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1. General overview: the interplay 
between spin-orbit coupling and 

correlation 



Extended Hubbard model and generic phase diagram

1. INTRODUCTION

The subject of this review is the combination of two central threads of quantummaterials research.
The first, correlated electron physics, is a venerable but still vibrant subject, born from observa-
tions ofMott, Hubbard, Anderson, and others on the properties of 3d transition metal oxides. It is
largely concerned with the diverse properties of electronic materials that are insulating, or in the
process of becoming so, as a result of electron-electron interactions (1, 2), most importantly the
strong local Hubbard repulsion U between electrons that occupy the same orbital. A plethora of
phenomena arises from correlated electron physics, including local moment formation and
magnetism, correlated metallic states, quantum criticality, and unconventional superconductivity
(2). The second thread of quantum materials research, nontrivial physics from strong spin-orbit
coupling (SOC), includes a body of work on f-electron materials (3) and the much more recent
activity that beganwith the theoretical proposal of topological insulators (TIs) in 2005 (4–6). SOC
is a relativistic effect that provides an interaction between the orbital angular momentum and
electron spin in atoms, and is usually considered a small perturbation in the discussion of electrons
in solid.However, in heavy elements it need not beweak—it effectively increases proportionally to
Z4, where Z is the atomic number—and indeed has striking qualitative effects. Since 2005, the
investigation of topological aspects of electron bands has exploded, both theoretically and ex-
perimentally (4–6). From the materials perspective, the domain of the TI field has mostly been the
class of solids with heavy s- and p-electron elements, such as Bi, Pb, Sb, Hg, and Te. In these
materials, topologically protected Dirac-like surface states have been predicted and observed, and
a host of further phenomena are currently under intense investigation.

The two research strands come together in the heavy transition metal compounds drawn es-
pecially from the 5d series and, in some cases, the 4d series as well. Upon descending the periodic
table from the 3d to the 4d to the 5d series, there are several competing trends. First, the d orbitals
become more extended, tending to reduce the electronic repulsion U and thereby diminish cor-
relation effects. However, simultaneously, the SOC increases dramatically, leading to enhanced
splittings between otherwise degenerate or nearly degenerate orbitals and bands, in many cases
reducing the kinetic energy. The latter effect can offset the reduction in U, allowing correlation
physics to come into play.

It is instructive to consider a generic model Hamiltonian that describes the above discussion:

H ¼
X

i,j;ab
tij,ab c

†
iacjb þ h.c.þ l

X

i
Li × Si þU

X

i,a
niaðnia $ 1Þ , 1:

where cia in the annihilation operator for an electron in orbital a at site i, nia ¼ c†iacia is the
correspondingoccupation number, t is the hopping amplitude,l is the atomic SOCentangling spin
(Si) and angular momentum (Li), andU is theHubbard repulsion. An explicit example of the spin-
orbital entanglement due to l is given later in Equation 3. We have for simplicity omitted the
Hund’s interaction between spins in different orbitals on the same site, which is much smaller than
Ubut can sometimes have significant effects (7); however, it is unimportant in the specific examples
discussed in detail in this review.A schematic phase diagram canbedrawnas inFigure 1 in terms of
the relative strength of the interactionU/t and the SOC l/t (8). We emphasize this is schematic, in
part because the problem is unsolved and in part because Equation 1 can represent many different
physical situations by the choice of orbitals and lattice and band structure encoded in tij,ab, and the
ground states that occur certainly depend on these choices. In this diagram, two lines (which are
not meant necessarily as sharp boundaries but rather as demarcating different limits) divide the
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“Spin-orbit coupled” Mott insulator is a relatively unexplored region.
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Why do we care about this?  First it is real !

Heavy elements have stronger spin-orbit couplings.  
For 4d, 5d, 4f, 5f electrons, even for 3d electrons (when the orbitals are 
degenerate), SOC needs to be seriously considered.
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Candidate materials as “spin-orbit coupled” Mott insulator 

First order question: Why do some of they form Mott insulators?  
Strong correlation physics can appear in 4d/5d systems

In this section, we discuss phenomena involving band-like topology in the presence of inter-
actions. Nontrivial band topology can probably only arise when correlations are not so strong as
to localize electrons fully to single atoms. Consequently, we focus on this regime of weak-to-
intermediate correlations. From the theoretical point of view, this means that a Hubbard model,
rather than one of localized spins, is likely a better starting point.

What new phenomena can be expected relative to the uncorrelated s- and p-electron materials
that are the mainstay of TI experiments? TIs are obviously stable to interactions, and, quanti-
tatively, correlations may even increase the gap in some cases [with correlations, in contrast to
the free case, the surface states have the potential to spontaneously break TRS or even to exhibit
exotic fractionalization (146–149)]. A more qualitatively novel prospect is to probe topological
phases with spontaneous time-reversal breaking because magnetism is common in correlated
materials. In general, theZ2 classification fails for time-reversal broken systems, and insteadChern
insulators, i.e., materials with quantized Hall effects, may occur. In the presence of crystalline
symmetries, notably inversion, a Z2 index may reappear (47, 57–60, 150). This is the case in the
axion insulator (47, 58, 59), which is characterized by a quantized magnetoelectric effect, i.e., an

electric polarization, P, can be generated by applying a magnetic field, B: P ¼ u

ð2pÞ2
B, with u¼ p

such that the ratio P/B is universal and quantized. In fact, the same is true for three-dimensional
TIs, and the quantized magnetoelectric effect can be used to define TIs (61) and axion insulators
(51, 62, 63) in the presence of interactions.

Table 1 Emergent quantum phases in correlated spin-orbit coupled materialsa

Phase Symmetry Correlation Properties Proposed materials

Topological insulator TRS W-I Bulk gap, TME, protected
surface states

Many

Axion insulator P I Magnetic insulator,
TME, no protected
surface states

R2Ir2O7, A2Os2O7

Weyl semimetal TRS or P
(not both)

W-I Dirac-like bulk states,
surface Fermi arcs,
anomalous Hall effect

R2Ir2O7, HgCr2Se4, . . .

LAB semimetal Cubic þ TRS W-I Non-Fermi liquid R2Ir2O7

Chern insulator Broken TRS I Bulk gap, QHE Sr[Ir/Ti]O3, R2[B/B0]2O7

Fractional Chern
insulator

Broken TRS I-S Bulk gap, FQHE Sr[Ir/Ti]O3

Quantum spin liquid Any S Several possible
phases, charge gap,
fractional excitations

(Na,Li)2IrO3, Ba2YMoO6

Multipolar order Various S Suppressed or zero
magnetic moments,
exotic order parameters

A2BB0O6

aAll phases have U(1) particle-conservation symmetry, i.e., superconductivity is not included. [A/B] in a material’s designation signifies a heterostructure
with alternating A and B elements.
Abbreviations: (F)QHE, (fractional) quantumHall effect; I, intermediate (e.g., requiring magnetic order but mean-field-like); I-S, intermediate-strong; LAB,
Luttinger-Abrikosov-Beneslavskii(94); P, inversion (parity); S, strong;TME, topologicalmagnetoelectric effect;TRS, time-reversal symmetry;W-I,weak-intermediate.
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Topological insulator does not require correlation. An important 
theoretical question is to understand correlation physics in 
topological matters.  

This is not only an academic problem, but also relevant for many 
experimental systems. 

+

topology correlation

Why do we care about this?  
It may give novel phases!

= ??

The phase diagram already lists some of the new phases, e.g. 
axion insulator, Weyl semimetal, topological Mott insulator,  
spin liquid, etc
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Topological insulator and semimetal: known examples

Topological insulator (HgTe/CdTe, Bi2Se3, etc) and  
topological semimetal (Cd2As3, Na3Bi, etc): because  
only s and p orbitals are involved, they are weakly correlated.
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Topological Kondo insulator arises from strong correlation, but is still understood within 
the same framework as topological band insulator. 

Topological Kondo insulator 
a trivial interplay between topology and correlation 

Neupane, etc, 
Nature Comm. 2013

trivial != interesting
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Topological Mott insulator: a non-trivial example

When topological band insulator becomes Mott insulating, where did the topologicalness 
go? Anything inherits the band structure topology?

Pesin, Balents Nature Phys, 2010

R2Ir2O7

electron = charge + spin 
c_sigma = b*f_sigma 
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One place to potentially observe interesting interplay between  

topology or SOC and correlation is in  
iridate materials and other heavy element compounds.

We are interested in non-trivial interplay between  
topology (SOC) and correlation. 

Of course, we are not just looking for topological matter,  
more generally looking for new phases of matter 

that arises from strong correlation and strong SOC. 



2. Iridates: spin-orbit coupling and 
Jeff =1/2 
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The forest of iridates (in time order)

A2IrO4: candidate for high-Tc superconductor, isostructure with A2CuO4 

AIrO3 perovskite heterostructure: topological crystalline metal

Sr3Ir2O7 : metamagnetic transition, isostructure with Sr3Ru2O7

Na2IrO3: alpha-Li2IrO3, beta-Li2IrO3 “Kitaev materials”

Na4Ir3O8: hyperkagome quantum spin liquid

R2Ir2O7: topological insulator, Weyl semimetal, ABL semimetal

IrO2: pyrochlore lattice spin liquid
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Na4Ir3O8: hyperkagome quantum spin liquid ?

Why Ir ion behaves as a spin-1/2 ?

hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.

6
4
2
0

S m
 (J

/K
m

ol
 Ir

)

60

40

20

0

C
m

/T
 (m

J/
K

2 m
ol

 Ir
)

300250200150100500
T (K)

2000

1500

1000

500

0

(a) Na4Ir3O8

(c) 

(b)

−1
(m

ol
 Ir

/e
m

u)

1

10

100

C
m

/T
 (m

J/
K

2 m
ol

 Ir
)

1 10 100
T (K)

Cm ∝ T
2

Cm ∝ T
3

12 T
8 T0 T

4 T

1.6

1.2

0.8

 (1
0-3

em
u/

m
ol

 Ir
)

0.01 T
0.1 T
1 T
5 T

FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.
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magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
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TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
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O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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3d printed (balents) 
hyperkagome

Takagi,etc, PRL, 2007

� ⇠ constant, Cv/T ⇠ constant



t2g orbitals in octahedral crystal field

IrO6 octahedron
t2g: xy,xz,yz

Ir4+ : 5d5

eg : x2 � y

2
, 3z2 � r

2

Crystal electric field Spin-orbit coupling

j = 3/2

j = 1/2

Gang Chen, Balents PRB 2008, B.J. Kim etc, Science 2008, G. Jackeli, Khaliullin PRL 2009

h{t2g}|L|{t2g}i = �l, H
soc

= ��l · S, j = l+ S

It is interesting to look at how the magnetic moment M = L+2S = -l+2S varies.

BTW, SOC is quenched for eg orbitals.
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Exchange interaction: direct

2

spin supercurrent ?”. The answer to this question can
be found in the Aharonov-Casher (AC) effect [14] and
Dzyaloshinskii-Moriya (DM) interaction [6, 7]. The con-
ventional DM interaction[7] is given by

HDM =
∑

<ij>

D⃗ij · (S⃗i × S⃗j). (4)

When the DM vector D⃗ij = Dij êz, the total Hamiltonian
Htotal = HXY + HDM with HXY in eq. (1) is written as

Htotal = −
∑

<ij>

J̃⊥ij

2
(e−iAij S+

i S−
j + eiAij S+

i S−
j ) (5)

where J̃⊥ijeiAij = J⊥ij + iDij . Therefore the DM vec-

tor D⃗ acts as the vector potential or gauge field to the
spin current. It is well known that the DM interaction
exists only when the inversion symmetry is broken at the
middle point between the two spins. Therefore when the
crystal structure has the inversion symmetry, the exter-
nal electric field E⃗ induces the DM interaction. Namely
D⃗ij ∝ E⃗× e⃗ij, where e⃗ij is the unit vector connecting the
two sites i and j. This form is identical to the Aharanov-
Casher (AC) effect, where the Lorentz transformation of
the electric field induces the magnetic field in the moving
frame which interacts with the spin moment. However
the magnitude of the coupling constant for AC effect is
extremely small in vacuum since it contains the rest mass
of the electron mc2 ∼= 5×105eV in the denominator. The
situation is different for the DM interaction in solids, i.e.,
the electrons are trapped in the strong potential of the
atoms with large momentum distribution leading to the
enhanced spin-orbit interaction. Therefore the gauge po-
tential Aij could be (a fraction) of the order of unity, e.g.
Aij ∼ 2π as seen below.

To illustrate this, consider the electron energy levels in
the ligand field of 3d-transition metal [16]. In the octa-
hedral ligand field, the d-orbitals are split into eg orbitals
and t2g orbitals. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energy lower than eg orbitals. If we take account
of the spin degree of freedom, there is 6-fold degeneracy
in t2g energy level. Due to the on-site spin-orbit interac-
tion, however, this degeneracy is lifted and we have two
groups of spin-orbit coupled states, labeled Γ7 and Γ8.
The 2-fold degenerate states, i.e., Γ7, are given by

|a⟩ =
1√
3
(|dxy,↑⟩ + |dyz,↓⟩ + i|dzx,↓⟩), (6)

and

|b⟩ =
1√
3
(|dxy,↓⟩ − |dyz,↑⟩ + i|dzx,↑⟩), (7)

respectively, where the quantization axis of spin is taken
to be the z axis. For the sake of simplicity, we consider

the above two states alone. However, our method is valid
for more general cases and one can easily generalize it to
any other spin-orbit strongly coupled situation.

We consider the case where the inversion symmetry
exists at the middle point of the two magnetic ions, and
the generic non-collinear magnetic ordering is realized
by the competing exchange interactions J ’s and/or by
the symmetry breaking due to the spin-orbit interaction.
Here the magnetic moment at j-th site points to the unit
vector e⃗j = (cosφj sin θj , sin φj sin θj , cos θj). The mean
field Hamiltonian applied to the Hubbard model is given
by ( we take the unit where h̄ = 1 hereafter): H =
−U

∑

j e⃗j · S⃗j, where U is energy of Coulomb repulsion.
For each site j, we restrict the Hilbert space to the 2-
dimensional one spanned by the above two states, and
the effective Hamiltonian is reduced to the 2× 2 matrix

−
U

3

[

− cos θ sin θe−iφ

sin θeiφ cos θ

]

. (8)

We diagonalize this Hamiltonian matrix to obtain eigen-
states |P ⟩, |AP ⟩ as

|P ⟩ = sin
θ

2
|a⟩ + eiφ cos

θ

2
|b⟩,

|AP ⟩ = cos
θ

2
|a⟩ − eiφ sin

θ

2
|b⟩. (9)

Here |P ⟩ and |AP ⟩ means the spin state parallel and
anti-parallel to the unit vector e⃗, and the corresponding
eigenvalues are −U

3 and +U
3 , respectively. For conve-

nience, we define the coefficients Aiσ and Biσ and ab-
breviate the above two states as, |P ⟩ =

∑

iσ Aiσ|diσ⟩,
|AP ⟩ =

∑

iσ Biσ|diσ⟩, where i = xy, yz, zx, σ =↑, ↓.
From now on, we focus on the three atom model as

shown in Fig.1, which represents the bond between the
two transition metal ions M1, M2 through the oxygen
atom O. We take the hole picture below, where the oxy-
gen orbitals are empty. We assume the generic case of e⃗1

and e⃗2 including the non-collinear configuration. Each
site has two states, i.e., |P ⟩ and |AP ⟩, mentioned above.
So we define |P ⟩j and |AP ⟩j (j = 1, 2) corresponding to
the magnetic order on each site. Because of the existence
of the oxygen atom, there are hopping processes between
the M site and the O site. The transfer integrals between
the d- and p-orbitals can be found in the Slater-Koster
tables[17, 18], and the hopping Hamiltonian is given as
follows:

Ht = H1−m
t + Hm−1

t + H2−m
t + Hm−2

t ,

H1−m
t = +V

∑

σ

(p†y,σd(1)
xy,σ + p†z,σd(1)

zx,σ) = (Hm−1
t )†

H2−m
t = −V

∑

σ

(p†y,σd(2)
xy,σ + p†z,σd(2)

zx,σ) = (Hm−2
t )†,

2

spin supercurrent ?”. The answer to this question can
be found in the Aharonov-Casher (AC) effect [14] and
Dzyaloshinskii-Moriya (DM) interaction [6, 7]. The con-
ventional DM interaction[7] is given by

HDM =
∑

<ij>

D⃗ij · (S⃗i × S⃗j). (4)

When the DM vector D⃗ij = Dij êz, the total Hamiltonian
Htotal = HXY + HDM with HXY in eq. (1) is written as

Htotal = −
∑

<ij>

J̃⊥ij

2
(e−iAij S+

i S−
j + eiAij S+

i S−
j ) (5)

where J̃⊥ijeiAij = J⊥ij + iDij . Therefore the DM vec-

tor D⃗ acts as the vector potential or gauge field to the
spin current. It is well known that the DM interaction
exists only when the inversion symmetry is broken at the
middle point between the two spins. Therefore when the
crystal structure has the inversion symmetry, the exter-
nal electric field E⃗ induces the DM interaction. Namely
D⃗ij ∝ E⃗× e⃗ij, where e⃗ij is the unit vector connecting the
two sites i and j. This form is identical to the Aharanov-
Casher (AC) effect, where the Lorentz transformation of
the electric field induces the magnetic field in the moving
frame which interacts with the spin moment. However
the magnitude of the coupling constant for AC effect is
extremely small in vacuum since it contains the rest mass
of the electron mc2 ∼= 5×105eV in the denominator. The
situation is different for the DM interaction in solids, i.e.,
the electrons are trapped in the strong potential of the
atoms with large momentum distribution leading to the
enhanced spin-orbit interaction. Therefore the gauge po-
tential Aij could be (a fraction) of the order of unity, e.g.
Aij ∼ 2π as seen below.

To illustrate this, consider the electron energy levels in
the ligand field of 3d-transition metal [16]. In the octa-
hedral ligand field, the d-orbitals are split into eg orbitals
and t2g orbitals. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energy lower than eg orbitals. If we take account
of the spin degree of freedom, there is 6-fold degeneracy
in t2g energy level. Due to the on-site spin-orbit interac-
tion, however, this degeneracy is lifted and we have two
groups of spin-orbit coupled states, labeled Γ7 and Γ8.
The 2-fold degenerate states, i.e., Γ7, are given by

|a⟩ =
1√
3
(|dxy,↑⟩ + |dyz,↓⟩ + i|dzx,↓⟩), (6)

and

|b⟩ =
1√
3
(|dxy,↓⟩ − |dyz,↑⟩ + i|dzx,↑⟩), (7)

respectively, where the quantization axis of spin is taken
to be the z axis. For the sake of simplicity, we consider

the above two states alone. However, our method is valid
for more general cases and one can easily generalize it to
any other spin-orbit strongly coupled situation.

We consider the case where the inversion symmetry
exists at the middle point of the two magnetic ions, and
the generic non-collinear magnetic ordering is realized
by the competing exchange interactions J ’s and/or by
the symmetry breaking due to the spin-orbit interaction.
Here the magnetic moment at j-th site points to the unit
vector e⃗j = (cosφj sin θj , sin φj sin θj , cos θj). The mean
field Hamiltonian applied to the Hubbard model is given
by ( we take the unit where h̄ = 1 hereafter): H =
−U

∑

j e⃗j · S⃗j, where U is energy of Coulomb repulsion.
For each site j, we restrict the Hilbert space to the 2-
dimensional one spanned by the above two states, and
the effective Hamiltonian is reduced to the 2× 2 matrix

−
U

3

[

− cos θ sin θe−iφ

sin θeiφ cos θ

]

. (8)

We diagonalize this Hamiltonian matrix to obtain eigen-
states |P ⟩, |AP ⟩ as

|P ⟩ = sin
θ

2
|a⟩ + eiφ cos

θ

2
|b⟩,

|AP ⟩ = cos
θ

2
|a⟩ − eiφ sin

θ

2
|b⟩. (9)

Here |P ⟩ and |AP ⟩ means the spin state parallel and
anti-parallel to the unit vector e⃗, and the corresponding
eigenvalues are −U

3 and +U
3 , respectively. For conve-

nience, we define the coefficients Aiσ and Biσ and ab-
breviate the above two states as, |P ⟩ =

∑

iσ Aiσ|diσ⟩,
|AP ⟩ =

∑

iσ Biσ|diσ⟩, where i = xy, yz, zx, σ =↑, ↓.
From now on, we focus on the three atom model as

shown in Fig.1, which represents the bond between the
two transition metal ions M1, M2 through the oxygen
atom O. We take the hole picture below, where the oxy-
gen orbitals are empty. We assume the generic case of e⃗1

and e⃗2 including the non-collinear configuration. Each
site has two states, i.e., |P ⟩ and |AP ⟩, mentioned above.
So we define |P ⟩j and |AP ⟩j (j = 1, 2) corresponding to
the magnetic order on each site. Because of the existence
of the oxygen atom, there are hopping processes between
the M site and the O site. The transfer integrals between
the d- and p-orbitals can be found in the Slater-Koster
tables[17, 18], and the hopping Hamiltonian is given as
follows:

Ht = H1−m
t + Hm−1

t + H2−m
t + Hm−2

t ,

H1−m
t = +V

∑

σ

(p†y,σd(1)
xy,σ + p†z,σd(1)

zx,σ) = (Hm−1
t )†

H2−m
t = −V

∑

σ

(p†y,σd(2)
xy,σ + p†z,σd(2)

zx,σ) = (Hm−2
t )†,

Spin-orbit entangled j=1/2 doublet

this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya !DM" interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, !19"

where,

H0 = #
jm!

"mdjm!
† djm! + #

kn!

"pn
pkn!

† pkn!

+
Ud

2 #
jmm!!!!

djm!
† djm!!!

† djm!!!djm!

+
Up

2 #
knn!!!!

pkn!
† pkn!!!

† pkn!!!pkn!, !20"

Ht = #
jm!

#
k!j"n

!tjm,kndjm!
† pkn! + H.c."

+ #
$j j!%

#
mm!

tjm,j!m!
d djm!

† dj!m!!, !21"

HLS = ##
j

! j · s j . !22"

k!j" denotes the O2− of the neighboring Ir4+ site j, djm!
† is the

creation operator of an electron with spin ! of the mth 5d
orbital of ith Ir ion, and "m is the energy of this orbital. m
will take 1, 2, and 3. pkn!

† is the creation operator of an
electron on the 2pn orbital with spin !. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j!m!

d

TABLE I. The parity sectors of 5d electron orbitals by C2
rotation.

State 5d orbitals at A 3d orbitals at B Parity

&1% xy yz even
&2% 1

'2 !xz−yz" 1
'2 !yx+zx" odd

&3% 1
'2 !xz+yz" 1

'2 !yx−zx" even

&4% x2−y2 y2−z2 odd
&5% 3z2−r2 3x2−r2 even

A

1

3

2!3'"
4

5!6'"6

4'

1'

2'

5'
B

C2

C2

x
y

z

x
y

z

FIG. 4. !Color online" Ir4+ and octahedron O2− environment
!thin black line". Two neighboring Ir4+ are denoted by A and B !in
orange". A /B’s six O2− are labeled as 1 /1!, 2 /2!, 3 /3!, 4 /4!, 5 /5!,
and 6 /6! !in pink", in which, 2 and 3!, 5 and 6! label the same
points. The distances between Ir4+ and O2− order this way: &A5&
= &A6&= &B5!&= &B6!&$ &A3&= &A4&= &B3!&= &B4!&$ &A1&= &A2&= &B1!&
= &B2!&. The C2 axis !thick dash line" orients along 1

'2 !1,−1,0" at
Ir4+ A and 1

'2 !0,1 ,1" at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.

Ir ion

eg

t2g5d orbitals of

Crystal field
splitting

Lattice distortion
|1>

|2>

|3>

|4>

|5>

FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.

SPIN-ORBIT EFFECTS IN Na4Ir3O8: A… PHYSICAL REVIEW B 78, 094403 !2008"

094403-7

two neighboring IrO6 octahedra: 
they share 2 oxygens.

Gang Chen, Balents PRB 2008
Na2IrO3:  Jackeli, Khaliullin PRL 2009

Surprisingly, direct hopping gives us a Heisenberg model !  
This is very special especially since orbitals have orientations. 
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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pzxz xz
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xz yz

yz xz
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass



Exchange interaction: indirect
Remark: almost all iridates have the same local structure, 
  
-  IrO6 form an octahedron, 
-  Neighboring IrO6 octahedra share 2 oxygens, 
- Ir-O-Ir bond angle is close to be 90 degrees.   
- The microscopic analysis may apply to many other iridate families. 

this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya !DM" interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, !19"

where,

H0 = #
jm!

"mdjm!
† djm! + #

kn!

"pn
pkn!

† pkn!

+
Ud

2 #
jmm!!!!

djm!
† djm!!!

† djm!!!djm!

+
Up

2 #
knn!!!!

pkn!
† pkn!!!

† pkn!!!pkn!, !20"

Ht = #
jm!

#
k!j"n

!tjm,kndjm!
† pkn! + H.c."

+ #
$j j!%

#
mm!

tjm,j!m!
d djm!

† dj!m!!, !21"

HLS = ##
j

! j · s j . !22"

k!j" denotes the O2− of the neighboring Ir4+ site j, djm!
† is the

creation operator of an electron with spin ! of the mth 5d
orbital of ith Ir ion, and "m is the energy of this orbital. m
will take 1, 2, and 3. pkn!

† is the creation operator of an
electron on the 2pn orbital with spin !. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j!m!

d

TABLE I. The parity sectors of 5d electron orbitals by C2
rotation.

State 5d orbitals at A 3d orbitals at B Parity

&1% xy yz even
&2% 1

'2 !xz−yz" 1
'2 !yx+zx" odd

&3% 1
'2 !xz+yz" 1

'2 !yx−zx" even

&4% x2−y2 y2−z2 odd
&5% 3z2−r2 3x2−r2 even

A
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FIG. 4. !Color online" Ir4+ and octahedron O2− environment
!thin black line". Two neighboring Ir4+ are denoted by A and B !in
orange". A /B’s six O2− are labeled as 1 /1!, 2 /2!, 3 /3!, 4 /4!, 5 /5!,
and 6 /6! !in pink", in which, 2 and 3!, 5 and 6! label the same
points. The distances between Ir4+ and O2− order this way: &A5&
= &A6&= &B5!&= &B6!&$ &A3&= &A4&= &B3!&= &B4!&$ &A1&= &A2&= &B1!&
= &B2!&. The C2 axis !thick dash line" orients along 1

'2 !1,−1,0" at
Ir4+ A and 1

'2 !0,1 ,1" at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.
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FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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isospin up z=0spin up, l z=1spin down, l
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz

180o
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pz
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(b)

xz yz

yz xz

o90

FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass

Kitaev term for gamma bond 
after including Hund’s coupling
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2!t̃i j

d !2

Ud
, "46#

Dij = −
4i

Ud
"Cij

d t̃ ji
d − t̃i j

d C ji
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!Jij =
4

Ud
"C! ij

d C" ji
d + C! ji

d C" ij
d − 1"Cij

d · C ji
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F. Strong spin-orbit interaction

As discussed in Sec. I, in the strong spin-orbit limit, "
# !$1,2−$3!, one can obtain effective total angular momentum
eigenstates with j=1 /2. Choosing Eq. "28#, and rewriting the
corresponding eigenstates in the canonical t2g basis, Eq. "32#
becomes

ai3↑ =
1
$3

""− i#di,xz↓ + di,yz↓ + di,xy↑# , "49#

ai3↓ =
1
$3

""i#di,xz↑ + di,yz↑ − di,xy↓# , "50#

in which we have expressed ai3↑ /ai3↓ in terms of the t2g
annihilation operator to avoid the position dependence of the
coefficients.

1. Superexchange through oxygen ions

The complicated expression of Eq. "42# requires simplifi-
cation if we want to have a quantitative understanding of the
exchange coupling. However, some information can be im-
mediately obtained from Eq. "50#, in particular that all t̃i3,kn

=0, which makes J, Dij, and !Jij only the remaining terms
with Ci,kn. To simplify further, we need some explicit form
for the transfer integrals tjm,kn. Hence, we will make further
approximation that the surrounding octahedra of Ir4+ are per-
fect so that we can apply the cubic symmetry to find out the
nonvanishing transfer integrals and also the relation between

them, which is listed in Table II for Ir4+ A and B in Fig. 4.
Deviations from these forms should presumably be small
since the noncubic distortion is.

Based on the transfer integrals listed in Table II, we evalu-
ate the exchange coupling constant J and !JAB. For bond AB,
collecting nonzero coupling constants "actually J=0, DAB
=0#, we obtain

HAB = − JSA
x SB

x + JSA
y SB

y + JSA
z SB

z , "51#

with

J =
4
9

!t!4"2g2px,5px
− g2px,2px

− g5px,5px
# . "52#

Since from Eq. "45# g2px,5px
%g2px,2px

,g5px,5px
, then J%0.

Thus we find ferromagnetic interaction between the x com-
ponents and antiferromagnetic interactions between the y and
z components along this link. This corresponds to the form in
Eq. "1# of Sec. I, with $ij

y =$ij
z =−$ij

x =1 for this link.
Because all links are equivalent by point-group opera-

tions, we can deduce the exchange interactions of all other
bonds by symmetry. The sites A and B correspond to point 4
and 8 in our notation in Fig. 3. The result is that the ex-
change interactions on each bond are ferromagnetic between
one component, and antiferromagnetic between the other
two. These principal components are always along x, y, or z.
We will call a bond in which the x component is ferromag-
netic a “type-x bond,” and similarly for y and z. The type of
each bond is listed in Table III. This Hamiltonian breaks spin
rotational symmetry strongly. A simple rule can be used to
characterize the Hamiltonian of a given bond: if bond "ij# is
located in y-z plane, then the bond is type-x bond and has
type-x exchange Hamiltonian; if it is located in x-z plane,
then the bond is type-y bond and has type-y exchange Hamil-
tonian; if it is located in x-y plane, the bond is type-z bond
and has type-z exchange Hamiltonian. As a result, the three
bonds in every triangle "see Fig. 3# have different exchange
Hamiltonian. The ground states of this Hamiltonian will be
studied in Sec. IV.

TABLE II. The transfer integrals between the t2g orbitals on A
and B Ir4+ and the px,y,z orbitals on the intermediate O2− ions. “2px”
represents the px orbital on the second O2− ion in Fig. 4, “A, xz”
represents the xz orbital on the A ion, and the entry t on the row of
“A, xz” and the column of “2px” denotes the hopping amplitude
"transfer integral# from xz orbital at A ion to px orbital on second
O2− ion. Other notation can be understood likewise.

2px 2py 2pz 5px 5py 5pz

A, xz t 0 0 0 0 0
A, yz 0 t 0 0 0 −t
A, xy 0 0 0 −t 0 0
B, xz 0 0 0 −t 0 0
B, yz 0 0 t 0 −t 0
B, xy t 0 0 0 0 0

TABLE III. The bond types of 24 bonds in one unit cell. Points
and bonds are based on the notation in Fig. 3. “ī” is used for the
points which are simply a translation by a basis vector from point
“i.”

Type x Type y Type z

"1,2# "1,3# "2,3#
"3,5# "3,4# "4,5#

"5̄ ,7# "5̄ ,6# "6,7#

"4,8# "8,9# "4,9#
"8,11# "7,11# "7,8#

"1̄ , 6̄# "6̄ ,12# "1̄ ,12#
"9,10# "2̄ ,9# "2̄ ,10#
"10,12# "10,11# "11,12#

GANG CHEN AND LEON BALENTS PHYSICAL REVIEW B 78, 094403 "2008#
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Kitaev-Heisenberg term for x bond after  
including CEF splitting among t2g orbitals
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Lesson learned

•   SOC creates a local moment that entangles spin and orbital  
  degrees of freedom.  

•   The exchange interaction is often anisotropic in both spin space  
  and real space (or position space).  

•   Although often in antiferromagnets, SOC, e.g., via Dzyaloshinskii  
   -Moriya interaction, is thought to remove accidental degeneracy  
   and favor order. The Kitaev model is a counterexample, showing  
   that in some cases strong SOC can suppress ordering.  
   However, one should be aware of both possibilities.  

Also see talks by Prof Yu Yue and Dr Lou Jie

Gang Chen’s theory group 

Gang Chen’s theory group



3. Beyond iridates: multipolar order, 
exciton magnetism, etc



3.1 Multipolar orders in double perovskites 



Ordered double perovskites
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FCC ordered double perovskites A2BB'O6

22

Compound B� config. crystal structure �CW µeff(µB) magnetic transition frustration parameter f Ref
Ba2YMoO6 Mo5+(4d1) cubic �91K 1.34 PM down to 2K f � 45 [38]
Ba2YMoO6 Mo5+(4d1) cubic �160K 1.40 PM down to 2K f � 80 [36]
Ba2YMoO6 Mo5+(4d1) cubic �219K 1.72 PM down to 2K f � 100 [37]
La2LiMoO6 Mo5+ (4d1) monoclinic -45K 1.42 PM to 2K f � 20 [37]
Sr2MgReO6 Re6+(5d1) tetragonal �426K 1.72 spin glass, TG ⇥ 50K f � 8 [39]
Sr2CaReO6 Re6+(5d1) monoclinic �443K 1.659 spin glass, TG ⇥ 14K f � 30 [40]
Ba2CaReO6 Re6+(5d1) cubic to tetragonal (at T ⇥ 120K) �38.8K 0.744 AFM Tc = 15.4K f ⇥ 2 [41]
Ba2LiOsO6 Os7+(5d1) cubic �40.48K 0.733 AFM Tc ⇥ 8K f � 5 [42]
Ba2NaOsO6 Os7+(5d1) cubic �32.45K 0.677 FM Tc ⇥ 8K f � 4 [42]
Ba2NaOsO6 Os7+(5d1) cubic ⇥ �10K ⇥ 0.6 FM Tc = 6.8K f � 4 [14]

TABLE II. A list of double perovskites. Note the discrepance in Curie temperature and µeff may originate from the experimental fitting of data
at different temperature range.

2. La2LiMoO6

La2LiMoO6 is monoclinic, the deviation from cubic sym-
metry arising primarily from rotations of the octahedra. The
local coordination of the Mo sites is nearly perfectly octahe-
dral with a weak tetragonal compression. The nature of crystal
field effects, if significant, is unclear at present. Magnetically,
the susceptibility shows, like Ba2YMoO6, two apparent Curie
regimes, separated by a kink at approximately 150K. How-
ever, opposite to that material, La2LiMoO6 shows a smaller
effective moment at low temperature compared to high tem-
perature. In addition, the high temperature Curie-Weiss tem-
perature is �CW ⇥ �45K, significantly smaller than the kink
temperature. Irreversibility distinguishing the behavior of the
ZFC/FC susceptibility appears below 25K.

The appearance of two Curie regimes again suggests either
fixed or spontaneous magnetic anisotropy setting in around
150K. However, the reduction of the effective moment below
the kink in ��1 is puzzling. We did not find this behavior in
the powder susceptibility within our model, with or without
anisotropy modeled by D. As remarked above, however, the
actual nature of the crystal field anisotropy in La2LiMoO6 is
unclear. If it is significant and different in form from the D
term, this might explain the behavior. Single crystal studies
would be helpful in elucidating the situation.

3. Sr2CaReO6 and Sr2MgReO6

Sr2CaReO6 and Sr2MgReO6 have distorted perovskite
structures, with monoclinic and tetragonal symmetry,
respectively.39,40 Experimentally, the materials are notable
for their very high antiferromagnetic Curie-Weiss temper-
ature, ��CW � 400K. Susceptibility and specific heat
measurements show anomalies suggestive of freezing and/or
short-range ordering at 14K and 50K, for Sr2CaReO6 and
Sr2MgReO6, respectively. Two possible interpretations of this
behavior are: (1) the Curie-Weiss temperature is dominated by
strong exchange, but fluctuations largely suppress ordering, or
(2) the Curie-Weiss temperature is due largely to single-ion
effects, and the true exchange scale is comparable to the ob-

served anomalies in � and cv .
In the former scenario, the key question is why these two

materials show so much larger exchange than do the other
compounds in this family. From the point of view of this
work, attributing the Curie-Weiss temperature to exchange
alone would imply J is actually comparable to the SOC, so
that the projection to j = 3/2 may even be suspect. The
Curie-Weiss temperatures are sufficiently large that one may
suspect that the 5d electrons are not so well localized, and the
system is close to a Mott transition. It would be interesting to
measure their optical properties to address this possibility.

The latter explanation seems possible, as both materi-
als show significant deviations from the cubic structure:
Sr2CaReO6 is monoclinic, while Sr2MgReO6 is tetragonal.
The actual distortions of the octahedra are rather small in both
cases, the Re-O distance varying by only about 0.02Å at room
temperature. However, there are significant rotations and tilts
of the octahedra, and crystal field splittings of the j = 3/2
quadruplet are certainly allowed. Examination of the Re-O
bond lengths suggests easy-axis anisotropy. From Eq. (128),
we see that in principle a negative Curie-Weiss temperature
could be attributed to D. However, from the present model we
cannot obtain such a large value, which in these two materials
is comparable or larger than the fitting temperature. Neverthe-
less, we may imagine that some combination of exchange and
single-ion anisotropy may conspire to produce the observed
behavior.

If we assume a large easy-axis anisotropy, we would then
expect, based on the the analysis in Sec. III A 1, to have an
AFM ground state. The anomalies might be related to this
ordering. Experimentally, spin freezing and irreversibility is
observed, but without clear signs of long-range ordering. The
experimentalists caution that, due to the small magnetic mo-
ment of the Re6+ ions, a small ordered component could not
be ruled out in either material.39,40 Indeed, in the AFM state, a
very small moment is expected, due to the primacy of octopo-
lar order.

While this is promising, we note that it is likely that sev-
eral effects not in our model play a role. First, the struc-
ture of the materials is not a simple compression of the cu-
bic structure, and so the crystal fields might have a signifi-
cantly different form from the simple D term. This is espe-
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I. SOC WITH STRONG CORRELATIONS

In previous sections, we have discussed the physics introduced by strong SOC in systems with weak or intermediate
correlations. In the presence of strong correlations, the electrons are well localized, forming a Mott insulator. Deep in
the Mott regime, the charge energy gap is large so that the low energy and low temperature properties are governed
by the spin and orbital degrees of freedom. It is well-known that, without SOC, the Heisenberg model is often used to
describe the exchange interaction between the local spin moments, and if there are active orbitals, a Kugel-Khomskii
type of spin-orbital exchange is then invoked.1 The SOC, if it is weak compared to the exchange, only slightly modifies
the above view by generating a weak anisotropy locally and in the exchange.2 In contrast to this weak SOC scenario,
it is shown that, a strong SOC radically revises the conventional view. With a strong SOC, the electron spin is no
longer a good quantum number to model the local moment, which is instead a mixture of the spin and orbital angular
momentum. The strong SOC partially lifts local spin and orbital degeneracies by forming a new local moment, and
also simultaneously reduces the e↵ect of Jahn-Teller physics that would otherwise prevail in a orbitally degenerate
system with a weak SOC.3 The exchange interactions between these local moments, as we will discuss below, are
drastically di↵erent from the conventional quadratic Heisenberg model or the Kugel-Khomskii model.1

Before embarking on the details of the strong SOC physics with strong correlations, we here provide another
theoretical motivation for exploring physics in this direction. Over four decades ago, P.W. Anderson suggested an
interesting scenario in Mott insulators - the local moments do not develop any sort of conventional orders but still
strongly fluctuate down to zero temperature.4,5 Such an exotic Mott insulating phase is later termed as “quantum
spin liquid”. The current theoretical understanding in quantum spin liquids is well established.6 This exotic phase is
characterized by its emergent low-energy gauge structure and fractionalized excitations. Quite unfortunately, there
has been no unambiguous identification or confirmation of quantum spin liquids in any real materials. Despite this
pessimistic situation, some optimistic progress has been made in identifying possible ingredients to induce quantum
spin liquid physics and thus providing a guidance for the experimental search in candidate materials. Generally, in
frustrated systems with competing interactions, such as in a triangle of three antiferromagnetically coupled spins,
quantum fluctuation is enhanced and hence the magnetic order is suppressed. Proximating to a metal-insulator
transition increases the charge fluctuation and generates sizable multi-spin ring exchange that also favors quantum
spin liquid physics. Besides the two well-known ingredients, below we will suggest a new ingredient, provided by
strong SOC, to drive quantum spin liquid physics.

In the strongly correlated regime, the previously mentioned iridates become Mott insulators. As shown in Figure
1 and discussed in previous sections, the five electrons of Ir4+ completely fill the lower j = 3/2 quadruplets, leaving
the last electron on the upper j = 1/2 doublet. The local moment is then described by a SOC-mixed e↵ective
spin j with j = 1/2, which has been unambiguously confirmed by a resonant X-ray scattering (RXS) experiment7.
Because of the involvement of t2g

orbitals and the intrinsic orbital orientation, the exchange interaction between
these e↵ective spins is highly anisotropic, both in the spin space and in the position space. Such an exchange is
usually highly frustrated and supports quantum spin liquid physics. In particular, in Na2IrO3 and Li2IrO3 which
realize a multilayer honeycomb lattice with Ir atoms,8,9 a Kitaev-Heisenberg model has been proposed.10–12 This
model is a linear superposition of nearest-neighbor ferromagnetic or antiferromagnetic Kitaev exchange terms and
an antiferromagnetic Heisenberg exchange term. If the Kitaev term is dominant, we will obtain the long-sought
exotic quantum spin liquid phase13. Unfortunately, the experiments on Na2IrO3 clearly find a magnetic ordered state

t2g
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g

crystal field splitting

SOC

j =
3
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j =
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2
SOC splitting

FIG. 1. The evolution of single electron states under cubic crystal field and SOC. The small (blue) dots represent the oxygen
ions that form an octahedron. The big (red) dot represents the magnetic ion that sits in the center of the octahedron. We have
counted in the spin degeneracy in the energy levels. SOC splits the t2g

orbitals into upper j = 1/2 doublets and lower j = 3/2
doublets.

Microscopic consideration

One electron in the t2g manifold

Re6+,Os7+,Mo5+ : 5d1 or 4d1
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model, characterized by local (single-site) order parameters.
In Sec. III A we begin by considering the more accessible limit
in which strong uniaxial single-site anisotropy (due e.g. to a
tetragonal distortion of the crystal) lifts the “orbital” four-fold
degeneracy of j = 3/2 quadruplets down to easy-axis or easy-
plane Kramer’s doublets. In these limits, the effective Hamil-
tonian in the reduced phase space is mapped onto that of an
XXZ antiferromagnet which can be understood even without
mean field theory. Next, in Sec. III B, we carry out T = 0
mean field theory for the case of cubic symmetry. Here we
find the AFM state and two ferromagnetic states (the FM110
state and another state with a [100] easy axis). The T = 0
mean field phase diagram is shown in Fig. 1. Finally, having
described the situations with strong and vanishing single-site
anisotropy, we determine in Sec. III C the mean-field phase
diagram for intermediate anisotropy.

In Sec. IV we identify the multipolar order parameters of
the three ordered phases and analyze the T > 0 behavior by
mean-field theory. Here we find the quadrupolar phase, and
discuss several phase transitions which occur. We also dis-
cuss the behavior of the magnetic susceptibility in different
parameter regimes.

In Sec. V, we consider quantum effects beyond the mean
field theory. First, we carry out a spin wave calculation, which
determines the collective mode structure, and also shows that
in the regime where nearest-neighbor antiferromagnetic ex-
change is dominant (small J 0 and V ) quantum fluctuations are
large and may destabilize the ordered AFM phase. Therefore,
we consider possible non-magnetic ground states, both of va-
lence bond solid and quantum spin liquid (QSL) type. We
formulate a slave-fermion theory with four-component spin
s = 3/2 fermions, in such a way that at mean field level the
hidden SU(2) symmetry is preserved and the correct ground
state, the analog of a singlet in the usual Heisenberg model, is
obtained for a single pair of nearest-neighbor sites. The cor-
responding mean field theory naturally includes the intrinsic
spatial anisotropy of the strong SOC limit. We analyze two
different mean field ansätze, with zero and ⇡-flux. In both
cases the mean field Hamiltonian respects all the symmetries
of the original spin Hamiltonian. The ⇡-flux state is found to
have lower mean field energy. For both states, the spinons are
at quarter-filling, leading to a spinon Fermi sea. There is no
Fermi surface nesting and we expect that this spinon Fermi
surface should be stable against weak perturbations. Predic-
tions based on the picture of spinon Fermi surface are made.

Finally in Sec. VI, we compare our theoretical prediction
with current experimental findings and suggest further direc-
tions for theory and experiment.

II. MODEL AND SYMMETRY

A. Spin-orbit interaction and hybridization of atomic orbitals

The magnetic ions B’ (Os7+, Re6+, Mo5+) found in the
ordered double perovskites in Table II all have one electron
in the triply degenerate t

2g multiplet. The atomic spin-orbit

interaction projected down to the t
2g triplet is written as

Hso = �� l · S , (1)

in which the total angular momentum quantum numbers of
these operators are l = 1, S = 1/2. The effective orbital
angular momentum l comes from the projection of orbital an-
gular momentum L onto the t

2g triplets,

Pt2gLPt2g = �l . (2)

Here Pt2g =
P

a=yz,xz,xy |aiha| is the projection operator
to the t

2g manifold. The eigenstates of lz with eigenvalues
m = 0,±1 and Sz with eigenvalues � = ±1/2 ⌘", #, written
in terms of the usual t

2g states are

|0,�i = |d�xyi; | ± 1,�i =
⌥|d�yzi � i|d�xzip

2
. (3)

This interaction favors j = 3/2 (j = l + S) quadruplets
over j = 1/2 doublets by an energy separation 3�/2. In the
strong spin-orbit interaction limit, the local Hilbert space is
restricted to four low-lying states

|d↵i =
X

m,�

C↵
m�|m,�i, (4)

where ↵ = ±3/2,±1/2 is the jz eigenvalue and

C↵
m� =

⌧
l = 1, S =

1

2
;m,�

����l = 1, S =
1

2
; j =

3

2
,↵

�

(5)
is a Clebsch-Gordan coefficient. In the materials under con-
sideration, � is indeed a very large energy scale (fraction of
an eV), justifying the strong SOC limit.

Every operator expressed in terms of spin and orbitals must
therefore be projected into this subspace and its projection can
be written in terms of j = 3/2 angular momentum operator.
For example,

P 3
2
S P 3

2
=

1

3
j, (6)

P 3
2
l P 3

2
=

2

3
j . (7)

Here P 3
2

is the projection operator into the j = 3/2 quadru-
plets. Furthermore, for the magnetic moment M for electrons
in atomic d orbitals, we have

M ⌘ P 3
2
[2S + (�l)]P 3

2
= 0 . (8)

The vanishing magnetic moment is quite remarkable and par-
tially explains why the compounds have small magnetic mo-
ments in comparison with spin- 1

2

systems without orbital de-
generacy.

In reality, the measured magnetic moments are nonzero be-
cause the atomic 4d or 5d orbitals strongly hybridize with p or-
bitals at the oxygen sites that form an octahedron surrounding
each B’ site. For instance, for Ba

2

NaOsO
6

, the hybridization
energy is estimated to be of the order of electron volts14,31 and
comparable to the energy gap between Os d and O p states.

3

model, characterized by local (single-site) order parameters.
In Sec. III A we begin by considering the more accessible limit
in which strong uniaxial single-site anisotropy (due e.g. to a
tetragonal distortion of the crystal) lifts the “orbital” four-fold
degeneracy of j = 3/2 quadruplets down to easy-axis or easy-
plane Kramer’s doublets. In these limits, the effective Hamil-
tonian in the reduced phase space is mapped onto that of an
XXZ antiferromagnet which can be understood even without
mean field theory. Next, in Sec. III B, we carry out T = 0
mean field theory for the case of cubic symmetry. Here we
find the AFM state and two ferromagnetic states (the FM110
state and another state with a [100] easy axis). The T = 0
mean field phase diagram is shown in Fig. 1. Finally, having
described the situations with strong and vanishing single-site
anisotropy, we determine in Sec. III C the mean-field phase
diagram for intermediate anisotropy.

In Sec. IV we identify the multipolar order parameters of
the three ordered phases and analyze the T > 0 behavior by
mean-field theory. Here we find the quadrupolar phase, and
discuss several phase transitions which occur. We also dis-
cuss the behavior of the magnetic susceptibility in different
parameter regimes.

In Sec. V, we consider quantum effects beyond the mean
field theory. First, we carry out a spin wave calculation, which
determines the collective mode structure, and also shows that
in the regime where nearest-neighbor antiferromagnetic ex-
change is dominant (small J 0 and V ) quantum fluctuations are
large and may destabilize the ordered AFM phase. Therefore,
we consider possible non-magnetic ground states, both of va-
lence bond solid and quantum spin liquid (QSL) type. We
formulate a slave-fermion theory with four-component spin
s = 3/2 fermions, in such a way that at mean field level the
hidden SU(2) symmetry is preserved and the correct ground
state, the analog of a singlet in the usual Heisenberg model, is
obtained for a single pair of nearest-neighbor sites. The cor-
responding mean field theory naturally includes the intrinsic
spatial anisotropy of the strong SOC limit. We analyze two
different mean field ansätze, with zero and ⇡-flux. In both
cases the mean field Hamiltonian respects all the symmetries
of the original spin Hamiltonian. The ⇡-flux state is found to
have lower mean field energy. For both states, the spinons are
at quarter-filling, leading to a spinon Fermi sea. There is no
Fermi surface nesting and we expect that this spinon Fermi
surface should be stable against weak perturbations. Predic-
tions based on the picture of spinon Fermi surface are made.

Finally in Sec. VI, we compare our theoretical prediction
with current experimental findings and suggest further direc-
tions for theory and experiment.

II. MODEL AND SYMMETRY

A. Spin-orbit interaction and hybridization of atomic orbitals

The magnetic ions B’ (Os7+, Re6+, Mo5+) found in the
ordered double perovskites in Table II all have one electron
in the triply degenerate t

2g multiplet. The atomic spin-orbit

interaction projected down to the t
2g triplet is written as

Hso = �� l · S , (1)

in which the total angular momentum quantum numbers of
these operators are l = 1, S = 1/2. The effective orbital
angular momentum l comes from the projection of orbital an-
gular momentum L onto the t

2g triplets,

Pt2gLPt2g = �l . (2)

Here Pt2g =
P

a=yz,xz,xy |aiha| is the projection operator
to the t

2g manifold. The eigenstates of lz with eigenvalues
m = 0,±1 and Sz with eigenvalues � = ±1/2 ⌘", #, written
in terms of the usual t

2g states are

|0,�i = |d�xyi; | ± 1,�i =
⌥|d�yzi � i|d�xzip

2
. (3)

This interaction favors j = 3/2 (j = l + S) quadruplets
over j = 1/2 doublets by an energy separation 3�/2. In the
strong spin-orbit interaction limit, the local Hilbert space is
restricted to four low-lying states

|d↵i =
X

m,�

C↵
m�|m,�i, (4)

where ↵ = ±3/2,±1/2 is the jz eigenvalue and

C↵
m� =

⌧
l = 1, S =

1

2
;m,�

����l = 1, S =
1

2
; j =

3

2
,↵

�

(5)
is a Clebsch-Gordan coefficient. In the materials under con-
sideration, � is indeed a very large energy scale (fraction of
an eV), justifying the strong SOC limit.

Every operator expressed in terms of spin and orbitals must
therefore be projected into this subspace and its projection can
be written in terms of j = 3/2 angular momentum operator.
For example,

P 3
2
S P 3

2
=

1

3
j, (6)

P 3
2
l P 3

2
=

2

3
j . (7)

Here P 3
2

is the projection operator into the j = 3/2 quadru-
plets. Furthermore, for the magnetic moment M for electrons
in atomic d orbitals, we have

M ⌘ P 3
2
[2S + (�l)]P 3

2
= 0 . (8)

The vanishing magnetic moment is quite remarkable and par-
tially explains why the compounds have small magnetic mo-
ments in comparison with spin- 1

2

systems without orbital de-
generacy.

In reality, the measured magnetic moments are nonzero be-
cause the atomic 4d or 5d orbitals strongly hybridize with p or-
bitals at the oxygen sites that form an octahedron surrounding
each B’ site. For instance, for Ba

2

NaOsO
6

, the hybridization
energy is estimated to be of the order of electron volts14,31 and
comparable to the energy gap between Os d and O p states.

Although hybridization with oxygen p orbitals 
could increase the magnetic moment, it is a  
general fact that SOC strongly suppresses  
magnetic moment for the d^1 electron configuration.



Interaction between local moments

4

For this reason, it is more appropriate to think in terms of
molecular orbitals with mixed d and p character. For exam-
ple, molecular xy orbitals are written as

|D�
i,xyi =

|d�i,xyi+ r|p�i,xyip
1 + r2

, (9)

where |d�i,xyi is the state corresponding to one electron in the
xy orbital and spin � on site i, and |p�i,xyi is a linear combi-
nation (with xy symmetry) of states that have a singlet on the
dxy orbital and one hole on an oxygen site

|p�i,xyi =
1

2

⇣
|p�i+ê

x

,yi+ |p�i+ê
y

,xi+ |p�i�ê
x

,yi+ |p�i�ê
y

,xi
⌘
,

(10)
where êx,y are real space vectors from the B’ site to neighbor-
ing oxygens along x or y directions. The mixing parameter r
is of order tdp/�, where tdp is the hopping matrix element be-
tween d and p orbitals and � is the gap to oxygen p states. In
the limit of strong spin-orbit interaction, we must project into
four low-lying molecular orbitals which are a superposition of
the four atomic states with j = 3/2 and p states

|Di,↵i =
X

m,�

C↵
m�

��D�
i,m

↵
. (11)

While the atomic magnetic moment in Eq. (8) vanishes, there
is a nonzero contribution to the molecular M from holes in p
orbitals. After taking the projection into j = 3/2 states, the
coupling of the molecular orbital to a magnetic field reads

HZ = �gµB h · j, (12)

where g = r2/[3(1 + r2)] is the Landé factor, and µB is the
Bohr magneton.

B. Exchange interactions and electric quadrupolar interaction

In the last subsection, we discussed the effect of strong
spin-orbit interaction in determining the local degrees of free-
dom and pointed out that every operator must be projected
into the j = 3/2 quadruplets. In this subsection, we introduce
the interactions between the local moments, and discuss the
mechanics of the projection.

The first interaction to consider is nearest-neighbor anti-
ferromagnetic exchange, through the virtual transfer of elec-
trons through intermediate oxygen p orbitals. These processes
are strongly restricted by symmetry. For example, in XY
planes, only electrons residing on dxy orbitals can virtually
hop to neighboring sites via px and py orbitals of the interme-
diate oxygen sites. The exchange path and relevant orbitals
are depicted in Fig. 2. Alternatively, one can interpret this
process as kinetic exchange between molecular Dxy orbitals,
which are mixtures of the transition metal d state and p states
on the neighboring four oxygens (see Eq. (9)). As a con-
sequence, the antiferromagnetic exchange interaction can be
written Hex-1 = HXY

ex-1 +HYZ
ex-1 +HXZ

ex-1, where

HXY
ex-1 = J

X

hiji2XY

✓
Si,xy · Sj,xy �

1

4
ni,xynj,xy

◆
, (13)

where the sum is over nearest neighbor sites in the XY planes,
and the corresponding terms for YZ and XZ planes are ob-
tained by the obvious cubic permutation. Here the operators
Si,xy and ni,xy denote the spin residing on xy orbital and or-
bital occupation number at site i, respectively. In terms of spin
and orbital angular momentum operators acting on site i,

Si,xy = Si[1� (lzi )
2], (14)

ni,xy = 1� (lzi )
2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY, XZ, YZ) to de-
note the planes. With these definitions, we note that the single
occupancy condition at each site, which defines the Mott in-
sulating state, becomes

ni,xy + ni,xz + ni,yz = 1. (16)

Moreover, from Eq. (15), orbitally-resolved spins satisfy

Si,xy + Si,yz + Si,xz = Si . (17)

x

y

O

O

B

B0

B0

dxy

dxz

pz
px

xy

z

FIG. 2. (Color online) Left graph: The NN AFM exchange path (B0-
O-O-B0); right graph: The NN FM exchange path with intermediate
orthogonal p orbitals at O sites.

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the spin
transfer through orthogonal orbitals at the intermediate oxy-
gen sites in the exchange path, as shown in Fig. 2. For two
sites i, j in the XY plane, this ferromagnetic exchange is writ-
ten as

HXY
ex-2,ij = �J 0 [Si,xy · (Sj,yz + Sj,xz) + hi $ ji]

�3J 0

4
[ni,xy(nj,xz + nj,yz) + hi $ ji] , (18)

where the xy orbital only interacts with yz and xz orbitals at
neighboring sites. Applying the single-occupancy constraint,
the nearest-neighbor ferromagnetic exchange interaction can
be simplified, up to a constant, to

HXY
ex-2 = �J 0

X

hiji2XY

[Si,xy · (Sj,yz + Sj,xz) + hi $ ji]

+
3J 0

2

X

hiji

ni,xynj,xy . (19)

Kugel-Khomskii-type exchange that arises when all orbitals are included, and then to project that
exchange to the effective spins that form in the strong SOC limit. In general, several different
exchange processes contribute to the appropriate Kugel-Khomskii model for double perovskites.
For simplicity, we illustrate only one in detail here and refer the reader to References 54 and 55 for
more detail.We consider the d1 case and focus on the nominally AF nearest-neighbor processes via
intermediate oxygens, which are expected to dominate. These processes are strongly restricted by
orbital degrees of freedom. As is illustrated in Figure 6b, in xy planes only electrons residing on dxy
orbitals canvirtually transfer to neighboring sites viapxandpyorbitals of the intermediate oxygens
(the same processmaybe understood as a direct exchange betweenmolecular orbitals consisting of
transitionmetal dxy and neighboring oxygen p levels). Therefore, the AF exchange interaction can
be written as Hex ¼ Hxy

ex þHyz
ex þHxz

ex with

Hxy
ex ¼ J

X

Æijæ2xy plane

!
Si,xy × Sj,xy #

1
4
ni,xynj,xy

"
, 7:

where the sum is over nearest-neighbor sites in the xy planes, and the corresponding terms in yz
and xz planes are obtained by a cubic permutation. Here the operators Si,xy and ni,xy denote the
spin residing on the dxy orbital and dxy-orbital occupation number, respectively, at site i.

Without SOC, and as written, the above interaction appears relatively conventional and, in
particular, is bilinear in Si,xy. However, this can be rewritten by explicitly representing the orbital
degree of freedom via the effective L ¼ 1 angular momentum L describing the t2g degree of
freedom. One has Si,xy¼ Stoti

h
1# ðLz

i Þ
2
i
and ni,xy ¼ 1# ðLz

i Þ
2, where Stoti ¼ Si,xy þ Si,xz þ Si,yz

is the total true spin on site i: With these substitutions, we see that up to three spin or pseu-
dospin operators are multiplied on each site i or j. In the strong SOC limit, i.e., J>>l, this should
be projected onto the Jeff ¼ 3/2 effective spin. That is, we should replace H→ ~H, in which
operators on each site have been replaced by their projections, ~O ¼ P3

2
OP3

2
, where P3

2
is the

a b

BO6 octahedron

B'O6 octahedron

A
Oxygen

B

B'
dxy orbitals

px, py orbitalsOxygen

Figure 6

(a) The crystal structure of an ordered double perovskite, A2BB0O6. (b) The same structure, showing the
representation of the geometrically frustrated fcc lattice of B sites as edge-sharing tetrahedra. Two dxy orbitals
on nearest-neighbor B sites are shown with the intermediate px, py orbitals involved in their exchange path. A
sites are not shown.
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We need to express everything in terms of the  
effective spin operator j. We need to project the  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Spin-orbital entanglement in the j=3/2 quadruplet

5

Microscopically, J 0/J ⇠ O(JH/Up) where JH and Up are
the Hund’s coupling and Hubbard Coulomb interaction at the
oxygen site, respectively.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries an electric
quadrupole moment, and the interaction between these mo-
ments may not be negligible because of the long spatial ex-
tent of the molecular orbitals. Calculating the direct electro-
static energy between all possible orbital configurations for
two electrons residing in neighboring sites in an XY plane,
we obtain the quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i $ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (20)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

p
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of V .
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

X

hiji2XY


�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

�
, (21)

in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

S̃x
i,xy =

1

4
jxi � 1

3
jzi j

x
i j

z
i (23)

S̃y
i,xy =

1

4
jyi � 1

3
jzi j

y
i j

z
i (24)

S̃z
i,xy =

3

4
jzi � 1

3
jzi j

z
i j

z
i (25)

ñi,xy =
3

4
� 1

3
(jzi )

2, (26)

in which, Õ ⌘ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic

permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interactions in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and
octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian H̃ in Eq. (27), we need to have some under-
standing about its symmetry properties. We start from the NN
AFM exchange interaction H̃ex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

P
i ji is not conserved, [H̃ex-1,J ] 6= 0. Nevertheless,

H̃ex-1 surprisingly has a “hidden” SU(2) symmetry. The three
generators of this global continuous symmetry are defined as
follows,

Gµ =
X

i

Gµ
i =

X

i


7

6
jµi � 2

3
(jµi )

3

�
, (28)

with µ = x, y, z. One can readily check that these generators
commute with H̃ex-1,

[Gµ, H̃ex-1] = 0, (29)

and satisfy the SU(2) algebra,

[Gµ, G⌫ ] = i✏µ⌫�G
� . (30)

In addition, the Casimir operator G2 also commutes with
H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,

Gx
i = �1

2

2

64

1
1

1
1

3

75 =
1

2
(��x)

14

� (��x)
23

(31)

Gy
i =

1

2

2

64

�i
i

�i
i

3

75 =
1

2
(�y)

14

� (��y)
23

(32)

Gz
i =

1

2

2

64

�1
1

�1
1

3

75 =
1

2
(��z)

14

� (�z)
23

, (33)
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Moment Symmetry Operator
Dipole �

4

Mx

= jx

My

= jy

Mz

= jz

Quadrupole �

3

Q3z

2
= [3(jz)2 � j2

]/
p
3

Qx

2�y

2
= (jx)2 � (jy)2

�

5

Qxy

= jxjy/2
Qyz

= jyjz/2
Qxz

= jzjx/2
Octupole �

2

T
xyz

=

p
15/6jxjyjz

�

4

T x

↵

= (jx)3 � [jx(jy)2 + (jz)2jx]/2
T y

↵

= (jy)3 � [jy(jz)2 + (jx)2jy]/2
T z

↵

= (jz)3 � [jz(jx)2 + (jy)2jz]/2
�

5

T x

�

=

p
15[jx(jy)2 � (jz)2jx]/6

T y

�

=

p
15[jy(jz)2 � (jx)2jy]/6

T z

�

=

p
15[jz(jx)2 � (jy)2jz]/6

TABLE I. Multipole moments within a cubic �

8

quartet. Bars over
symbols indicate the sum with respect to all the possible permuta-
tions of the indices, e.g. jx(jy)2 = jx(jy)2 + jyjxjy + (jy)2jx.
Adapted from Ref. 11 and Ref. 32.

particular the two-dimensional �
3

representation

Q3z2

i =
1p
3

⌦
3(jzi )

2 � j(j + 1)
↵
,

Qx2�y2

i =
⌦
(jxi )

2 � (jyi )
2

↵
, (65)

which are analogous to the eg orbitals in atomic physics. The
remaining three independent components of Qµ⌫

i (jxi j
y
i +jyi j

x
i

etc.) form a three-dimensional representation analogous to the
t
2g orbitals, but do not appear in our analysis.

Another important way to break up the tensor order param-
eters is into combinations which appear in the spin Hamilto-
nian. Specifically, these are the orbital occupation operators,
ñi,yz, ñi,xz, ñi,xy , and the orbitally-resolved spin operators,
S̃µ
i,yz, S̃

µ
i,xz, S̃

µ
i,xy . These can be expressed in terms of the

multipoles describe above. For the occupation numbers,

ñi,yz =
1

3
+

1

6
p
3
Q3z2

i � 1

6
Qx2�y2

i ,

ñi,xz =
1

3
+

1

6
p
3
Q3z2

i +
1

6
Qx2�y2

i ,

ñi,xy =
1

3
� 1

3
p
3
Q3z2

i . (66)

The orbitally-resolved spins decompose as

S̃x
i,yz =

1

15
jxi � 2

15
T x
i,↵

S̃y
i,yz =

2

15
jyi +

1

15
T y
i,↵ +

1

3
p
15

T y
i,� ,

S̃z
i,yz =

2

15
jzi +

1

15
T z
i,↵ � 1

3
p
15

T z
i,� ,

S̃x
i,xz =

2

15
jxi +

1

15
T x
i,↵ � 1

3
p
15

T x
i,� ,

S̃y
i,xz =

1

15
jyi � 2

15
T y
i,↵

S̃z
i,xz =

2

15
jzi +

1

15
T z
i,↵ +

1

3
p
15

T z
i,� ,

S̃x
i,xy =

2

15
jxi +

1

15
T x
i,↵ +

1

3
p
15

T x
i,� ,

S̃y
i,xy =

2

15
jyi +

1

15
T y
i,↵ � 1

3
p
15

T y
i,� ,

S̃z
i,xy =

1

15
jzi � 2

15
T z
i,↵ (67)

B. Cubic system: phases

We first discuss the phases occurring in the cubic system
at T > 0. The ground states discussed earlier are all stable
to small thermal fluctuations, and hence persist at low tem-
perature. Thus we expect, broadly speaking, an antiferro-
magnetic (AFM) and ferromagnetic (FM110/FM100) region
at low temperature. Of course, at temperatures much larger
than J , one has a disordered paramagnetic phase. Interest-
ingly, an additional phase appears at intermediate tempera-
ture. This is a non-magnetic quadrupolar ordered phase.

To see how this arises, we describe the mean-field pro-
cedure and its results. Mean field theory is formulated in
the usual way. We self-consistently decouple interactions be-
tween different sites i and j as follows:

Ôi · Ôj ) Ôi · hÔji+ hÔii · Ôj (68)

�hÔii · hÔji. ,

where Ôi and Ôj are two operators at site i and j, respectively.
These operators are nothing but the orbital occupation num-
bers and orbitally resolved spins, which are related to the mul-
tipolar operators by Eqs. (66)- (67). Decoupling all pairwise
interactions between sites in this way, we then obtain a set of
single-site problems for each j = 3/2. Note that these single-
site problems involve not just the usual Weiss exchange field,
but also “multipolar fields”, which act as effective second and
third order spin anisotropies. The mean-field equations deter-
mine self-consistent values of the orbital occupation numbers
and orbitally resolved fields. As it is straightforward to for-
mulate the mean-field equations, and solve them numerically,
we do not give the details of these calculations here.

A distinct class of solutions describes each phase. For the
antiferromagnetic phase, we find the following operators are

* Project orbital resolved spin into  
   j=3/2 manifold

* These are not just dipole moment, also  
 involve quadrupole, octupole moments. 

* The exchange interaction is very non-Heisenberg !!  
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displays local static dipole moments, their magnitude is small and in fact vanishes as temperature
T→0. This is particularly surprising in amean-field theory (for a conventionalHeisenberg system,
mean-field theory gives a full moment). In fact, accompanying the dipole moment is a large
staggered octupole moment, which competes with and substantially suppresses the dipolar order.

With larger J0/J and V/J, the system develops ferromagnetic phases, FM110 and FM100, with
net ferromagnetic moments along [110] and [100] directions, respectively. These two nonuniform
ferromagnets are rather unconventional, as they actually have a two-sublattice structure with
partial cancellation of nonparallel magnetic moments in the ferromagnetic magnetization. In
fact, the two-sublattice structure is a manifestation of staggered quadrupolar order, and it is
this quadrupolar ordering that predominantly drives the formation of these two phases. The
magnetism develops atop it. Because orbital polarization is distinct on the two sublattices, they
cannot be time-reversal conjugates, and consequentlywhenmagnetismonsets, a net ferromagnetic
moment results.

The driving role of the quadrupolar order can be seen from the T > 0 phase diagram. Over
a wide range of intermediate temperature, the ferromagnetic order is destroyed, with the FM
region (and part of the AF one) being replaced by a purely quadrupolar ordered phase. In the
quadrupolar phase, TRS is unbroken,which is sufficient to require the dipolar andoctupolar order
parameters to vanish. A standard classification scheme for quadrupolar states is to examine the

eigenvalues of the traceless quadrupolar tensor Qmn
i ¼ ÆSmi Sni æ"

1
3
SðSþ 1Þdmn, where the eigen-

values must sum to zero (here S¼ 3/2 for d1). The quadrupolar phase with only one independent
eigenvalue, i.e., eigenvalues (Q)¼ {q,q,"2q}, is called the uniaxial nematic phase and corresponds
to the situation in which one principal axis is distinguished from the other two that remain
equivalent. This type of spin nematic has been studied theoretically in S ¼ 1 Heisenberg models
with strong biquadratic interactions (120), although it is hard to achieve such strong biquadratic
exchange in conventional systems. In the most general case, there may be two independent

0.1 0.2 0.3 0.4 0.5 0.6

V/J

0.5

1.0

1.5

T/J

Quadrupolar

PM

AF
FM110FM

10
0

Figure 7

A cut of themean-field phase diagram for d1 double perovskites at fixed J0 ¼ 0.2 J as a function of temperature,
T, and electric quadrupole interaction,V. The antiferromagnetic (AF) state is illustrated atT¼0 by an image of
the orbital wave functions for Sx ¼ þ1/2 (with positive and negative regions colored blue and light blue,
respectively) and for the Sx¼"1/2 (with positive and negative regions colored red and orange, respectively). In
the quadrupolar state, the charge density is shown. The FM110 and FM100 are ferromagnetic states with
net magnetization along the [110] and [100] axes (and spin-orbital entanglement, which is difficult to
illustrate). The curves are obtained from calculations in Reference 54. Abbreviation: FM, ferromagnetic; PM,
paramagnetic.
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Novel phases due to the multipolar exchange

Finite temperature phase diagram: include 
an electric quadrupole interaction

1. Finite-T quadrupolar ordering  
- no magnetic dipolar order 
- no time reversal symmetry breaking  
- spin nematics 

2. Low temperature FM phase with  
small or no FM interaction  
- electric quadrupole interaction wants nearby  
  electrons to take different orbital occupation  
- AFM interaction wants nearby spins to be  
  AFM, but the orbital occupations would be  
  identical.  
- The compromise of these two interactions  
   is an FM state with two sublattice ordering  
   structure. 

5

Microscopically, J 0/J ⇠ O(JH/Up) where JH and Up are
the Hund’s coupling and Hubbard Coulomb interaction at the
oxygen site, respectively.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries an electric
quadrupole moment, and the interaction between these mo-
ments may not be negligible because of the long spatial ex-
tent of the molecular orbitals. Calculating the direct electro-
static energy between all possible orbital configurations for
two electrons residing in neighboring sites in an XY plane,
we obtain the quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i $ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (20)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

p
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of V .
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

X

hiji2XY


�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

�
, (21)

in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

S̃x
i,xy =

1

4
jxi � 1

3
jzi j

x
i j

z
i (23)

S̃y
i,xy =

1

4
jyi � 1

3
jzi j

y
i j

z
i (24)

S̃z
i,xy =

3

4
jzi � 1

3
jzi j

z
i j

z
i (25)

ñi,xy =
3

4
� 1

3
(jzi )

2, (26)

in which, Õ ⌘ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic

permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interactions in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and
octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian H̃ in Eq. (27), we need to have some under-
standing about its symmetry properties. We start from the NN
AFM exchange interaction H̃ex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

P
i ji is not conserved, [H̃ex-1,J ] 6= 0. Nevertheless,

H̃ex-1 surprisingly has a “hidden” SU(2) symmetry. The three
generators of this global continuous symmetry are defined as
follows,

Gµ =
X

i

Gµ
i =

X

i


7

6
jµi � 2

3
(jµi )

3

�
, (28)

with µ = x, y, z. One can readily check that these generators
commute with H̃ex-1,

[Gµ, H̃ex-1] = 0, (29)

and satisfy the SU(2) algebra,

[Gµ, G⌫ ] = i✏µ⌫�G
� . (30)

In addition, the Casimir operator G2 also commutes with
H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,

Gx
i = �1

2

2

64

1
1

1
1

3

75 =
1

2
(��x)

14

� (��x)
23

(31)

Gy
i =

1

2

2

64

�i
i

�i
i

3

75 =
1

2
(�y)

14

� (��y)
23

(32)

Gz
i =

1

2

2

64

�1
1

�1
1

3

75 =
1

2
(��z)

14

� (�z)
23

, (33)
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Gx
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2
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1
1

1
1

3

75 =
1

2
(��x)
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� (��x)
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Gy
i =

1

2

2

64

�i
i

�i
i

3

75 =
1

2
(�y)
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� (��y)
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Gz
i =

1

2

2

64

�1
1

�1
1

3

75 =
1

2
(��z)

14

� (�z)
23

, (33)
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One experimental consequence of the spin nematic order

15

FIG. 11. Temperature dependence of the free energy difference be-
tween states with wavevector parallel and perpendicular to the Ising
axis, in the presence of a weak anisotropy |D| = 0.05. Here
J 0/J = V/J = 0.3. Solid line: �F = F (Q k ẑ;D =

.05) � F (Q ? ẑ;D = .05). Dotted line: �F = F (Q k ẑ;D =

�.05) � F (Q ? ẑ;D = �.05). One sees that in the quadrupolar
phase, both signs of anisotropy favor the wavevector aligned with the
z axis. In the FM110 phase, however, this is favored only for D > 0.
For D < 0 (easy plane anisotropy), the state with wavevector normal
to z is preferred. Note also that the energy difference is much larger
in the FM110, consistent with the expected linear and quadratic de-
pendence on D in FM110 and quadrupolar phases, respectively. In
the figure, J = 1.

E. Magnetic susceptibility

In this subsection, we discuss the magnetic response at T >
0, which is an important indicator, especially of the quadrupo-
lar ordering transition. At high temperature, of course, one
observes Curie-Weiss behavior. For the general Hamiltonian
with anisotropy D, there are two different Curie-Weiss tem-
peratures, for fields parallel and perpendicular to z:

⇥zz
CW = �J

5
+

32J 0

45
+

4D

5
,

⇥xx
CW = �J

5
+

32J 0

45
� 2D

5
. (84)

These are obtained from the high temperature expansion of
the susceptibility up to O(1/T 2). These expressions may be
useful in extracting exchange constants from experiment. In-
terestingly, if one calculates the powder average average sus-
ceptibility, the contributions of the anisotropy cancel at this
order and the Curie-Weiss temperature measured in this way
is independent of D. It is also interesting to note that, in the
region of larger V/J and small J 0/J , one obtains a ferromag-
netic ground state with an antiferromagnetic (negative) Curie-
Weiss temperature.

On lowering temperature, the susceptibility shows distinct
behaviors in the different parts of the phase diagram. We focus
here for simplicity on the cubic system, starting with region I.
Here the susceptibility displays the usual cusp associated with
antiferromagnetic order, at the normal to AFM transition. The
inverse susceptibility is plotted in Fig. 12 for J 0 = V = 0.1J ,
in the midst of region I. It shows a minimum at the transition,
and pronounced curvature below the transition temperature,
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0.4

0.5
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g2 mB2
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FIG. 12. (Color online) Inverse susceptibility at the normal to AFM
transition for J 0

= V = 0.1J . Blue (upper) curve: 1/�
xx

, red
(lower) curve: 1/�

zz

. In the figure, J = 1.
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FIG. 13. (Color online) Inverse susceptibility for for J 0
= 0.2J ,

V = 0.3J . Blue (lower) curve: 1/�
xx

, red (upper) curve:
1/�

zz

, yellow (middle) curve: 1/�
powder

. For these parameters the
quadrupolar transition is at T/J ⇡ 0.75, and the ferromagnetic tran-
sition is at T/J ⇡ 0.23. In the figure, J = 1.

saturating to a large constant value in the T ! 0 limit. We
note that the large zero temperature susceptibility is not re-
lated to gapless excitations, but is a general consequence of
strong SOC, and should be expected in all parameter regimes
of this model.

Next consider region II. Here, one observes a cusp at the
normal to quadrupolar transition. This cusp is, however, rather
different from the one just mentioned. Specifically, it is not a
minimum of 1/�, and instead separates two distinct “Curie-
Weiss” regimes in which 1/� is linear but with different, pos-
itive, slopes (i.e. different effective magnetic moments). The
presence of a lower temperature Curie-Weiss regime is a sig-
nature of quadrupolar order. This is because the quadrupo-
lar mean field splits only the point group degeneracy of the
spins, but preserves a local Kramer’s doublet. This doublet
gives rise to a Curie law. An example is plotted in Fig. 13.
As the quadrupolar order lowers the symmetry of the system
to tetragonal, we see actually two different effective moments
in susceptibility parallel to the wavevector Q (�zz) and per-
pendicular to it (�xx = �yy). We observe that the effective
magnetic moment seen in �xx is typically enhanced in the
quadrupolar phase, while it is suppressed in �zz , both rela-

The presence of double Curie-Weiss regimes at finite temperature 
The change of the Curie behavior is because the spin nematics modifies 

the effective local spin moment.

spin nematic
transition

FM transition

Power average

Normal to FM  
direction
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Origin of strong quantum fluctuation

Near the origin, the quantum fluctuation is found to be very strong, 
is expected to melt the magnetic order and may lead to spin liquid 
ground state.   

This is different from the simple understanding that large spin 
moment tends to behave classically.  

The underlying reason is that the multipolar interaction allows spins to 
quantum tunnel among all spin states. The electrons are more 
delocalized in the local spin space.  

pair-wise Heisenberg case mutipolar interaction  
(similar to SU(4) models)

jz = 3/2

jz = 1/2

jz = �1/2

jz = �3/2

jz = 3/2

jz = 1/2

jz = �1/2

jz = �3/2
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d^2 double perovskites

Re5+,Os6+ : 4d2 or 5d2

1

I. SOC WITH STRONG CORRELATIONS

In previous sections, we have discussed the physics introduced by strong SOC in systems with weak or intermediate
correlations. In the presence of strong correlations, the electrons are well localized, forming a Mott insulator. Deep in
the Mott regime, the charge energy gap is large so that the low energy and low temperature properties are governed
by the spin and orbital degrees of freedom. It is well-known that, without SOC, the Heisenberg model is often used to
describe the exchange interaction between the local spin moments, and if there are active orbitals, a Kugel-Khomskii
type of spin-orbital exchange is then invoked.1 The SOC, if it is weak compared to the exchange, only slightly modifies
the above view by generating a weak anisotropy locally and in the exchange.2 In contrast to this weak SOC scenario,
it is shown that, a strong SOC radically revises the conventional view. With a strong SOC, the electron spin is no
longer a good quantum number to model the local moment, which is instead a mixture of the spin and orbital angular
momentum. The strong SOC partially lifts local spin and orbital degeneracies by forming a new local moment, and
also simultaneously reduces the e↵ect of Jahn-Teller physics that would otherwise prevail in a orbitally degenerate
system with a weak SOC.3 The exchange interactions between these local moments, as we will discuss below, are
drastically di↵erent from the conventional quadratic Heisenberg model or the Kugel-Khomskii model.1

Before embarking on the details of the strong SOC physics with strong correlations, we here provide another
theoretical motivation for exploring physics in this direction. Over four decades ago, P.W. Anderson suggested an
interesting scenario in Mott insulators - the local moments do not develop any sort of conventional orders but still
strongly fluctuate down to zero temperature.4,5 Such an exotic Mott insulating phase is later termed as “quantum
spin liquid”. The current theoretical understanding in quantum spin liquids is well established.6 This exotic phase is
characterized by its emergent low-energy gauge structure and fractionalized excitations. Quite unfortunately, there
has been no unambiguous identification or confirmation of quantum spin liquids in any real materials. Despite this
pessimistic situation, some optimistic progress has been made in identifying possible ingredients to induce quantum
spin liquid physics and thus providing a guidance for the experimental search in candidate materials. Generally, in
frustrated systems with competing interactions, such as in a triangle of three antiferromagnetically coupled spins,
quantum fluctuation is enhanced and hence the magnetic order is suppressed. Proximating to a metal-insulator
transition increases the charge fluctuation and generates sizable multi-spin ring exchange that also favors quantum
spin liquid physics. Besides the two well-known ingredients, below we will suggest a new ingredient, provided by
strong SOC, to drive quantum spin liquid physics.

In the strongly correlated regime, the previously mentioned iridates become Mott insulators. As shown in Figure
1 and discussed in previous sections, the five electrons of Ir4+ completely fill the lower j = 3/2 quadruplets, leaving
the last electron on the upper j = 1/2 doublet. The local moment is then described by a SOC-mixed e↵ective
spin j with j = 1/2, which has been unambiguously confirmed by a resonant X-ray scattering (RXS) experiment7.
Because of the involvement of t2g

orbitals and the intrinsic orbital orientation, the exchange interaction between
these e↵ective spins is highly anisotropic, both in the spin space and in the position space. Such an exchange is
usually highly frustrated and supports quantum spin liquid physics. In particular, in Na2IrO3 and Li2IrO3 which
realize a multilayer honeycomb lattice with Ir atoms,8,9 a Kitaev-Heisenberg model has been proposed.10–12 This
model is a linear superposition of nearest-neighbor ferromagnetic or antiferromagnetic Kitaev exchange terms and
an antiferromagnetic Heisenberg exchange term. If the Kitaev term is dominant, we will obtain the long-sought
exotic quantum spin liquid phase13. Unfortunately, the experiments on Na2IrO3 clearly find a magnetic ordered state

t2g

e

g

crystal field splitting

SOC

j =
3

2

j =
1

2
SOC splitting

FIG. 1. The evolution of single electron states under cubic crystal field and SOC. The small (blue) dots represent the oxygen
ions that form an octahedron. The big (red) dot represents the magnetic ion that sits in the center of the octahedron. We have
counted in the spin degeneracy in the energy levels. SOC splits the t2g

orbitals into upper j = 1/2 doublets and lower j = 3/2
doublets.

3

tions for theory and experiment.

II. MODEL

A. Spin-orbit interaction and electron orbitals

The magnetic ions B’ (Re5+, Os6+) in the relevant ordered
double perovskites (Ba2CaOsO6, La2LiReO6, Ba2YReO6)0

all have a 4d2 or 5d2 electron configuration with two electrons
on the triply degenerate t2g multiplets. Because of the electron
interaction, the local spin orbital state is quite different from
the case of d1 electron configuration where the single electron
state is enough to describe the local physics. Considering the
dominance of the crystal field splitting over the SOC, we now
fill the three t2g orbitals with these two electrons before in-
cluding the effect of SOC. To respect the first Hund’s rule, the
total spin for the two electrons is S = 1. For the orbital sector,
there are three degenerate antisymmetric two-electron states,

|Xi = 1p
2

(|xyi1|xzi2 � |xyi2|xzi1) (3)

|Yi = 1p
2

(|xyi1|yzi2 � |xyi2|yzi1) (4)

|Zi = 1p
2

(|xzi1|yzi2 � |xzi2|yzi1) , (5)

in which, the subindex (“1” and “2”) labels the electron.
Therefore, there are totally nine-fold spin-orbital degenera-
cies. The presence of SOC will lift some of the degenera-
cies. Following the spirit of degenerate perturbation theory,
we project the SOC onto the triplet subspace spanned Eq. (5),

Hso = �� l · S , (6)

in which, the total angular momentum quantum number of
these operators are l = 1, S = 1. The effective orbital angular
momentum l comes from the projection of the total orbital
angular momentum L ⌘ L1 + L2 onto the tripets in Eq. (5),

P
o

L P
o

= �l . (7)

Here P
o

⌘
P

A=X,Y,Z |AihA| is the projection operator to the
triplet orbital subspace.

The reduced SOC in Eq. (6) favors a local j = 2 (j =

l + S ) over other higher energy states j = 0, 1 by an energy
separation O(�). In the materials we are considering, the SOC
� is a very large energy scale (some fraction of an eV).

In general, cubic symmetry allows the presence of an on-
site cubic anisotropy term, (jx)4 + (jy)4 + (jz)4, which lifts
the degeneracy of the five j = 2 states. However, we ex-
pect this splitting to be rather small, and provided it is smaller
than the typical exchange coupling between spins, the j = 2

description should be a good approximation. Microscopi-
cally the cubic anisotropy comes from the 4th order effect of
the SOC and pair hopping (between different orbitals on the
same ion) terms J

p

which excite the electrons into the e
g

or-
bitals. The magnitude of the cubic anisotropy should be of
⇠ O(�4/�3, J4

p

/�3
) (with � the crystal field splitting be-

tween e
g

and t2g levels). This is certainly a much smaller

energy scale compared to SOC, and likely small compared to
exchange. In any case, we will neglect it in the following.

In the strong SOC limit, every local operator should be pro-
jected onto the local subspace spanned by five j = 2 states. In
particular,

P2 S P2 =

1

2

j (8)

P2 l P2 =

1

2

j . (9)

Here P2 is the projection operator into the local j = 2 states.
In addition, one can find the local magnetic moment is given
by

M = P2 (2S� l) P2 =

1

2

j , (10)

hence, the magnitude of the local magnetic moment is found
to be

p
6/2µB ⇡ 1.25µB.

B. Exchange interactions and electric quadrupolar interaction

In this subsection, we introduce the interactions between
the local moments. From previous work,9 we will need to con-
sider the nearest neighbor (NN) antiferromagnetic (AFM) ex-
change, NN FM exchange and NN electric quadrupolar inter-
actions, and these interactions are highly anisotropic in both
the position space and spin space. For example, in the XY
plane, only electrons on xy orbital can virtually transfer from
one site to another via the intermediate oxygen p orbitals.
Thus, one finds that the NN AFM exchange is written as

HXY
AFM = J

X

hiji2XY

⇥
S
i,xy

· S
j,xy

� 1

4

n
i,xy

n
j,xy

⇤
, (11)

where the sum is over nearest neighbor sites in the XY planes,
and the correponding terms for YZ and XZ planes can be ob-
tained by the obvious cubic permutation. One should note that
the operators S

i,xy

and n
i,xy

denote the electron spin residing
on the single-electron xy orbital and orbital occupation num-
ber for the single-electron xy orbital at site i, respectively.
To connect these single electron operators to the two-electron
operator which acts on the two-electron orbitals in Eq. (5), we
have the following relations

n
i,xy

= n
i,X + n

i,Y = (lz
i

)

2 (12)

S
i,xy

=

S
i

2

(n
i,X + n

i,Y) =
S
i

2

(lz
i

)

2 . (13)

Here n
i,X (or n

i,Y) denotes the occupation number for |Xi (or
|Yi) of the two-electron orbital states at site i, and S

i

is the
total spin S = 1 for the two electrons. The physical meaning
of Eq. (13) is apparent. The electron occupation number on
the single-electron orbital xy can be nonvanishing only when
the two-electron orbital state |Xi or |Yi is occupied by the two
electrons.

Throughout this paper, we use the subindices (i, xy) to de-
note the site and single electron orbitals, subindex X to denote

We need to consider the electron interaction: Hund’s rule suggests S=1 
and the orbital wavefunction of two electrons is antisymmetrized. Again,  

these 3 antisymmetrized orbital state can be thought as l=1.  
SOC is still active.

J=2

J=1
J=0

Gang Chen, Balents PRB 2011



3.2 Exciton magnetism
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I. SOC WITH STRONG CORRELATIONS

In previous sections, we have discussed the physics introduced by strong SOC in systems with weak or intermediate
correlations. In the presence of strong correlations, the electrons are well localized, forming a Mott insulator. Deep in
the Mott regime, the charge energy gap is large so that the low energy and low temperature properties are governed
by the spin and orbital degrees of freedom. It is well-known that, without SOC, the Heisenberg model is often used to
describe the exchange interaction between the local spin moments, and if there are active orbitals, a Kugel-Khomskii
type of spin-orbital exchange is then invoked.1 The SOC, if it is weak compared to the exchange, only slightly modifies
the above view by generating a weak anisotropy locally and in the exchange.2 In contrast to this weak SOC scenario,
it is shown that, a strong SOC radically revises the conventional view. With a strong SOC, the electron spin is no
longer a good quantum number to model the local moment, which is instead a mixture of the spin and orbital angular
momentum. The strong SOC partially lifts local spin and orbital degeneracies by forming a new local moment, and
also simultaneously reduces the e↵ect of Jahn-Teller physics that would otherwise prevail in a orbitally degenerate
system with a weak SOC.3 The exchange interactions between these local moments, as we will discuss below, are
drastically di↵erent from the conventional quadratic Heisenberg model or the Kugel-Khomskii model.1

Before embarking on the details of the strong SOC physics with strong correlations, we here provide another
theoretical motivation for exploring physics in this direction. Over four decades ago, P.W. Anderson suggested an
interesting scenario in Mott insulators - the local moments do not develop any sort of conventional orders but still
strongly fluctuate down to zero temperature.4,5 Such an exotic Mott insulating phase is later termed as “quantum
spin liquid”. The current theoretical understanding in quantum spin liquids is well established.6 This exotic phase is
characterized by its emergent low-energy gauge structure and fractionalized excitations. Quite unfortunately, there
has been no unambiguous identification or confirmation of quantum spin liquids in any real materials. Despite this
pessimistic situation, some optimistic progress has been made in identifying possible ingredients to induce quantum
spin liquid physics and thus providing a guidance for the experimental search in candidate materials. Generally, in
frustrated systems with competing interactions, such as in a triangle of three antiferromagnetically coupled spins,
quantum fluctuation is enhanced and hence the magnetic order is suppressed. Proximating to a metal-insulator
transition increases the charge fluctuation and generates sizable multi-spin ring exchange that also favors quantum
spin liquid physics. Besides the two well-known ingredients, below we will suggest a new ingredient, provided by
strong SOC, to drive quantum spin liquid physics.

In the strongly correlated regime, the previously mentioned iridates become Mott insulators. As shown in Figure
1 and discussed in previous sections, the five electrons of Ir4+ completely fill the lower j = 3/2 quadruplets, leaving
the last electron on the upper j = 1/2 doublet. The local moment is then described by a SOC-mixed e↵ective
spin j with j = 1/2, which has been unambiguously confirmed by a resonant X-ray scattering (RXS) experiment7.
Because of the involvement of t2g

orbitals and the intrinsic orbital orientation, the exchange interaction between
these e↵ective spins is highly anisotropic, both in the spin space and in the position space. Such an exchange is
usually highly frustrated and supports quantum spin liquid physics. In particular, in Na2IrO3 and Li2IrO3 which
realize a multilayer honeycomb lattice with Ir atoms,8,9 a Kitaev-Heisenberg model has been proposed.10–12 This
model is a linear superposition of nearest-neighbor ferromagnetic or antiferromagnetic Kitaev exchange terms and
an antiferromagnetic Heisenberg exchange term. If the Kitaev term is dominant, we will obtain the long-sought
exotic quantum spin liquid phase13. Unfortunately, the experiments on Na2IrO3 clearly find a magnetic ordered state

t2g

e

g

crystal field splitting

SOC

j =
3

2

j =
1

2
SOC splitting

FIG. 1. The evolution of single electron states under cubic crystal field and SOC. The small (blue) dots represent the oxygen
ions that form an octahedron. The big (red) dot represents the magnetic ion that sits in the center of the octahedron. We have
counted in the spin degeneracy in the energy levels. SOC splits the t2g

orbitals into upper j = 1/2 doublets and lower j = 3/2
doublets.

Four electrons in the t2g manifold: J=0 ?

Gang Chen, Balents PRB 2011 

If we look at the d^4 configuration at a single site, the ground state is a trivial  
Jeff=0 singlet in the strong SOC limit.  

Even if we include Hund’s coupling, the ground state remains to be a singlet. 

Re3+, Ru4+, Os4+, Ir5+ 
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Apparently, some of the materials in this family are magnetic,  
e.g. R2Os2O7, La2RuO3, Sr2NiIrO6, etc. 

What is the reason for them to be magnetic?

Khaliullin  PRL 2013

j=3/2

j=1/2

In the strong SOC limit, the exciton like excitation costs a finite energy 
gap. The gap is of the order of spin orbit coupling.  
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The exchange interaction between the local moments renders kinetic energy 
to the gapped excitons. When the kinetic energy gain overcomes the SOC 
gap, the exciton will condense and lead to magnetism. 

Phase transition

It would be interesting to push the system to the  
transition point and study the quantum phase transition.

H = H
soc

+H
exchange

SOC

Exchange

T

Quantum 
critical

spin 
singlet

exciton 
magnetism
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S=0

S=1

O(J)

Sebastian etc, Nature 2006

Similar idea: triplon condensation driven by external magnetic field

Sx=0

Sx=1

Sx=-1

in an external 
magnetic field

An external magnetic field splits the triplon bands and brings down the 
Sx=1 band, when this band touches the  zero energy, the triplon will 

condense and lead to magnetic ordering. 



4. Summary
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This is a young and active field and is still under rapid development. 

We argue that spin-orbit coupled Mott insulator may provide  
an arena to realize various novel and exotic quantum phases. 

We explain the highly anisotropic spin exchange interaction for  
various local moments with spin-orbital entanglement. 

We discuss in details the physics of multipolar phase due to 
the spin-orbital entanglement. 

Thank you !


