc magnetic
susceptibility ("). The open squares, dashed line, and open
circles represent " as measured, "-orphan spins, and " after
deleting orphan spins, respectively. The solid curve on " data
above 150 K represents a fit to the HTSE. Inset: 1=" after
deleting the orphan spin contribution (open triangles). The solid
line on the 1=" data represents a Curie-Weiss fit. (b) The
temperature dependence of the real part of the ac magnetic
susceptibility ("0). (c) Neutron diffraction pattern (crosses) for
Ba3CuSb2O9 at 0.2 K. The solid curve is the best fit from the
Rietveld refinement using FULLPROF. The vertical marks indicate
the position of Bragg peaks, and the bottom curve shows the
difference between the observed and calculated intensities.
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FIG. 3. (a) The temperature dependencies of specific heat at
different fields for Ba3CuSb2O9 and Ba3ZnSb2O9. (b) Open
squares are "CP-Cu=T ¼ ½CP-Cuð0 TÞ–CP-Cuð9 TÞ(=T. The solid
line is a fit as described in the text. Inset: "EH as a function of
$0H between 0 and 9 T. The solid line represents a fit to Zeeman
splitting. Inelastic neutron scattering spectra (! ¼ 4:8 !A) for
Ba3CuSb2O9 at 0.2 K with applied magnetic field 0 T (c) and
2 T (d). Open squares are experimental data, the dash-dotted
lines are the fits described in the text, the solid lines show the
magnetic contribution.
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Summary

1. we study the spin-1 multilayer triangular lattice magnet.

2. we propose the quantum criticality to be the origin of the  
puzzling spin liquid phenomena in Ni spin-1 magnet.Gang Chen’s theory group 

Gang Chen’s theory group


