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This topic is hard to be systematic.

是不应该给第三个报告，这个报告的。



Theoretical classification

1. Topological spin liquid: intrinsic topological order,  
     fully gapped.

2. Critical spin liquid: usually refers to QSLs with strongly coupled  
    gapless gauge and gapless matter, e.g. 2d U(1) Dirac QSL,  
    2d U(1) spinon fermi surface QSL

3. Somewhat in between:  
    3d U(1) QSL, 2d Z2 QSL with gapless fermionic matter  
    may fit better to topological spin liquid. 

With symmetries, more and finer QSLs can emerge.
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Experimental diagnosis

1. Thermodynamics:  
       Cv, chi, NMR knight shift, muSR, neutron, etc

2. Spectroscopic measurements:  
       NMR-T1, inelastic neutron, etc 

3. Charge physics, phonon sector (acoustic attenuation),  
    thermal transports, etc 
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Smoking guns measurements?

Remark:  
1. 需要把各种实验提供的信息综合起来，并不能孤⽴立地看单⼀一的实验。

Some striking examples: 
          Pyrochlore spin ice U(1) QSL: Cv ~ T^3, prefactor is 1000 large of phonon’s.  
          Gapped Kitaev spin liquid: kxy/T=half quantization

2. 普适性和具体性重叠：当我们谈论特定phase时，关注的更多的是 
    phase的普适性质。然⽽而具体到某个系统时，就要考虑有些具体的实现， 
    ⽽而具体实现⼜又能带来⼀一些新的特殊性。 
3. 现象学和微观学结合： 
        a) 从某些现象归纳，来期望另外的现象 
        b) 从微观上推导模型解决，这个难度⼤大，但相对solid

Smoking gun experiments are system specific, phase specific, degrees of freedom specific….
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澄清: spin liquid vs cooperative paramagnet

��1

T⇥CW |⇥CW|

Cooperative  
Paramagnet

??

Classical spin liquid refers to this regime  
where the spin correlation is important. 
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 Some candidate spin liquid materials

organics: kappa-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, κappa−H3(Cat-EDT-TTF)2   
herbertsmithite (ZnCu3(OH)6Cl2), Ba3NiSb2O9, Ba3CuSb2O9, LiZn2Mo3O8, ZnCu3(OH)6Cl2 
volborthite (Cu3V2O7(OH)2), BaCu3V2O3(OH)2, [NH4]2[C7H14N][V7O6F18], Na2IrO3, CsCu2Cl4,  
CsCu2Br4, NiGa2S4, He-3 layers on graphite, YbMgGaO4, NaYbS2, etc 

Some candidate materials have already been ruled out. 
Not being a QSL does not necessarily mean the physics is not interesting ! 

Na4Ir3O8, IrO2, Ba2YMoO6, Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7, Tb2Ti2O7, Nd2Zr2O7, FeSc2S4, etc

• 2D triangular and Kagome lattice

• 3D pyrochlore, hyperkagome, FCC lattice, diamond lattice, etc

• Kitaev honeycomb materials: RuCl3, etc 

• Ultracold atom and molecules on optical lattices: temperature is too high now. 

if you have any question about some 
material, we can chat after the seminar 
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Some physical mechanisms (not uniquely defined)

1. Weak Mott insulators: a couple organics, Na4Ir3O8, etc

2. Cluster localization/Mott: 1T-TaS2, Li2ZnMo3O8

3. Strong frustration: geometric frustration (not necessarily),  
             small spin (not necessarily either), many many examples

The more you work in this field, the more you feel that there is  
no (simple) general rule of thumb.

4. Spin-orbital entanglement, orbital presence, SU(N) systems, etc

或许可以提供寻找spin liquid⼀一些线索吧

A characteristic (not always): Mott insulators with odd filling even with SOC.  
Counter examples: Kitaev QSL, Pyrochlore U(1) QSL
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下边的报告内容按照quantum spin liquid 
的物理机制来组织，并部分address下边的问题

1. ⾃自由度是什么 (degrees of freedom)？  
2. ⾃自由度之间可能的相互作⽤用 (interaction) 
3. 相关的现象(relevant phenomena) 
4. 什么的机制、解释、期望 (mechanism, explanation)。
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formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is
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FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  

kappa−H3(Cat-EDT-TTF)2 a new one!

Weak Mott insulator: organics 



Proximity to Mott transition

anomaly at ~6K 2

FIG. 1: (Color online) Uniaxial expansivities αi of κ-(BEDT-
TTF)2Cu2(CN)3 along the in-plane i = b and c axes (left
scale) and along the out-of-plane i = a axis (right scale).
Inset shows the volume expansion coefficient β.

gest that, besides phonons, other excitations contribute
significantly to the thermal expansion. For example, the
sign change in αc for T below about 50K followed by
a minimum indicates a substantial negative contribution
which is maximum around 30K. Such a broad negative
anomaly, lacking any signature in the magnetic prop-
erties [3], may have different origins such as geometri-
cal frustration and/or quenched disorder (see, e.g. [25]).
Likewise, a rounded feature, similar to the one observed
in the magnetic susceptibility χ(T ) at Tχ ≈ 85K [3],
is expected at Tα ∼ Tχ as a result of short-range anti-
ferromagnetic correlations [26]. Irrespective of the na-
ture of the various anomalies in αi, the distinct αb vs.αc

anisotropy implies pronounced T -dependent in-plane lat-
tice distortions. The effect is particularly distinct for
T <
∼ 50K, where upon cooling the b-axis lattice parame-

ter strongly contracts (large positive αb) while the c-axis
lattice constant expands (αc < 0). Since the hopping am-
plitudes t′ and t depend sensitively on the lattice param-
eters, we expect that cooling in this temperature range
is accompanied by an increase of t′/t (cf. inset of Fig. 2).

Turning to the anomaly at 6K, shown in Fig. 2 on ex-
panded scales, the uniaxial expansivities reveal a distinct
peak of positive (αc) and negative (αb and αa, cf. Fig. 1)
sign, which is most strongly pronounced in αc. The shape
of this feature and its sharpness are clear indications of a
phase transition, albeit of distinctly non-mean-field type
[27], signalizing the presence of strong critical fluctua-
tions (see, e.g. [28, 29]). Measurements taken upon cool-

FIG. 2: (Color online) In-plane expansivities of κ-(BEDT-
TTF)2Cu2(CN)3 on expanded scales with αc taken in B =
0 (red circles) and 8T (green circles). Inset: 2D triangular-
lattice dimer model with hopping amplitudes t′ and t.

ing and warming at a very slow rate of ± 1.5 K/h failed
to detect any hysteresis, consistent with a second-order
transition. Around 3K the αc data reveal indications for
yet another anomaly of much smaller size, reproducible in
detail in consecutive runs. We stress that the features at
6K and 3K in αc remain unaffected by a magnetic field
of 8T applied along the c-axis (cf. Fig. 2). Remarkably
enough, the volume expansion coefficient β = αa+αb+αc

shows a much less peculiar behavior (cf. inset of Fig. 1).
In particular, β varies smoothly around 50K and lacks
any anomaly at 6K, i.e., ∆β |6K≈ 0. According to the
Ehrenfest relation, this implies that the 6K transition is
practically insensitive to hydrostatic pressure.
In Fig. 3 we show results of the specific heat on a

small single crystal of mass <
∼ 100µg for temperatures

2K ≤ T ≤ 10K. The data reveal a smooth increase with
T and a hump-like feature around 6K, consistent with
literature results [5]. Evidently, the quantity of interest
- the contribution associated with the phase transition
δCtrans - is difficult to separate from the backgroundCbg.
Although Cbg is likely to be dominated by the lattice spe-
cific heat Cph (unfortunately unknown) it may also con-
tain other contributions. Attempts to separate δCtrans

by subtracting from the measured specific heat Cph of
a related salt with a different anion [5], involve consid-
erable uncertainties. In order to overcome this problem,
we use an Ansatz, which has proved particularly valu-
able for analyzing phase transitions in organic materials
[30]. The approach is based on the assumption of a pro-
portionality between corresponding contributions to the
expansivity and specific heat δαi ∝ δC. This so-called
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dmit organics
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Thermal transport kxx ??
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Thermal-transport studies of Two-dimensional 
Quantum Spin Liquids 
Minoru Yamashita, Takasada Shibauchi, and Yuji Matsuda 

 
Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502, Japan 
 
Quantum spin liquids (QSLs) are fluid-like states of quantum spins where its long-range ordered state is destroyed by quantum 
fluctuations. The ground state of QSL and its exotic phenomena, which have been extensively discussed for decades, have yet to be 
identified. We employ thermal transport measurements on newly discovered QSL candidates, N-(BEDT-TTF)2Cu2(CN)3 and 
EtMe3Sb[Pd(dmit)2]2, and report that the two organic insulators possess different QSLs characterized by different elementary excitations. 
In N-(BEDT-TTF)2Cu2(CN)3, heat transport is thermally activated at low temperatures, suggesting presence of a spin gap in this QSL. In 
stark contrast, in EtMe3Sb[Pd(dmit)2]2, a sizable linear temperature dependence of thermal conductivity is clearly resolved in the 
zero-temperature limit, showing gapless excitation with a long mean free path (~1,000 lattice distances). Such a long mean free path 
demonstrates a novel feature of QSL as a quantum-condensed state with long-distance coherence. 
 

Introduction 

As the temperature is lowered, random thermal motion of particles 

becomes weaker, and usually a phase transition takes place when 

its ordering force overcomes the thermal fluctuation. The phase 

transition is accompanied by symmetry breakings and a 

long-range ordered state characterized by an order parameter 

sets in below the transition temperature. Phase transitions are 

ubiquitous from freezing of water to the very emergence of 

space-time in the early Universe. One of the most studied classes 

of such phase transition is magnetic ordering. In a paramagnetic 

phase, spins are free to rotate. Upon cooling below an ordering 

temperature, the rotational symmetry of spins is spontaneously 

broken and spins must choose a preferred direction. The ordered 

spins then produce a finite magnetization which characterises its 

long-range order as the order parameter. In addition to a class of 

such phase transitions driven by the thermal fluctuations, there is 

another class of phase transition driven by quantum fluctuations 

demanded by Heisenberg’s uncertainty principle. The quantum 

fluctuations can persist down to the absolute zero temperature. 

Thus, a long-range order of spins can be destroyed by quantum 

fluctuations even at the zero temperature. The critical point where 

spins recover its rotational symmetry by quantum fluctuations is 

an explicit example of quantum critical point where an exotic state 

with a long-range quantum entanglement is expected to emerge.[1] 

The obtained paramagnetic state is, by analogy to an ordinary 

liquid, coined as a quantum spin liquid (QSL)[2] in which spins are 

highly correlated each other with a long distance due to the 

magnified quantum entanglement. The nature of QSL states has 

been attracting both theoretical and experimental attentions for 

decades. However, the detail description of the ground state or 

the elementary excitation which characterizes the QSL has 

remained elusive. 

As the origin of quantum fluctuations of spins stems from the 

uncertainly principle, the smaller spins in lower dimensions feel 

the stronger fluctuations. In fact, in contrast to three-dimensional 

(3D) system where spins generally form a long-range ordered 

state, there is the celebrated Mermin-Wagner theorem that bans 

any long-range order of spins in one or two dimensions at a finite 

temperature when the Hamiltonian has a continuous symmetry.[3] 

Even at the absolute zero temperature, spins in one dimension 

are known to remain a disordered state. These ordered or 

disordered states can be characterized by different elementary 

excitations. For example, in 3D ordered spins, there are 

elementary excitations, called magnon, excited by flipping its 

spins. For quantum spins (S = 1/2) coupling antiferromagnetically 

in 1D, the ground state is known to have an elementary excitation 

of domain walls as known as spinons. On contrary to these well 

established cases in one and three dimensional systems, 

understanding the ground state of quantum spins in 

two-dimension (2D) has remained an elusive issue, especially 

whether the ground state is a long-range ordered state or a QSL 

state at T = 0. From theory, it has been considered that 

geometrical frustration plays a key role to realize a QSL. 

Geometrical frustration is a situation where none of spin 

configurations can minimize all the neighboring interactions 

simultaneously, e.g. Ising spins coupling antiferromagnetically on 

a triangular lattice (see Figure 1 (a)). In fact, a QSL state as known 

as resonating-valence-bond (RVB) state was first pointed out for 

quantum spins on 2D triangular lattice by P. W. Anderson at 

1973.[4] This RVB state was lately revaluated as a possible 

mechanism for high-Tc superconductors.[5] Since then, a lot of 

theoretical suggestions of exotic QSL states have been put force. 

These QSL states may possess exotic elementary excitations 

which obey either fermionic or bosonic statistics and have gapped 

or gapless energy dispersion.[2],[6] Recently, promising candidates 

of QSL have been discovered in materials with 2D triangular 

lattice,[7][8][9] kagomé lattice[10] and pyrochlore lattice.[11] These 

progresses are stimulating further experimental and theoretical 

pursuits to reveal the ground state. Studies of QSL are now about 

to start flourishing.   

Here, we summarize our thermal-transport studies done in the 

two organic compounds of QSL candidates, 

N-(BEDT-TTF)2Cu2(CN)3 
[12] and EtMe3Sb[Pd(dmit)2]2.

[13][14] We 

find the two QSL states can be characterized by different 

elementary excitations; one is gapped and the other is gapless. 

We further find the gapless excitation has a very long mean free 

path which stretches ~1,000 lattice spacing, demonstrating its 

good quantum coherence as expected for a fluid-like state of 

quantum spins. 
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presence (absence) of the J term immediately proves a gapless 
(gapped) excitation. 

EtMe3Sb[Pd(dmit)2]2  

Here, we discuss thermal conductivity of EtMe3Sb[Pd(dmit)2]2 and 
Et2Me2Sb[Pd(dmit)2]2.[13] Whereas these two insulators have a 
very similar lattice structure, the latter material exhibits a 
non-magnetic charge-ordered state below 70 K.[25] Therefore, the 
heat is only transferred by phonon (N = Nph ~ T3) in this 
non-magnetic compound, which enables us to separate the 
contribution of spins Nsp in the spin liquid material. At low 
temperatures, we confirm that N of Et2Me2Sb[Pd(dmit)2]2 shows 
the expected T3 temperature dependence as shown in Figure 2. In 
stark contrast, we observe enhanced N in EtMe3Sb[Pd(dmit)2]2 in 
the all temperature range we measured. Most remarkably, a finite 
J term can be clearly resolved as T → 0 K. Thermal conductivity 
is a product of heat capacity (Cs), velocity (

sv ), and mean free 

path (
s" ) of the elementary excitation. Since both 

sv  and 
s"  

are nearly independent of temperature for T << J,[26] the finite 
residual of Nsp/T immediately means Cs/T remains a finite value as 
T → 0 K. Usually, a finite Cs/T is associated to a property of 
normal metals where gapless electrons from the Fermi surface 
govern the heat capacity. This is therefore surprising result to find 
a J term in EtMe3Sb[Pd(dmit)2]2 because it is a completely 
insulator and electrons cannot be responsible for the observed J. 
Hence, this finite Cs/T in this insulating spin-liquid material leads 
us to conclude that there are gapless excitations of spins. This 
linear temperature dependence of heat capacity is also reported 
from recent heat capacity measurement.[27] By adopting the 
reported value of Cs/T ~ 20 mJ K-2 mol-1 and assuming !/~ Javs
(a ~ 1 nm is the lattice constant), we can further estimate the 
mean free path as 

s"  ~ 1 Pm, which means that the spin 

excitation can travel through 1,000 lattice distances without being 
scattered. Realizing such a long mean free path is a remarkable 
property of QSL in EtMe3Sb[Pd(dmit)2]2, indicating the emergence 
of a quantum entanglement with a very long correlation length. We 
note that 

s"  is much shorter for a spin transport in a 

paramagnetic state, a spin glass, or a VBC state. Moreover, the 
observed 

s"  is even longer than that found in 1D spin chain 

materials[26] where a ballistic heat transport is proposed by 
theory.[28] 
 We further investigate the magnetic property of the 
elementary excitation by measuring the field dependence of N by 
applying fields perpendicular to the basal plane.  We find N 
shows a flat field dependence below ~ 2 T followed by gradual 
increase at 0.23 K (Figure 3). This indicates that there are some 
magnetic excitations that couple to magnetic field, in addition to 
the above-mentioned gapless excitations responsible for the 
residual Nsp/T term at zero field. At higher temperatures (T ≥ 1 K), 
the gapped field dependence evolves to a continuous increase. 
The overall field dependence is, therefore, understood by that 
there is additional magnetic excitations (S ≥ 1/2) with an energy 
gap which opens below 1 K but closes for H > 2 T. Such an 
enhancement of thermal conductivity has been observed in a 
Haldane chain compound where additional excitation appears due 
to closing of a triplet-singlet gap under magnetic field.[29] The 
coexistence of the gapless excitations found in the zero field and 
the gapped excitation coupled with magnetic fields manifests 
another intriguing property of the QSL in EtMe3Sb[Pd(dmit)2]2. 

 

Figure 2. Thermal conductivity (N) divided by temperature is plotted as a function 
of T2 to see a residual of N/T as an intercept and a phonon contribution (N ~ T3) 
as a straight line. A clear residual of N/T of EtMe3Sb[Pd(dmit)2]2 is resolved in the 
zero-temperature limit, whereas the non-magnetic compound 
Et2Me2Sb[Pd(dmit)2]2 with a similar lattice structure shows only a T3 temperature 
dependence as expected from the phonon contribution. On the contrary, N/T of 
N-(BEDT-TTF)2Cu2(CN)3, which is multiplied by 2 for clarity, can be extrapolated 
to zero in the zero-temperature limit. 

N-(BEDT-TTF)2Cu2(CN)3 

The temperature dependence of N in N-(BEDT-TTF)2Cu2(CN)3 is 
convex at low temperatures[12] and its zero-temperature 
extrapolation goes to zero, which implies that there is an energy 
gap in the excitation spectrum. In fact, N at low temperatures can 

be well fitted by an activated behavior )/exp( TkB'�vN  

with ' ~ 0.46 K. Such temperature dependence is quite different 
from the EtMe3Sb[Pd(dmit)2]2 case, and indicates the absence of 
gapless excitaions that contribute to the thermal transport. The 
field dependence (Fig. 3) shows an increase of thermal 
conductivity for fields higher than ~ 4 T, suggesting a closing of a 
gap for a magnetic excitation as observed in EtMe3Sb[Pd(dmit)2]2 
at the lowest temperature. Very recently, these energy gaps have 
been consistently reported in PSR measurements.[30] The 
presence of the energy gap, however, is inconsistent with the heat 
capacity measurements reporting a finite J term.[31] One 
interpretation for these observations is that the activated behavior 
of thermal conductivity is masked by the Schottky anomaly which 
plagues the heat capacity measurements at low temperatures. [31] 
An anternative explanation is that the discripancy is originated 
from an inhomogeneity of QSL in  N-(BEDT-TTF)2Cu2(CN)3. 
From longitudinal relaxation time (T1) measurements,[32] it has 
been shown that NMR relaxation in N-(BEDT-TTF)2Cu2(CN)3 
cannot be fitted to a single-exponential decay in low temperatures. 
Instead, they adopt a stretch-exponential form that requires a 
broad distribution of T1.[33] In contrast, the NMR relaxation in 
EtMe3Sb[Pd(dmit)2]2 shows a single-exponential decay below 1 K, 
[9] which implies a good homogeneity of the spin state at low 
temperatures. Therefore, on contrary to the gapless excitation in 
EtMe3Sb[Pd(dmit)2]2 that can transport heat with a long mean free 
path due to the good homogeneity, the gapless spin excitation in 
N-(BEDT-TTF)2Cu2(CN)3 may be localized due to the 
inhomogeneity. Thermal-transport measurements are only 
sensitive to itinerant excitations, whereas heat capacity 
measurements detect all. Thus, the activated temperature 
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Hubbard Model : parent model of many 
phases (Metal, SC, AF, Spin Liquid, …)
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transition
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Charge fluctuations / geometrical frustration may disrupt spins from 
ordering even at T=0 near the metal-insulator transition.
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• Theoretical understanding: expected phase diagram

These are high order processes, but  

Motrunich

• Physical mechanism for weak Mott insulator spin liquids: perturbation in t/U
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1. Amperean pairing: U1->Z2 crossover (PA Lee, SS Lee) 

2. Spin-lattice coupling: 2kF Kohn anomaly (Senthil, Mross) 

3. Quantum oscillation (Motrunich) 

4. Thermal Hall transport kxy (Nagaosa, PA Lee, Katsura) 

5. Whether this state can exist in theory? How to describe  

it? (SS Lee, Max, Mross, Senthil, Hong Liu, etc)  

“strong-coupled gapless system with infinite critical fermion modes”

On top of this state

Gang Chen’s theory group 
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A recent numerics (DMRG) from Berkeley claims  
a chiral spin liquid. 

Prof Donna Sheng may be a good person to consult.

About triangular lattice Hubbard model

a

b c

U/tX X
Metal NMI Spin-ordered
Gapless Gapped Gapped

10.6≈ 8.3

Observation of a chiral spin liquid phase of the Hubbard model on the triangular
lattice: a density matrix renormalization group study

Aaron Szasz,1, 2, ⇤ Johannes Motruk,1, 2 Michael P. Zaletel,3, 1 and Joel E. Moore1, 2

1
Department of Physics, University of California, Berkeley, California 94720, USA

2
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

3
Department of Physics, Princeton University, Princeton, New Jersey 08540, USA

(Dated: August 3, 2018)

Motivated by experimental studies that have found signatures of a quantum spin liquid phase
in organic crystals whose structure is well described by the two-dimensional triangular lattice, we
study the Hubbard model on this lattice at half filling using the infinite-system density matrix
renormalization group (iDMRG) method. On infinite cylinders with finite circumference, we iden-
tify an intermediate phase between observed metallic behavior at low interaction strength and Mott
insulating spin-ordered behavior at strong interactions. Chiral ordering from spontaneous break-
ing of time-reversal symmetry, a fractionally quantized spin Hall response, and characteristic level
statistics in the entanglement spectrum in the intermediate phase provide strong evidence for the
existence of a chiral spin liquid in the full two-dimensional limit of the model.

Quantum spin liquids1–3 have been the subject of con-
siderable interest since the concept was first introduced
in 1973 by Anderson, who suggested that geometrical
frustration on the triangular lattice could lead to a res-
onating valence bond ground state of the antiferromag-
netic Heisenberg model4. Although it is now known
that the Heisenberg model on the triangular lattice in
fact exhibits a three-sublattice 120� order in the ground
state5,6, antiferromagnetic models on the triangular lat-
tice remain some of the most promising systems to re-
alize a phase in which spins remain disordered even
down to zero temperature. The triangular lattice has
seemed particularly promising since the work of Shimizu
et al., who found that the organic crystal -(BEDT-
TTF)2Cu2(CN)3, which is well-described by independent
2D layers with nearly isotropic triangular lattice struc-
ture, shows no sign of spin-ordering even down to tens
of mK, indicative of a possible spin liquid ground state7.
Subsequent studies of this crystal have found that the
heat capacity is T -linear at low temperature8, suggest-
ing the presence of low-lying gapless excitations, but
also that the thermal conductivity has no such T -linear
contribution9, indicating to the contrary that there is a
gap in the energy spectrum. The true nature of spin liq-
uid phases in this and other triangular lattice materials
such as EtMe3Sb[Pd(dmit)2]210–13 remains unclear.

Substantial theoretical e↵ort has gone into answering
this question, primarily in studying the antiferromagnetic
Heisenberg model with additional terms, such as second-
neighbor interactions and ring exchanges, that frustrate
the expected three-sublattice order14–23. The Heisenberg
model and its extensions are derived from a perturbative
expansion of a model of itinerant electrons, the Hubbard
model24; by studying the Hubbard model directly, we
can capture additional e↵ects that may be important in
actual materials, at the cost of increased computational
e↵ort—compared with spin-1/2 models, the size of the
local Hilbert space is doubled, so the system sizes that
can be accessed by full-Hilbert-space numerical methods

are only about half as large.
Although there is now a wide variety of theoretical evi-

dence pointing to the existence of a non-magnetic insulat-
ing phase of the triangular lattice Hubbard model14,25–33,
there is still little agreement on the precise nature of the
phase. Some candidates, suggested by results on both
the Hubbard and extended Heisenberg models, include
a U(1) spin liquid with a spinon Fermi sea14,15,18,31, a
nodal spin liquid17,29, a gapped chiral spin liquid19,34–36,
and a Z2 spin liquid19,20. In this work, we confirm the
existence of a nonmagnetic insulating phase of the Hub-
bard model on the triangular lattice at half filling, pro-
vide strong evidence that it is a gapped chiral spin liquid,
and comment on possible experimental signatures.
We study the triangular lattice Hubbard model on infi-

nite cylinders with finite circumference using the density
matrix renormalization group (DMRG) technique37–40, a
variational method to find the ground state of a Hamil-
tonian within the matrix product state (MPS) ansatz.
This method has previously been applied to the Hub-
bard model on a triangular lattice two-leg ladder, provid-
ing evidence for a U(1) spin liquid phase with a spinon
Fermi surface31. For systems larger than the two-leg lad-
der, to our knowledge there exists only one prior paper33

that uses DMRG to study the triangular lattice Hubbard
model. The authors of that study used the finite-system
DMRG to confirm the existence of a nonmagnetic in-
sulating phase; in our infinite-system DMRG study, we
study the nature of the phase by investigating the entan-
glement spectrum and the response to adiabatic spin-flux
insertion through the cylinder.
The Model: The model we study is the standard

Hubbard Hamiltonian,

H = �t
X

hiji�

c†
i�

c
j�

+H.c. + U
X

i

n
i"ni#, (1)

where c
i�

(c†
i�

) is the fermion annihilation (creation) op-
erators for spin � on site i and n = c†c is the number
operator; h·i indicates nearest neighbor pairs on the tri-
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Cluster localization in LiZn2Mo3O8

T. McQueen

2.  Triangular lattice Hubbard model at 1/2 filling

1. Triangular lattice Heisenberg model 

Neither model works. 
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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© 2012 Macmillan Publishers Limited. All rights reserved

Nature Material 2012
• Why striking and difficult? 

• Further low-temperature experiments: NMR, muSR, neutron scattering, 
proposed as a spin liquid candidate. 



Emergent honeycomb lattice in LiZn2Mo3O8

Rebecca Flint and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly-
coupled lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2/3rds
of the spins at low temperatures suggests that its triangular lattice decouples into an emergent
honeycomb lattice weakly coupled to the remaining spins, and we suggest several ways to test this
proposal. We show that these orphan spins act to stabilize the spin-liquid in the J1�J2 honeycomb
model and also discuss a possible 3D analogue, Ba2MoYO6 that may form a “depleted fcc lattice.”

Spin liquids are highly correlated magnetic states that
break no symmetries and hold the theoretical promise of
new fractionalized excitations and topological orders1,2.
Realizing spin liquids experimentally is a hard prob-
lem, although we have a few recent examples on the
triangular3,4 and kagomé5 lattices. To explore the full
range of possible spin-liquids, we would like to realize spin
liquids on a wide variety of lattices and having an addi-
tional method to stabilize the spin liquid phase would be
extremely helpful. In this paper, we show how forming a
low temperature emergent honeycomb lattice out of the
triangular lattice can stabilize the spin liquid state, and
discuss the relevance of this idea to LiZn

2

Mo
3

O
8

.

Despite its bipartite nature, the low coordination num-
ber (z = 3) of the honeycomb lattice increases the quan-
tum fluctuations, and numerical studies have suggested
that a spin-liquid region can emerge out of the Néel state
with decreasing U (Hubbard model)6 or increasing next-
nearest neighbor coupling, J

2

(Heisenberg model)7–10.
Although further studies now suggest weak magnetic or-
der in the Hubbard model11,12 and the existence/size
of the spin liquid region in the Heisenberg model are
controversial13–15, the energy of the spin liquid is clearly
competitive. Currently there are no experimental exam-
ples of honeycomb spin liquids, but the triangular lattice
material, LiZn

2

Mo
3

O
8

[16] might provide an unexpected
realization, as it could deform into an emergent honey-
comb lattice weakly coupled to orphaned central spins.

LiZn
2

Mo
3

O
8

is a layered triangular lattice material
built out of Mo

3

O
8

clusters16. Each cluster forms a
molecular orbital with one Heisenberg spin-1/2 per three
Mo. The magnetic susceptibility follows a Curie-Weiss
law within two di↵erent temperature regimes: a high
temperature regime above 100K with Curie constant
CH = .24 emu K mol/Oe f.u. (µH = 1.39µB), cor-
responding to nearly the full S = 1/2 moment and
Weiss temperature, ✓H = �220K; and a low tempera-
ture regime with Curie constant CL ⇡ 1/3CH and ✓L =
�14K. This drastic moment reduction suggests that two-
thirds of the spins vanish below 100K, which is consistent
with the broad plateau in the entropy at S ⇡ 1

3

R log 2
around 100K16. Electron spin resonance measurements
find the full S = 1/2 moment (with g = 1.9) at low tem-
peratures, confirming that this decrease is due to collec-
tive rather than single ion physics17. There are no sharp
thermodynamic signatures, only a broad crossover in the

FIG. 1. (a) J1 � J2 � J 0 lattice, where J 0 = J1 describes the
triangular lattice and J 0 = 0 describes decoupled honeycomb
(J1�J2) and triangular (J2) lattices. The A and B sublattices
of the honeycomb lattice and the C sublattice of central spins
are labeled. (b) Unit cells: blue dotted lines show the small
initial unit cell, while orange dashed lines show the larger
final unit cell. Both have trigonal symmetry - only the lattice
vector changes. (c) These rotations convert the triangular
lattice into the J1�J2�J 0 lattice: the A and B clusters rotate
in opposite directions, while the C clusters do not rotate.
Inset shows original configuration. (d) The basic unit of the
depleted fcc lattice: strong bonds are shown as red (solid)
lines, weak bonds as blue (dashed) lines. The central layer
forms the emergent honeycomb lattice.

susceptibility and a hump in the specific heat; Li NMR17

and neutron16 measurements have found no ordered mo-
ments, suggesting a gradual gapping out rather than a
phase transition. Sheckelton et al proposed that the tri-
angular lattice decouples into a valence bond solid (VBS)
on the honeycomb lattice, with free central spins16. How-
ever, if the lattice is really triangular, this decoupling is
ba✏ing - it should instead form a 120� ordered state18.
To resolve this mystery, we propose that the triangular
lattice physically distorts to favor this decoupling.
We suggest that the Mo

3

O
8

clusters rotate as shown
in Fig 1 (c), where clusters on the A and B honeycomb
sublattices rotate in opposite directions, while the cen-
tral clusters (C) do not rotate. This rotation shortens the
bond length between the honeycomb sites while length-
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Emergent honeycomb lattice in LiZn2Mo3O8

Rebecca Flint and Patrick A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.

We introduce the idea of emergent lattices, where a simple lattice decouples into two weakly-
coupled lattices as a way to stabilize spin liquids. In LiZn2Mo3O8, the disappearance of 2/3rds
of the spins at low temperatures suggests that its triangular lattice decouples into an emergent
honeycomb lattice weakly coupled to the remaining spins, and we suggest several ways to test this
proposal. We show that these orphan spins act to stabilize the spin-liquid in the J1�J2 honeycomb
model and also discuss a possible 3D analogue, Ba2MoYO6 that may form a “depleted fcc lattice.”

Spin liquids are highly correlated magnetic states that
break no symmetries and hold the theoretical promise of
new fractionalized excitations and topological orders1,2.
Realizing spin liquids experimentally is a hard prob-
lem, although we have a few recent examples on the
triangular3,4 and kagomé5 lattices. To explore the full
range of possible spin-liquids, we would like to realize spin
liquids on a wide variety of lattices and having an addi-
tional method to stabilize the spin liquid phase would be
extremely helpful. In this paper, we show how forming a
low temperature emergent honeycomb lattice out of the
triangular lattice can stabilize the spin liquid state, and
discuss the relevance of this idea to LiZn

2

Mo
3

O
8

.

Despite its bipartite nature, the low coordination num-
ber (z = 3) of the honeycomb lattice increases the quan-
tum fluctuations, and numerical studies have suggested
that a spin-liquid region can emerge out of the Néel state
with decreasing U (Hubbard model)6 or increasing next-
nearest neighbor coupling, J

2

(Heisenberg model)7–10.
Although further studies now suggest weak magnetic or-
der in the Hubbard model11,12 and the existence/size
of the spin liquid region in the Heisenberg model are
controversial13–15, the energy of the spin liquid is clearly
competitive. Currently there are no experimental exam-
ples of honeycomb spin liquids, but the triangular lattice
material, LiZn

2

Mo
3

O
8

[16] might provide an unexpected
realization, as it could deform into an emergent honey-
comb lattice weakly coupled to orphaned central spins.

LiZn
2

Mo
3

O
8

is a layered triangular lattice material
built out of Mo

3

O
8

clusters16. Each cluster forms a
molecular orbital with one Heisenberg spin-1/2 per three
Mo. The magnetic susceptibility follows a Curie-Weiss
law within two di↵erent temperature regimes: a high
temperature regime above 100K with Curie constant
CH = .24 emu K mol/Oe f.u. (µH = 1.39µB), cor-
responding to nearly the full S = 1/2 moment and
Weiss temperature, ✓H = �220K; and a low tempera-
ture regime with Curie constant CL ⇡ 1/3CH and ✓L =
�14K. This drastic moment reduction suggests that two-
thirds of the spins vanish below 100K, which is consistent
with the broad plateau in the entropy at S ⇡ 1

3

R log 2
around 100K16. Electron spin resonance measurements
find the full S = 1/2 moment (with g = 1.9) at low tem-
peratures, confirming that this decrease is due to collec-
tive rather than single ion physics17. There are no sharp
thermodynamic signatures, only a broad crossover in the
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FIG. 1. (a) J1 � J2 � J 0 lattice, where J 0 = J1 describes the
triangular lattice and J 0 = 0 describes decoupled honeycomb
(J1�J2) and triangular (J2) lattices. The A and B sublattices
of the honeycomb lattice and the C sublattice of central spins
are labeled. (b) Unit cells: blue dotted lines show the small
initial unit cell, while orange dashed lines show the larger
final unit cell. Both have trigonal symmetry - only the lattice
vector changes. (c) These rotations convert the triangular
lattice into the J1�J2�J 0 lattice: the A and B clusters rotate
in opposite directions, while the C clusters do not rotate.
Inset shows original configuration. (d) The basic unit of the
depleted fcc lattice: strong bonds are shown as red (solid)
lines, weak bonds as blue (dashed) lines. The central layer
forms the emergent honeycomb lattice.

susceptibility and a hump in the specific heat; Li NMR17

and neutron16 measurements have found no ordered mo-
ments, suggesting a gradual gapping out rather than a
phase transition. Sheckelton et al proposed that the tri-
angular lattice decouples into a valence bond solid (VBS)
on the honeycomb lattice, with free central spins16. How-
ever, if the lattice is really triangular, this decoupling is
ba✏ing - it should instead form a 120� ordered state18.
To resolve this mystery, we propose that the triangular
lattice physically distorts to favor this decoupling.
We suggest that the Mo

3

O
8

clusters rotate as shown
in Fig 1 (c), where clusters on the A and B honeycomb
sublattices rotate in opposite directions, while the cen-
tral clusters (C) do not rotate. This rotation shortens the
bond length between the honeycomb sites while length-
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ening that to the central spins. In other words, the hon-
eycomb nearest neighbor coupling, J

1

increases while the
coupling to the orphan C spins, J 0 weakens, favoring this
decoupling. This rotation can lead to a large change
in bond length and thus J , due to the exponential de-
pendence on the oxygen overlap. We parameterize this
change to first order with J

1

= (1+x)J0

1

, J 0 = (1�x)J0

1

,
where x 2 {0, 1} smoothly interpolates between the tri-
angular and honeycomb lattices. J

2

is una↵ected. The
resulting J

1

� J
2

� J 0 Hamiltonian is,

H = J
1

X

hijiA,B

~Si · ~Sj + J
2

X

hhijiiA,B

~Si · ~Sj + J 0
X

hiji{(A,B),C}

~Si · ~Sj . (1)

We can gain a rough understanding by examining the
variational energies of the triangular and honeycomb
lattices. Estimating J

2

/J
1

from ✓L/✓H puts J
2

/J
1

⇡
.06[16], well within the Néel region of the phase diagram
[Fig. 2 (a)]. However, the low temperature regime is not
magnetically ordered. We shall show later that coupling
to the orphan spins can drive the state towards the spin
liquid, so we take the variational energy associated with
the gapped spin liquid found for J

2

/J
1

⇡ .06, which is
�.5J

1

per honeycomb spin9. At this point, we ignore
the J

2

coupling of the orphan spins and treat them as
free, making the energy per site E

hex

= �.33(1 + x)J0

1

.
The triangular lattice energy is �.537J0

1

per site18. The
honeycomb and undistorted triangular energies cross at
intermediate x = .63, although, as shown below we ex-
pect further corrections to favor the spin liquid. The
lattice energy cost of the rotation will favor the trian-
gular lattice, however we believe it is particularly small
in this compound due to the cluster nature. We have
also neglected any intervening phases and a full numer-
ical treatment should be done to get a more complete
picture.

How might these rotations be detected? They triple
the size of the unit cell [Fig. 1(b)], but leave the trigo-
nal symmetry unchanged. If the rotations form a static
order, they should be seen with x-ray scattering. So far
this has not been found17, however they could instead be
short range or even dynamic. Short range order should
be seen with further NMR or µSR measurements, but
no matter the nature of the order, a soft phonon corre-
sponding to these rotations should appear at the recip-
rocal lattice vectors of the honeycomb lattice.

In our variational picture, we left the central spins com-
pletely decoupled, both from the honeycomb lattice and
from each other. It turns out that these orphan spins
favor the spin liquid over the competing Néel and VBS
phases, as we shall now show by looking at a single cen-
tral spin impurity in each of the four relevant phases.
The likely phase diagram of the J

1

� J
2

honeycomb lat-
tice is shown in Fig. 2(a). Most studies9,10,13–15 agree
that the Néel phase is stable below J

2

/J
1

⇡ .2 and that a
staggered VBS (sVBS) is stable above J

2

/J
1

⇡ .35, but
the middle of the phase diagram is more muddled. There
is a plaquette VBS below the sVBS, and there may be a
narrow spin liquid region around J

2

/J
1

⇡ .22 � .25[10],

(a)

(b) (c)
= -

?

FIG. 2. (a) Rough phase diagram of the J1 � J2 honeycomb
lattice10, with Néel, plaquette VBS (pVBS) and staggered
VBS (sVBS) states, with a small controversial spin liquid re-
gion, thought to be the sublattice pairing state (SPS). (b)

Diagram for the second order energy shift, �E(2)
SPS generated

by a single central spin impurity in the SPS. Solid lines are
fermionic spinons, while the dashed line represents the central
spin. (c) Diagrams for the second order energy shift, �E(2)

AFM

for the single central impurity in the Néel state. Squiggly
lines represent Holstein-Primako↵ bosons, ↵†

k, not magnons,
and the dashed line are the Holstein-Primako↵ bosons, d† rep-
resenting the central spin. (d) Initial and final spin configura-

tions for calculating �E(2)
sVBS, where the red ellipses represent

singlet valence bonds. Diagrams for �E(2)
pVBS are similar.

whose energy is consistent with the sublattice pairing
state (SPS)7,8,10. This phase disappears quickly with ei-
ther positive or negative J

3

[10 and 13], so the spin liquid
region, if it exists, is clearly very narrow. All studies
find a suprising second order phase transition between
the Néel state and either the spin liquid10 or pVBS13–15,
suggesting deconfined criticality8,19,20.
We begin with the SPS, which can be described with

a fermionic spin representation with two spinons7,8, ai�
and bj� on the two sublattices. The SPS is a mean-field
state with a real nearest neighbor hopping amplitude, t =
ha†i�bj�i (for hiji) and complex second neighbor pairing
amplitudes with opposite phases on the two sublattices,
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ening that to the central spins. In other words, the hon-
eycomb nearest neighbor coupling, J
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increases while the
coupling to the orphan C spins, J 0 weakens, favoring this
decoupling. This rotation can lead to a large change
in bond length and thus J , due to the exponential de-
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per site18. The
honeycomb and undistorted triangular energies cross at
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FIG. 2. (a) Rough phase diagram of the J1 � J2 honeycomb
lattice10, with Néel, plaquette VBS (pVBS) and staggered
VBS (sVBS) states, with a small controversial spin liquid re-
gion, thought to be the sublattice pairing state (SPS). (b)

Diagram for the second order energy shift, �E(2)
SPS generated

by a single central spin impurity in the SPS. Solid lines are
fermionic spinons, while the dashed line represents the central
spin. (c) Diagrams for the second order energy shift, �E(2)

AFM

for the single central impurity in the Néel state. Squiggly
lines represent Holstein-Primako↵ bosons, ↵†

k, not magnons,
and the dashed line are the Holstein-Primako↵ bosons, d† rep-
resenting the central spin. (d) Initial and final spin configura-

tions for calculating �E(2)
sVBS, where the red ellipses represent

singlet valence bonds. Diagrams for �E(2)
pVBS are similar.
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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smaller Curie-Weiss temperature (⇥L
CW = �14K) from

the high temperature one (⇥H
CW = �220K) and a much

reduced Curie constant which is 1/3 of the high temper-
ature one.

FIG. 1. (Color online.) (a) Mo
3

triangular clusters are orga-
nized into a triangular lattice structure. (b) After connecting
the longer neighboring Mo-Mo bonds in the down triangles,
the system becomes a kagome lattice. b

1

,b
2

are two kagome
lattice vectors that connect neighboring unit cells. We use r’
to label the kagome lattice unit cell and ‘A,B,C’ to label three
sublattices.

In a very recent theoretical work,11 Flint and Lee fol-
lowed the suggestion by the experiments8 and considered
the possibility of an emergent honeycomb lattice that is
centered by weakly coupled dangling spins. In their anal-
ysis, the emergent honeycomb system may form a gapped
QSL phase while the remaining dangling spin moments
dominate the low-temperature magnetic property which
then explains the 1/3 spin susceptibility anomaly. Their
theory invokes the phonon degrees of freedom to work in
a way to generate the emergent honeycomb lattice for the
spin system. Such a scenario might be plausible. In this
paper, however, we explore an alternative explanation
for the experiments that is based on electronic degrees of
freedom and their interactions.

We consider a generic extended Hubbard model for
the unpaired Mo electrons. The model is defined on an
kagome lattice with a 1/6 electron filling and is given as

H =
X

hiji2u

[�t1(c
†
i�

c
j�

+ h.c.) + V1ni

n
j

]

+
X

hiji2d
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j�

+ h.c.) + V2ni

n
j

]

+
X

i

U

2
(n

i

� 1

2
)2, (1)

where c†
i�

(c
i�

) creates (annihilates) an electron with
spin � at lattice site i, and t1, V1 and t2, V2 are nearest-
neighbor electron hopping and interaction on the up tri-
angles (denoted as ‘u’) and the down triangles (denoted
as ‘d’) (see Fig.1a), respectively. n

i

=
P

�

c†
i�

c
i�

is the
electron density at site i.

Why is this model (Eq.1) is appropriate for
LiZn2Mo3O8? Firstly, the Mo sites do form a kagome
lattice with a shorter (longer) nearest-neighbor bond on
the up (down) Mo3 triangular cluster. There is one un-
paired Mo electron for each up triangular cluster, giving

rise to 1/6 electron filling for the Hubbard model. Sec-
ondly, LiZn2Mo3O8 is found to be a Mott insulator with
a charge gap ⇠ 0.12eV.8 The charge gap is not very large,
so it is more appropriate to model the system with a Hub-
bard model. Seven valence electrons are localized on each
up Mo3 triangular cluster. Supported by a molecular or-
bital calculation, six of the seven electrons localize into
Mo-Mo bonds holding the cluster together.8 The seventh
electron remains unpaired in a totally symmetric (A1)
molecular orbital with equal contributions from all three
Mo atoms.8 This A1 molecular orbital is an equal weight
superposition of relevant electron orbital on each Mo sites
of the up Mo3 cluster.8 The extended Hubbard model in
Eq.1 simply moves one step back, being constructed di-
rectly from the relevant electron orbitals on the Mo sites
and also respecting the R3̄m space group symmetries.
We include the on-site Hubbard-U interaction as well as
two inter-site repulsions V1 and V2. Even though the
down triangles are larger in size than the up triangles
in LiZn2Mo3O8, because of the large spatial extension of
the 4d Mo electron orbitals we think it is necessary to
include the inter-site repulsion V2 for the down triangles.
Since the charge gap is relatively small, it makes sense to
explore possible proximate phases in LiZn2Mo3O8. For
LiZn2Mo3O8 one expects t1 > t2 and U > V1 > V2.
While still keeping the Hubbard-U as the largest energy
scale, we study the phase diagram of this model in much
broader parameter regimes in this paper.

Because of the fractional electron filling, the Mott tran-
sition is driven by the inter-site repulsion rather than the
on-site Hubbard interaction U and the electrons are lo-
calized on the triangular clusters of the kagome lattice
instead of the lattice sites. The electrons become local-
ized on the up (down) triangles when the inter-site re-
pulsion on up (down) triangles overweights the kinetic
energy gain from hoppings between up (down) triangles.
Because of the asymmetry between the up and down tri-
angles of the kagome lattice, the Mott localization on the
up and down triangles does not need to occur simulta-
neously. Therefore, two types of cluster Mott insulating

phases are clearly expected.

For the first kind of cluster Mott insulator, the inter-
site repulsion on one type (up or down) of triangles over-
weights the kinetic energy gain from hoppings between
this types of triangles and causes the electron localiza-
tion on these triangles while the inter-site repulsion on
the other type of triangles remains weak compared to
the kinetic energy gain from hopping between these tri-
angles. The electron occupation number on the triangles
with localized electrons is fixed to one electron per tri-
angle while the electron number on the other type of tri-
angles remains strongly fluctuating. This Mott insulator
is named as the type-I cluster Mott insulator. Moreover,
the triangular clusters that host localized electrons form
a triangular lattice. In the weak Mott regime, we show
the local spin moments form a U(1) QSL with the spinons
filling half the lowest kagome spinon band. We further
show this U(1) QSL is smoothly connected to the weak

A Claim: a single-band extended Hubbard model on an anisotropic Kagome lattice  
            with 1/6 electron filling.
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FIG. 1. Phase diagram for isotropic case (� = 0), while for small
anisotropy case related to real materials 1T-TaS2 the phase diagram
is similar. It is mainly obtained from six wide systems and confirmed
in eight wide systems. Here AFM denotes 120�-spin order; VBS de-
notes valence bond solid state (or call dimerized phase); SFS denotes
a quantum spin liquid with a spinon Fermi surface.

cell of star of David, formed by 13 Ta clustered atoms seen
from Fig. S1 (b) of supplementary materials (SM) [39]. In
the

p
13 ⇥ p

13 star of David unit cell, the outer twelve Ta
atoms have displacement toward the centered Ta atom, which
strengthens the interatomic bonds inside the star of David and
weakens others. As the early first principles bulk band struc-
ture calculation for 1T-TaS2 indicates that the Ta 5d orbitals are
dominant in the conduction and valence bands [37, 40–43], the
atomic SOC from d

x

2�y2 and d
xy

orbitals is expected to modify
the reconstructed band structure in the commensurate CDW

phase. Importantly, the joint e�ect of lattice deformation and
atomic SOC gives rise to the well isolated narrow band at the
Fermi level, as is shown in Fig. S1 (a) of SM [39]. As a result,
in the presence of weak repulsive interaction, the 1T-TaS2 is
susceptible to the Mott-Hubbard transition and turns out to be
a Mott insulator.

In order to describe the Mott state in the 1T-TaS2, we con-
sider a single star of David unit cell as a super-site, which
is described by the intra-cluster tight binding Hamiltonian.
Through numerical diagonalization, the Wannier orbitals lo-
calized inside the star of David with corresponding eigen-
energies can be obtained in terms of the linear combination
of atomic orbitals from the 13 Ta atoms. At the energy of
the narrow band, it is found that the Wannier orbitals  "

↵ and
 #
� form the Kramers doublet while the Wannier orbitals  #

↵

and  "
� are lifted in the energy due to the atomic SOC. Here

the expressions for the two Wannier orbitals can be found in
SM [39]. Taking the two Wannier orbitals as the basis, we can
construct a two-orbital Hubbard model with both inter-orbital
and intra-orbital interactions for 1T-TaS2 [39]. Since each star
of David unit cell occupied with the single state  "

↵ or  #
�

would have the lowest energy, all other occupation states can
be perturbatively dealt with through the Schrie�er-Wol� trans-
formation. As a result, the e�ective XXZ spin model with the
anisotropy modified ring exchange terms can be obtained as
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In the e�ective spin model, the J-term is a XXZ type nearest
neighbor interaction, where � denotes spin anisotropy, which
arises as the ratio between the inter-orbital and intra-orbital
interaction deviates from one [39]. Due to the atomic SOC,
the e�ective spin model does not have the SU(2) spin rota-
tional symmetry but preserves the U(1) rotation around the z
direction. Eq. (1) is of general interest as an e�ective spin
Hamiltonian including SOC. Therefore, given the large SOC
in 1T-TaS2, the smallness of � was not obvious a priori and
required a demonstration. However in practice, it turns out that
for 1T-TaS2 when the inter-orbital and intra-orbital interactions
are in the same order, the anisotropy � remains smaller than
0.1 [39]. In the large limit of atomic SOC, the anisotropy �
will be further suppressed [39]. In the rest of the paper we will
mostly treat the case �=0. The K-term is the four spin ring ex-
change term and is modified by the spin anisotropy. In general,
the strength of K/J depends on the ratio between the e�ective
in-plane hopping and interaction. In the weak Mott insulating
regime, the e�ective hopping and interaction are at the same
scale, which is verified in several first principle calculations of

1T-TaS2 [42, 43], and then the strength of K/J is of order one.
The details on the derivation of the e�ective spin model and
a comparing of parameters definition with earlier studied ring
exchange model [32, 34, 35] can be found in SM [39].

For the spin model in Eq. (1), there are some well-known
limits. (i) K/J = 0, � = 0 case. In this case, we have a pure
Heisenberg model on the triangular lattice and the ground state
is the famous 120�-AFM state [23–25]. (ii) K/J = 0,� ! 1
case. When � = 1, we have a pure Ising model on the
triangular lattice. Due to the geometry frustration, the Ising
spin does not order at zero temperature. As this paramagnetic
state is highly degenerate, small perturbation may drive it to
an ordered state via the order by disorder [44]. (iii) K/J = 1,
� = 0 case. In this case, we only have isotropic four-spin
exchange terms. The ground state in the classical limit has
been discussed in Ref. [45]. As in real materials, K is usually
in the same order of J or smaller, this case is less relevant.

Results — For general values of K/J and �, the ground
states are not known. To identify all possible ground states
over a wide range of parameter space, we use DMRG to solve

2

FIG. 1. Phase diagram for isotropic case (� = 0), while for small
anisotropy case related to real materials 1T-TaS2 the phase diagram
is similar. It is mainly obtained from six wide systems and confirmed
in eight wide systems. Here AFM denotes 120�-spin order; VBS de-
notes valence bond solid state (or call dimerized phase); SFS denotes
a quantum spin liquid with a spinon Fermi surface.
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the

p
13 ⇥ p

13 star of David unit cell, the outer twelve Ta
atoms have displacement toward the centered Ta atom, which
strengthens the interatomic bonds inside the star of David and
weakens others. As the early first principles bulk band struc-
ture calculation for 1T-TaS2 indicates that the Ta 5d orbitals are
dominant in the conduction and valence bands [37, 40–43], the
atomic SOC from d
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phase. Importantly, the joint e�ect of lattice deformation and
atomic SOC gives rise to the well isolated narrow band at the
Fermi level, as is shown in Fig. S1 (a) of SM [39]. As a result,
in the presence of weak repulsive interaction, the 1T-TaS2 is
susceptible to the Mott-Hubbard transition and turns out to be
a Mott insulator.

In order to describe the Mott state in the 1T-TaS2, we con-
sider a single star of David unit cell as a super-site, which
is described by the intra-cluster tight binding Hamiltonian.
Through numerical diagonalization, the Wannier orbitals lo-
calized inside the star of David with corresponding eigen-
energies can be obtained in terms of the linear combination
of atomic orbitals from the 13 Ta atoms. At the energy of
the narrow band, it is found that the Wannier orbitals  "
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SM [39]. Taking the two Wannier orbitals as the basis, we can
construct a two-orbital Hubbard model with both inter-orbital
and intra-orbital interactions for 1T-TaS2 [39]. Since each star
of David unit cell occupied with the single state  "
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would have the lowest energy, all other occupation states can
be perturbatively dealt with through the Schrie�er-Wol� trans-
formation. As a result, the e�ective XXZ spin model with the
anisotropy modified ring exchange terms can be obtained as
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In the e�ective spin model, the J-term is a XXZ type nearest
neighbor interaction, where � denotes spin anisotropy, which
arises as the ratio between the inter-orbital and intra-orbital
interaction deviates from one [39]. Due to the atomic SOC,
the e�ective spin model does not have the SU(2) spin rota-
tional symmetry but preserves the U(1) rotation around the z
direction. Eq. (1) is of general interest as an e�ective spin
Hamiltonian including SOC. Therefore, given the large SOC
in 1T-TaS2, the smallness of � was not obvious a priori and
required a demonstration. However in practice, it turns out that
for 1T-TaS2 when the inter-orbital and intra-orbital interactions
are in the same order, the anisotropy � remains smaller than
0.1 [39]. In the large limit of atomic SOC, the anisotropy �
will be further suppressed [39]. In the rest of the paper we will
mostly treat the case �=0. The K-term is the four spin ring ex-
change term and is modified by the spin anisotropy. In general,
the strength of K/J depends on the ratio between the e�ective
in-plane hopping and interaction. In the weak Mott insulating
regime, the e�ective hopping and interaction are at the same
scale, which is verified in several first principle calculations of

1T-TaS2 [42, 43], and then the strength of K/J is of order one.
The details on the derivation of the e�ective spin model and
a comparing of parameters definition with earlier studied ring
exchange model [32, 34, 35] can be found in SM [39].

For the spin model in Eq. (1), there are some well-known
limits. (i) K/J = 0, � = 0 case. In this case, we have a pure
Heisenberg model on the triangular lattice and the ground state
is the famous 120�-AFM state [23–25]. (ii) K/J = 0,� ! 1
case. When � = 1, we have a pure Ising model on the
triangular lattice. Due to the geometry frustration, the Ising
spin does not order at zero temperature. As this paramagnetic
state is highly degenerate, small perturbation may drive it to
an ordered state via the order by disorder [44]. (iii) K/J = 1,
� = 0 case. In this case, we only have isotropic four-spin
exchange terms. The ground state in the classical limit has
been discussed in Ref. [45]. As in real materials, K is usually
in the same order of J or smaller, this case is less relevant.

Results — For general values of K/J and �, the ground
states are not known. To identify all possible ground states
over a wide range of parameter space, we use DMRG to solve
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1T-TaS2 is a cluster Mott insulator on the triangular lattice with 13 Ta atoms forming a star of David cluster as
the unit cell. We derive a two dimensional XXZ spin-1/2 model with four-spin ring exchange term to describe the
e�ective low energy physics of a monolayer 1T-TaS2, where the e�ective spin-1/2 degrees of freedom arises from
the Kramers degenerate spin-orbital states on each star of David. A large scale density matrix renormalization
group simulation is further performed on this e�ective model and we find a gapless spin liquid phase with
spinon Fermi surface at moderate to large strength region of four-spin ring exchange term. All peaks in the static
spin structure factor are found to be located on the "2k

F

" surface of half-filled spinon on the triangular lattice.
Experiments to detect the spinon Fermi surface phase in 1T-TaS2 are discussed.

Quantum spin liquid (QSL) was first proposed by P. W.
Anderson in 1973 [1]. He argued that the ground state of
spin-1/2 Heisenberg antiferromagnet on the triangular lattice
is a random quantum superposition of singlets, the so called
resonating valence bonds (RVB). Although the RVB state
is not the true ground state of the triangular lattice spin-1/2
Heisenberg model, Anderson’s proposal has inspired a great
deal of study this new "quantum liquid" state in frustrated
magnetic systems. QSL is a highly entangled states and is
very di�cult to realize and characterize in experiments due
to the lacking of an obvious order parameter and symme-
try breaking. During the past forty years people only find a
few QSL candidates, such as organic compounds -(BEDT-
TTF)2Cu2(CN)3 [2] and EtMe3Sb[Pd(dmit)2]2 [3], herbert-
smithite (ZnCu3(OH)6Cl2) [4], Na4Ir3O8 [5], YbMgGaO4 [6–
9] and recently proposed 1T-TaS2 [10–13], but still with many
controversies in details. The ongoing e�orts are either in the
direction to explore new QSL candidate materials [14, 15], or
push our theoretical and numerical understanding further.

It is well-known that, the geometrically frustration on
kagome, pyrochlore and triangular lattices, or spin anisotropy
such as Kitaev type interaction on a honeycomb lattice [16],
play an important role to stabilize a QSL phase [17]. On a
kagome lattice, the isotropic nearest neighbor antiferromag-
netic Heisenberg interaction is probably enough to result in
QSL phase based on density matrix renormalization group
(DMRG) [18–21] or variational Monte Carlo (VMC) [22]
calculations, while on a triangular lattice, it is not the case.
The ground state of Heisenberg model on the triangular lat-
tice is the 120�-AFM state [23–25]. Thus to stabilize QSLs,
more frustration, such as next neighbor frustrations [26–30],
anisotropic [31] or high order exchange interactions is needed.
The ring exchange terms become important for systems close
to the insulating side of the Mott transition and it is suggested

⇤ wanderxu@gmail.com
† palee@mit.edu

that the organics belongs to this case [32, 33]. Exact diago-
nalization and variational study of the triangular lattice spin
model with ring exchanges find a gapless QSL ground state
with a spinon Fermi surface [32]. Later DMRG simulation
on two and four spin ladders and Gutzwiller variational wave
functions calculation also find a similar QSL phase [34, 35].

1T-TaS2 was proposed to be a QSL candidate by two of
us [10]. It has quasi-2D structure and each layer is made up of
a triangular lattice with Ta atoms. It is recognized that 13-site
clusters are formed with very narrow band near Fermi surface
due to spin-orbit coupling (SOC) [36, 37]. A weak residual
repulsion interaction is enough to open a Mott gap. Charge
fluctuations induce high order exchange processes for the local
moments if the system is close to the Mott transition (a weak
Mott insulator). There are good reasons to expect this to be the
case for 1T-TaS2 because it is the only insulator among all the
CDW compounds and a related material 1T-TaSe2 is metallic.
This motivates us to derive an e�ective spin model that include
the e�ect of SOC and ring exchange. The geometric frustration
and high order exchange interaction and spin anisotropy are
new ingredients for the possible QSL physics in 1T-TaS2. In
this paper we first derive a microscopic e�ective spin model
including the anisotropy modified ring exchange interaction for
this kind of material, and then perform the state-of-art large-
scale DMRG simulation to explore ground state over quite a
large range of parameter space. Our work will not only shed
a new light in the understanding of ground state of 1T-TaS2,
but will also push the limit of DMRG results for XXZ model
with ring exchange on the triangular lattice, which is relevant
to many other materials.

E�ective spin model of 1T-TaS2 — In 1T-TaS2, the Ta atoms
form a planar triangular lattice sandwiched by S atoms in
an octahedral coordination. The Ta layer and S layers have
the ABC type stacking, which restores the global inversion
symmetry for the crystal structure. As the temperature is low-
ered, 1T-TaS2 undergoes a series of charge-density wave phase
(CDW) transition and eventually entering the commensurate
CDW phase around 180K. This is the Mott insulating state [38]
where the lattice is deformed into a superlattice with the unit
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FIG. 1. Phase diagram for isotropic case (� = 0), while for small
anisotropy case related to real materials 1T-TaS2 the phase diagram
is similar. It is mainly obtained from six wide systems and confirmed
in eight wide systems. Here AFM denotes 120�-spin order; VBS de-
notes valence bond solid state (or call dimerized phase); SFS denotes
a quantum spin liquid with a spinon Fermi surface.

cell of star of David, formed by 13 Ta clustered atoms seen
from Fig. S1 (b) of supplementary materials (SM) [39]. In
the

p
13 ⇥ p

13 star of David unit cell, the outer twelve Ta
atoms have displacement toward the centered Ta atom, which
strengthens the interatomic bonds inside the star of David and
weakens others. As the early first principles bulk band struc-
ture calculation for 1T-TaS2 indicates that the Ta 5d orbitals are
dominant in the conduction and valence bands [37, 40–43], the
atomic SOC from d

x

2�y2 and d
xy

orbitals is expected to modify
the reconstructed band structure in the commensurate CDW

phase. Importantly, the joint e�ect of lattice deformation and
atomic SOC gives rise to the well isolated narrow band at the
Fermi level, as is shown in Fig. S1 (a) of SM [39]. As a result,
in the presence of weak repulsive interaction, the 1T-TaS2 is
susceptible to the Mott-Hubbard transition and turns out to be
a Mott insulator.

In order to describe the Mott state in the 1T-TaS2, we con-
sider a single star of David unit cell as a super-site, which
is described by the intra-cluster tight binding Hamiltonian.
Through numerical diagonalization, the Wannier orbitals lo-
calized inside the star of David with corresponding eigen-
energies can be obtained in terms of the linear combination
of atomic orbitals from the 13 Ta atoms. At the energy of
the narrow band, it is found that the Wannier orbitals  "

↵ and
 #
� form the Kramers doublet while the Wannier orbitals  #

↵

and  "
� are lifted in the energy due to the atomic SOC. Here

the expressions for the two Wannier orbitals can be found in
SM [39]. Taking the two Wannier orbitals as the basis, we can
construct a two-orbital Hubbard model with both inter-orbital
and intra-orbital interactions for 1T-TaS2 [39]. Since each star
of David unit cell occupied with the single state  "

↵ or  #
�

would have the lowest energy, all other occupation states can
be perturbatively dealt with through the Schrie�er-Wol� trans-
formation. As a result, the e�ective XXZ spin model with the
anisotropy modified ring exchange terms can be obtained as
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In the e�ective spin model, the J-term is a XXZ type nearest
neighbor interaction, where � denotes spin anisotropy, which
arises as the ratio between the inter-orbital and intra-orbital
interaction deviates from one [39]. Due to the atomic SOC,
the e�ective spin model does not have the SU(2) spin rota-
tional symmetry but preserves the U(1) rotation around the z
direction. Eq. (1) is of general interest as an e�ective spin
Hamiltonian including SOC. Therefore, given the large SOC
in 1T-TaS2, the smallness of � was not obvious a priori and
required a demonstration. However in practice, it turns out that
for 1T-TaS2 when the inter-orbital and intra-orbital interactions
are in the same order, the anisotropy � remains smaller than
0.1 [39]. In the large limit of atomic SOC, the anisotropy �
will be further suppressed [39]. In the rest of the paper we will
mostly treat the case �=0. The K-term is the four spin ring ex-
change term and is modified by the spin anisotropy. In general,
the strength of K/J depends on the ratio between the e�ective
in-plane hopping and interaction. In the weak Mott insulating
regime, the e�ective hopping and interaction are at the same
scale, which is verified in several first principle calculations of

1T-TaS2 [42, 43], and then the strength of K/J is of order one.
The details on the derivation of the e�ective spin model and
a comparing of parameters definition with earlier studied ring
exchange model [32, 34, 35] can be found in SM [39].

For the spin model in Eq. (1), there are some well-known
limits. (i) K/J = 0, � = 0 case. In this case, we have a pure
Heisenberg model on the triangular lattice and the ground state
is the famous 120�-AFM state [23–25]. (ii) K/J = 0,� ! 1
case. When � = 1, we have a pure Ising model on the
triangular lattice. Due to the geometry frustration, the Ising
spin does not order at zero temperature. As this paramagnetic
state is highly degenerate, small perturbation may drive it to
an ordered state via the order by disorder [44]. (iii) K/J = 1,
� = 0 case. In this case, we only have isotropic four-spin
exchange terms. The ground state in the classical limit has
been discussed in Ref. [45]. As in real materials, K is usually
in the same order of J or smaller, this case is less relevant.

Results — For general values of K/J and �, the ground
states are not known. To identify all possible ground states
over a wide range of parameter space, we use DMRG to solve
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FIG. 3. (a) The in-plane thermal conductivity of the 1T -TaS2

single crystal at H = 0 T. The solid line represents the fit of
the data to /T = a + bT↵�1. This gives the residual linear
term 0/T = 0.005 ± 0.002 mW K�2 cm�1 and ↵ = 2.69.
(b) The in-plane thermal conductivity of 1T -TaS2 at various
magnetic fields (H = 0, 4, and 9 T) applied along the c axis.
(c) Field dependence of the residual linear term 0/T . The
three 0/T values are negligible in our field range.

ductivity from electrons (e/T ) at 1.5 K is estimated
to be 6.13 ⇥ 10�5 mW K�2 cm�1 according to the
Wiedemann-Franz law e/T = L0/⇢(1.5 K), with the
Lorenz number L0 = 2.45 ⇥ 10�8 W ⌦ K�2 and ⇢(1.5
K) = 399.8 m⌦ cm. The electron contribution becomes
smaller upon further cooling and is negligible at ultra-
low temperature, due to the insulating behavior of the

resistivity. Therefore, the thermal conductivity at very
low temperature can be fitted by /T = a + bT↵�1, in
which the two terms aT and bT↵ represent the contribu-
tions from fermionic magnetic excitations (if they exist)
and phonons, respectively [34, 35]. Because of the spec-
ular reflections of phonons at the sample surfaces, the
power ↵ in the second term is typically between 2 and 3
[34, 35]. The fitting of 0 T data below 0.35 K gives the
residual linear term 0/T ⌘ a = 0.005 ± 0.002 mW K�2

cm�1 and ↵ = 2.69. Considering our experimental error
bar ± 5 µW K�2 cm�1, the 0/T of 1T -TaS2 at zero
field is essentially zero. Note that EtMe3Sb[Pd(dmit)2]2
has a value of 0/T as big as 2 mW K�2 cm�1 [9]. The
in-plane thermal conductivity of the 1T -TaS2 single crys-
tal in magnetic fields (H = 0, 4, and 9 T) applied along
the c axis is plotted in Fig. 3(b), with the three curves
almost overlapping on top of another. The same fitting
process is performed, giving 0/T = -0.002 ± 0.009 mW
K�2 cm�1 and 0/T = 0.008 ± 0.005 mW K�2 cm�1

for H = 4 and 9 T, respectively. The three 0/T val-
ues are plotted in Fig. 3(c). One can see that magnetic
field barely has any e↵ect on the thermal conductivity of
1T -TaS2 up to 9 T.

Now we would like to discuss the implications of our
thermal conductivity results on the proposal of 1T -TaS2
being a QSL. Theoretically, all known QSLs can be clas-
sified in terms of a spectrum of gapless spinons (or their
absence) and the nature of the emergent gauge fields to
which they couple [36]. Various kinds of exotic models
have been proposed in the study of various QSL candi-
dates [3]. A systematic analysis of whether these models
can be applied to 1T -TaS2 is beyond the scope of this
work, and we only discuss the feasibility of these models
in the light of our experimental data on the low-energy
spin excitations. Generally, a finite residual linear term
0/T represents the contribution to  from fermionic
magnetic excitations in the zero temperature limit, i.e.,
the spectrum of the fermionic magnetic excitations is
gapless. This might come from a spinon-Fermi surface or
nodes in the momentum space. For 1T -TaS2, the former
one has been ruled out [25], because of the tiny linear
term � (⇠ 2 mJ mol�1 K�2) observed in specific heat
[27, 37]. For the latter one, the most common case is a
U(1) Dirac spin liquid [4, 38, 39]. In such a state, nodal
fermionic spinons at the Dirac points would still result
in a finite 0/T , and the thermal conductivity would be
enhanced by a magnetic field [39]. This is incompatible
with our results that the 0/T is negligible at all fields
and the thermal conductivity is insensitive to magnetic
field. It seems that any gapless QSL scenarios, whether
gapless everywhere or only at nodes in the momentum
space, are not consistent with our data. Note that there
are also some exotic scenarios with nodal bosonic exci-
tations [3, 40]. The contribution to the thermal conduc-
tivity from these nodal excitations exhibits a power-law
temperature dependence (⇠ T �). However, unlike nodal
fermionic excitations, for which the power-law exponent �
is 1, the � value for nodal bosonic excitations is unknown
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FIG. 2. (a) The inset shows C/T in zero field (filled red
circles) and in magnetic field of µ0H=14T for H ⊥ ab plane
(open red circles) plotted as a function of T 2. The main
panel shows the specific heat obtained after subtracting the
Schottky contribution, (C − CS)/T , plotted as a function of
T 2 in zero field (filled red circles) and at µ0H=14T (open
red circles). (b) The γ-term (red filled circles) and β-term
(blue filled squares) in the specific heat C = γT +βT 3+Cs in
zero field and at µ0H = 14,T. The data represented by open
symbols are taken from Ref. [24].

specific heat, we subtract the Schottky term by assum-
ing CS/T ∝ T−3. As shown by the red filled circles in
the main panel of Fig. 2(a), the low temperature specific
heat is well described as (C − CS)/T = γ + βT 2 with
γ ≈ 0.75mJ/K2mol and β = 0.17mJ/K4mol. Finite γ
demonstrates the presence of gapless excitations.
We examine the thermal conductivity that provides the

dynamical aspect of the excitations. The thermal con-
ductivity is totally insensitive to localized entities that
may cause the nuclear Schottky contribution and plague
the heat capacity measurements at low temperatures.
The red and blue filled circles in Figs. 3(a) and 3(b) show
κ/T in zero field for #1 and #2 crystals, respectively,
plotted as a function of T 2. The insets of Figs. 3(a) and
3(b) depict the same data plotted as a function of T .
For either plot, non-zero intercepts of κ/T extrapolated
to T → 0, i.e. κ0/T ̸= 0, can be seen in both crys-
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FIG. 3. (a) Low temperature plot of κ/T as a function of T 2

of #1 TaS2 single crystal in zero magnetic field (filled circles)
and at µ0H = 12T for H ⊥ ab plane (open circles). The
inset shows κ/T in zero field plotted as a function of T . (b)
The same plots for #2 crystal.

tals. Thermal conductivity in insulating magnets can be
written as a sum of the spin and phonon contributions,
κ = κspin + κph. The phonon conductivity in boundary-
limit scattering regime at low temperature is expressed
as κph = 1

3
p⟨vs⟩ℓphT 3, where p is the phonon specific

heat coefficient, ⟨vs⟩ is the mean acoustic phonon veloc-
ity, and ℓph is the phonon mean free path. For diffuse
scattering limit, ℓph becomes T -independent, resulting in
κph ∝ T 3. On the other hand, in case of specular reflec-
tion, ℓph follows T−1-dependence, leading to κph ∝ T 2.
In real systems, the phonon conductivity depends on T
as κph ∝ Tα with α of intermediate value between 2 and
3. Therefore, the finite κ0/T revealed by both plots of
κ/T vs. T 2 and κ/T vs. T , as shown in Figs. 3(a) and
3(b) and their insets, provides evidence of finite temper-
ature linear term in κspin, i.e. the presence of gapless
itinerant spin excitations. Such itinerant excitations in
the QSLs have been attributed to emergent fractionalized
quasiparticle “spinon”, which carries spin but no charge.
Moreover, the gapless excitations represented by finite
γ and κ0/T are consistent with a spinon Fermi surface
[17, 18, 26], ruling out a Dirac spinon with nodes.
While the resistivity of #1 crystal is two orders of mag-

nitude larger than that of #2 at low temperatures, resid-
ual thermal conductivity of #1 is very close to that of
#2. This indicates that the mean free path of the itiner-
ant spin excitations is not directly related to the electron
hopping channel responsible for the electrical resistivity.
The present results are in contrast to the previous mea-
surements that report the absence of κ0/T [25]. This dis-
crepancy may be because the defects/impurities reduce
κ0/T to a level beyond the resolution of the experiment.
Next we discuss the influence of the magnetic field on

the gapless excitations. As shown in Fig. 2(a) and its
inset, the magnetic field of µ0H = 14T applied perpen-
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FIG. 2. (a) The inset shows C/T in zero field (filled red
circles) and in magnetic field of µ0H=14T for H ⊥ ab plane
(open red circles) plotted as a function of T 2. The main
panel shows the specific heat obtained after subtracting the
Schottky contribution, (C − CS)/T , plotted as a function of
T 2 in zero field (filled red circles) and at µ0H=14T (open
red circles). (b) The γ-term (red filled circles) and β-term
(blue filled squares) in the specific heat C = γT +βT 3+Cs in
zero field and at µ0H = 14,T. The data represented by open
symbols are taken from Ref. [24].

specific heat, we subtract the Schottky term by assum-
ing CS/T ∝ T−3. As shown by the red filled circles in
the main panel of Fig. 2(a), the low temperature specific
heat is well described as (C − CS)/T = γ + βT 2 with
γ ≈ 0.75mJ/K2mol and β = 0.17mJ/K4mol. Finite γ
demonstrates the presence of gapless excitations.
We examine the thermal conductivity that provides the

dynamical aspect of the excitations. The thermal con-
ductivity is totally insensitive to localized entities that
may cause the nuclear Schottky contribution and plague
the heat capacity measurements at low temperatures.
The red and blue filled circles in Figs. 3(a) and 3(b) show
κ/T in zero field for #1 and #2 crystals, respectively,
plotted as a function of T 2. The insets of Figs. 3(a) and
3(b) depict the same data plotted as a function of T .
For either plot, non-zero intercepts of κ/T extrapolated
to T → 0, i.e. κ0/T ̸= 0, can be seen in both crys-
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FIG. 3. (a) Low temperature plot of κ/T as a function of T 2

of #1 TaS2 single crystal in zero magnetic field (filled circles)
and at µ0H = 12T for H ⊥ ab plane (open circles). The
inset shows κ/T in zero field plotted as a function of T . (b)
The same plots for #2 crystal.

tals. Thermal conductivity in insulating magnets can be
written as a sum of the spin and phonon contributions,
κ = κspin + κph. The phonon conductivity in boundary-
limit scattering regime at low temperature is expressed
as κph = 1

3
p⟨vs⟩ℓphT 3, where p is the phonon specific

heat coefficient, ⟨vs⟩ is the mean acoustic phonon veloc-
ity, and ℓph is the phonon mean free path. For diffuse
scattering limit, ℓph becomes T -independent, resulting in
κph ∝ T 3. On the other hand, in case of specular reflec-
tion, ℓph follows T−1-dependence, leading to κph ∝ T 2.
In real systems, the phonon conductivity depends on T
as κph ∝ Tα with α of intermediate value between 2 and
3. Therefore, the finite κ0/T revealed by both plots of
κ/T vs. T 2 and κ/T vs. T , as shown in Figs. 3(a) and
3(b) and their insets, provides evidence of finite temper-
ature linear term in κspin, i.e. the presence of gapless
itinerant spin excitations. Such itinerant excitations in
the QSLs have been attributed to emergent fractionalized
quasiparticle “spinon”, which carries spin but no charge.
Moreover, the gapless excitations represented by finite
γ and κ0/T are consistent with a spinon Fermi surface
[17, 18, 26], ruling out a Dirac spinon with nodes.
While the resistivity of #1 crystal is two orders of mag-

nitude larger than that of #2 at low temperatures, resid-
ual thermal conductivity of #1 is very close to that of
#2. This indicates that the mean free path of the itiner-
ant spin excitations is not directly related to the electron
hopping channel responsible for the electrical resistivity.
The present results are in contrast to the previous mea-
surements that report the absence of κ0/T [25]. This dis-
crepancy may be because the defects/impurities reduce
κ0/T to a level beyond the resolution of the experiment.
Next we discuss the influence of the magnetic field on

the gapless excitations. As shown in Fig. 2(a) and its
inset, the magnetic field of µ0H = 14T applied perpen-
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FIG. 2. (a) The inset shows C/T in zero field (filled red
circles) and in magnetic field of µ0H=14T for H ⊥ ab plane
(open red circles) plotted as a function of T 2. The main
panel shows the specific heat obtained after subtracting the
Schottky contribution, (C − CS)/T , plotted as a function of
T 2 in zero field (filled red circles) and at µ0H=14T (open
red circles). (b) The γ-term (red filled circles) and β-term
(blue filled squares) in the specific heat C = γT +βT 3+Cs in
zero field and at µ0H = 14,T. The data represented by open
symbols are taken from Ref. [24].

specific heat, we subtract the Schottky term by assum-
ing CS/T ∝ T−3. As shown by the red filled circles in
the main panel of Fig. 2(a), the low temperature specific
heat is well described as (C − CS)/T = γ + βT 2 with
γ ≈ 0.75mJ/K2mol and β = 0.17mJ/K4mol. Finite γ
demonstrates the presence of gapless excitations.
We examine the thermal conductivity that provides the

dynamical aspect of the excitations. The thermal con-
ductivity is totally insensitive to localized entities that
may cause the nuclear Schottky contribution and plague
the heat capacity measurements at low temperatures.
The red and blue filled circles in Figs. 3(a) and 3(b) show
κ/T in zero field for #1 and #2 crystals, respectively,
plotted as a function of T 2. The insets of Figs. 3(a) and
3(b) depict the same data plotted as a function of T .
For either plot, non-zero intercepts of κ/T extrapolated
to T → 0, i.e. κ0/T ̸= 0, can be seen in both crys-
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FIG. 3. (a) Low temperature plot of κ/T as a function of T 2

of #1 TaS2 single crystal in zero magnetic field (filled circles)
and at µ0H = 12T for H ⊥ ab plane (open circles). The
inset shows κ/T in zero field plotted as a function of T . (b)
The same plots for #2 crystal.

tals. Thermal conductivity in insulating magnets can be
written as a sum of the spin and phonon contributions,
κ = κspin + κph. The phonon conductivity in boundary-
limit scattering regime at low temperature is expressed
as κph = 1

3
p⟨vs⟩ℓphT 3, where p is the phonon specific

heat coefficient, ⟨vs⟩ is the mean acoustic phonon veloc-
ity, and ℓph is the phonon mean free path. For diffuse
scattering limit, ℓph becomes T -independent, resulting in
κph ∝ T 3. On the other hand, in case of specular reflec-
tion, ℓph follows T−1-dependence, leading to κph ∝ T 2.
In real systems, the phonon conductivity depends on T
as κph ∝ Tα with α of intermediate value between 2 and
3. Therefore, the finite κ0/T revealed by both plots of
κ/T vs. T 2 and κ/T vs. T , as shown in Figs. 3(a) and
3(b) and their insets, provides evidence of finite temper-
ature linear term in κspin, i.e. the presence of gapless
itinerant spin excitations. Such itinerant excitations in
the QSLs have been attributed to emergent fractionalized
quasiparticle “spinon”, which carries spin but no charge.
Moreover, the gapless excitations represented by finite
γ and κ0/T are consistent with a spinon Fermi surface
[17, 18, 26], ruling out a Dirac spinon with nodes.
While the resistivity of #1 crystal is two orders of mag-

nitude larger than that of #2 at low temperatures, resid-
ual thermal conductivity of #1 is very close to that of
#2. This indicates that the mean free path of the itiner-
ant spin excitations is not directly related to the electron
hopping channel responsible for the electrical resistivity.
The present results are in contrast to the previous mea-
surements that report the absence of κ0/T [25]. This dis-
crepancy may be because the defects/impurities reduce
κ0/T to a level beyond the resolution of the experiment.
Next we discuss the influence of the magnetic field on

the gapless excitations. As shown in Fig. 2(a) and its
inset, the magnetic field of µ0H = 14T applied perpen-
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Large thermal Hall effect in spin-1/2 Kagome magnets 

effect on the elementary excitations producing the thermal
Hall signal. A change in magnetic structure below T! has
also been inferred at 6 T from the change in slope of the
magnetization [23] that may be related to the disappearance
of κxyðBÞ above 6 T.
From the linear fit for κxyðBÞ [the straight lines in

Fig. 2(b)], we estimated the slope κxy=B at each temper-
ature and plotted the temperature dependence of κxy=TB
(filled symbols in Fig. 3). Below T!, we estimated κxy=TB
from κxy at 15 T (open symbols in Fig. 3). We note that
κxy=TB data below T! are shown for reference owing to the
nonlinear field dependence of κxy. Clarifying κxy below T!,
which requires the detail of the magnetic order, remains as a
future work as discussed later. We find that κxy=TB for both
Ca kapellasite samples exhibit virtually the same temper-
ature dependence. The magnitudes of κxy for both differ by
a factor of ∼2, which is mostly attributed to the ambiguity
in the estimation of the sample geometry (see the SM [30]

for more details). As seen in Fig. 3, κxy=TB increases as the
temperature is lowered, then peaks at ∼20 K followed by a
rapid decrease to zero below T!. This temperature depend-
ence, in particular the peak in jκxy=TBj, is almost the same
with that of volborthite. Remarkably, the absolute value
of κxy=TB of Ca kapellasite is also similar to that of
volborthite, whereas κxx of Ca kapellasite is about one order
of magnitude smaller than that of volborthite. Because κxx
is dominated by phonons in this temperature range, similar
jκxy=TBj magnitudes in these kagome compounds with
different κxx magnitudes suggests that the thermal Hall
effect does not come from phonons [46]. Given almost the
same magnitude for the effective spin interaction energy
J=kB ∼ 60 K of the two compounds, similar κxy=TB
implies the presence of a common thermal Hall effect
from spin excitations of the kagome antiferromagnets.
To investigate the origin of κxy, we have simulated

κxy adopting the SBMFT [49] for KHA with the
Dzyaloshinskii-Moriya (DM) interaction, which reads

H ¼ 1

2

X

hi;ji
ðJSi · Sj þDijSi × Sj · ẑÞ − gμB

X

i

B · Si; ð1Þ

where Dij is the DM interaction, g the g factor, μB the Bohr
magneton, and the direction of the magnetic field B aligns
with the z axis. The sign of Dij is assumed to be positive if
i → j is in a clockwise direction from the center of each
triangle plaquette in the kagome lattice, and we define
Dij ¼ −Dji ¼ D. SBMFT has been employed to study the
possible spin-liquid ground states and the excitations of
quantum antiferromagnets [2,3,7,8,49–53]. In the SBMFT
framework, spin is expressed by a pair of bosons ðbi↑; bi↓Þ
as Si ¼ 1

2

P
α;β¼↑;↓b

†
iασαβbiβ, where σ is the Pauli matrices.

We decouple the Hamiltonian by taking a mean-field value
of the bond operator χij ¼ hb†iσbjσi and diagonalize it to
find the energy bands. Because of the nature of the DM
interaction, χij is a complex number, and therefore the
energy bands are gapped. Each band now carries a different
Berry flux, and this is directly related to the thermal Hall
conductivity through the relation [38,39]:

κSBMF
xy ¼ −

k2BT
ℏNt

X

k;n;σ

!
c2

"
nB

#
Enkσ

kBT

$%
−
π2

3

&
Ωknσ; ð2Þ

where c2 is a distribution function of the Schwinger
bosons, nB the Bose-Einstein distribution function, Eknσ
the energy eigenvalue, and Ωknσ the Berry curvature (see
the SM [30] for details). Equation (2) can be expressed as
κSBMF
xy =T ¼ ðk2B=ℏÞfSBMFðkBT=J;D=J; gμBB=JÞ, where
fSBMF is a dimensionless function. Given that κxy is an
odd function of both D and B, one has the approximation
κSBMF
xy =T ¼ ðk2B=ℏÞðD=JÞðgμBB=JÞf̃SBMFðkBT=JÞ when
both D and gμBB are smaller than J.

(a) (b)

FIG. 2. The field dependence (a) of the transverse temperature
difference ΔTyðBÞ and (b) of κxyðBÞ. Solid lines in (b) represent
linear fits. The field dependence of κxyðBÞ at other temperatures is
shown in the SM [30].

FIG. 3. The temperature dependence of κxy=TB of Ca kapella-
site (samples No. 1 and No. 2) and that of volborthite [41]. The
filled (open) symbols represent data estimated by the linear fit
of κxy (data at 15 T). The data of volborthite are taken from
Ref. [41]. The error bars correspond to one standard deviation and
are of the same order as the size of the symbol or smaller for data
of Ca kapellasite.
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evolution in magnetic fields

The interaction is anisotropic here, due to the distinct orbital  
content of the Cu ions.
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FIG. 1: (a) Low temperature structure of P21/a after the two
structural transitions at 310 and 155 K [30–32]. The H and
O sites are not shown. Although there are two inequivalent
layers, the exchange parameters in both layers are expected to
be nearly the same [32, 33] and are described by J1, J2, J , and
J ′ as shown in (b), where the light orange background denotes
trimers formed by the dominant coupling J . (c) Effective
model for volborthite suggested in Ref. [33]. The orange
ellipses represent the trimers carrying pseudospin-1/2. The
interactions between the effective spins are evaluated to be
j1 = −34.9, j2 = 36.5, j′2 = 6.8, and j3 = 4.6 K [33]. (d)
Phase diagram of volborthite for the B ⊥ ab plane. The
circles represent the boundaries determined by NMR [32, 34].

method described in Refs [31, 32]. Because volborthite
shows a large sample dependence, we discuss this issue in
the Supplemental Material (see Supplemental Materials
A, B, and C [34]). Here, we only show the results of the
higher quality crystal A. The twinned crystals [31, 32]
were cut into a single domain for the NMR measure-
ments. The data at high magnetic fields above 15 T were
mainly obtained by using a 20 MW resistive magnet at
LNCMI Grenoble. The partial data (T -dependences of
1/T1 and spectra at 18-24 T) were obtained by using a
hybrid magnet at Tohoku University. The NMR spec-
tra were obtained by summing the Fourier transform of
the spin-echo signal obtained at equally spaced magnetic
fields B (or frequencies ν) with a fixed frequency ν0 (or
a fixed field B0). They are plotted against the internal
field Bint = ν0/γ − B or ν/γ − B0, where γ = 11.1988
MHz/T is the gyromagnetic ratio of 51V. We determined
1/T1 near the spectral center by fitting the spin-echo in-
tensity Ml(t) as a function of the time t, after a comb
of several saturating pulses, to the stretched exponential
function Ml(t) = Meq − M0exp{−(t/T1)β}, where Meq

FIG. 2: (a) Field dependence of the NMR spectra at 0.3-
0.4 K in the B ⊥ ab plane. (b) B-dependences of the local
spin polarization, Bint/A, corresponding to various features
on the spectra. A = 0.41 T/µB is the hyperfine coupling
constant determined in the paramagnetic state. The open
circles, solid squares, and solid (open) triangles represent the
center of gravity, the two peaks of the double-horn spectrum
indicated by the dashed lines in (a), and the peaks indicated
by the up (down) arrows in (a), respectively. The solid line
represents the magnetization for the B ⊥ ab plane [32]. The
dotted lines are a guide to the eye.

is the intensity at the thermal equilibrium. When the
relaxation rate is homogeneous, the value of β is close to
one.
We first examine the NMR spectra in order to elucidate

the phase diagram. Figure 2(a) shows the B-dependence
of the NMR spectra at 0.3-0.4 K in the B ⊥ ab plane.
Below 20 T, a double-horn type line shape is observed,
which indicates a spin-density-wave (SDW) order [32].
Above 22 T, the double-horn structure is deformed and
an additional peak grows, indicating the coexistence of
phase II and N. The spectrum at 25 T can be well fit
to two Gaussians, as shown by the dotted line. The
two-peak structure seems to be a characteristic feature
of phase N. Above 26 T, the right peak becomes much
narrower, while the left peak remains broad. The inten-
sity of the broad peak decreases at 28 T, but it remains
visible as indicated by the asterisk.
The sharp peak observed in the P state indicates a

simple spin structure. The plateau state is described by
the saturation of effective spin-1/2 moments in the cou-
pled trimer model [33]. Because Bint at the V sites is
unique in this saturation state, it is compatible with the
observed NMR spectrum, except for the broad peak in-
dicated by the asterisk in Fig. 2(a), which may originate
from an imperfection of the crystal.
We summarize the phase diagram for the B ⊥ ab plane

in Fig. 1(d). The regions of phases I and II are almost
the same as those in the polycrystalline sample [34]. It
is difficult to specify the phase boundaries for N, be-
cause it has coexistence regions with phase II and the
P state. The gray area indicates B- and T -ranges where

fluctuation owing to MCE. We have developed a state-of-the-art
technique to generate a modified pulsed magnetic field with its
top truncated to become almost flat with a high field stability
of ±0.01 T, which allows us to measure heat capacity precisely at
the flat-top field down to 0.8 K.
We first discuss the phase boundaries found using MCE

measurements and then use corresponding result for heat ca-
pacity to characterize each of the phases found. Fig. 3A shows
the evolution of curves of constant entropy, T(H)S, taken from
MCE measurements performed under quasi-adiabatic conditions
(A-MCE), starting from the state found for H = 0 at a given
temperature. In all cases the adiabat T(H)S initially decreases
with increasing field, before passing through a broad minimum at
H ∼25 T and then increasing, behavior consistent with a phase
transition at low temperatures (22). Adiabats become tightly
bunched at low temperatures, approaching the onset of the 1/3-
magnetization plateau P at HP ∼27.5 T, suggesting a dense set of
low-energy excitations (22). A notable change occurs when the
temperature falls below ∼1.7 K; the broad minimum in T(H)S
acquires small dips, indicative of phase transitions, at Hs1 ∼ 22.5
T and Hs2 ∼ 25.5 T and HP ∼ 27.5 T. Each of these three critical
fields is singled out by a corresponding anomaly in measure-
ments of MCE under approximately isothermal conditions
(I-MCE) of T = 1.25, 1.0, and 0.75 K (Fig. 3B) and the related
changes in entropy (Fig. 3C). Together with measurements of heat

capacity, discussed below, these results clearly delineate two
domes in the (H,T) plane, each corresponding to a different low-
temperature phase. We label these phases N1 and N2 in Fig. 3; N1
corresponds to the phase N found in earlier NMR experiments
(20, 21), and N2 fills the gap between N and P.
We now turn to measurements of heat capacity, which provide

more insight into the nature of the phases N1 and N2. Fig. 4
shows the temperature dependence of heat capacity for magnetic
field ranging from 0 to 30.2 T. In the absence of magnetic field,
C(T) exhibits small peaks at 0.8 and 1.2 K, as reported previously
(24) (Fig. 4A). The onset of SDW order (II) at intermediate
values of magnetic field is revealed in broad shoulders in C(T);
these occur at T ∼ 2 K for H = 14 T and T ∼ 1.5 K for H = 20.4 T
(Fig. 4A), in agreement with phase boundaries found in NMR
(24). Very different behavior is observed for H > Hs1; the tran-
sition into the phase N1 is marked by a substantial λ-shaped
anomaly, occurring at T ∼ 1.54 K for H = 22.8 T, in agree-
ment with the phase boundary identified in MCE (Fig. 3). This
feature becomes still more pronounced with increasing field (Fig.
4A). Meanwhile, the onset of the phase N2 is accompanied by an
extremely sharp peak, consistent with a logarithmic divergence in
C(T) (Fig. 4B). The crossover into the saturated state, for H >
HP, is not accompanied by any anomaly in C(T) (Fig. 4B). These
results provide unequivocal evidence that N1 and N2 are bulk,
thermodynamic phases; we find corresponding changes in en-
tropy of ΔS = 0.12Rln2 entering phase N1 at H = 24.2 T and
ΔS = 0.09Rln2 entering phase N2 at H = 26.3 T.
Spontaneous symmetry breaking can produce a gapless Goldstone

excitation that gives power-law behavior in the low-temperature
heat capacity. For most ordered states including SDW and SN
states, one would expect linearly dispersing Goldstone modes (8,
12, 25). These usually contribute to the low-temperature heat
capacity as C(T) ∝ Td, where d is the spatial dimension of the
system. As shown in the log–log plots of Fig. 4 C and D, the low-
temperature heat capacities for phases I and II tend to be pro-
portional to T3, while for phases N1 and N2, C(T) ∝ T2. This
implies that the character of magnetic excitations changes from
3D to 2D, although it is preferable to increase the temperature
range of the fit (SI Appendix). Probably, for phases I and II, 3D
antiferromagnetic magnons or phasons occur (8) owing to non-
negligible interlayer couplings, while the dimensionality of
magnetic excitations for phases N1 and N2 is qualitatively re-
duced in the measurement temperature range. This type of di-
mensional reduction is not surprising in a quasi-2D magnet with
SN order, since the opening of a gap to transverse spin excita-
tions will lead to a suppression of interplane exchange.
In the state P, for H > HP, there is no phase transition above

0.8 K, and the low-temperature heat capacity shows exponentially
activated behavior (Fig. 4E): the 30.2 T data are well described by
the equation, C = exp[−Δ/kBT]/T (26), with an activation energy
Δ = 6.7 K. We interpret this as a gap to two-magnon excitations,
as illustrated in Fig. 1B (19). Assuming that this gap opens atHP =
27.5 T and modeling it as Δ = gμB(H – HP), we arrive at an
effective Landé g factor of g = 3.7. It should be noted that the
critical field deduced from the phase boundary, HP

PB, lies in the
range 27.5–28.0 T, which yields g = 3.7–4.5 (SI Appendix). These
values are nearly twice as large as the single-electron g factor
found in electron spin resonance measurements at lower values
of field [gc = 2.04 below 12 T (27)], consistent with a two-magnon
excitation. The g factor estimated from NMR measurements on
volborthite also shows an enhancement to g ∼ 4.6–5.9 (24), pro-
viding further evidence for two-magnon bound states.
To recap, it has been suggested (19) that for a narrow range of

H just below HP, bound pairs of magnons undergo a low-
temperature BEC, leading to an antiferroquadrupolar SN order,
as illustrated in Fig. 2C. At present the case for this SN order rests
on a combination of theoretical analysis of the crystal structure
and associated magnetic model (19) and NMR experiments which,

Fig. 3. Magnetocaloric effect and magnetic phase diagram of volborthite. (A)
Experimental measurements of the MCE in volborthite, showing the evolution
of temperature with changing magnetic field under (quasi-)adiabatic condi-
tions (A-MCE). Results are shown for both rising (blue curves) and falling (red
curves) magnetic field and reflect contours of constant entropy. The onset of
the hidden-order phases, N1 and N2, is associated with tight bunching curves
and a dip in the entropy contour, corresponding to a change in sign of the
MCE. Black triangles show phase boundaries at low temperature, extracted
from complimentary measurements of MCE under isothermal conditions (I-
MCE). The phase boundaries extracted from measurements of heat capacity,
C(T), are shown with open circles. (B) Detail of phases N1 and N2, showing
results for A-MCE measured in rising field (blue curves), I-MCE in rising field
(black curves), and I-MCE in falling field (green curves). The black squares show
the evolution of a corresponding feature in the A-MCE. Two distinct domes
can be resolved at finite temperature, bounded by the critical fields Hs1 = 22.5
T, Hs2 = 25.5 T, and HP = 27.5 T. (C) Changes of entropy extracted from
measurements of I-MCE at low temperature (Methods). The field boundaries
of the SN phase, N2, and presumed supersolid phase, N1, are sharply distin-
guished by local anomalies in entropy.
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Frustrated magnets: honeycomb Kitaev materials  
(non heisenberg)

Na2IrO3, Li2IrO3, alpha-RuCl3, etc  
New examples: OsCl3, Co-honeycomb, YbCl3

Let me talk about this on Wednesday



Frustrated magnets: spin-1 magnets [可作为某个专题]
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High pressure sequence of Ba3NiSb2O9 structural phases: new S = 1 quantum
spin-liquids based on Ni2+

J. G. Cheng,1 G. Li,2 L. Balicas,2 J. S. Zhou,1 J. B. Goodenough,1 Cenke Xu,3 and H. D. Zhou2, ∗

1Texas Materials Institute, University of Texas at Austin, TX 78712, USA
2National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32306-4005, USA

3Department of Physics, University of California, Santa Barbara, California 93106, USA
(Dated: November 17, 2018)

By using a high pressure, high temperature (HPHT) technique, the antiferromagnetically ordered
(TN = 13.5 K) 6H-A phase of Ba3NiSb2O9 was transformed into two new gapless quantum spin liq-
uid(QSL) candidates with S = 1 (Ni2+) moments: the 6H-B phase with a Ni2+-triangular lattice and
the 3C-phase with a Ni2+-three-dimensional (3D) edge-shared tetrahedral lattice. Both compounds
show no magnetic order down to 0.35 K despite Curie-Weiss temperatures θCW of -75.5 K (6H-B)
and -182.5 K (3C), respectively. Below ∼ 25 K the magnetic susceptibility of the 6H-B phase satu-
rates to a constant value χ0 = 0.013 emu/mol which is followed below 7 K, by a linear-temperature
dependent magnetic specific heat (CM ) displaying a giant coefficient γ = 168 mJ/mol-K2. Both
observations suggest the development of a Fermi-liquid like ground state characterized by a Wilson
ratio of 5.6 in this insulating material. For the 3C phase, the CM ∝ T 2 behavior indicates a unique
S = 1, 3D QSL ground-state.

PACS numbers: 75.40.Cx, 75.45.+j, 61.05.C-

A quantum spin-liquid (QSL) is a ground-state where
strong quantum-mechanical fluctuations prevent a phase-
transition towards conventional magnetic order and
make the spin ensemble to remain in a liquid-like
state [1, 2]. So far various gapped spin liquids have
been found in dimerized spin systems and spin lad-
ders [3–10]. However, topological and gapless spin
liquids are much less well-understood in dimensions
higher than one. Most of the gapless QSL candi-
dates studied to date are two-dimensional frustrated
magnets composed of either a triangular lattice of
S = 1/2 dimers, such as the organic compounds κ-
(BEDT-TTF)2Cu2(CN)3[11, 12] (abbreviated as ET) or
EtMe3Sb[Pd(dmit)2]2[13, 14] (abbreviated as dmit), or
of a kagome lattice of Cu2+ (S = 1/2) ions, such as the
ZnCu3(OH)6Cl2[15, 16], BaCu3V2O8(OH)2[17], and the
Cu3V2O7(OH)2·2H2O[18] compounds.

However, whether a gapless QSL can be realized in sys-
tems with larger spins, e.g. S = 1, especially in systems
with a three-dimensional (3D) lattice, is still a matter
of debate. For example, the S = 1 material NiGa2S4
[19]with a triangular lattice develops quadrupolar order
[20, 21], while so far all the 3D gapless QSL candidates
studied to date, such as Na3Ir4O8 with Ir4+ ions [22], are
either S = 1/2 or effective S = 1/2 systems due to strong
spin-orbit coupling. Therefore, the present challenge is
to find additional model compounds to test current the-
ories for gapless QSLs. The key to find a new QSL can-
didate is to construct a geometrically frustrated lattice
with specific magnetic ions. A commonly used method to
design and discover new materials is to pursue chemical
substitutions, although the application of high pressures
is also an alternative way to transform crystalline struc-
tures and discover new phases which has not been widely

used for synthesizing new frustrated magnets. Here, we
followed the second route to synthesize frustrated mag-
nets Ba3NiSb2O9 displaying the unique physical proper-
ties shown below.

The ambient pressure 6H-A phase of Ba3NiSb2O9 was
synthesized through a conventional solid-state reaction.
Its x-ray diffraction (XRD) pattern (recorded at room
temperature with Cu Kα radiation, Fig. 1(a)) shows a
single phase having the hexagonal space group P63/mmc.
The obtained lattice parameters a = 5.8376(5) Å and c =
14.4013(1) Å agree well with previously reported values
[23, 24]. The structure of the 6H-A phase (Fig. 1(d)) con-
sists of dimers of face-sharing Sb2O9 octahedra linked by
their vertices to single corner-sharing NiO6/2 octahedra
along the c axis. The Ni2+ ions occupy the 2a Wyck-
off site to form a two-dimensional (2D) triangular lattice
in the ab plane (Fig. 1(g)), which is separated by two
non-magnetic Sb layers.

The 6H-B phase of Ba3NiSb2O9 was obtained by treat-
ing the 6H-A phase at 600 ◦C under a pressure of 3 GPa
for 1 hour in a Walker-type multianvil module (Rockland
Research Co.). Its XRD pattern (Fig. 1(b)) is different
from that of 6H-A phase and can be satisfactorily indexed
as a distinct hexagonal space group, i.e. the P63mc with
a = 5.7923(2) Å and c = 14.2922(7) Å, respectively. In
this structure (Fig. 1(e)), the dimers of the face-sharing
NiSbO9 octahedra (instead of the Sb2O9 octahedra as
for the 6H-A phase) are linked by their vertices to single
corner-sharing SbO6/2 octahedra along the c axis. In the
well ordered NiSbO9 octahedra, the Ni2+ ions occupy the
2b Wyckoff sites, which still form a triangular lattice in
the ab plane. For the 6H-A phase, the layers of the Ni tri-
angular lattice are exactly on top of each other along the
c-axis. However, for the 6H-B phase, the nearest two lay-
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FIG. 1: (Color online) Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b) 6H-B, and
(c) 3C. Solid curves are the best fits obtained from Rietveld refinements using FullProf. Schematic crystal structures for the
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ers of the Ni triangular lattice are displaced with respect
to each other in a way that the Ni ion in one layer is pro-
jected towards the center of the triangle formed by the
Ni ions in the adjacent layers along the c-axis, as shown
in Fig. 1(h). The instability of the 6H-A phase should
arise from the fact that high pressures tend to reduce the
Sb5+-Sb5+ distance and therefore partially relieve strong
electrostatic repulsion by exchanging Ni with one of the
Sb atoms. Battle et al. reported a similar structure for
the 6H-B phase [25], but with no physical characteriza-
tion.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure.
This 3C phase was obtained under 9 GPa and at a tem-
perature of 1000 ◦C kept for 30 min. Its XRD pattern
(Fig. 1(c)) is best described as a double-perovskite in
a Ba2MM’O6 model with the cubic space group Fm-3m
having a lattice parameter a = 8.1552(2) Å. The refine-
ment shows a full-ordered arrangement of Ni2/3Sb1/3 and
Sb atoms at the M and M’ sites (Fig. 1(f)), respectively.
Therefore the Ni2/3Sb1/3 sites form a network of edge-
shared tetrahedra, as shown in Fig. 1(i). Instead of
adopting a primitive perovskite structure in which the
Ni2+ and Sb5+ ions are randomly distributed, the pre-
ferred double-perovskite structure should be attributed
to the large difference in charges between the Ni2+ and
the Sb5+ ions.

All three samples are insulators with the room temper-
ature resistance higher than 20 MΩ. The DC magnetic
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FIG. 2: (Color online) (a) Temperature dependencies of the
DC magnetic susceptibility (χ) for the Ba3NiSb2O9 poly-
types. Inset: Temperature dependencies of 1/χ. The solid
lines on 1/χ data represent Curie-Weiss fits. For 6H-B phase,
χ (open squares) is obtained by subtracting 1.7% Ni2+ or-
phan spin’s contribution (crosses) from the as measured data
(solid squares).

susceptibility (χ(T ), Fig. 2) for all three compounds was
measured under a field H = 5000 Oe. For each com-
pound, one does not observe any difference between the
data measured under zero-field-cooled (ZFC) and that
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measured under field-cooled (FC) conditions. The 6H-A
sample exhibits a cusp-like anomaly at the antiferromag-
netic ordering temperature TN = 13.5 K, as previously
reported [24]. On the other hand, neither the 6H-B nor
the 3C phase show any sign of long range magnetic order
down to 2 K. For the 6H-B phase, we have subtracted
the Curie contribution provided by 1.7 % Ni2+ of orphan
spins from the as measured data. This percentage of
Ni2+ orphan spins was calculated from fitting the spe-
cific heat data[26]. After this subtraction, χ(T ) for the
6H-B phase (open squares in Fig. 2) basically saturates
below 25 K with a saturation value χ0 ∼ 0.013 emu/mol.
The fittings of the high-temperature region of χ−1(T ) to
the Curie-Weiss law show that all three compounds have
the same value for effective moment, µeff ∼ 3.54 µB, as
seen from the fact that all three χ−1(T ) curves are ba-
sically parallel to each other (insert of Fig. 2). This
value gives a g-factor of 2.5, which is close to the typical
value for Ni2+ ions with spin-orbital coupling[27]. The
Curie-Weiss temperatures, θCW, obtained for the 6H-A,
6H-B, and 3C phases are -116.9(4) K, -75.6(6) K, and
-182.5(3) K, respectively, indicating dominant antiferro-
magnetic interactions for all compounds.

The magnetic specific-heat (CM , Fig. 3) for each com-
pound was obtained by subtracting the heat capacity of
the non-magnetic compound Ba3ZnSb2O9 ordered in the
6H-A, 6H-B, and 3C phases, respectively, which are used
here as lattice standards. For the 6H-B phase a Schottky
anomaly due to 1.7% of Ni2+ orphan spins was also sub-
tracted, see Supplemental Materials[26]. For the 6H-A
phase, CM shows a sharp peak around TN = 13.5 K. On
the other hand, for both the 6H-B and the 3C phases,
CM which emerges from around 30 K, shows a broad
peak around 13 K with no sign for long-range magnetic-
order down to T = 0.35 K. For the 6H-B and the 3C

phases, CM is not at all affected by the application of
a magnetic field as large as H = 9 T. Below 30 K, the
associated change in magnetic entropy (inset of Fig. 3)
is 5.0 J/mol-K, 3.7 J/mol-K, and 2.0 J/mol-K for the
6H-A, 6H-B, and the 3C phase, respectively. These val-
ues correspond respectively, to 55%, 41%, and 22% of
R ln(3) for a S = 1 system, where R is the gas constant.
The remarkable result is that CM at low temperatures
for all three phases follows a γTα behavior, but with a
distinct value of α for each phase. As shown in Fig. 3,
a linear fit of CM plotted in a log-log scale yields respec-
tively, γ = 2.0(1) mJ/mol-K4 and α = 3.0(2) for the
6H-A phase in the range 1.8 ≤ T ≤ 10 K, γ = 168(3)
mJ/mol-K2 with α = 1.0(1) for the 6H-B phase when
0.35 ≤ T ≤ 7 K, and γ = 30(2) mJ/mol-K3 with α =
2.0(1) for 3C phase within 0.35 ≤ T ≤ 5 K.
Both the susceptibility and the specific heat show no

evidence for magnetic ordering down to T = 0.35 K for ei-
ther the 6H-B or the 3C phase, despite moderately strong
antiferromagnetic interactions. The 41% (6H-B) and the
22% (3C) change in magnetic entropy also indicates a
high degeneracy of low-energy states at low tempera-
tures. These behaviors suggest that both the 6H-B and
3C phases are candidates for spin liquid behavior. For
the 6H-A phase, the CM ∝ T 3 behavior observed below
TN is typical for 3D magnons [28]. This indicates that
besides the intra-layer magnetic interactions within the
Ni2+ triangular lattice, the inter-layer coupling is also
relevant for this phase. As for the 6H-B phase, on the
other hand, the relative shift of the two nearest Ni2+ tri-
angular layers leads to a frustrated inter-layer magnetic
coupling, which prevents 3D long-range magnetic-order.
The linear-T dependent CM of the 6H-B phase is unusual
for a magnetic insulator having a 2D frustrated lattice.
Naively, for a 2D lattice one would expect CM to display
a T 2 dependence given by a linearly dispersive low-energy
mode [19].
In fact, a series of recent low temperature studies re-

veal that CM ∝ γT , with a considerable large value for γ,
is a common feature among QSL candidates [11, 29, 30].
For example, ET[11], dmit[29], and Ba3CuSb2O9[30], all
composed of a S = 1/2 triangular lattice, display γ =
12.0 mJ/mol-K2, 19.9 mJ/mol-K2, and 43.4 mJ/mol-
K2, respectively. It has been proposed theoretically that
magnetic excitations or quasiparticles called spinons can
lead to a Fermi surface even in a Mott insulator, which
yields a linear term in the specific heat after the U(1)
gauge fluctuation is suppressed due to partial pairing on
the fermi surface[31]. The observation of a saturation
in χ(T ) for 6H-B phase enables us to calculate the Wil-
son ratio, RW = [4π2kB2χ0]/[3(gµB)2γ]. One obtains a
value of 5.6 by using χ0 = 0.013 emu/mol and γ = 168
mJ/mol-K2. In metals, a Pauli-like paramagnetic suscep-
tibility and a linear-T dependent heat capacity, as seen
for the 6H-B phase at lower temperatures, which leads
to a concomitant RW in the order of unity, are conven-
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ers of the Ni triangular lattice are displaced with respect
to each other in a way that the Ni ion in one layer is pro-
jected towards the center of the triangle formed by the
Ni ions in the adjacent layers along the c-axis, as shown
in Fig. 1(h). The instability of the 6H-A phase should
arise from the fact that high pressures tend to reduce the
Sb5+-Sb5+ distance and therefore partially relieve strong
electrostatic repulsion by exchanging Ni with one of the
Sb atoms. Battle et al. reported a similar structure for
the 6H-B phase [25], but with no physical characteriza-
tion.

With increasing pressure we observed an additional
phase transformation to a cubic perovskite structure.
This 3C phase was obtained under 9 GPa and at a tem-
perature of 1000 ◦C kept for 30 min. Its XRD pattern
(Fig. 1(c)) is best described as a double-perovskite in
a Ba2MM’O6 model with the cubic space group Fm-3m
having a lattice parameter a = 8.1552(2) Å. The refine-
ment shows a full-ordered arrangement of Ni2/3Sb1/3 and
Sb atoms at the M and M’ sites (Fig. 1(f)), respectively.
Therefore the Ni2/3Sb1/3 sites form a network of edge-
shared tetrahedra, as shown in Fig. 1(i). Instead of
adopting a primitive perovskite structure in which the
Ni2+ and Sb5+ ions are randomly distributed, the pre-
ferred double-perovskite structure should be attributed
to the large difference in charges between the Ni2+ and
the Sb5+ ions.

All three samples are insulators with the room temper-
ature resistance higher than 20 MΩ. The DC magnetic
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FIG. 2: (Color online) (a) Temperature dependencies of the
DC magnetic susceptibility (χ) for the Ba3NiSb2O9 poly-
types. Inset: Temperature dependencies of 1/χ. The solid
lines on 1/χ data represent Curie-Weiss fits. For 6H-B phase,
χ (open squares) is obtained by subtracting 1.7% Ni2+ or-
phan spin’s contribution (crosses) from the as measured data
(solid squares).

susceptibility (χ(T ), Fig. 2) for all three compounds was
measured under a field H = 5000 Oe. For each com-
pound, one does not observe any difference between the
data measured under zero-field-cooled (ZFC) and that

⾃自旋-1仍很quantum,仍可以stabilize量⼦子态。
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Motivated by recent experiments on material Ba3NiSb2O9, we propose two novel spin liquid
phases (A and B) for spin-1 systems on a triangular lattice. At the mean field level, both spin
liquid phases have gapless fermionic spinon excitations with quadratic band touching, thus in both
phases the spin susceptibility and γ = Cv/T saturate to a constant at zero temperature, which
are consistent with the experimental results on Ba3NiSb2O9. On the lattice scale, these spin liquid
phases have Sp(4) ∼ SO(5) gauge fluctuation; while in the long wavelength limit this Sp(4) gauge
symmetry is broken down to U(1)×Z2 in type A spin liquid phase, and broken down to Z4 in type
B phase. We also demonstrate that the A phase is the parent state of the ferro-quadrupole state,
nematic state, and the noncollinear spin density wave state.

PACS numbers:

A quantum spin liquid (QSL) is a ground state of an in-
sulating magnet with vanishing static local moments and
exotic emergent excitations.[1] Within spin wave theory
for the simplest Heisenberg Hamiltonians, quantum fluc-
tuations rapidly decrease with increasing spin quantum
number S, so it is often believed that QSLs may occur
only in the extreme case of S =1/2 spins. Indeed, the
most promising empirical QSL materials are comprised
of spin-1/2 moments[2–7]. However, when the Hamilto-
nian deviates from the Heisenberg form, quantum effects
can be enhanced also for higher spin, leading to ground
states beyond the usual magnetically ordered ones. The-
oretically, biquadratic and other higher order exchange
terms have been argued to favor multipolar ordered and
QSL states in particular materials, such as the triangu-
lar lattice spin-1 magnet NiGa2S4 [8–12] and certain or-
dered double perovskites[13]. Quite unexpectedly, recent
experiments have evidenced QSL behavior in the spin-1
magnet Ba3NiSb2O9, with spins residing on triangular
lattices with AB stacking.[14] Although the Curie-Weiss
temperature of this material is θCW ∼ −75K, no mag-
netic ordering or phase transition was observed down to
a temperature of 0.35K, approximately 200 times lower
than |θCW |. The low temperature thermodynamics of
this material is strikingly similar to that of the geomet-
rically similar spin-1/2 organic triangular lattice QSLs
[5, 15–17]. In particular, the spin susceptibility χ and lin-
ear coefficient of specific heat γ = cv/T in Ba3NiSb2O9

both saturate to constants at low temperature [14].
Most theoretical approaches to QSLs rely on slave par-

ticle methods, and/or wave functions which correspond
to slave particles. While these approaches have been ex-
tensively developed for S =1/2 systems, there has been
little theoretical work on them for the S =1 case. We con-
sider this here. To sharpen the discussion, we assume the
presence of SU(2) spin symmetry, and seek QSL states
in this framework which match the basic phenomenology

so far observed in the low temperature thermodynamics.
One way of studying spin-1 system is by introducing

three flavors of fermionic spinon fα (α = 1−3) as follows
[18, 19]: Ŝa = f †

αS
a
αβfβ, and Sa are three spin-1 matri-

ces. In order to guarantee the equivalence of the spin
Hilbert space and the spinon Hilbert space, one must
impose the gauge constraint

∑

α f
†
i,αfi,α = 1, fixing the

spinon density locally to 1/3-filling. At the mean field
level, the spinon fα forms a Fermi surface whose area is
1/3 of the Brillouin zone. A spinon Fermi surface seems
to be consistent with constant χ and γ observed experi-
mentally. However, beyond the mean field theory, due to
the single occupancy constraint, the spinon fermi surface
is coupled to a dynamical U(1) gauge field. This U(1)
gauge field has a “dressed” over-damped z = 3 dynam-
ics due to its coupling to the Fermi surface, which leads
to a γ = Cv/T ∼ T−1/3 at low temperature [20, 21],
inconsistent with experiment. One solution of this prob-
lem is to introduce pairing of the spinons in the mean
field state. This has its own difficulties: either a gap
is induced and impurities must be invoked to restore the
proper thermodynamics,[22] or spin-rotational symmetry
must be strongly broken.[18]
General Formalism

We start instead by representing the spin-1 operators
in the following way:

Ŝµ
i =

1

2

∑

α,β=↑,↓

∑

a=1,2

f †
α,a,iσ

µ
αβfβ,a,i. (1)

Here σµ are three spin-1/2 Pauli matrices. Each spinon
fα,a has two indices: α =↑, ↓ denotes spin and a = 1, 2
is an “orbital” quantum number. Thus we can consider
not only the usual spin SU(2) rotations in the α − β
space, but also orbital SU(2) transformations in the a−b
space. Matching with the spin Hilbert space requires not
only constraining the total fermion number to half-filling

construct a spin liquid state with quadratic band touching,  
not a model study
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Exotic S = 1 spin liquid state with fermionic excitations on triangular lattice
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Motivated by recent experiments on the material Ba3NiSb2O9 we consider a spin-one quantum
antiferromagnet on a triangular lattice with the Heisenberg bilinear and biquadratic exchange inter-
actions and a single-ion anisotropy. Using a fermionic “triplon” representation for spins, we study
the phase diagram within mean field theory. In addition to a fully gapped spin-liquid ground state,
we find a state where one gapless triplon mode with Fermi surface coexists with d + id topological
pairing of the other triplons. Despite the existence of a Fermi surface, this ground state has fully
gapped bulk spin excitations. Such a state has linear in temperature specific heat and constant in
plane spin susceptibility, with an unusually high Wilson ratio.

PACS numbers: 71.27.+a, 75.10.Jm, 75.10.Kt, 75.30.Kz

Spin liquid (SL) is a long sought exotic state of matter
proposed by Anderson [1], where long range magnetic or-
der is destroyed by quantum fluctuations at zero temper-
ature. A number of materials have been discovered which
are promising candidates for two-dimensional S = 1/2
SL state [2]. More recently, possible SL materials with
S = 1 have been discussed. One example is the insulating
spin-1 quantum magnet on a triangular lattice, NiGa2S4,
reported by Nakatsuji et al [3]. This material motivated
a number of theoretical papers proposing different mi-
croscopic realizations of S = 1 SL [4–7]. Recently high
pressure synthesis of the two-dimensional triangular mag-
net Ba3NiSb2O9 [8] has produced two new phases which
possibly realize two and three-dimensional S = 1 SL. In
particular the 6H-B phase, described as a triangular lat-
tice of Ni2+ ions, shows no magnetic ordering down to
T = 350 mK along with linear in temperature specific
heat (with unusually high coefficient) and constant spin
susceptibility. The metal-like behavior of specific heat
and spin susceptibility observed in the insulating 6H-A
phase suggest the presence of quasiparticle excitations
with a Fermi surface.
Motivated by this newly discovered material, in the

present Letter we propose a new candidate SL ground
state with exotic physical properties. Our model system
consists of quantum S = 1 spins forming a triangular
lattice. For simplicity, we consider only nearest neighbor
interactions. The general form of Hamiltonian can be
written as

H =
∑

⟨ij⟩

[JS⃗i · S⃗j +K(S⃗i · S⃗j)
2] +D

∑

i

(Sz
i )

2, (1)

where we included Heisenberg exchange interaction with
coupling J > 0 and biquadratic exchange with cou-
pling K. In addition we allow easy-plane or easy-axis
type of anisotropy controlled by the parameter D, but
we neglect this anisotropy in the couplings J and K
since it is presumably small for transition metals. The
Hamiltonian (1) has been considered in the literature in
limits when the anisotropy is either zero or dominates

FIG. 1. Schematic representation of the ground state in dif-
ferent limits of the Hamiltonian (1). White arrows represent
average spin; arrows with discs indicate the director of the
nematic order parameter. Details are discussed in the text.

over other couplings, or there are longer range compet-
ing exchange couplings. Fig. 1 summarizes known results
for the ground state (GS) phase diagram in a schematic
way. There are three different phases on the line of zero
anisotropy D = 0 [9–12]: in the range K = −0.4J . . . J
GS is 120◦-degree antiferromagnet (AFM). For larger
negative K system favors collinear ferro-nematic (FN)
order, i.e. nematic order that does not break lattice
translational symmetry. In this state the average spin
vanishes ⟨S⃗⟩ = 0, but full spin rotation symmetry is
broken down to rotations around an axis specified by
the director vector d (see Refs. [10, 11] and discussion
below). For positive K > J the ground state is de-
scribed by aniferro-nematic (AFN) order. In this state
director vectors di on three different sublattices are or-
thogonal to each other (see Fig. 1), thus breaking lattice
translation symmetry. In the extreme case of easy-plane
anisotropy (D ≫ J, |K|), the GS is a trivial product
of states of |Sz = 0⟩ on all sites, corresponding to the
trivial single-site FN order. For large but negative D,
implying extreme easy axis anisotropy, only two states
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type of anisotropy controlled by the parameter D, but
we neglect this anisotropy in the couplings J and K
since it is presumably small for transition metals. The
Hamiltonian (1) has been considered in the literature in
limits when the anisotropy is either zero or dominates

FIG. 1. Schematic representation of the ground state in dif-
ferent limits of the Hamiltonian (1). White arrows represent
average spin; arrows with discs indicate the director of the
nematic order parameter. Details are discussed in the text.

over other couplings, or there are longer range compet-
ing exchange couplings. Fig. 1 summarizes known results
for the ground state (GS) phase diagram in a schematic
way. There are three different phases on the line of zero
anisotropy D = 0 [9–12]: in the range K = −0.4J . . . J
GS is 120◦-degree antiferromagnet (AFM). For larger
negative K system favors collinear ferro-nematic (FN)
order, i.e. nematic order that does not break lattice
translational symmetry. In this state the average spin
vanishes ⟨S⃗⟩ = 0, but full spin rotation symmetry is
broken down to rotations around an axis specified by
the director vector d (see Refs. [10, 11] and discussion
below). For positive K > J the ground state is de-
scribed by aniferro-nematic (AFN) order. In this state
director vectors di on three different sublattices are or-
thogonal to each other (see Fig. 1), thus breaking lattice
translation symmetry. In the extreme case of easy-plane
anisotropy (D ≫ J, |K|), the GS is a trivial product
of states of |Sz = 0⟩ on all sites, corresponding to the
trivial single-site FN order. For large but negative D,
implying extreme easy axis anisotropy, only two states
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FIG. 2. The phase boundary between SL GS’s with p+ip and
d + id pairing. (a) The spin susceptibility χ̃xx in the d + id
phase as a function of D/J for K/J = 0.55. The susceptibility
is normalized by the average density of states, ν̄ = (νx+νz)/2,
where νx is calculated without the gap. (b) Gapped (dashed
red line) and ungapped (blue line) Fermi surfaces of x, y, and
z-fermions for K/J = 0.55, D/J = 0.8.

modes at the boundaries. The physics of these modes
will be discussed elsewhere.
The combination of gapless excitations with topolog-

ical pairing gives rise to a number of unusual physical
properties, that may explain the results of the recent ex-
periment [8]. Due to ungapped fz excitations the spe-
cific heat depends linearly on temperature near T = 0,
C = π2k2BνzT/3, where νz is the density of states of
fiz at the Fermi surface. Due to Higgs mechanism the
gauge field is massive and does not modify the linear in
T behavior of the specific heat. The spin susceptibility
exhibits more exotic behavior: due to the pairing of x
and y-fermions the zz-component χzz = 0. On the other
hand, χxx is finite and depends on the anisotropy D.
For D smaller than the gap, χ̃xx = χxx/(µBg)2 ≈ νz,
and approaches a factor two larger value χ̃xx ≈ 2νz,
when D is much larger than the gap. This difference
by factor 2 is approximate, valid in the limit of con-
stant gap and density of states. The behavior of χ̃xx

is shown in Fig. 2 (a). We calculate Wilson ratio de-
fined as RW = (4π2k2B)/(3g

2µ2
B)(χ̄T )/C, and obtain

RW = 8/3 ≈ 2.66 for the case of small anisotropy, and
RW → 16/3 ≈ 5.33 for large anisotropy. Note that we
take the average susceptibility χ̄ = 2/3χxx to account for
the polycrystalline nature of the sample. The latter value
gives surprisingly good agreement with the Wilson ratio
observed experimentally, RW ≈ 5.63. We also calculated
the imaginary part of the spin susceptibility. Since two
out of three fermions are gapped, Imχαα(ω,q) vanishes
for temperatures and frequencies smaller than the gap
for all α. This implies the NMR relaxation 1/(T1T ) is
exponentially small for temperatures below the pairing

scale. These results tell us that the Fermi surface as-
sociated with fz [see Fig. 2 (b)] should be viewed very
differently than the spinon Fermi surface in the S = 1/2
SL which carries spin-1/2 quantum numbers and leads
to gapless spin-1 excitations. In our case Sz = 1 exci-
tations are gapped even though the static spin suscep-
tibility χxx,χyy ̸= 0 and the specific heat has linear T
dependence.

Finally, we discuss experiments that could confirm the
proposed ground state. Measurement of the spin suscep-
tibility for single crystal or oriented powder samples is
of great interest in order to test our prediction of strong
anisotropy. We also predict an exponentially activated
behavior for 1/(T1T ) which may be surprising in view of
the linear T behavior of the specific heat.

We thank Luis Balicas for bringing Ref. [8] to our at-
tention. We acknowledge useful discussions with Samuel
Bieri. T.S. is supported by grant NSF-DMR 6922955.
P.A.L. is supported by NSF-DMR 1104498.
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Frustrated quantum critical theory of putative spin-liquid phenomenology in 6H-B-Ba3NiSb2O9

G. Chen, M. Hermele, and L. Radzihovsky
Department of Physics, University of Colorado, Boulder, CO 80309, USA

(Dated: November 26, 2018)

A recently discovered material, 6H-B-Ba3NiSb2O9 was found to display unusual low-temperature phe-
nomenology, interpreted as a quantum spin liquid with spin S = 1 on a triangular lattice. We study a spin S = 1
exchange model on an AB stacked triangular lattice near its quantum paramagnet-to-spiral transition, driven by
easy-plane single-ion anisotropy. We demonstrate that the frustrated inter- and intra-layer exchanges induce
contour lines of low-energy excitations that lead to a broad crossover regime of linear-temperature dependence
of the specific heat. Based on this and various other predictions, we argue that the observed phenomenology can
be understood in terms of a conventional picture of a proximity to this frustrated critical point.

PACS numbers: 71.70.Ej,71.70.Gm,75.10.-b

Quantum spin liquids (QSLs) are Mott insulators that re-
main magnetically disordered down to zero temperature, and,
as we use term here, are exotic states of matter characterized
by properties such as quantum number fractionalization, topo-
logical order, and gapless excitations in the absence of spon-
taneously broken symmetry. The realization of QSLs in theo-
retical models has been well established[1], and a number of
materials have emerged as promising candidates[2–9]. How-
ever, there is no direct confirmation of QSL in any of these
systems, and alternative explanations now exist for some QSL
candidates[10–14].

Many QSL candidates share a rough phenomenology: they
are electrical insulators, but with thermodynamic properties
similar to those of a metal. In particular, many of these sys-
tems have a constant low-temperature spin susceptibility, and
a linear-temperature dependence of the low-temperature spe-
cific heat. Theoretical attempts to explain this behavior usu-
ally invoke spin- 1

2 fermionic spinons with a constant density
of states (DOS). In this Letter, we propose the first (to our
knowledge) alternative explanation for this phenomenology
that does not invoke substantial quenched disorder.

Recently the compound 6H-B-Ba3NiSb2O9 (6H-B) has
been proposed as a QSL candidate[15]. This system has mag-
netic ions Ni2+ forming triangular layers with spin-1 local
moments. The Curie-Weiss temperature is �75.5K and no
sign of magnetic ordering is detected down to 0.35K, indicat-
ing a strong frustration. The system exhibits the QSL phe-
nomenology described above, with a linear-T specific heat
and constant spin susceptibility at low temperatures[15]. To
account for the experiments, Refs. 16 and 17 proposed QSLs
with fermionic spinons. In contrast to these interesting pro-
posals, in this Letter we argue that the 6H-B data can be un-
derstood without invoking QSL physics. We propose that the
putative QSL behavior arises as a crossover tied to the prox-
imity of a quantum critical point (QCP) between spin spirals
favored by the frustrated exchange, and a quantum paramag-
netic (QP) phase, favored by a single-ion anisotropy (SIA).

More specifically, in a mean-field treatment we find the
dispersion of spin excitations has the schematic form ✏k =p

f1(k)f2(k). While generically, including at the QCP, there
is no special relationship between the functions f1 and f2, in

a broad parameter regime near the QCP f1 and f2 are approx-
imately proportional. This leads to an enhanced DOS, and,
due to the presence of a degenerate contour of low-energy ex-
citations, a linear intermediate-temperature specific heat. This
behavior follows from the form of the dispersion, and is ex-
pected to be robust beyond mean-field theory (MFT). The
microscopic ingredients for this behavior are SIA combined
with comparable Ising and transverse antiferromagnetic ex-
change. Therefore, we expect that such a deviation from a
generic dispersion, accompanied by anomalous intermediate-
temperature thermodynamics, should be common in S > 1/2

antiferromagnets where the crystal structure admits a SIA.
More broadly, there are certainly many mechanisms by which
generic behavior may be pushed down to very low tempera-
tures, and the resulting regimes of anomalous intermediate-
temperature behavior may be important in various situations,
perhaps even in other QSL candidates.

In 6H-B, the Ni triangular layers have an A-B stacking with
the lattice sites on one layer projecting to the centers of the tri-
angle plaquettes on the two neighboring layers (Fig. 1). Our
minimal model includes the interlayer and intralayer spin ex-
change and a SIA. Treating the two neighboring triangular
layers as the two sublattices of a honeycomb lattice, we view
the system as a multilayer honeycomb lattice (Fig. 1). There-
fore, when the exchange is dominant and frustrated, the clas-
sical ground state is highly degenerate. Quantum fluctuations
lift the degeneracy and favor coplanar spiral orders. A strong
easy-plane SIA favors a QP state, which is separated from the
ordered state by a QCP. We propose that 6H-B is close to this
QCP, and may lie either on the QP or magnetically ordered
side. The constant spin susceptibility arises from the explicit
breaking of spin rotational symmetry by the SIA, and the pow-
der nature of the samples. More notably, we interpret the ob-
served broad linear-T specific heat in terms of the dispersion
for spin excitations, as discussed above.

Model—Although the interlayer exchange path goes
through one more oxygen than the intralayer coupling, the
multiplicity of the former path is larger than the latter. More-
over, in a structurally similar material 6H-A-Ba3NiSb2O9

with long-range magnetic order, the magnetic specific heat
at low temperatures is observed to behave as C
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where S =
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k(4DI + 2Jk)
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ij
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⇤
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with �

⇤
i

⌘ e

i�i . Jk is the 2 ⇥ 2 exchange cou-
pling matrix in momentum space, µ, ⌫ are the sublattice in-
dices, and I is a 2⇥ 2 identity matrix. The constraint |�

i

| = 1

is enforced by the Lagrange multiplier �

i

. We proceed by
a saddle-point approximation. Assuming i�

i

= ��(T ) at
the saddle point, we integrate out the � field and obtain the
saddle-point equation (SPE) for �(T ) in paramagnetic phase,

X

i=±

Z

k2BZ

d

3k

uBZ

2D + s

i,k

✏

i,k
coth(

�✏

i,k

2

) = 2, (8)

where uBZ =

16⇡

3
p

3
is the Brillouin zone (BZ) volume, s±,k ⌘

J2
P

{b} cos(k·b)±2|J1 cos(

kz
2 )|

q
3 +

P
{b} cos(k · b) are

the eigenvalues of Jk, and ✏±,k are the two spin excitations,

✏±,k =

q
(4D + 2s±,k)(�(T ) + s±,k)

=

r
2

⇥
(s±,k + D +

�(T )

2

)

2 � (D � �(T )

2

)

2
⇤
. (9)

When the left-hand side of the SPE is less than 2 for any
�(T ), the rotor is condensed which signals magnetic order-
ing. Therefore, besides the transition temperature from the
high-temperature paramagnetic phase to the low-temperature
spin spirals, we also obtain the critical D

c

that separates spin
spirals from QP phase and the zero-temperature phase dia-
gram(Fig. 2). As expected, D

c

obtained here is smaller than
the one determined previously from the Weiss-MFT. In partic-
ular, D

c

/J is minimal at J1 = J2 corresponding to the largest
frustration at this point. Right at the QCP and zero tempera-
ture, �(0) ⌘ �0 = 3J2 + J

2
1/J2 and the low-energy mode

✏�,k develops gapless excitations. As shown in Fig. 3, the
momenta of the gapless excitations form contour lines that are
identical to the ones of degenerate classical ground state spiral
wavevectors. Moreover, as J1/J2 increases from 0, the con-
tour lines around the BZ corners gradually expand and meet
at M when J1 = J2.

Near the QCP with T ⌧ J—�(T ) increases with T and
we define �(T ) ⌘ �0 + �1(T ). The excitation ✏±(k)

picks up a self-energy via the T -dependence of �(T ). By
numerically solving the SPE, we find that, near the QCP
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FIG. 3. (Color online) The evolution of the low-energy excitations
in k

x

-k
y

plane with k
z

= 0 at the QCP. The parameters used in the
figures are (a) J1 = 1.5J2, Dc

= 1.36J , (b) J1 = J2, Dc

= 1.23J ,
(c) J1 = 0.8J2, Dc

= 1.28J , (d) J1 = 0, D
c

= 2.01J . The low-
energy gapless contours are marked with bold black lines in (a-c),
while in (d) the low-energy gapless points are marked with black
dots. Lattice constants are set to 1. (e) is the BZ of a honeycomb
lattice. For J1 > J2, the contour line is centered in the middle of BZ.
For J1 < J2, the contour lines are centered around and eventually
shrink to the corners of BZ in the limit J1 ! 0. The “3” in (b)
correspond to M in (e).

�1(T ) / T

2 for T ⌧ J . This is also supported by an an-
alytical argument (Supplemental Material[19]), and holds in
the quasi-2D limit J1 ⌧ J2. This immediately leads to the
internal energy E / T

3 and hence C

v

/ T

2, for T ⌧ ⌦

with ⌦ an energy cutoff. This low-temperature T

2-C
v

regime
is confirmed numerically in Fig. 4(a).
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FIG. 4. (Color online) The C
v

-T plots in the paramagnetic phase.
In (a), from top to bottom, J1 = J2, 0.7J2, 1.5J2, 1.8J2, 0.3J2, 0
with D ⇡ D

c

and D = 1.24J, 1.31J, 1.36J, 1.47J, 1.58J, 2.01J ,
respectively. In (b), J1 = 0.5J2, D = 1.08J, 1.17J, 1.23J,
1.32J, 1.41J, 1.48J, 1.55J from top to bottom. For D = 1.08J,
1.17J, 1.23J, 1.32J , T

c

= 0.10J, 0.07J, 0.064J, 0.04J , respec-
tively. For J1 = 0.5J2, D

c

= 1.41J . The dashed lines are the
linear fits for a range of data points. Energy is in units of J .

In Fig. 4(a), we also find that, as J1/J2 moves to the point
J1 = J2 from either side, the temperature range of the T

2-C
v

regime diminishes. We attribute this to the observation that the
zero-temperature DOS at the QCP increases with energy, then
saturates to a roughly constant value. This saturation energy

2

A

B

J1J2

B
J2

J1

A

FIG. 1. (Color online) Two adjacent triangular layers of 6H-B (left)
can be viewed as a single-layer honeycomb lattice (right). J1 (J2)
is the interlayer (intralayer) exchange[19]. J1 is also the exchange
between adjacent honeycomb layers.

which indicates a non-negligible interlayer coupling. That
may thus be important in understanding the properties of 6H-
B, but is not required for our theory. The resulting exchange
is given on the triangular multilayers by the Hamiltonian,

Hex = J1

X

hiji2AB

S
i

· S
j

+ J2

X

hiji2AA and BB

S
i

· S
j

. (1)

The first sum is for interlayer exchange between nearest-
neighbor (NN) sites on neighboring A and B layers, and
the second sum is for intralayer exchange between NN sites
within the same layer. As illustrated in Fig. 1, the interlayer
(intralayer) exchange on a triangular bilayer can be viewed
as the nearest-neighbor (next-nearest-neighbor) exchange on
a single honeycomb layer. In contrast to Ref. 16, we do
not include the biquadratic exchange, which we expect to be
strongly subdominant to Hex.

The space-group symmetry P63mc of 6H-B restricts the
SIA to be Hani = D

P
i

(S

z

i

)

2 with z-axis normal to the tri-
angular layers. Since an easy-axis anisotropy is more likely
to favor magnetic order, so we expect easy-plane anisotropy
(D > 0) for 6H-B, where such order is not observed.

Our model thus contains two competing terms, exchange
and SIA, H = Hex + Hani. Implementing high-T series
expansion, we extract the Curie-Weiss temperature, finding
that ⇥

z

CW = �D/3 � 4J and ⇥

?
CW = D/6 � 4J (where

J ⌘ J1 + J2) for field applied along and perpendicular to the
z axis, respectively. With a powder sample in experiment[15],
a powder average gives ⇥

av
CW = �4J that is independent of D.

Furthermore, with Weiss-MFT we demonstrate that saturation
temperature of spin susceptibility (observed to be ⇠ 25K[15])
is set by D, that is thus comparable to J .

For the Hamiltonian H, when the SIA dominates with
D � J , the ground state is a uniform QP state with |Sz

= 0i
at each site. In the opposite limit of dominant exchange, we
expect the ground state to be magnetically ordered. Luttinger-
Tisza method[20] gives the classical ground state spin con-
figurations with the ordering wavevector q

z

= 0 and spins
lying in the xy plane. When J1 > 3J2, the classical ground
state is a usual Néel state. When J1 < 3J2, the classical
ground state is degenerate with degenerate spiral wavevectors
q? ⌘ (q

x

, q

y

) satisfying
P

{b} cos(q? · b) = (

J1
J2

)

2 � 3,
where {b} are 6 next-nearest-neighbor lattice vectors of the
honeycomb lattice. The degenerate wavevectors form contour

curves in momentum space. Moreover, with vanishing J1, this
spiral reduces to the familiar 120o state of decoupled triangu-
lar layers. Quantum fluctuations lift the degeneracy of these
classical spin spirals, selecting states characterized by a dis-
crete set of q’s around which the quantum zero-point energy
is minimized. The spiral ground states favored by the quan-
tum fluctuations do not vary upon introducing the SIA. The
optimal spiral wavevectors are given by[18]

q? =

⇣
0,

2p
3

cos

�1
�
(

J1

2J2
)

2 � 5

4

�⌘
, for 1 <

J1

J2
< 3 (2)

q? =

�
2 cos

�1
(

J1

2J2
+

1

2

),

2⇡p
3

�
, for

J1

J2
< 1, (3)

and their symmetry equivalents.
Starting from the magnetically ordered phase, the existence

and properties of the phase transition can be analyzed within a
Weiss-MFT. We decouple the exchange into an effective Zee-
man field which is then self-consistently determined for each
sublattice. We parameterize the spin order as,

SA(r) = M [cos(q · r)x̂ + sin(q · r)ŷ], (4)
SB(r) = M [cos(q · r + ✓)x̂ + sin(q · r + ✓)ŷ], (5)

where ✓ is the relative phase between two sublattices and
depends on J1

J2
, and M is the order parameter to be deter-

mined. This parameterization describes both the Néel state
for J1 > 3J2 and the spin spirals for J1 < 3J2, with the 120o

state as the limiting case of the decoupled triangular layers. At
zero temperature MFT yields that in the vicinity of the QCP
the order parameter is M =

p
2(1 � D

Dc
)

1
2 with the critical

anisotropy parameter D

c

= 12(J1 � J2) for the Néel state
when J1 > 3J2, D

c

= 6J2 for the 120o state at vanishing J1,
and D

c

= 6J2 +

2J

2
1

J2
for the spin spirals when J1 < 3J2. We

expect that as usual Weiss-MFT overestimates D

c

(Fig. 2).
Within Weiss-MFT, in the QP phase, the zero-temperature

spin susceptibility �

z

= 0 (fields along z-axis). For fields in
xy plane, the spin susceptibility saturates to a constant �

?
0 =

2µ0(gµB)2

D+12J

. The powder average gives the zero-temperature
susceptibility �

av
0 = 2�

?
0 /3.

Rotor MFT—It is convenient to model this easy-plane sys-
tem with rotor variables, by introducing an integer-valued
field n

i

and 2⇡-periodic phase variable �

i

, which satisfy
[�

i

, n

j

] = i�

ij

. With the mapping (Sz

i

! n

i

, S

+
i

! p
2e

i�i ),
the rotor Hamiltonian reads

Hrotor =

X

ij

J

ij

[cos(�

i

� �

j

) + n

i

n

j

/2] +

X

i

Dn

2
i

, (6)

where J

ij

takes J1 (J2) for NN interlayer (intralayer) bonds.
Although n

i

only takes the values of ±1, 0 in the spin model,
due to the substantial anisotropy D, we expect that relaxing
this restriction is unlikely to have significant effects.

Using the coherent-state path integral, we integrate out the
field n

i

and obtain the partition function,

Z =

Z
D�D� e

�S�i

P
i

R
d⌧�i(|�i|2�1)

, (7)
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We report the discovery of a spin one diamond lattice in NiRh
2

O
4

. This spinel undergoes a cubic
to tetragonal phase transition at T = 440 K that leaves all nearest neighbor interactions equivalent.
In the tetragonal phase, magnetization measurements show a Ni2+ e↵ective moment of p

e↵

= 3.3(1)
and dominant antiferromagnetic interactions with ⇥

CW

= -11.3(7) K. No phase transition to a long-
range magnetically ordered state is observed by specific heat measurements down to T = 0.1 K.
Inelastic neutron scattering measurements on sub-stoichiometric NiRh

2

O
4

reveal possible valence-
bond behavior and show no visible signs of magnetic ordering. NiRh

2

O
4

provides a platform on
which to explore the previously unknown and potentially rich physics of spin one interacting on
the diamond lattice, including the realization of theoretically predicted quantum spin liquid and
topological paramagnet states.

The recognition that there exist multiple classes of in-
sulators not adiabatically connected to each other has
resulted in numerous discoveries. These include 2D and
3D topological insulators [1–4], Dirac and Weyl semimet-
als [5–8], candidate hosts for Majorana fermions [9], and
candidate topological superconductors [10–12]. These ex-
perimental discoveries have, in turn, spurred significant
theoretical e↵orts to apply the tools of topological classi-
fication to other areas, such as in systems where electron
correlations are strong, including topological magnons
[13, 14] and topological paramagnets [15].

In correlated magnetic systems, competing interac-
tions between magnetic moments can lead to geometric
magnetic frustration, due to the inability of the system
to satisfy all pairwise interactions due to the geometry
of the lattice. Since frustration prevents the emergence
of a single low energy ground state, it enables a variety
of exotic states of matter, such as valence bond solids,
spin liquids, and chiral-spin and spin-ice materials [16–
23]. Quantum magnets host one of the earliest realiza-
tions of topological matter: the Haldane chain compris-
ing of antiferromagnetically interacting spin one ions in
one dimension [24], so it is natural to ask how the physics
of Haldane chains evolves in the presence of competing
interactions between magnetic moments.

Recent work has suggested that a frustrated diamond
lattice of S = 1 ions may result in a structure contain-
ing fluctuating and interconnected Haldane-like chains,
whose excitation spectrum is gapped but possesses topo-
logically non-trivial edge states [15, 16]. Such an arrange-
ment may give rise to a topological state not electronic in
nature, but rather magnetic: a topological paramagnet.
Other work suggests that such a quantum magnet might
instead host a quantum paramagnetic state [25, 26].

⇤ mcqueen@jhu.edu

FIG. 1. (a) The structure of a cubic AB
2

X
4

spinel, consisting
of a corner-sharing tetrahedral network of B-ions and a bipar-
tite diamond lattice of A-ions. The diamond lattice is a 3D
version of the honeycomb network (one hexagon highlighted).
(b) NiRh

2

O
4

is a realization of S = 1 on the diamond lattice,
with non-magnetic B-ions (Rh3+, low-spin d6). Below T =
440 K, NiRh

2

O
4

is tetragonal, preserving equivalent NN in-
teractions, but with two distinct NNN interactions. Possible
superexchange pathways are shown.

The diamond lattice can be found in the AB2X4 spinel
structure type, best known for its frustrated pyrochlore
lattice of B-site ions, as shown in Fig. 1a. The A-site
diamond lattice is bipartite, composed of two interlacing
face-centered-cubic (fcc) sublattices, and can be viewed
as the three-dimensional analogue of a honeycomb lat-
tice. Within the diamond lattice, there are four near-
est neighbor NN interactions between adjacent magnetic
ions on separate fcc sublattices, and twelve next nearest
neighbor NNN interactions between adjacent magnetic
ions within each fcc sublattice. As with the honeycomb
lattice, a Néel ground state is expected in the presence
of solely NN Heisenberg interactions [27]. However, the
Néel state is destabilized in the presence of NNN Heisen-
berg interactions that are at least 1/8th as strong as the
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FIG. 3. Curie-Weiss analysis of magnetization measurements
done on tetragonal NiRh

2

O
4

and Ni
0.96

(Rh
1.90

Ni
0.10

)O
4

. The
extracted e↵ective moment for NiRh

2

O
4

per Ni2+ ion is
greater than the spin only value of 2.83, unlike that for
Ni

0.96

(Rh
1.90

Ni
0.10

)O
4

which is e↵ectively spin only. A Weiss
temperature of �11.3(7) K implies net antiferromagnetic in-
teractions in NiRh

2

O
4

, and 24.3 K for Ni
0.96

(Rh
1.90

Ni
0.10

)O
4

implies ferromagnetic interactions. The inset shows the mag-
netization of NiRh

2

O
4

, which shows no di↵erence in the zero
field cooled (ZFC) and field cooled (FC) measurements.

culating the integral of the phonon-subtracted C/T, as
shown in Fig. 4b. The entropy crosses �S = Rln(3) at
T = 90 K, and plateaus near�S = Rln(6) at T = 250 K.
This analysis is robust, with the total integrated entropy
always remaining between Rln(5) and Rln(6) indepen-
dent of the scaling method for the diamagnetic ZnRh2O4

analog. This exceeds the expected spin only entropy of
Rln(3). On the other hand, the magnetic entropy of
Ni0.96(Rh1.90Ni0.10)O4 does not reach Rln(6) and instead
plateaus near Rln(3).

The entropy is not recovered uniformly, however, for
either compound. For stoichiometric NiRh2O4, there
are three ranges: a low temperature hump that has a
maxima at T = 1.77 K, a higher temperature hump at
T = 33.7 K, and a continuum from 120  T  300 K.
The hump at T = 1.77 K recovers an entropy of �S =
0.051R, equivalent to ⇠ 1% of free S = 1/2 spins. This
is too small to arise from a bulk phase transition and
instead likely originates from vacancies, defect sites, or
surface states. This could also originate from a nuclear
contribution, such as that seen in other Ni compounds
at similar temperature ranges [52]. This is further sup-
ported by a field dependence at a level commensurate
with isolated spins (not shown). The hump at T = 33.7
K, present in both NiRh2O4 and Ni0.96(Rh1.90Ni0.10)O4,
can be semi-quantitatively modeled as a two-level Schot-
tky anomaly, given by:
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FIG. 4. (a) Specific heat over temperature for NiRh
2

O
4

(cir-
cles) and Ni

0.96

(Rh
1.90

Ni
0.10

)O
4

( from T = 0.1 to 300 K. The
phonon contribution (hexagons) is estimated from ZnRh

2

O
4

and removed to leave the magnetic contribution for both (di-
amonds and squares, respectively). No sharp anomalies in-
dicative of a phase transition are observed down to T = 0.1
K. Inset shows the absence of the low temperature hump at T
= 1.77 K in Ni

0.96

(Rh
1.90

Ni
0.10

)O
4

. (b) Integration of C/T
yields the entropy of the magnetic component, which far ex-
ceeds the expected Rln(3) spin only value for NiRh

2

O
4

, but
not for Ni

0.96

(Rh
1.90

Ni
0.10

)O
4

.

C
Schottky

T
= OSF ·

⇣
�

T

⌘
2 e

�

T
"
1 + e

�

T

#
2

· T�1 (1)

Which, for NiRh2O4, corresponds to a di↵erence be-
tween two energy levels of � = 116(3) K and an overall
scale factor OSF = 1.87(7), corresponding to an entropy
of �S=1.87(7)Rln(2) = 1.3R. This is ⇠ 75% of the total
excess entropy, leaving ⇠ 22% (0.4R) in the broad con-
tinuum from T = 120 to 300 K. The �S = 1.3R entropy
contained in the T = 33.7 K hump is somewhat larger
than the �S = Rln(2S+1) = Rln(3) = 1.1R spin entropy
expected for spin one in the absence of orbital degrees of
freedom. This is even excluding the excess entropy in the
T = 120�300K range, and indicates a contribution from
either orbital or phonon degrees of freedom (or both).
The inelastic neutron scattering (INS) experiment on

Ni0.96(Rh1.90Ni0.10)O4 was carried out using the Fine-
Resolution Fermi Chopper Spectrometer (SEQUOIA) at
Oak Ridge National Laboratory’s Spallation Neutron
Source. Four grams of powder sample were held in an alu-
minum can and measured at various temperatures from
4 K to 300 K with incident neutron energy E

i

= 80 meV.
The contribution from the empty can was removed dur-
ing data reduction.
The INS intensity I(Q,E) is presented in Fig. 5 as a

5

function of powder-averaged momentum-transfer Q and
energy transfer E, where a strong dispersive mode cen-
tered around E = 11 meV [Fig. 5(a)-(b)] emerges at
low temperature and persists at T = 40 K, above the
spin glass point (⇠ 6 K). The data clearly demonstrates
that the dominant magnetic response is gapped. Cuts
through the T = 4 K magnetic response [Fig. 5 (c)-
(d)] show more detailed momentum and energy depen-
dence of the excitations. Particularly, the constant-Q
cut over 3 meV  E  7 meV indicates very weak in-
tensity peaked around {h, k, l} = {1, 0, 1} and {0, 1, 1},
indicating any incipient magnetic order to be indexed
with a propagation vector k

m

= 0. No magnetic Bragg
peaks can be observed in cuts at the elastic-line, putting
a higher limit on any ordered moment of ⇡ 0.1� 0.2µ

B

.

Despite the lack of long range order, we attempted
at modeling the excitations with a numerical implemen-
tation of linear spin-wave theory with a Néel groud
state (corresponding to k

m

= 0 as aforementioned)
[53, 54]. The closest simulation, with JNN = 2.6 meV,
JNNN1 = �0.3JNN, JNNN2 = 0.12JNN and � = 1.1, is
displayed in Fig. 5 (c)-(d) (See supplementary informa-
tion for details). While roughly matching the bandwidth,
spin-wave theory fails to accurately capture the broad-
ness in both momentum and energy although disorder
e↵ects may provide a possible explanation. More impor-
tantly, it produces multiple bands of spin-wave excita-
tions, which contrasts with the unique dominant branch
found in the measurements.

To better model the short range correlation, we ap-
ply the powder-average equal-time structure factor of
valence bonds Ĩvb(Q) / r20/6 |F (Q)|2 Svb(Q), where
Svb(Q) =

P
i

m2
i

[1� sin(Qd
i

)/(Qd
i

)] /µ2
B [49] with the

sum up to NNN2, r20 = 0.539 ⇥ 10�12 cm, F (Q) is the
magnetic form factor of Ni2+, d

i

are the distances be-
tween corresponding neighbors, and m2

i

is the squared
magnetic moment per formula unit. The fits, shown in
Fig. 5 (c) (orange solid curve), produces a good match
with the data with |m2/m1| = 0.42 and |m3/m1| = 0.53.
Overall, the inelastic neutron scattering suggests the pos-
sible presence of quantum-e↵ects through an excitation
spectrum resembling that of gapped valence-bond sys-
tems.

A plausible energy level analysis for Ni2+ tetrahedra
in NiRh2O4 that is consistent with our observations is
shown in Fig. 6. The tetrahedral crystal field of Ni2+

results in a splitting of the five orbitals into e and t2 sets.
Assuming no e � t2 electron excitations, placing eight
electrons in the single particle levels gives rise to a series
of multi-electron states, the lowest of which is a spin and
orbital triplet 3T1 [55]. Spin-orbit coupling (SOC) and
the JT distortion independently participate in splitting
this 3T1 state. SOC splits 3T1 into four separate multi-
electron states, based on their double group symmetries:
lower energy �1 and �4, high energy �3 and doubly de-
generate �5 [56]. The JT distortion splits 3T1 into two
separate multi-electron states, 3E and 3A2. 3E is a three-
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FIG. 5. Inelastic neutron scattering data on
Ni

0.96

(Rh
1.90

Ni
0.10

)O
4

. (a)-(b) Scattering spectra I(E,Q)
at T = 4, 40 K, respectively. (c)-(d) Constant-Q (-E) cuts
on various E (Q) ranges of the 4 K data. Dashed lines are
linear spin-wave calculations. The solid, orange (color online)
curve in (c) is the valence bond model and the solid, green
one is a fit with the Lorentzian peak shape.

fold degenerate manifold composed of �5 and �1. 3A2 is
six-fold degenerate and made up of �1, �2, �3, �4, and
�5. However, since the SOC and the JT distortion are on
comparable energy scales, competition between these two
interactions results in a mixing of multi-electron states.
Using their double group symmetries, and given the dif-
ferences in energy between the two sets of SOC energy
levels, one arrives at a ground state manifold with a total
of six states that account for the observed �S = Rln(6)
in the magnetic specific heat in NiRh2O4, as shown high-
lighted in Fig. 6b.

It is worth noting that the single-ion ground state pre-
dicted by a mix of spin orbit coupling and a Jahn-Teller
distortion is a non-magnetic singlet ground state. The
fairly small, antiferromagnetic ⇥CW = �11.3(7) K and
the inelastic neutron scattering data point towards the
possibility of such a ground state. The 11 meV band-
width observed in our neutron scattering experiment
seems to suggest that any valence bond behavior (such
as any behavior tending towards spin liquid physics), or
topologically non-trivial magnetic behavior (such as Hal-
dane physics) is only apparent in the excitation spec-
trum. This is similar to ↵-RuCl3, a geometrically frus-
trated, honeycomb lattice material that shows spin liquid
behavior in its high-energy excitations but not in the na-
ture of its low temperature ground state.[57–59]. Based
on our putative analysis, the �5 triplet single-ion excited
state is a candidate for any exotic correlated behavior, as
opposed to the single ion singlet �1 ground state.

The sensitivity of the physics of NiRh2O4 to the sto-
ichiometry is also an indicator of the presence of un-
conventional strongly correlated behavior, as is seen in

T. McQueen
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Quantum Paramagnet and Frustrated Quantum Criticality
in a Spin-One Diamond Lattice Antiferromagnet
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Motivated by the proposal of topological quantum paramagnet in the diamond lattice antiferro-
magnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and properties
of the diamond material with the spin-one local moments. Our model includes the first and second
neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that is allowed by the
spin-one nature of the local moment and the tetragonal symmetry of the system. We point out that
there exists a quantum phase transition from a trivial quantum paramagnet when the single-ion spin
anisotropy is dominant to the magnetic ordered states when the exchange is dominant. Due to the
frustrated spin interaction, the magnetic excitation in the quantum paramagnetic state supports
extensively degenerate band minima in the spectra. As the system approaches the transition, exten-
sively degenerate bosonic modes become critical at the criticality, giving rise to unusual magnetic
properties. Our phase diagram and experimental predictions for di↵erent phases provide a guildline
for the identification of the ground state for NiRh

2

O
4

. Although our results are fundamentally dif-
ferent from the proposal of topological quantum paramagnet, it represents interesting possibilities
for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community1–25.
The well-known topological insulator, that was proposed
and discovered earlier, is a non-interacting fermion SPT
protected by time reversal symmetry26,27. In contrast,
the SPTs in bosonic systems must be stabilized by the in-
teractions11. The spin degrees of freedom with exchange
interactions seem to be a natural candidate for realizing
the boson SPTs10. In fact, the Haldane spin-one chain is
a 1D boson SPT and is protected by the SO(3) spin ro-
tational symmetry1,2,28. The realization of boson SPTs
in high dimensions is still missing. It was suggested that,
the spin-one diamond lattice antiferromagnet with frus-
trated spin interactions may host a topological quantum
paramagnet that is a spin analogue of topological insula-
tor and protected by time reversal symmetry29. Quite re-
cently, a diamond lattice antiferromagnet NiRh

2

O
4

with
Ni2+ spin-one local moments was proposed to fit into the
early suggestion30.

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K30,32,33. As we show in Fig. 1, the magnetic
ion Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Rapid Commu-
nication, we propose a minimal spin model for spin-one
diamond lattice with tetragonal distortion and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As
the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-

FIG. 1. (Color online.) The diamond lattice with the J
1

and J
2

interactions. Due to the tetragonal symmetry of the
lattice, the a and b directions are not equivalent to the c
direction. The Ni2+ ion is in a tetrahedral environment, so
the e

g

orbitals are lower in energy than the t
2g

levels. The
tetragonal distortion further splits the two e

g

orbitals and
the three t

2g

orbitals. But the degeneracy of the xz and yz
orbitals remains intact under the tetragonal distortion. To
avoid the orbital degree of freedom, we here place the xz and
yz orbitals above the xy orbitals31.
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sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—We here propose the fol-
lowing microscopic spin model that describes the inter-
action between the spin-1 local moments with the tetrag-
onal symmetry,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+Dz

X

r

(Sz
r)

2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds33, in this minimal model we assume all the
bonds are equivalent. Since the diamond lattice is a bi-
partite lattice, the first neighbor J

1

interaction alone is
unfrustrated, and would favor a simple Néel state if J

1

is
antiferromagnetic. The second neighbor interaction J

2

is
an interaction within each FCC sublattice of the diamond
lattice. Due to the large numbers of second neighbor
bonds, the J

2

interaction would cause a spin frustration
even when it is small compared to J

1

. Moreover, an ad-
ditional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions, and is not in-
cluded in the model in Ref. 33. The spin anisotropy is
naturally allowed by the tetragonal lattice symmetry and
is the only term occuring for a spin-one local moment like
the Ni2+ ion. Previous classical treatment of the J

1

-J
2

spin model on a diamond lattice and the analysis of ther-
mal fluctuation have led to the interesting discovery of
the spiral spin liquid34–37. A quantum treatment of J

1

-
J
2

model used an exotic SP(N) parton construction for
the spins38 and again worked in the ordered regime. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-Dz model.
Due to this single-ion spin anisotropy, the magnetic

susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as31

⇥z
CW

= �Dz

3
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (2)

⇥?
CW

= +
Dz

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above
prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.

Quantum paramagnet and phase diagram.—To ob-
tain the full phase diagram of the J

1

-J
2

-Dz model, we

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

model. Because the powder sample Curie-Weiss temperature
⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit of the spin
anisotropy D

z

to J
1

+ 3J
2

in the plot. The transition from
the quantum paramagnet to the ordered regions is continuous
at the mean-field theory. On the left of the (red) dashed line,
the band mininum of the magnetic excition is unique and
appears at � point. On the right side, the band minima form
a degenerate surface in the reciprocal space. Please refer the
main text for details.

start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with Dz > 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive Dz limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �z(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

Dz + 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
netic phase, we substitute the spin operators with the
rotor variables such that39

Sz
r = nr, S±

r =
p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values

2

sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—We here propose the fol-
lowing microscopic spin model that describes the inter-
action between the spin-1 local moments with the tetrag-
onal symmetry,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+Dz

X

r

(Sz
r)

2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds33, in this minimal model we assume all the
bonds are equivalent. Since the diamond lattice is a bi-
partite lattice, the first neighbor J

1

interaction alone is
unfrustrated, and would favor a simple Néel state if J

1

is
antiferromagnetic. The second neighbor interaction J

2

is
an interaction within each FCC sublattice of the diamond
lattice. Due to the large numbers of second neighbor
bonds, the J

2

interaction would cause a spin frustration
even when it is small compared to J

1

. Moreover, an ad-
ditional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions, and is not in-
cluded in the model in Ref. 33. The spin anisotropy is
naturally allowed by the tetragonal lattice symmetry and
is the only term occuring for a spin-one local moment like
the Ni2+ ion. Previous classical treatment of the J

1

-J
2

spin model on a diamond lattice and the analysis of ther-
mal fluctuation have led to the interesting discovery of
the spiral spin liquid34–37. A quantum treatment of J

1

-
J
2

model used an exotic SP(N) parton construction for
the spins38 and again worked in the ordered regime. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-Dz model.
Due to this single-ion spin anisotropy, the magnetic

susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as31

⇥z
CW

= �Dz

3
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (2)

⇥?
CW

= +
Dz

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above
prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.

Quantum paramagnet and phase diagram.—To ob-
tain the full phase diagram of the J

1

-J
2

-Dz model, we

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

model. Because the powder sample Curie-Weiss temperature
⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit of the spin
anisotropy D

z

to J
1

+ 3J
2

in the plot. The transition from
the quantum paramagnet to the ordered regions is continuous
at the mean-field theory. On the left of the (red) dashed line,
the band mininum of the magnetic excition is unique and
appears at � point. On the right side, the band minima form
a degenerate surface in the reciprocal space. Please refer the
main text for details.

start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with Dz > 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive Dz limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �z(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

Dz + 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
netic phase, we substitute the spin operators with the
rotor variables such that39

Sz
r = nr, S±

r =
p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
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Spin-orbital entanglement in d8 Mott insulators: Possible excitonic magnetism
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Motivated by the recent activities on the diamond lattice antiferromagnet NiRh2O4 with Ni2+ 3d8 local
moments, we theoretically explore on general grounds the unique spin and orbital physics for the diamond lattice
antiferromagnet with 3d8 local moments. The superexchange interaction between the local moments usually
favors magnetic orders. Due to the particular electron configuration of the 3d8 ion with a partially filled upper t2g

level and a fully filled lower eg level, the atomic spin-orbit coupling becomes active at the linear order and would
favor a spin-orbital-entangled singlet with quenched local moments in the single-ion limit. Thus, the spin-orbital
entanglement competes with the superexchange and could drive the system to a quantum critical point that
separates the spin-orbital singlet and the magnetic order. We further explore the effects of magnetic field and
uniaxial pressure. The nontrivial response to the magnetic field is intimately tied to the underlying spin-orbital
structure of the local moments. We discuss future experiments such as doping and pressure and point out the
correspondence between different electron configurations.

DOI: 10.1103/PhysRevB.100.045103

I. INTRODUCTION

The spin-orbit coupling (SOC) is a relativistic effect
and plays an important role in our understanding of the
quantum-mechanical properties of quantum materials with
heavy elements. Contrary to this conventional belief that
explains the recent SOC activities in 4d/5d transition-metal
compounds [1], SOC occasionally becomes important in 3d
transition-metal materials, especially in the Mott insulat-
ing systems with orbital degeneracies [2]. It is well known
that, in Mott insulators with pure spin moments, the atomic
SOC enters via the high-order perturbation of the Hubbard
model and generates the single-ion spin anisotropy and the
Dzyaloshinskii-Moriya interaction [2]. Except in certain cir-
cumstances, these extra spin anisotropy and interactions can
often be regarded as small perturbations to the (Heisenberg)
exchange part of the interactions. When the system has an
orbital degeneracy, however, the atomic SOC should be con-
sidered at the first place and would reconstruct local spin
and orbital degrees of freedom. The diamond lattice antifer-
romagnet FeSc2S4 [3–12] with Fe2+ 3d6 local moments and
various vanadates [2,13–15] provide physical realizations of
such physics, where the former has an eg orbital degeneracy,
while the latter has a t2g degeneracy.

In this paper, we study the diamond lattice antiferromagnet
where the Ni2+ 3d8 ions are the magnetic ions. We are partly
motivated by the experiments and the existence of the dia-
mond lattice antiferromagnet NiRh2O4 [16], but we explore
on general grounds the consequence of the atomic SOC of the
Ni2+ ions. The compound NiRh2O4 is merely our motivation,
and we explore the more general possibilities that may occur

*gangchen.physics@gmail.com

in principle. We point out that there exists keen competition
between the atomic SOC at the single-ion level and the
intersite superexchange interaction for a 3d transition-metal
ion such as Ni2+. The spin-orbital singlet would give way
to the magnetically ordered state through a quantum phase
transition when the superexchange interaction dominates over
the atomic SOC. We further show the effect of the external
magnetic field and the uniaxial pressure on the quantum
criticality. The nontrivial structure of the phase diagram such
as the re-entrant transition under the field directly reveals
the underlying spin-orbital structure of the local moments.
Although our motivation originates partly from the diamond
lattice antiferromagnet NiRh2O4, the physics that we reveal
in this paper may be easily extended to other magnets with
similar crystal field schemes and orbital configurations. We
further go beyond the specific case of the 3d8 ions, establish
the correspondence between different electron configurations,
and suggest the applicability to many other materials.

The rest of this paper is organized as follows. In Sec. II,
we discuss the microscopics and propose our model for the
3d8 diamond lattice antiferromagnet. Combining the Weiss
mean-field approach and the flavor-wave approach, we obtain
the phase diagram of this model and discuss the criticality
at the quantum phase transition in Sec. III. We then explore
the effect of the external magnetic field and the uniaxial
pressure in Secs. IV and V, respectively. Finally, in Sec. VI
we summarize our results and discuss the potential relation of
our theoretical results to experiments.

II. THE MICROSCOPICS AND OUR MODEL

We start with the microscopics of the Ni2+ 3d8 ion. In
NiRh2O4, which initiated our motivation, the Ni2+ ion is in
the tetrahedral crystal field environment, and as a result, the
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FEI-YE LI AND GANG CHEN PHYSICAL REVIEW B 100, 045103 (2019)

eg

t2g

CEF

2λ

λ

J = 2

J = 1
J = 0

SOC

Ni2+: 3d8

FIG. 1. The electron configuration of the 3d8 ion in the tetrahe-
dral crystal field environment. When the atomic spin-orbit coupling
(SOC) is introduced, the electron states in the upper t2g levels are
further split into the spin-orbital entangled J states. Here, “CEF”
refers to the crystal electric field splitting.

t2g levels are higher in energy than the eg levels. As we show
in Fig. 1 for the 3d8 electron configuration, the lower eg levels
are completely filled, and the t2g levels are partially filled
with four electrons. For our purposes here, we first ignore
the further splitting within the t2g manifold and include the
specific physics in the later part of the paper. Because the
t2g levels are partially filled, the atomic SOC is active at
the linear order. As the fully filled eg manifold can be ne-
glected, the local physics for the 3d8 electron configuration
here is rather analogous to the one for the 4d4/5d4 electron
configurations of the Ru4+ or Ir5+ ions that were discussed
in Refs. [17,18], where Ref. [18] proposed the interesting
possibility of excitonic magnetism. For the t2g manifold in
Fig. 1, the local Hund’s coupling first favors a total spin S = 1
local moment, and the remaining orbital occupation still has
threefold degeneracy. The total orbital angular momentum
remains unquenched and can be treated as an effective orbital
angular moment L with L = 1 in the reduced Hilbert space
of the three orbital occupations. The atomic SOC is then
written as

Hsoc = +λ
∑

i

Li · Si, (1)

where the sign of the SOC is opposite to the case for two
electrons in the t2g manifold. The SOC here acts on the total
spin and total orbital angular momentum of the four electrons
and differs from the SOC at the single-electron level. The
SOC entangles the spin and the orbitals and leads to a total
moment J in the single-ion limit. The single-ion ground state
is a spin-orbital singlet with J = 0, and the excited ones are
J = 1 triplets and J = 2 quintuplets (see Fig. 1).

Besides the atomic SOC, the spin and orbital degrees of
freedom on neighboring sites interact with each other through
the superexchange interaction. Due to the orbital degeneracy,
the exchange interaction should be of the Kugel-Khomskii
form [19]. The superexchange path for both the first neigh-
bor and second neighbor in the diamond lattice of spinel
compounds involves five atoms [4,20]. Thus, the explicit
derivation of the superexchange interaction is complicated and
is not quantitatively reliable. Our purpose here is not to be
quantitatively precise but to capture the generic physics of
the competition between the spin-orbital entanglement and
the tendency to magnetic ordering for the 3d8 diamond lattice
antiferromagnet and the systems alike. Thus, we consider a

simplified superexchange model with only spin interactions.
The exchange model is given as

Hex =
∑

⟨i j⟩
J1 Si · S j +

∑

⟨⟨i j⟩⟩
J2 Si · S j, (2)

where J1 (J2) is the first- (second-) neighbor exchange cou-
pling. This simplified model captures the ordering tendency
but is not supposed to capture the possibility of an (exotic)
quantum spin-orbital liquid or quantum spin liquid with frac-
tionalized excitations that was recently explored with the
functional renormalization group calculation in Ref. [21] for
the spin-1 diamond lattice antiferromagnet with frustrated
spin interactions.

III. PHASE DIAGRAM AND QUANTUM CRITICALITY

Here, we study the full Hamiltonian that contains both
SOC and the exchange interaction,

H = Hsoc + Hex. (3)

Once our full model is written, the physics is almost trans-
parent. In addition to the competition between SOC and ex-
change, the exchange frustration would further complicate our
phase diagram. To establish the phase diagram, one approach
is to start from the (nonmagnetic) spin-orbital singlet phase
and study its magnetic instability to an ordered state by con-
densing the excitonic excitation. The resulting ordered state
was dubbed the “excitonic magnetic state.” This approach
was used by Khaliullin for a more realistic exchange model
on a square lattice [18] with 4d4/5d4 ions such as Ca2RuO4
by truncating the physical Hilbert space to the J = 0 and
J = 1 states, and the excitonic magnetism was introduced
there. The other approach is to start from the ordered state
and trace the fate of the magnetic order parameters as we
increase the strength of the SOC. When the magnetic order
disappears, the system enters the spin-orbital singlet phase.
Both approaches are adopted in this work. Via a Weiss-type
mean-field decoupling, our Hamiltonian becomes

HMFT = Hsoc +
∑

⟨i j⟩
J1 Si · ⟨S j⟩ +

∑

⟨⟨i j⟩⟩
J2 Si · ⟨S j⟩, (4)

where ⟨S j⟩ is taken to be a mean-field order parameter.
To choose a mean-field ansatz for the order parameter, we
start from the limiting case with a vanishing SOC such
that this limit has been well understood. Here, we consider
the antiferromagnetic couplings J1 > 0 and J2 > 0. It was
shown [20,22,23] that, for J2/J1 < 1/8, a Néel state with an
order wave vector q = 0 is obtained; for J2/J1 > 1/8, the
ground state has a spiral configuration, and the degenerate or-
der wave vectors form a spiral surface [20] in the momentum
space and satisfy

cos
qx

2
cos

qy

2
+ cos

qx

2
cos

qz

2
+ cos

qy

2
cos

qz

2
= J2

1

16J2
2

−1.

(5)

When J2/J1 is increased from 1/8, this “spiral surface”
emerges and surrounds q = 0, showing a nearly spherical
geometry. It then touches the boundary of the Brillouin zone
at J2/J1 = 1/4 and develops “holes” on the boundary of
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FIG. 2. The phase diagram of the full model in Eq. (3). This
phase diagram summarizes the competition between the SOC and
the superexchange interaction and captures the frustration of the
exchange part. Refer to the main text for details about the magnetic
orders.

the Brillouin zone, as J2/J1 is further increased. Finally, the
spiral surface shrinks to lines corresponding to the degenerate
ground-state manifold of two decoupled fcc lattices in the
limit J2/J1 → ∞. This degeneracy is lifted when quantum
fluctuation is included, giving certain stabilized spiral or-
ders [21,24,25]. For 1/8 < J2/J1 < 1/4, the selected wave
vectors are along the [111] direction. For 1/4 < J2/J1!1/2,
the [111] direction no longer intersects with the spiral surface,
and the selected wave vectors are around the [111] direction.
This region is labeled by [111∗] in Fig. 2. When J2/J1"1/2,
quantum fluctuation favors the spiral orders with the wave
vectors along the [001] direction.

From the known results, we set up a general mean-field
ansatz as

r j ∈ I, ⟨S j⟩ = MRe[(x̂ − iŷ)eiq·r j ], (6)

r j ∈ II, ⟨S j⟩ = MRe[(x̂ − iŷ)ei(q·r j+φq )], (7)

where I and II refer to the two sublattices of the diamond
lattice, q is the propagating wave vector of the spin spiral, and
φq is the phase shift between the two sublattices [20]. The
order parameter M is determined self-consistently from the
mean-field Hamiltonian HMFT.

Our phase diagram is depicted in Fig. 2. When SOC is
weak, the magnetic ordered phase is separated into the Néel
order region and the spiral order regions (111, 111∗, and
001). A transition from the magnetic ordered phase to the
spin-orbital singlet occurs when increasing the strength of
SOC. This transition is evidenced by the vanishing of M
and is found to be continuous within our mean-field theory.
The critical strength of SOC is 16(J1/3 − J2) for J2/J1 < 1/8
and J2

1 /(3J2) + 16J2/3 for J2/J1 > 1/8. As expected, when
the frustration is large, a smaller critical SOC is needed to
drive the transition. The smallest critical SOC is found at
J2/J1 = 1/4.

To explore the critical properties, we start from the spin-
orbital singlet and study its excitations and instability [18,26].
Removing the highly excited J = 2 quintuplets, we then

rewrite our model using a representation with four flavors of
bosons, si, tix, tiy, tiz, on each site i that are defined as

s†
i |0⟩ ≡ |0, 0⟩i, (8)

t†
ix|0⟩ ≡ i(|1, 1⟩i − |1,−1⟩i )/

√
2, (9)

t†
iy|0⟩ ≡ (|1, 1⟩i + |1,−1⟩i )/

√
2, (10)

t†
iz|0⟩ ≡ −i|1, 0⟩i, (11)

where the states are labeled |J, Jz⟩ and |0⟩ is the vacuum state.
A local Hilbert space constraint,

s†
i si +

∑

α

t†
iαtiα = 1, (12)

is imposed with α = x, y, z. In the spin-orbital singlet phase,
the singlet boson si is condensed, with ⟨si⟩ ≡ s ̸= 0. With the
above reformulation of the spin variables, we obtain a flavor-
wave mean-field Hamiltonian for the triplet excitations,

HfMF =
∑

i j,α

Ji j

3
(t†

iαt jα + t†
iαt†

jα + H.c.) + λ
∑

iα

t†
iαtiα, (13)

where the detailed derivation is given in Appendix A, and the
triplon excitation is found as

ω±(q) = λ
1
2 (λ + 4J±

q /3)
1
2 , (14)

where

J±
q ≡ J2

∑

bi

eiq·bi ± J1

∣∣∣∣∣
∑

ai

eiq·ai

∣∣∣∣∣ (15)

and {ai} ({bi}) refer to the first- (second-) neighbor vectors.
Both ω±(q) are threefold degenerate, and the minimum of
ω−(q) is determined by minimizing J−

q . For J2/J1 < 1/8,
a single minimum is realized at the % point, and for
J2/J1 > 1/8, the minima are extensively degenerate and re-
alized on the “spiral surface.”

The triplon gap is closed at a critical SOC that coincides
with the Weiss mean-field result. For J2/J1 > 1/8, the en-
hanced density of states at low energies at the criticality
implies a specific heat behavior Cv ∝ T at low tempera-
tures [24,27]. This behavior should be modified at the zero-
temperature limit since the accidental continuous degeneracy
in the momentum space would be lifted by fluctuations. On
the other hand, for J2/J1 < 1/8, there is only a single critical
mode at the criticality; hence, one expects a conventional
Cv ∝ T 3 behavior up to a logarithmic correction from fluc-
tuations beyond the mean-field theory.

IV. RESPONSE TO MAGNETIC FIELD

The response to external magnetic field provides an im-
portant and visible characterization of the phase transition
from the spin-orbital singlet to the ordered phase. It is of
experimental interest to understand whether the magnetic
field enhances the magnetic order like the case for dimerized
magnets [28] or suppresses the magnetic order like the case
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Motivated by the interest in topological quantum paramagnets in candidate spin-1 magnets, we
investigate the diamond lattice compound NiRh

2

O
4

using ab initio theory and model Hamiltonian
approaches. Our density functional study, taking into account the unquenched orbital degrees
of freedom, shows stabilization of S=1, L=1 state. We highlight the importance of spin-orbit
coupling, in addition to Coulomb correlations, in driving the insulating gap, and uncover frustrating
large second-neighbor exchange mediated by Ni-Rh covalency. A single-site model Hamiltonian
incorporating the large tetragonal distortion is shown to give rise to a spin-orbit entangled non-
magnetic ground state, largely accounting for the entropy, magnetic susceptibility, and inelastic
neutron scattering results. Incorporating inter-site exchange within a slave-boson theory, we show
that exchange frustration can suppress exciton condensation. We capture the dispersive gapped
magnetic modes, uncover “dark states” invisible to neutrons, and make predictions.

Introduction. — Symmetry protected topological
phases of quantum matter, e.g., two dimensional (2D)
and 3D topological insulators [1, 2], Weyl semimetals
[3], and topological superconductors [2], have been exten-
sively discussed in the context of electronic systems. Fol-
lowing these remarkable discoveries, interacting spins and
bosons have also been theoretically proposed to support
symmetry-protected topological ground states with con-
ventional bulk excitations but unusual gapless or gapped
edge states [4–8]. Recently, there has been an exciting
proposal that certain S=1 spin models on the diamond
lattice may realize a time-reversal symmetry protected
topological quantum paramagnet [9], a stable 3D ana-
logue of the S=1 Haldane chain [10, 11].

This has led to a renewed interest in candidate spinel
materials AB

2

O
4

with A-site spins living on the diamond
lattice. Previous studies of A-site magnetic spinels, such
as MnSc

2

S
4

(S=5/2) and CoAl
2

O
4

(S=3/2), revealed
degenerate spin spirals driven by frustration [12–17]. On
the other hand, FeSc

2

S
4

shows weak Néel order in prox-
imity to a non-magnetic ground state induced by spin-
orbit coupling (SOC) [18–20]. The search for S=1 topo-
logical paramagnets has recently led to an intense inves-
tigation of NiRh

2

O
4

using a variety of tools [21].

NiRh
2

O
4

is an unusual example of spin-1 3d ions on
the tetrahedrally coordinated A site, which is structurally
stabilized by placing 4d Rh3+ ion at the octahedrally co-
ordinated B-site. While NiRh

2

O
4

is cubic at high tem-
perature [21, 22], it transforms into a tetragonal phase
below T ⇠ 380 K. Remarkably, in contrast to expecta-
tions from a Jahn-Teller mechanism which would favor
c/a< 1 and an S=1 ground state with quenched orbital
angular momentum, the tetragonal phase is found to be
elongated with c/a⇡ 1.05. Such a tetragonal distortion,
with c/a> 1, leaves the t

2

states of Ni partially filled,

with orbital degrees of freedom unfrozen, allowing spin-
orbit coupling (SOC) to play an important role. The
mechanism for tetragonal distortion thus relies on SOC-
induced orbital ordering, as previously discussed [23, 24]
in the context of the B-site active spinel ZnV

2

O
4

.

An early theoretical study [25] of NiRh
2

O
4

considered
a model with antiferromagnetic (AFM) first and second-
neighbor Heisenberg exchanges (J

1

and J
2

), applicable to
frustrated spinels, and proposed that the non-magnetic
ground state might arise from large single-ion anisotropy
DS2

z , with D>0 favoring local Sz=0. A pseudospin func-
tional renormalization group study of the J

1

-J
2

model
[26] found that while the S=1 case favors a quantum
spiral spin liquid ground state, the impact of tetragonal
distortion or large D/J

1

>⇠8 is to respectively favor Néel
order or the Sz=0 ground state. Both studies e↵ectively
ignored orbital degrees of freedom. More recently, it was
proposed [27] that strong SOC with a tetrahedral crystal
field could support a J

e↵

=0 state at d8 filling, gener-
alizing the idea of J

e↵

=0 insulators for d4 filling in an
octahedral crystal field [28–30]; however, this might be
overwhelmed by other energy scales (e.g., distortions or
inter-site exchange) given weak SOC for Ni2+. On the
experimental front, the inelastic neutron scattering (INS)
results [21] on NiRh

2

O
4

were analyzed using spin-wave
theory of an AFM state despite the absence of Néel order.

A satisfactory theoretical description of NiRh
2

O
4

is
thus lacking. Here, we combine first-principles density
functional theory (DFT) and a model Hamiltonian study
to unravel the curious case of NiRh

2

O
4

, explaining exist-
ing data and making predictions for future experiments.

Density functional theory. — We have carried out a
first-principles study of NiRh

2

O
4

in full-potential all elec-
tron approach of linear augmented plane wave (FLAPW)
method [31], mu�n-tin orbital method [32, 33], as well
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as in pseudo-potential plane wave basis [34] with pro-
jected augmented potential (PAW) [35]. The exchange-
correlation functional was chosen to be generalized gradi-
ent approximation (GGA) [36], supplemented with onsite
Hubbard correction GGA+U [37]. Calculational details
may be found in the Supplementary Material (SM) [38].

The electronic structure of NiRh
2

O
4

, calculated within
GGA+U (U

Ni

=5 eV, JH=1 eV) resulted in half-metallic
solutions for both the high temperature cubic and the low
temperature tetragonal phases. Calculations show the
spin splitting at Ni site to be large (⇡1 eV) while that at
Rh site is an order of magnitude smaller (⇡0.1 eV), in ac-
cordance with the nominal magnetic and non-magnetic
character of Ni2+ and Rh3+ respectively. In the high-
symmetry cubic phase (see SM [38] for details), the oc-
tahedral crystal field around Rh splits the 4d states into
t
2g and eg with a large splitting ⇠3 eV, while the tetra-
hedral crystal field around Ni splits the 3d states into e
and t

2

with a relatively smaller splitting ⇡0.6 eV. The d
states of high spin Ni are thus fully occupied in the up-
spin channel; in the down-spin channel, the Ni t

2

states
admixed with Rh t

2g and O p states cross the Fermi level
(EF ). The Rh t

2g states are mostly occupied, except for
the mixing with Ni states in down spin channel, while Rh
eg states are empty. This is in accordance with nominal
valence of Ni2+ with 2 holes in t

2

manifold, and low-spin
nominally d6 occupancy of Rh. This general picture re-
mains valid also in the tetragonal phase as shown in Fig.
1. The tetragonal distortion, however introduces addi-
tional splitting among the cubic symmetry split states.
This splits the Ni t

2

states with Ni dxy level positioned
above Ni dxz/dyz with splitting of ⇡ 0.1 eV. One of the
two holes of Ni thus occupies the down spin dxy level,
while the other hole occupies the down spin doubly de-
generate dxz/dyz levels. This leaves the GGA+U solu-
tion half-metallic even in the tetragonal phase, as shown

FIG. 1: (Color online) (a) The GGA+U electronic structure
of NiRh

2

O
4

in low-temperature tetragonal phase. States pro-
jected onto Ni d, Rh d and O p characters are shown as grey-
shaded, black-solid line, hatched areas, respectively. (b) The
GGA+U+SOC electronic structure of NiRh

2

O
4

in tetragonal
phase. (c) The energy level positions for the spin-split and
the crystal-field-split Ni d and Rh d states. For clarity, small
splittings around 0.1 eV are not marked in the figure.

in Fig. 1(a). The crystal and spin splittings at the tetrag-
onal phase is shown in Fig. 1(c), which further highlights
the energetic proximity of Ni t

2

and Rh t
2g states in

down-spin channel, driving the high degree of mixing be-
tween the two. This mixing gives rise to a small nonzero
magnetic moment ⇡ 0.06-0.07 µB at the otherwise non-
magnetic, low-spin, nominally d6 Rh site, while the Ni
moment is found to be 1.5 -1.6µB . The remaining mo-
ment lives on O sites, giving rise to a net moment of 2
µB/f.u in both cubic and tetragonal phases.

Given the active orbital degrees of freedom at Ni
site, we next explore the e↵ect of SOC. Within the
GGA+U+SOC approach, the orbital state at Ni is de-
rived from the dxz ± idyz orbitals. Due to partial oc-
cupancy of both orbitals, Ni develops a large orbital
moment of ⇠ 1.0µB , supporting formation of a S = 1,
L=1 state. Repeating the calculation within GGA+SOC
scheme, leads to a significantly smaller estimate of Ni
orbital moment of ⇡ 0.1 µB , due to inability of GGA
to capture the orbital polarization e↵ect [39]. While
GGA+SOC splits the partially occupied orbitally degen-
erate states in down spin channel, this splitting is insu�-
cient to open an insulating gap. This situation is similar
to that discussed in case of FeCr

2

S
4

[40]. The Coulomb
correlation within GGA+U+SOC is thus crucial to pro-
duce a renormalized, large, orbital polarization [41] which
drives the system insulating, with a ⇠0.25eV charge gap,
as shown in Fig. 1(c).

We next estimate the Ni-Ni magnetic exchange from
the knowledge of the e↵ective hopping strengths and on-
site energies in the Wannier basis of Ni-t

2

only low-energy

FIG. 2: (Color online) The exchange pathways for first neigh-
bor (J

1

) and inequivalent second neighbors (J 0
2

, J
2

00) in the
low-temperature tetragonal phase of NiRh

2

O
4

. Shown are
the overlap of e↵ective Ni Wannier functions placed at NN,
in-plane NNN and out of plane NNN Ni sites, with circles in-
dicating nonzero weight at Rh sites in the pathway. Opposite
sign parts of each Wannier function are colored di↵erently.
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Figure 1: Spin freezing in NaCaNi
2

F
7

. a, Magnetic specific heat. Dashed line is a

classical Monte-Carlo simulation. Solid line is a fit to C
m

(T ) = AT ↵, with A = 0.07(1)

and ↵ = 2.2(1). Inset shows the low temperature region. b, Magnetic entropy obtained

by integration of C/T between T = 150 K and 100 mK corresponding to 84% of R ln(3).

c, Di↵use elastic (E = 0) magnetic scattering, integrated over the resolution window of

±0.37 meV and obtained by subtracting T =40 K data from that at 1.6 K. Lower quadrants

display disorder and configuration averaged ground state Monte-Carlo structure factors. d,

Temperature dependent intensity of the di↵use elastic scattering around q=(0, 0, 2), dashed

line is (1�T/T
f

)2�, with T
f

= 8.2 K and � = 0.5. Inset shows the T = 1.6 K line shape

across the pinch point, integrated over �0.1 < (h, h, 0) < 0.1, the horizontal dash denotes

the instrumental resolution. Error bars in all figures represent one standard deviation. e,

Histogram of bond vector order parameter components (f
1

, f
2

) from classical Monte-Carlo

simulations for Heisenberg and exchange model relevant to NaCaNi
2

F
7

including exchange

disorder. Extremal spin configurations corresponding to collinear spin arrangements are

shown.

5

Figure 3: Equal time structure factor in NaCaNi
2

F
7

. a, Measured neutron cross-

section integrated over the range 0 < E < 14 meV. Polarized neutron measurements are

labelled by SF, which measures components of the dynamic spin correlation function that

are perpendicular to the (h, h, `) scattering plane, and NSF, which measures the component

of the dynamics spin correlation function polarized within the (h, h, `) scattering plane and

perpendicular to momentum transfer. b, Energy integrated neutron cross-section calculated

using the self-consistent Gaussian approximation (SCGA) and exchange parameters J
1

=

J
2

=3.2(1) meV, J
3

=0.019(3) meV J
4

=�0.070(4) meV, J
NNN

=�0.025(5) meV. Dashed

lines delineate plane of asymmetry in the SF scattering. The dipole approximation for the

Ni2+ magnetic form factor35 was used when converting the calculated S(q) to a neutron

cross-section.

persive ridges are observed that are reminiscent of heavily damped spin-waves. While the

spectrum is gapless down to the 0.17 meV scale set by our finest energy resolution measure-

ments, the dynamic structure factor is peaked at finite energy transfers and can be fit with

the spectral form of an over-damped harmonic oscillator. The characteristic energy scale

disperses from E
q

= 4.8 meV⇠ J at the pinch point q = (2, 2, 0), to E
q

= 7.8 meV at the

nodal point q = (2, 2, 1). This spectrum distinguishes NaCaNi
2

F
7

from recent theoretical

treatments of the semi-classical Heisenberg model which find a purely di↵usive response at

11

Figure 4: Magnetic excitations in NaCaNi
2

F
7

. a, Energy-momentum cuts through the

spin-flip portion of the polarized neutron scattering cross-section at T =1.6 K. b, Constant

momentum cuts of the spin-flip cross-section through a pinch point at q=(2, 2, 0) and nodal

point at (2,2,1) integrated over `±0.2. Solid lines are a fit to the sum of a Lorentzian function

centered on the elastic line and a damped oscillator form S (E)= (n+1)2�E

(E2�E

2
q)

2
+(2�E)

2
where n is

the thermal population factor, � a relaxation rate, and E
q

the characteristic energy scale. c,

Constant energy transfer cuts, integrated over E±0.25 meV, showing the energy evolution

of momentum dependent scattering which bifurcates above 5 meV and precludes a simple

factorization of the dynamic structure factor as S(q,!)=S(q)f(!).

the pinch points13. The absence of inelastic scattering at the � point and our polarized

neutron measurements rule out any sizable single-ion anisotropies that could explain the

peak in spectral weight at non-zero energy transfers. The only energy scale large enough to

account for the resonance is the exchange interaction J
1

.

Disorder in NaCaNi
2

F
7

is small such that its e↵ect is only to rearrange the low energy

part of the spectrum for E<k
B

T
f

and the underlying translational invariance of the Heisen-

berg spin Hamiltonian can be expected to prevail. Indeed, we find that NaCaNi
2

F
7

forms

a Coulomb-like phase, with S
tot

⇡ 0 for every tetrahedron. The high energy excitations

12

One of the hardest problems  
in quantum magnetism

NaCaNi2F7

Gang Chen’s theory group 

Gang Chen’s theory group
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Gang Chen’s theory group

Frustrated magnets: pyrochlore spin ice
many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery

many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery

crystal field doublet -> effective spin-1/2



Spin ice

Pauling entropy in spin ice, 
Ramirez, etc, Science 1999

2-in 2-out  
spin ice rule

2-in 2-out  
water ice rule

H

O
H

H H=

Dy2Ti2O7



Lattice gauge theory for U(1) spin liquid

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz
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space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
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2 (110). Any two translation operations, T
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.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have
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Lattice gauge theory 
on the diamond lattice

2

“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H
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= H
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,
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is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H
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to the subspace H, in which
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where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr

counts the number of spinons. The restriction of Qr, �r

and �†
r to H exactly reproduces all matrix elements of
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Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes
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The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-

inserting spinon matter (Savary Balents 2012)
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•  Dipole-octupole doublet

One could think more realistically, …

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
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i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Besides the quantitative differences, are there sharp distinctions between the 
U(1)pi QSL on the left and the U(1)0 QSL on the right? 
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Suggestion 1: combine thermal transport with inelastic neutron
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Suggestion 2: effect of the external magnetic field 3

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

HZeeman = ~B ·
X

i

Sz
i ẑi

The weak magnetic field polarizes Sz slightly, and thus modifies  
the background electric field distribution. This further modulates  
monopole band structure, creating “Hofstadter” monopole band,  
which may be detectable in inelastic neutron. 

Thermal Hall effect: theory by XT Zhang, G Chen, etc, 
        expts by P Ong, Science 2013

G Chen, PRB 2017
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
          ( R. Sibille, et al, arXiv 1706.03604). Nature Physics

This is a non-Kramers doublet version of pyrochlore U(1) spin liquid candidate. 
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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suppression for T < 1 K relative to those for T > 1 K
supports the development of antiferromagnetic interactions.
Finally, the drop of the effective magnetic moment at low
temperature is corroborated by the linear fits to the low-field
part of the MðHÞ data [see inset of Fig. 3(b)].
Heat capacity data, CpðTÞ [see inset of Fig. 2(c)], show

that the decrease of the effective magnetic moment at low
temperature is accompanied by a rise in the heat capacity,
which is usual when entering a short-range correlated state
(see, e.g., the quantum spin-ice candidates Pr2Zr2O7 [26]
and Yb2Ti2O7 [43]). This corroborates our claim that the
variations observed in the magnetization data at subkelvin
temperatures are associated with cooperative phenomena.
Given the energy levels derived from the fits to the
susceptibility, it is unlikely that a Schottky anomaly is at
the origin of the low-temperature upturn in CpðTÞ (as was
proposed for Ce2Zr2O7 [44]), nor is any nuclear contribu-
tion expected for Ce2Sn2O7 since all isotopes of cerium
have nuclear spin of zero.
The ac-susceptibility (not shown) follows the MðTÞ=H

curve, has no frequency dependence down to 0.07 K in the
range 1.11–211 Hz, and the out-of-phase signal remains
unobservable in our experiments. The absence of any
signature of magnetic freezing means, in the absence of
long-range order, that the magnetic fluctuations are faster
than the correlation times probed by the technique. μSR
measurements were made in order to extend our study to
lower temperatures and higher frequencies. Zero-field
spectra were recorded at several temperatures between
0.02 K and 0.8 K. The zero-field data can be fitted with
a stretched exponential relaxation, giving 1=T1∼0.05MHz
and a stretched exponent β ∼ 0.5 [Fig. 4(a)]. No temper-
ature dependence of the extracted 1=T1 and β values was
observed. The spin correlations are dynamic at low temper-
atures, because the relaxation function does not change in
the presence of external longitudinal fields [see Fig. 4(a)].
In Fig. 4(b), we show the frequency shift observed in
transverse magnetic fields. It behaves like the magnetic
susceptibility, indicating that the muon does not

significantly perturb the system and that both techniques
probe the same fluctuations, with differences at low-field
which may be due to sensitive differences in internal field at
the muon site and external field.
Classical spins on the pyrochlore lattice with h111i aniso-

tropy together with competing Heisenberg exchange and
dipolar interactions [45] lead to spin ices when the dipolar
interaction (DNN) dominates, while a strong antiferromag-
netic exchange (Jeff) stabilizes all-in–all-out long-range
order. InCe2Sn2O7, using themoderate temperature effective
moment, we can calculate DNN ¼ ð5μ0μ2Þ=ð12πr3nnÞ∼
0.025 K, while the energy scale of the antiferromagnetic
interactions, jJeff j, obtained from the whole set of magneti-
zation measurements is about 0.5 K. Therefore, the resulting
nearest-neighbor interaction JNN ¼ jJeff jþDNN ∼ jJeff j, so
that the system should be deep in the antiferromagnetic
regime and a phase transition is expected at a temperature
where the correlations become strong, around 0.5 K.
Ce2Sn2O7 does not conform to this prediction, suggesting
that “quantum fluctuations” allow the system to evade the
classically predictedmagnetic order and to retain a correlated
dynamical state down to a temperature at least 1 order of
magnitude smaller than the temperature at which correlations
are established. In Ce2Sn2O7, the small value of the moment
and its Kramers nature significantly enhance the quantum
fluctuations on the pyrochlore lattice.
In summary, we suggest that Ce2Sn2O7 is a model system

to study a strongly correlated short-range antiferromagnetic
state on the pyrochlore lattice. The magnetism features
several important characteristics of exchange-based spin
liquids—h111i Ising spins coupled antiferromagnetically
which become correlated but remain disordered to the lowest
temperatures. Ce2Sn2O7 is structurally well ordered and
based on an isolated Kramers doublet featuring a small
moment. This strongly Ising character of the localized
magnetic moment is particularly important since all other
pyrochlore materials with antiferromagnetic interactions
featuring Kramers doublets either have XY character
(e.g., Er2Ti2O7 [46–48]) and/or larger moments (e.g.,
Nd2Zr2O7 which appears to order below 300 mK [49]),
while non-Kramers systems with magnetic doublets such as
those based on Tb3þ are further complicated by low-lying
crystal fields [37]. Although classical calculations for the
multiaxis Ising antiferromagnet on the pyrochlore lattice
predict a conventional magnetic order, our data suggest that
quantum fluctuations play an important role in destabilizing
this ordering. It would be most interesting if theory could
further our understanding of the Ising antiferromagnet on the
pyrochlore lattice in the extreme quantum limit.
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FIG. 4 (color online). Muon spin relaxation (μSR) experiments.
(a) Zero-field and longitudinal-field data in the usual histogram
form AðtÞ; the blue line is a fit to the function AðtÞ ¼
A0 exp½−ðt=T1Þβ& þ Abg. (b) Frequency shift (K) between the
external field (Bext) and the local field at the muon site (Bμþ )
plotted at 0.1 K as a function of the external transverse field and
scaled to the derivative of MðHÞ at 0.09 K.
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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Octupolar quantum spin ice: controlling spinons in a U(1) quantum spin liquid
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We point out that the Ce local moment in the newly discovered quantum spin liquid (QSL)
candidate material Ce2Sn2O7 is a dipole-octupole doublet. The generic spin model that describes
the interaction between these unusual doublets on a pyrochlore lattice has two distinct symmetry
enriched U(1) QSL ground states in the corresponding quantum spin ice regime. These two U(1)
QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has
been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry
properties of the DO doublets, we predict the peculiar physical properties of the octupolar U(1)
QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We predict the
Anderson-Higgs’ transition from the octupolar U(1) QSL driven by the external magnetic fields. We
explain the experimental relevance with the QSL candidate material Ce2Sn2O7 and other dipole-
octupole doublet systems.

Introduction.—The interplay between symmetry and
topology is the frontier subject in modern condensed
matter physics [1–3]. At the single particle level, the non-
trivial realization of time reversal symmetry in electron
band structure has led to the great discovery of topo-
logical insulator [4, 5]. For the intrinsic topological order
such as Z2 toric code and chiral Abelian topological order,
a given symmetry of the system could enrich the topolog-
ical order into distinct phases that cannot be connected
without passing a phase transition [6–9]. The experi-
mentally relevant symmetry enriched topological order,
however, is extremely rare. In this work, we explore one
physical realization of symmetry enriched U(1) topologi-

cal order via dipole-octupole doublets on the pyrochlore
lattice and predict the experimental consequences of dis-
tinct symmetry enrichment.

Dipole-octupole (DO) doublet is a special Kramers’
doublet in the D3d crystal field environment [10, 11]. Due
to the peculiar forms of the wavefunction, both states
of the DO doublet transform as the one-dimensional ir-
reducible representations (�+

5 or �+
6 ) of the D3d point

group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quan-
tum spin liquid (QSL) ground states [10]. These distinct
U(1) QSLs are the symmetry enriched U(1) topological
orders [12] and are enriched by the symmetries of the
pyrochlore lattice.

The Ce3+ local moment in Ce2Sn2O7 is such a DO
doublet on the pyrochlore lattice, although it was not
noticed before. As we show in Fig. 1, the strong atomic
spin-orbit coupling (SOC) of the 4f1 electron in the Ce3+

ion first entangles the electron spin (S = 1/2) with the
orbital angular momentum (L = 3) into a J = 5/2 total
moment. The six-fold degeneracy of the J = 5/2 to-
tal moment is further splitted into three Kramers’ dou-
blets by the D3d crystal field. Since the ground state
doublet wavefunctions are combinations of Jz = ±3/2

FIG. 1. The electron configuration and the D3d crystal elec-
tric field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The
CEF ground state wavefunctions are combinations of J

z =
±3/2 states [13], thus the CEF ground state is a DO doublet.
� is the CEF gap and was fitted to be � = 50± 5meV [13].

states [13], this doublet is precisely the DO doublet that
we defined. Since the crystal field gap is much larger than
the interaction energy scale of the local moments and the
temperature scale in the experiments, the low tempera-
ture magnetic property of Ce2Sn2O7 is governed by the
ground state doublets. No magnetic order was detected
down to 0.02K [13], making Ce2Sn2O7 the first Ce-based
QSL candidate in the pyrochlore family.
Motivated by the experiments on Ce2Sn2O7 and more

generally by the experimental consequences of the dis-
tinct symmetry enriched U(1) QSL for the DO doublets,
in this Letter, we explore the peculiar properties of the
DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for
the DO doublets, we find that the external magnetic field
directly couples to the spinons and modifies the spinon
dispersions. This e↵ect allows us to directly control the
spinon excitations with the magnetic fields. The lower
excitation edge of the spinon continuum in the dynamic
spin structure factors can thus be modified by the mag-
netic fields, which gives a sharp prediction for the inelas-
tic neutron scattering experiments. When the magnetic
field exceeds the critical value and closes the spinon gap,
the spinons are condensed, driving the system through an

This doublet is dipole-octupole doublet 
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Ce2Zr2O7: a non-spin-ice pyrochlore U(1) spin liquid

Our suggestion [YD Li & GC, 1902.07075]:  this material is in U1B phase?
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A quantum spin liquid (QSL) state, where interacting quantum 
spins in a crystalline solid form a disordered state at zero 
temperature in much the same way as liquid water is in a dis-

ordered state, originates from Anderson’s 1973 proposal that valence 
bonds between neighbouring spins in a two-dimensional (2D) tri-
angular lattice can pair into singlets and resonate without forming 
long-range magnetic order1. As such a state may be important to 
the microscopic origin of high-transition-temperature supercon-
ductivity2,3 and useful for quantum computation4,5, the experimen-
tal realization of a QSL is a long-sought goal in condensed-matter 
physics. Although models supporting QSLs have been developed 
for 2D spin-1/2 kagome, triangular, honeycomb and 3D pyrochlore 
lattice systems6–10, a common feature to all QSLs is the presence of 
deconfined spinons, the elementary excitations from the entangled 
ground state that carry spin S = ½ and thus are fractionalized quasi-
particles, fundamentally different from the S = 1 spin waves in con-
ventional 3D ordered magnets..

m

.

m

.

m

.

m

.

m

In 1D antiferromagnetic spin-1/2 chain compounds such as 
KCuF3, the deconfined spinons have been unambiguously mea-
sured as a spin excitation continuum by inelastic neutron scatter-
ing experiments11. In 2D spin-1/2 triangular organic salts such as 
κ-(ET)2Cu2(CN)3 (ref. 12) and EtMe3Sb[Pd(dmit)2]2(ref. 13), while 

Q3 Q4

Q5 Q6

Q7

nuclear magnetic resonance measurements indicate the presence 
of a QSL, there have been no inelastic neutron scattering experi-
ments to search for a spin excitation continuum due to the lack of 
large single crystals. While continua of spin excitations are seen 
by inelastic neutron scattering in the 2D spin-1/2 kagome lattice 
ZnCu3(OD)6Cl2 (refs. 14,15) and in an effective spin-1/2 triangular 
lattice magnet YbMgGaO4 (refs. 16,17), the magnetic/non-magnetic 
site disorder in the kagome lattice18 and non-magnetic site dis-
order in the triangular lattice19 case complicate the interpreta-
tion of the data15,20–24. Recently, the Heisenberg quantum magnet 
Ca10Cr7O28, where the spin-1/2 Cr5+ ions form a distorted kagome 
bilayer structure, revealed clear evidence for a 3D QSL25. There are 
also signatures of a 3D QSL in the hyperkagome lattice compound 
PdCuTe2O6 (ref. 26) and the spin-1 antiferromagnet NaCaNi2F7 
(ref. 27). Nevertheless, there is no consensus on the experimental 
confirmation of a QSL with spin quantum number fractionalization 
in a 3D pyrochlore lattice spin-1/2 magnet..

m

.

m

In 3D rare-earth pyrochlores such as Ho2Ti2O7, Ising-like mag-
netic moments decorate a lattice of corner-sharing tetrahedra 
(Fig. 1a) and form the ‘2-in/2-out’ spin ice arrangement, analogous 
to the ‘2-near/2-far’ rule of the covalent 2H+–O2− bonding distances 
in water ice, to stabilize classical spin liquids28,29. A key feature of 

Q8 Q9

Experimental signatures of a three-dimensional 
quantum spin liquid in effective spin-1/2 Ce2Zr2O7 
pyrochlore
Bin Gao1,11, Tong Chen1,11, David W. Tam! !1, Chien-Lung Huang! !1, Kalyan Sasmal2,  
Devashibhai T. Adroja3, Feng Ye4, Huibo Cao4, Gabriele Sala! !4, Matthew B. Stone! !4,  
Christopher Baines5, Joel A. T. Barker5, Haoyu Hu1, Jae-Ho Chung1,6, Xianghan Xu7,  
Sang-Wook Cheong7, Manivannan Nallaiyan8, Stefano Spagna8, M. Brian Maple2, 
Andriy H. Nevidomskyy1, Emilia Morosan1, Gang Chen! !9,10 and Pengcheng Dai! !1*

A quantum spin liquid is a state of matter where unpaired electrons’ spins, although being entangled, do not show magnetic order 
even at the zero temperature..

m
 The realization of a quantum spin liquid.

m
 is a long-sought goal in condensed-matter physics. Although 

neutron scattering experiments on the two-dimensional spin-1/2 kagome lattice ZnCu3(OD)6Cl2 and triangular lattice YbMgGaO4 
have found evidence for the hallmark of a quantum spin liquid at very low temperature (a continuum of magnetic excitations), the 
presence of magnetic and non-magnetic site chemical disorder complicates the interpretation of the data. Recently, the three-
dimensional Ce3+ pyrochlore lattice Ce2Sn2O7 has been suggested as a clean, effective spin-1/2 quantum spin liquid candidate, but 
evidence of a spin excitation continuum is still missing. Here we use thermodynamic, muon spin relaxation and neutron scattering 
experiments on single crystals of Ce2Zr2O7, a compound isostructural to Ce2Sn2O7, to demonstrate the absence of magnetic order-
ing and the presence of a spin excitation continuum at 35!mK. With no evidence of oxygen deficiency and magnetic/non-magnetic 
ion disorder seen by neutron diffraction and diffuse scattering measurements, Ce2Zr2O7 may be a three-dimensional pyrochlore 
lattice quantum spin liquid material with minimum magnetic and non-magnetic chemical disorder.
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classical spin ice systems is the presence of low-temperature residual 
magnetic entropy (equivalent to a ground-state entropy per spin of 
1/2In(3/2)) analogous to the Pauling estimate of the residual entropy 
for water ice29,30. Due to the extensive ground-state degeneracy, the 
magnetic entropy Smag of a classical spin ice without a magnetic 
field does not saturate to Rln2 for an effective spin-1/2 system and 
is instead set by = − ∕ ∕S R n(l 2 1 2ln(3 2))agm  in the high-temperature 
limit, where R is the ideal gas constant29,30. In the presence of quan-
tum fluctuations, a QSL state could emerge in the so-called quantum 
spin ice regime characterized by the emergent U(1) quantum elec-
trodynamics30. Here, the QSL state has a U(1) gauge degree of free-
dom, similar to the gauge symmetry of Maxwell’s equations, and the 
emergent photon-like gapless excitations31. Up to now, most works 
have considered the degenerate spin ice manifold in the classical 
limit as the starting point for realizing the U(1) QSL on introduc-
ing quantum fluctuation. However, within a mean-field theory, the 
U(1) QSL could extend much beyond the ice limit and thus does not 
necessarily produce any phenomena related to classical spin ice in 
the finite-temperature regime. Thus, the candidate pyrochlore QSL 
materials that do not show classical spin ice characteristics such as 
the Pauling entropy at finite temperatures may still be a U(1) QSL or 
other QSL not far from it32.

Recently, the Ce-based pyrochlore stannate Ce2Sn2O7 has been 
proposed as a 3D QSL from thermodynamic and muon spin 
relaxation (μSR) measurements on powder samples33. The Ce 
local moment in Ce2Sn2O7 is the peculiar dipole–octupole dou-
blet that may support distinct symmetry-enriched U(1) QSLs34,35. 
However, in the absence of single crystals of Ce2Sn2O7, there have 
been no inelastic neutron scattering experiments to search for the 
expected spin excitation continua. To overcome this problem, we 
used the floating-zone method to grow high-quality single crystals 

of Ce2Zr2O7 (see  Methods and Supplementary Fig.  1), an isoelec-
tronic/isostructural compound of Ce2Sn2O7 (ref. 36). In the stoichio-
metric Ce2Zr2O7 pyrochlore structure with the Fd m3  space group, 
cerium ions stabilize in the magnetic Ce3+ ∕f F(4 , )1 2

5 2  state in the 
crystal field of eight oxygen anions (Supplementary Fig. 2a). Ce3+ 
with J = 5/2 has an odd number of f electrons and the crystal elec-
tric field (CEF) potential from oxygen will split them into three 
Kramers doublets10. Figure 1b shows the inelastic neutron scattering 
spectra from the Ce3+ CEF levels (see also Supplementary Fig. 5), 
revealing two excited states at ~55 and ~110 meV. Based on the 
point-group symmetry at the Ce3+ atomic site and using the Stevens 
operator formalism (see Methods), the CEF Hamiltonian with the 
quantization axis along the local [1, 1, 1] direction can be written as 

= + + + + +H B Ô B Ô B Ô B Ô B Ô B ÔEFC 2
0
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6
6, where B2

0, B4
0 

and B6
0are the second-, fourth- and sixth-order CEF parameters, and 

Ô2
0, Ô4

0 and Ô6
0 are the corresponding Stevens operator equivalents, 

respectively10. Since Ce3+ has J = 5/2 for the ground-state multiplet, 
the maximum allowed terms in the CEF Hamiltonian are less than 
2J, meaning that the sixth-order terms are zero: = = =B B B 06

0
6
3

6
6 .  

Using the CEF Hamiltonian to fit the two inelastic excitations in 
Fig.  1b, we find = − .B 1 272

0 , = .B 0 324
0  and = − .B 1 86 meV4

3  (see 
inset of Fig. 1c), with the Ce3+ground-state doublet being Jz = ±3/2, 
where Jz is along the [1, 1, 1] direction (Fig. 1a). As each state in the 
doublet is a 1D irreducible representation of the D3d point group, 
the Ce3+ ground-state doublet in Ce2Zr2O7 is the dipole–octupole 
doublet, identical to that of Ce2Sn2O7 (ref. 34). The degeneracy of the 
Ce3+ ground-state doublet here is protected by time-reversal sym-
metry. The Ce3+ dipole–octupole doublet is very different from the 
Kramers doublet of the Yb3+ ground state in Yb2Ti2O7 and the non-
Kramers doublet of the Pr3+ ground state in Pr2Zr2O7, where the 
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Rare-earth triangular lattice magnets: spin liquid

Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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(Fig. 2b). Moreover, the high-field spin-wave spectrum shows a clearly distinct dispersion from that in the low field regime
(Fig. 2a). This further indicates that the low-field continuum cannot be magnon excitations.

We propose that the modulation of the spectral weights of the continuum in the low field regime is consistent with the
previously predicted behavior of the spinon Fermi surface QSL state under magnetic fields29. In the weak field regime,
the proposed zero-field spinon Fermi surface QSL state is expected to persist and the spinon remains to be a valid de-
scription of the magnetic excitation29, which is confirmed by our data that continuum excitations are observed at all energy
measured. It was previously shown in ref. 29 that, the degenerate spinon bands are split and the splitting is given by the
Zeeman energy. The mean-field results for the specific parameter choice of the present experiment are given in details in
Supplemental Materials. In an inelastic neutron scattering measurement, the neutron energy-momentum loss creates the
spin excitation that at the mean-field level corresponds to both the inter-band and intra-band particle-hole excitation of the
spinons. The particle-hole excitation continuum of the spinons persists into the weak field regime. In particular, for zero
momentum transfer of the neutron, the relevant particle-hole excitation would simply be the vertical inter-band excitation
between the spin-up and spin-down spinon bands and leads to the spectral peak at the � point and the Zeeman-split en-
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excitations while the dotted arrows indicate spin-unflipped intra-band particle-hole excitations.
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Use new materials to support materials
YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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We report on the unconventional magnetism in the cubic B-site ordered double perovskite Ba2YMoO6,

using ac and dc magnetic susceptibility, heat capacity and muon spin rotation. No magnetic order is

observed down to 2 K while the Weiss temperature is !" 160 K. This is ascribed to the geometric

frustration in the lattice of edge-sharing tetrahedra with orbitally degenerate Mo5þ s ¼ 1=2 spins. Our

experimental results point to a gradual freezing of the spins into a disordered pattern of spin singlets,

quenching the orbital degeneracy while leaving the global cubic symmetry unaffected, and providing a

rare example of a valence bond glass.
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Magnetic insulators with lattices in which antiferro-
magnetic (AF) bonds are geometrically frustrated have
been studied widely in the pursuit of exotic quantum
ground states such as spin liquid [1,2]. Such nonclassical
ground states have mainly been sought in low dimen-
sional structures such as the triangular lattice system
!-ðBEDT-TTFÞ2Cu2ðCNÞ3 [3] and the kagome antiferro-
magnet herbertsmithite [4]. Materials with a geometrically
frustrated face centered cubic (fcc) lattice have in this
respect received much less attention. The 12 near-neighbor
magnetic bonds J1 between the [000] and [ 12

1
2 0] spins on

the fcc lattice form a network of edge-sharing tetrahedra
(Fig. 1). When these bonds are AF (J1 > 0) the magnetism
is geometrically frustrated, giving rise to a large (but not
macroscopically large [5] as for the kagome lattice)
ground-state manifold of spin configurations unrelated by
symmetry. Further neighbor interactions (J2) along the 6
[100] vectors lift this degeneracy only partially; J2 < 0
(along the 6 [100] vectors) leads to type I order, weak
AF exchange (0< J2 < 2J1) to type III order and stronger
AF exchange J2 > 2J1 to type II order. Thermal or quan-
tum fluctuations and quenched disorder have been shown
to result in a bias for respectively collinear and anticol-
linear states within these degenerate ground-state mani-
folds [6–8], an entropic selection effect termed ‘‘order
from disorder’’ [9]. This is in agreement with experiments
on well-known compounds of rocksalt structure such as
MnO [10,11], Cd1"xMnxTe [12], and NiO, MnSe [10].
Classical type I, II or III order has also been confirmed
for s ¼ 1=2 [13–15] although less is known about the
physics at the boundaries between the classical phases. In
this Letter we describe the unconventional magnetism in
the compound Ba2YMoO6, providing experimental evi-
dence that an exotic valence bond glass (VBG) [16,17]
state can stabilize at the boundary between the known
classical phases on the fcc lattice. Such a disordered state

has been predicted to be possible even in the absence of
structural disorder, as an example of a nonequilibrium
quantum ground state [16].
The B-site ordered double perovskites are of general

stoichiometry A2BB
0O6 where the A site typically hosts

alkaline-earths and lanthanides and the B sites can host 3d,
4d, and 5d transition metal (TM) ions. Depending on the
combination of B and B0 site ions, electronic phases from
strongly correlated metals via half-metals [18] and semi-
conductors [19,20] to Mott insulating can be realized. Mott
insulating 4d and 5d TM compounds are rare. The occur-
rence of this insulating phase in the double perovskites is
due to the large distance between the TM ions, of the order
of 5 to 6 Å. Examples of Mott insulators are Ba2LaRuO6

and Ca2LaRuO6 [21], respectively, type III and type I
antiferromagnets. Sr2CaReO6 [22] and Sr2MgReO6 [23]
(the Re6þ has s ¼ 1=2) have spin-glass ground states,
consistent with a negligible J2 along the pathway
Re-O-B0-O-Re. There is a large group ofMo5þ compounds
Ba2LnMoO6 with Ln ¼ Nd, Sm, Eu, Gd, Dy, Er, Yb and Y
[24]. TheMo5þ has a singly-occupied 4d t2g level with s ¼
1=2. Because of the strong spin-orbit coupling in 4d TM
ions in a cubic crystal field this is expected to lead to a j ¼
3=2 triplet [25,26]. Only the larger lanthanide compounds

FIG. 1. Four MoO6 octahedra (shaded grey) and Y ions (large
spheres) in the cubic unit cell of Ba2YMoO6 (left). The Mo5þ

ions form a lattice of edge-sharing tetrahedra (right). The cubic
lattice constant is 8.389 Å.
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(Ln ¼ Nd, Sm and Eu) have Néel order (Type I, implying
J2 < 0) coinciding with a weak Jahn-Teller distortion
[24,27,28], while the exchange interaction is of the order
of 100 K [24]. The other compounds were found to be
paramagnetic and with cubic symmetry at all temperatures.
Ba2YMoO6 is the simplest of these compounds because the
Y3þ ion does not carry a magnetic moment. The magnetic
exchange is mainly via the 90# B0-O-O-B0 !$ ! bonds
[21,24], giving rise to 12 near-neighbor AF J1 bonds for
each spin, across the edges of the tetrahedra (Fig. 1).

Polycrystalline Ba2YMoO6 was prepared by the solid
state reaction of stoichiometric oxides of Y2O3,MoO3 and
BaCO3 powders of at least 99.99% purity. These were
ground, die-pressed into a pellet and heated under flowing
5% H2=N2. The final synthesis temperature was
1200–1250 #C with three intermediate regrinding steps to
ensure phase homogeneity. It was found that a first heating
step of %2 hr at 900 #C in air and thorough homogeniza-
tion helps to prevent the formation of BaMoO4 and Y2O3

impurities. Phase purity was confirmed by laboratory x-ray
powder diffraction. In a related paper [29] neutron powder
diffraction results are discussed, which show that the
Y=Mo site disorder is less than 1%. The diamagnetic
analog, Ba2YNbO6, was prepared at 1200 #C in air from
YNbO4 and BaCO3. The sample magnetization was mea-
sured on a Quantum Design magnetic property measure-
ment system (MPMS) in fields up to 5 T. The heat capacity
was measured on a Quantum Design physical property
measurement system (PPMS), using 7.0 mg of a sintered
pellet. The "SR experiment was carried out at MUSR at
ISIS, UK.

The dc magnetic susceptibility measured in a 1 T field is
shown in Fig. 2. A Curie-Weiss fit to the high temperature
susceptibility yields a Weiss temperature of$160 K and a
Curie constant of 0:25 emumol$1 K$1, small compared to
the 0:38 emumol$1 K$1 expected for s ¼ 1=2. This dif-
ference is attributed to strong quantum fluctuations com-
mon in low-spin antiferromagnets and previously observed
in double perovskites [26]. Below 25 K a second linear
regime is observed in #$1, corresponding (for a 1 T field)
to a%10% fraction of all the s ¼ 1=2moments (or%5% if
they have the full j ¼ 3=2 where gJ ¼ 4=3) and a Weiss
temperature of$2:3 K indicating weak AF exchange. This
fraction is too large to be ascribed directly to either struc-
tural disorder or an impurity phase in the sample.
Furthermore, fits to MðHÞ measured at 2.3 and 5 K (inset
of Fig. 2) with Brillouin functions lead to estimates of,
respectively, 2% and 7% of all spins, compared to 10% for
fits to the MðTÞ curve. This suggests that the apparently
quasifree spins are an emergent property of the (disorder
free) system.

The ac susceptibility measured with a field amplitude of
5 Oe and zero dc offset field is shown in Fig. 3. The
dispersive part of the ac susceptibility (#0) is almost fre-
quency independent and is comparable to the diverging
low-temperature dc susceptibility. The dissipative part (#00)
shows a frequency dependent maximum between 26 and

70 K. Remarkably, the maximum gradually gets sharper as
the frequency increases, instead of weaker as expected for
a spin-glass transition. The agreement between the dc
susceptibility and #0 below 20 K is a strong indication
that the Curie term can be ascribed to the weakly-coupled
spins.
The heat capacity associated with the single Mo5þ 4d

electron in Ba2YMoO6 (as shown in Fig. 4) was obtained
from comparison with the heat capacity of the diamagnetic
analogue Ba2YNbO6. The heat capacity from phonons of
Ba2YMoO6 is expected to be lower than for Ba2YNbO6 by
a factor 0.991 due to the mass difference between the Mo
and Nb nuclei. However, this is small compared to the
experimental error in the sample mass which is known with
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FIG. 2 (color online). The dc magnetic susceptibility #
(x, left axis) and #$1 (x, right axis) of Ba2YMoO6 measured
in 1 T. Curie-Weiss fits in the two linear regimes in #$1 are
indicated in grey (red) and the black line gives the difference
between the total susceptibility and the low-temperature Curie
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the data with Brillouin functions, accounting for 7% of the Mo
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10% accuracy. For this reason the heat capacity was mea-
sured well into the paramagnetic regime and matched to
the heat capacity of Ba2YNbO6 above 200 K (150 K) for
the zero-field (9 T) measurements [30]. The magnetic
entropy is gradually released over a wide range of tem-
peratures with a broad maximum around 50 K. No anoma-
lies corresponding to phase transitions are observed, only a
gradual freezing, quenching all degrees of freedom asso-
ciated with the orbitally degenerate t2g s ¼ 1=2 4d elec-
trons. As shown in the inset of Fig. 4, the total entropy
recovered Stot ¼ 12" 2 JK#1 mol#1, close to the R ln4 ¼
11:5 expected for a j ¼ 3=2 quadruplet (the j ¼ l# s ¼
1=2 doublet lies at much higher energies [25,26]). Below
25 K only $5% of the entropy is released, in agreement
with the Curie fit to the low-temperature susceptibility
which was found to correspond to $5% of the Mo5þ if
these remaining spins have j ¼ 3=2. In a 9 T magnetic field
most of the magnetic entropy shifts to lower temperatures.

To gain a better understanding of the gradual freezing
and the appearance of apparently weakly-coupled spins a
!SR experiment was carried out. The zero-field muon spin
relaxation spectra at 120 K, 5 K and 1.4 K are shown in
Fig. 5. There is no evidence of muon relaxation due to
nuclear spins which confirms that the main muon stopping
site is near the O2# ions. At 120 K there is no muon
relaxation, as expected for a paramagnetic state.
Remarkably, at 5 K a muon relaxation is still only just
detectable. If the maximum in the ac susceptibility is due to
a conventional spin-glass transition a Lorentzian Kubo-
Toyabe muon relaxation is expected below the spin-glass
transition, as observed in the related system Sr2MgReO6

[23]. The very slow muon relaxation observed at 5 K in
Ba2YMoO6 indicates there are no static moments. At the
same time the heat capacity data show that at 5 K most of

the magnetic entropy associated with j ¼ 3=2 is quenched,
implying static order. The majority of spins must therefore
have bound into (nonmagnetic) static spin-singlet ‘‘valence
bonds’’ in which also the orbital degrees of freedom are
quenched. The moderate increase in the muon relaxation
rate below 5 K is then due to slowing-down of a small
fraction of the spins which are left isolated as domain walls
or defects in a (disordered) valence bond crystal (VBC).
The best characterization of this state is probably a valence
bond glass (VBG) as described in Ref. [17].
The magnetic properties of Ba2YMoO6 are very differ-

ent to those of the related compound Sr2MgReO6 [23],
where a first order transition to a conventional spin-glass
state is observed. That the crossover in Ba2YMoO6 is not a
conventional spin-glass transition is also clear from the
unusual frequency dependence of the ac susceptibility. The
gradual freezing and crossover region around 50 K are
consistent with a pseudogap predicted for the VBG [17].
This gap, which corresponds to a spin-singlet dimerization
energy scale, is filled by levels corresponding to emergent
weakly-coupled spins which give rise to a diverging sus-
ceptibility as the temperature is decreased. In close agree-
ment with Ref. [17] the observed low-temperature
susceptibility follows a power law " / ðT # TsÞ## with
# ( 1. As noted earlier, this contribution from effectively
weakly-coupled spins cannot be related one-to-one to any
structural disorder but arises as a cooperative effect, due to
the amorphous arrangement of spin singlets. The heat
capacity does not become zero at the lowest temperature
measured which is consistent with a small residual entropy
and an ungapped spectrum as expected for the VBG.
The classical ground-state energy is highest when J2 (

2J1, at the crossover between type III (J2 < 2J1) and
type II magnetism (the energy per spin is #J1=2þ J2=4
for J2 ) 2J1). One possibility is that around this crossover
a spin-singlet state is energetically favored. A complete
explanation of why spin singlets stabilize will in the
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FIG. 4 (color online). The magnetic heat capacity obtained by
subtracting the heat capacity of the diamagnetic analogue
Ba2YNbO2 in zero field (black dots) and in 9 Tesla (open
squares). The experimental error for the 9 T data is comparable
to that indicated for the zero-field data (grey area). The inset
shows the total entropy release as a function of temperature in
zero field (black line) and in 9 T (red line).

PRL 104, 177202 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

30 APRIL 2010

177202-3

10% accuracy. For this reason the heat capacity was mea-
sured well into the paramagnetic regime and matched to
the heat capacity of Ba2YNbO6 above 200 K (150 K) for
the zero-field (9 T) measurements [30]. The magnetic
entropy is gradually released over a wide range of tem-
peratures with a broad maximum around 50 K. No anoma-
lies corresponding to phase transitions are observed, only a
gradual freezing, quenching all degrees of freedom asso-
ciated with the orbitally degenerate t2g s ¼ 1=2 4d elec-
trons. As shown in the inset of Fig. 4, the total entropy
recovered Stot ¼ 12" 2 JK#1 mol#1, close to the R ln4 ¼
11:5 expected for a j ¼ 3=2 quadruplet (the j ¼ l# s ¼
1=2 doublet lies at much higher energies [25,26]). Below
25 K only $5% of the entropy is released, in agreement
with the Curie fit to the low-temperature susceptibility
which was found to correspond to $5% of the Mo5þ if
these remaining spins have j ¼ 3=2. In a 9 T magnetic field
most of the magnetic entropy shifts to lower temperatures.

To gain a better understanding of the gradual freezing
and the appearance of apparently weakly-coupled spins a
!SR experiment was carried out. The zero-field muon spin
relaxation spectra at 120 K, 5 K and 1.4 K are shown in
Fig. 5. There is no evidence of muon relaxation due to
nuclear spins which confirms that the main muon stopping
site is near the O2# ions. At 120 K there is no muon
relaxation, as expected for a paramagnetic state.
Remarkably, at 5 K a muon relaxation is still only just
detectable. If the maximum in the ac susceptibility is due to
a conventional spin-glass transition a Lorentzian Kubo-
Toyabe muon relaxation is expected below the spin-glass
transition, as observed in the related system Sr2MgReO6

[23]. The very slow muon relaxation observed at 5 K in
Ba2YMoO6 indicates there are no static moments. At the
same time the heat capacity data show that at 5 K most of

the magnetic entropy associated with j ¼ 3=2 is quenched,
implying static order. The majority of spins must therefore
have bound into (nonmagnetic) static spin-singlet ‘‘valence
bonds’’ in which also the orbital degrees of freedom are
quenched. The moderate increase in the muon relaxation
rate below 5 K is then due to slowing-down of a small
fraction of the spins which are left isolated as domain walls
or defects in a (disordered) valence bond crystal (VBC).
The best characterization of this state is probably a valence
bond glass (VBG) as described in Ref. [17].
The magnetic properties of Ba2YMoO6 are very differ-

ent to those of the related compound Sr2MgReO6 [23],
where a first order transition to a conventional spin-glass
state is observed. That the crossover in Ba2YMoO6 is not a
conventional spin-glass transition is also clear from the
unusual frequency dependence of the ac susceptibility. The
gradual freezing and crossover region around 50 K are
consistent with a pseudogap predicted for the VBG [17].
This gap, which corresponds to a spin-singlet dimerization
energy scale, is filled by levels corresponding to emergent
weakly-coupled spins which give rise to a diverging sus-
ceptibility as the temperature is decreased. In close agree-
ment with Ref. [17] the observed low-temperature
susceptibility follows a power law " / ðT # TsÞ## with
# ( 1. As noted earlier, this contribution from effectively
weakly-coupled spins cannot be related one-to-one to any
structural disorder but arises as a cooperative effect, due to
the amorphous arrangement of spin singlets. The heat
capacity does not become zero at the lowest temperature
measured which is consistent with a small residual entropy
and an ungapped spectrum as expected for the VBG.
The classical ground-state energy is highest when J2 (

2J1, at the crossover between type III (J2 < 2J1) and
type II magnetism (the energy per spin is #J1=2þ J2=4
for J2 ) 2J1). One possibility is that around this crossover
a spin-singlet state is energetically favored. A complete
explanation of why spin singlets stabilize will in the
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10% accuracy. For this reason the heat capacity was mea-
sured well into the paramagnetic regime and matched to
the heat capacity of Ba2YNbO6 above 200 K (150 K) for
the zero-field (9 T) measurements [30]. The magnetic
entropy is gradually released over a wide range of tem-
peratures with a broad maximum around 50 K. No anoma-
lies corresponding to phase transitions are observed, only a
gradual freezing, quenching all degrees of freedom asso-
ciated with the orbitally degenerate t2g s ¼ 1=2 4d elec-
trons. As shown in the inset of Fig. 4, the total entropy
recovered Stot ¼ 12" 2 JK#1 mol#1, close to the R ln4 ¼
11:5 expected for a j ¼ 3=2 quadruplet (the j ¼ l# s ¼
1=2 doublet lies at much higher energies [25,26]). Below
25 K only $5% of the entropy is released, in agreement
with the Curie fit to the low-temperature susceptibility
which was found to correspond to $5% of the Mo5þ if
these remaining spins have j ¼ 3=2. In a 9 T magnetic field
most of the magnetic entropy shifts to lower temperatures.

To gain a better understanding of the gradual freezing
and the appearance of apparently weakly-coupled spins a
!SR experiment was carried out. The zero-field muon spin
relaxation spectra at 120 K, 5 K and 1.4 K are shown in
Fig. 5. There is no evidence of muon relaxation due to
nuclear spins which confirms that the main muon stopping
site is near the O2# ions. At 120 K there is no muon
relaxation, as expected for a paramagnetic state.
Remarkably, at 5 K a muon relaxation is still only just
detectable. If the maximum in the ac susceptibility is due to
a conventional spin-glass transition a Lorentzian Kubo-
Toyabe muon relaxation is expected below the spin-glass
transition, as observed in the related system Sr2MgReO6

[23]. The very slow muon relaxation observed at 5 K in
Ba2YMoO6 indicates there are no static moments. At the
same time the heat capacity data show that at 5 K most of

the magnetic entropy associated with j ¼ 3=2 is quenched,
implying static order. The majority of spins must therefore
have bound into (nonmagnetic) static spin-singlet ‘‘valence
bonds’’ in which also the orbital degrees of freedom are
quenched. The moderate increase in the muon relaxation
rate below 5 K is then due to slowing-down of a small
fraction of the spins which are left isolated as domain walls
or defects in a (disordered) valence bond crystal (VBC).
The best characterization of this state is probably a valence
bond glass (VBG) as described in Ref. [17].
The magnetic properties of Ba2YMoO6 are very differ-

ent to those of the related compound Sr2MgReO6 [23],
where a first order transition to a conventional spin-glass
state is observed. That the crossover in Ba2YMoO6 is not a
conventional spin-glass transition is also clear from the
unusual frequency dependence of the ac susceptibility. The
gradual freezing and crossover region around 50 K are
consistent with a pseudogap predicted for the VBG [17].
This gap, which corresponds to a spin-singlet dimerization
energy scale, is filled by levels corresponding to emergent
weakly-coupled spins which give rise to a diverging sus-
ceptibility as the temperature is decreased. In close agree-
ment with Ref. [17] the observed low-temperature
susceptibility follows a power law " / ðT # TsÞ## with
# ( 1. As noted earlier, this contribution from effectively
weakly-coupled spins cannot be related one-to-one to any
structural disorder but arises as a cooperative effect, due to
the amorphous arrangement of spin singlets. The heat
capacity does not become zero at the lowest temperature
measured which is consistent with a small residual entropy
and an ungapped spectrum as expected for the VBG.
The classical ground-state energy is highest when J2 (

2J1, at the crossover between type III (J2 < 2J1) and
type II magnetism (the energy per spin is #J1=2þ J2=4
for J2 ) 2J1). One possibility is that around this crossover
a spin-singlet state is energetically favored. A complete
explanation of why spin singlets stabilize will in the
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The geometrically frustrated double perovskite Ba2YMoO6 is characterized by quantum s = 1/2 spins at the
Mo5+ sites of an undistorted fcc lattice. Previous low-temperature characterization revealed an absence of static
long-range magnetic order and suggested a nonmagnetic spin-singlet ground state. We report unique time-of-flight
and triple-axis neutron spectroscopy of Ba2YMoO6 that shows a 28 meV spin excitation with a bandwidth of
∼4 meV, which vanishes above ∼125 K. We identify this as the singlet-triplet excitation that arises out of a
singlet ground state, and further identify a weaker continuum of magnetic states within the gap, reminiscent of
spin-polaron states arising due to weak disorder.

DOI: 10.1103/PhysRevB.84.100404 PACS number(s): 75.10.Jm, 75.10.Kt, 75.50.−y

Geometrically frustrated magnetic materials1,2 are of topi-
cal interest due to the complex interplay between competing
interactions resulting in rich phase diagrams, including spin-
glass, spin-ice, and spin-liquid ground states. Triangular
and tetrahedral architectures are most often associated with
geometric frustration, although the phenomenon occurs in
diverse systems with various lattices, magnetic interactions,
and anisotropies. In two dimensions (2D), networks of edge-
and corner-sharing triangles give rise to the triangular and
kagome lattices, respectively, while in three dimensions (3D),
tetrahedral networks form the fcc and pyrochlore lattices.

Frustrated lattices of antiferromagnetically (AF) coupled
moments have been studied in a variety of materials. Well-
studied 2D systems, consisting of loosely coupled stacks of
planes, include the triangular magnets NaCrO2 (Ref. 3) and
VCl2,4 kagome magnets such as herbertsmithite,5 and several
jarosite AFs.6 Other quasi-2D magnetic materials and models
which possess competing interactions exist, with resulting
physics very similar to that originating from geometrical
frustration, including the so-called J1-J2 systems,7 square
planar lattices decorated by magnetic moments with oppos-
ing nearest-neighbor and next-nearest-neighbor interactions.
One such system of topical interest is SrCu2(BO3)2,8,9 an
experimental realization of the Shastry-Sutherland s = 1/2
Heisenberg model,10 with moments on a planar lattice of
orthogonally oriented dimers. Each dimer, composed of two
s = 1/2 Cu2+ moments, exhibits a singlet ground state with
an s = 1 triplet excitation above a ! ∼ 3 meV gap. In 3D,
well-studied frustrated systems include rare-earth titanates,
in which magnetic moments reside on essentially perfect
pyrochlore lattices11 and exhibit a wide variety of ground
states including spin ice,12,13 long-range order (LRO),14,15

field-induced order,16 and spin liquid.17,18 Both classical and
quantum spins decorating these lattices have been, and are,
of interest. But the quantum versions can give rise to exotic,
disordered spin-liquid states, as may be relevant to resonating
valence-bond states.19

While experimental and theoretical works on classical and
quantum quasi-2D triangular and kagome magnets and 3D
pyrochlore magnets abound, there are very few studies of
quantum fcc frustrated systems. In rocksalt ordered double
perovskites20 [Fig. 1(a)] the magnetic moments comprise an
edge-sharing tetrahedral network [Fig. 1(c)]. While most are
not perfect s = 1/2 fcc systems,21,22 experimental studies have
revealed a wealth of ground states. The s = 3/2 systems
La2LiRuO6 and Ba2YRuO6 exhibit AF LRO.23 Analogous
s = 1 systems show spin freezing without LRO in Ba2YReO6,
and a collective singlet state in La2LiReO6.24 The ex-
treme quantum s = 1/2 case is realized in Sr2CaReO6,25

La2LiMoO6, and Ba2YMoO6.26 While the first two ex-
hibit short-range magnetic correlations without LRO, only
Ba2YMoO6 maintains cubic symmetry to 2 K and shows no
signs of magnetic order in NMR, muon spin relaxation, neutron
diffraction, or susceptibility measurements,26–28 making it an
excellent realization of a quantum fcc antiferromagnet.

Ba2YMoO6 was characterized in depth by Aharen et al.26

Y and Mo ions lie on alternate B sites in an NaCl-like
arrangement with only ∼3% B-site disorder, so that the
magnetic Mo5+ ions form a lattice of edge-sharing tetrahedra.
Bulk susceptibility measurements show high-temperature AF
Curie-Weiss (C-W) behavior with "W = −219 K, and some
deviation from C-W at lower temperatures. However, suscep-
tibility, heat capacity, and muon spin relaxation measurements
found no evidence for a magnetic phase transition above
2 K. 89Y NMR 1/T1 measurements find two characteristic
environments, one corresponding to a paramagnetic-like state
at all temperatures, and another indicative of a collective
singlet ground state with an effective gap !/kB ∼ 140 K.

These results indicate that Ba2YMoO6 exhibits both geo-
metric frustration and strong quantum effects, with a singlet
or singlet-like ground state caused by pairing of adjacent
s = 1/2 Mo5+ moments coexisting with a disordered state
to 2 K. Theoretically, Chen et al.29 have considered the
ground states of s = 1/2 fcc systems with strong spin-orbit
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FIG. 1. (Color online) (a) Unit cell of Ba2YMoO6, with Y and
Mo occupying alternate B sites. (b) Schematic diagram depicting
frustration of AF-coupled moments on a tetrahedron, and possible
formation of orthogonal singlet dimers. (c) Mo5+ ions in the lattice
in (a), forming a network of edge-sharing tetrahedra.

coupling, as may be expected for 4d1 Mo5+ ions. The spins
can combine with the threefold degeneracy of the t2g orbitals
to give an effective j = 3/2 system, allowing a rich variety
of exotic ground states, such as a quadrupolar-ordered state
with spontaneous anisotropy. But in the case of strong AF
interactions pseudo-singlets can arise and lead to nonmagnetic
valence-bond-solid and quantum-spin-liquid ground states.

In this Rapid Communication, we report inelastic neutron
scattering results on polycrystalline Ba2YMoO6. We find
scattering at low Q and E ∼ 28 meV for which intensity
decreases with increasing temperature and disappears above
∼125 K, as well as a continuum of low-Q scattering within this
28 meV gap. This continuum is weakly peaked in energy and
resembles so-called spin polarons, scattering from impurity-
induced paramagnetic regions embedded in a sea of singlets.30

The ∼4 meV bandwidth of the 28 meV spin excitation is
consistent with weakly dispersive triplet excitations from a
singlet ground state formed from orthogonal dimers on the
s = 1/2 Mo5+ tetrahedra.

Two 6–7 g powder samples of Ba2YMoO6 were prepared
using a conventional solid-state reaction as in Ref. 26. A
stoichiometric mixture of BaCO3, Y2O3, and MoO3 was fired
at 950 ◦C for 12 h, then reground and fired at 1250–1300 ◦C
in a reducing 5% H2/Ar mixture. Phase purity and the Mo
oxidation state were verified through x-ray diffraction and
thermogravimetric analysis, respectively.

Measurements were performed on one sample at the
SEQUOIA fine resolution Fermi chopper spectrometer at
the Spallation Neutron Source (SNS), Oak Ridge National
Laboratory,31,32 and on the other at the C5 triple-axis spec-
trometer at the Canadian Neutron Beam Centre (CNBC),
Chalk River. Each specimen was contained in an Al sample
can in a closed-cycle refrigerator with He exchange gas,
with measurements made on identical empty sample cans for
background subtraction.

Time-of-flight measurements at SEQUOIA were performed
between 6 and 290 K, employing an incident beam energy
Ei = 60 meV chosen by Fermi chopper No. 1 (Ref. 32)
spinning at 240 Hz (!E/E ∼5%). The background from the
prompt pulse was removed by the T0 chopper at 60 Hz.
The beam was masked to match the sample size, and a
white-beam vanadium normalization run was used to correct
for the detector efficiencies.

Triple-axis measurements at C5 employed pyrolitic
graphite (PG) as both the monochromator and the analyzer,
in a constant Ef mode using Ef = 30.5 meV, at temperatures
from 3.1 to 300 K. Harmonic contamination in the scattered
beam was suppressed using a PG filter. Collimations along the
beam path were [33′-47′-51′-144′], with an energy resolution
of 4 meV at the elastic channel.

The neutron scattering cross section due to phonons scales
as (ϵ⃗ · Q⃗)2, where ϵ⃗ is the phonon eigenvector,33 while that
from magnetism scales with the form factor of the appropriate
magnetic electrons and generally falls off with increasing Q.
To isolate the magnetic scattering, we follow an approach
similar to that of Clancy et al.,34 wherein the total scattering
intensity is treated as a sum of three factors: a temperature-
independent background, a phonon contribution for which
temperature dependence is described well by the thermal
occupancy factor [n(ω) + 1], and the magnetic contribution
of present interest. The temperature-independent background
is removed by subtracting the empty sample-can run from each
data set. This gives S(Q,h̄ω), which is normalized by the ther-
mal occupancy factor to yield χ ′′(Q,h̄ω). Finally, we subtract
χ ′′(Q,h̄ω) at 175 K from that at 6 K and the other data sets of
interest to remove the phonon contribution and approximately
isolate the magnetic contribution, resulting in the !χ ′′(Q,h̄ω)
maps shown in Fig. 2. Figures 2(a), 2(c), and 2(d) show
!χ ′′(Q,h̄ω) maps for T = 6, 70, and 125 K, with T = 175 K
subtracted on a full-intensity scale, while Fig. 2(b) shows the
T = 6 − 175 K subtraction for positive values only, to high-
light where χ ′′(Q,h̄ω) at T = 6 K exceeds that at T = 175 K.
Magnetic scattering identified in this way is clearly seen at low
Q < 2.5 Å−1. Figures 2(a), 2(c), and 2(d) show !χ ′′(Q,h̄ω)
to evolve from a flat Q-h̄ω distribution to one characterized

FIG. 2. (Color online) (a), (c), (d) Dynamic susceptibility
!χ ′′(Q,h̄ω) at T = 6, 70, and 125 K, where χ ′′(Q,h̄ω) at T = 175 K
has been subtracted from each to isolate the magnetic scattering,
as described in the text. (b) shows !χ ′′(Q,h̄ω) at T = 6 K with
T = 175 K subtracted, but with the plotted intensity scale range
restricted to >0 only, thus highlighting where χ ′′(Q,h̄ω) at 6 K
exceeds that at 175 K. The lower intensity scale refers to (a), (c),
and (d), and the upper refers to (b).
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by two inelastic distributions at small Q. The strongest of
these is centered on an energy of 28 meV, with a bandwidth of
∼4 meV. The other is a continuum weakly peaked near 17 and
9 meV. It is found that !χ ′′(Q,h̄ω) is strongly depleted
at larger Q and low energies indicating an approximate
conservation of !χ ′′(Q,h̄ω) with temperature, as expected.

Figure 3 shows the Q and E dependence of χ ′′(Q,h̄ω),
with emphasis on the magnetic signal at 28 meV. Figure 3(a)
shows the Q dependence of χ ′′(Q,h̄ω) integrated over 26 to
31 meV as a function of temperature, while Fig. 3(b) shows
the energy dependence of χ ′′(Q,h̄ω) integrated in Q from
1.5 to 1.8 Å−1. As Fig. 3(b) shows, χ ′′(Q,h̄ω), rather than
the !χ ′′(Q,h̄ω) shown in Fig. 2, peaks appear at energies
corresponding to high optic and acoustic phonon density of
states, near 17 and 11 meV. Taken together, Figs. 3(a) and 3(b)
clearly show the 28 meV feature to be localized to low Q
< 2.5 Å−1, and vanishing at temperatures above ∼125 K. It
is therefore magnetic in origin, and consistent with a weakly
dispersive spin-triplet excitation that arises out of a singlet
ground state.

The detailed temperature dependence of the low-Q scat-
tering is shown in Fig. 4. This data, taken with the
C5 triple-axis spectrometer at CNBC, Chalk River, shows
background-subtracted scattering intensity at Q = 1.7 Å−1

at three energy transfer values. In Fig. 4(a) we show the

FIG. 3. (Color online) (a) χ ′′(Q,h̄ω) plotted versus Q for
six temperatures, integrated in energy between 26 and 31 meV.
(b) χ ′′(Q,h̄ω) plotted versus energy for six temperatures, integrated
in Q over the range 1.5 Å−1 < Q < 1.8 Å−1. The scattering centered
on ∼28 meV exists only at low Q < 2.5 Å−1 and at low T < 125 K,
and is therefore magnetic in origin and consistent with a weakly
dispersive spin-triplet excitation.

detailed temperature dependence of the magnetic scattering
at 27.5 and 30.5 meV (summed together). Consistent with
the SEQUOIA data, shown for comparison, this scattering
falls off with increasing temperature, evolving to a slowly
increasing, phononlike background above ∼125 K. We have
modeled the high-temperature (T > 200 K) data with the
Bose thermal occupancy factor [n(ω) + 1], which is plotted
as solid lines on top of all three data sets in both figure
panels. Figure 4(b) shows the temperature dependence of
scattering at 7 and 16.75 meV; although scattering in this
region is significantly affected by phonons, particularly the
bands near 11 and 17 meV evident in Fig. 3(b), the temperature
dependence of scattering at 7 and 16.75 meV does not fit
to a purely Bose distribution, with a low-temperature excess
consistent with magnetic scattering in the in-gap regime. Taken
together with the SEQUOIA data in Figs. 2 and 3, we have
a clear and robust signature for two distributions of magnetic
scattering at small Q: triplet excitations out of an exotic singlet
ground state in Ba2YMoO6 with an energy gap of 28 meV, and
paramagnetic-like scattering within this gap. A paramagnetic
state is recovered for T > 125 K, with no obvious signs of a
phase transition.

FIG. 4. (Color online) (a) Temperature dependence of the
background-subtracted scattering intensity at Q = 1.7 Å−1 at the
average of 27.5 and 30.5 meV, collected with the C5 triple-axis
spectrometer, showing a characteristic fall-off of the triplet intensity
toward zero at ∼125 K; normalized SEQUOIA (SNS) data at
26–31 meV is included for reference. (b) Temperature dependence
of the background-subtracted intensity at 7 meV and a 16.5–17 meV
energy transfer. The solid lines represent fits of the T > 200 K data
to the thermal occupancy factor. Excess low-temperature scattering
is attributed to either (a) the triplet excitation, or (b) magnetic states
within the gap.
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by two inelastic distributions at small Q. The strongest of
these is centered on an energy of 28 meV, with a bandwidth of
∼4 meV. The other is a continuum weakly peaked near 17 and
9 meV. It is found that !χ ′′(Q,h̄ω) is strongly depleted
at larger Q and low energies indicating an approximate
conservation of !χ ′′(Q,h̄ω) with temperature, as expected.

Figure 3 shows the Q and E dependence of χ ′′(Q,h̄ω),
with emphasis on the magnetic signal at 28 meV. Figure 3(a)
shows the Q dependence of χ ′′(Q,h̄ω) integrated over 26 to
31 meV as a function of temperature, while Fig. 3(b) shows
the energy dependence of χ ′′(Q,h̄ω) integrated in Q from
1.5 to 1.8 Å−1. As Fig. 3(b) shows, χ ′′(Q,h̄ω), rather than
the !χ ′′(Q,h̄ω) shown in Fig. 2, peaks appear at energies
corresponding to high optic and acoustic phonon density of
states, near 17 and 11 meV. Taken together, Figs. 3(a) and 3(b)
clearly show the 28 meV feature to be localized to low Q
< 2.5 Å−1, and vanishing at temperatures above ∼125 K. It
is therefore magnetic in origin, and consistent with a weakly
dispersive spin-triplet excitation that arises out of a singlet
ground state.

The detailed temperature dependence of the low-Q scat-
tering is shown in Fig. 4. This data, taken with the
C5 triple-axis spectrometer at CNBC, Chalk River, shows
background-subtracted scattering intensity at Q = 1.7 Å−1

at three energy transfer values. In Fig. 4(a) we show the

FIG. 3. (Color online) (a) χ ′′(Q,h̄ω) plotted versus Q for
six temperatures, integrated in energy between 26 and 31 meV.
(b) χ ′′(Q,h̄ω) plotted versus energy for six temperatures, integrated
in Q over the range 1.5 Å−1 < Q < 1.8 Å−1. The scattering centered
on ∼28 meV exists only at low Q < 2.5 Å−1 and at low T < 125 K,
and is therefore magnetic in origin and consistent with a weakly
dispersive spin-triplet excitation.

detailed temperature dependence of the magnetic scattering
at 27.5 and 30.5 meV (summed together). Consistent with
the SEQUOIA data, shown for comparison, this scattering
falls off with increasing temperature, evolving to a slowly
increasing, phononlike background above ∼125 K. We have
modeled the high-temperature (T > 200 K) data with the
Bose thermal occupancy factor [n(ω) + 1], which is plotted
as solid lines on top of all three data sets in both figure
panels. Figure 4(b) shows the temperature dependence of
scattering at 7 and 16.75 meV; although scattering in this
region is significantly affected by phonons, particularly the
bands near 11 and 17 meV evident in Fig. 3(b), the temperature
dependence of scattering at 7 and 16.75 meV does not fit
to a purely Bose distribution, with a low-temperature excess
consistent with magnetic scattering in the in-gap regime. Taken
together with the SEQUOIA data in Figs. 2 and 3, we have
a clear and robust signature for two distributions of magnetic
scattering at small Q: triplet excitations out of an exotic singlet
ground state in Ba2YMoO6 with an energy gap of 28 meV, and
paramagnetic-like scattering within this gap. A paramagnetic
state is recovered for T > 125 K, with no obvious signs of a
phase transition.

FIG. 4. (Color online) (a) Temperature dependence of the
background-subtracted scattering intensity at Q = 1.7 Å−1 at the
average of 27.5 and 30.5 meV, collected with the C5 triple-axis
spectrometer, showing a characteristic fall-off of the triplet intensity
toward zero at ∼125 K; normalized SEQUOIA (SNS) data at
26–31 meV is included for reference. (b) Temperature dependence
of the background-subtracted intensity at 7 meV and a 16.5–17 meV
energy transfer. The solid lines represent fits of the T > 200 K data
to the thermal occupancy factor. Excess low-temperature scattering
is attributed to either (a) the triplet excitation, or (b) magnetic states
within the gap.
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Exchange interaction and singlets

4

to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy

orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J

 

⇥ij⇤

�
Si,xy · Sj,xy �

1
4

ni,xynj,xy

⇥
, (13)

where ⇧ij⌃ represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1� (lz)2], (14)
nxy = 1� (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)

x

y

O

O

B

B�

B�

dxy

dxz

pz
px

xy

z

FIG. 1: (Color online) Upper graph: The NN AFM exchange path
(B’-O-O-B’); lower graph: The NN FM exchange path with inter-
mediate orthogonal p orbitals at O sites. Figure up to modification

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-
thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. ??. In the XY plane, this ferro-
magnetic exchange is written as

HXY
ex-2 = �J �

 

⇥ij⇤

[Si,xy · (Sj,yz + Sj,xz)

�3
4

ni,xy(nj,yz + nj,xz) + ⇧i ⌅ j⌃
⌅

, (17)

where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i ⌅ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (18)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

⌥
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

 

⇥ij⇤

⇤
�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

⌅
+ const. (19)

The minimal Hamiltonian we write down contains all three
interactions,

H = Hex-1 +Hex-2 +Hquad . (20)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

⇧
������⌥

������⌃

S̃x
i,xy = jx

i
4 �

jz
i jx

i jz
i

3

S̃y
i,xy = jy

i
4 �

jz
i jy

i jz
i

3

S̃z
i,xy = 3jz

i
4 � jz

i jz
i jz

i
3

ñi,xy = 3
4 �

(jz
i )2

3

, (21)

in which, Õ ⇥ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation.
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Si,xy and ni,xy ,
 
������↵

������⌦

S̃x
i,xy = jxi

4 � jzi j
x
i j

z
i

3

S̃y
i,xy =

jyi
4 � jzi j

y
i j

z
i

3

S̃z
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4 � jzi j
z
i j
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i

3
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4 � (jzi )

2

3

, (21)

in which, Õ ⌅ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation.

As one may notice, the Hamiltonian contains 4-spin and
6-spin terms in addition to the usual quadratic 2-spin terms
if it is expressed in terms of the effective spin moment ji.
One can view these multiple spin terms as the interaction be-
tween magnetic multipoles (quadrupole and octupole) at dif-
ferent sites. It is rather difficult to extract the properties and
obtain the ground state of this Hamiltonian. Simply replacing
the j’s by classical vectors is bound to throw away the physics
of the quantum model. In the next subsection, we are going
to discuss the symmetry properties of this Hamiltonian. In the
remaining parts of the paper, when we write down a Hamilto-
nian or interaction, we implicitly mean that it is the projected
Hamiltonian or interaction just for notational convenience.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian in Eq. (20), we need to have some understand-
ing about its symmetry properties. We start from the NN
AFM exchange interaction Hex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

�
i ji is not conserved, [Hex-1,J ] ⌥= 0. Nonetheless,

Hex-1 surprisingly has a hidden “SU(2)” symmetry. The three
generators of this global continuous symmetry are defined as
follows,

Gµ =
�

i

Gµ
i =

�

i

�
7

6
jµi � 2

3
(jµi )

3

⇥
, (22)

with µ = x, y, z. One can readily check that these generators
commute with Hex-1,

[Gµ,Hex-1] = 0, (23)

and satisfy the SU(2) algebra,

[Gµ, G⇤ ] = i�µ⇤�G
� . (24)

In addition, the Casimir operator G2 also commutes with
Hex-1. The physical meaning of these generators is easy to

see if one expresses Gx,y,z in matrix form. For a single site,

Gx
i = �1

2

⇤

⌥⇧

1
1

1
1

⌅

�⌃ =
1

2
(�⇤x)14 ⇤ (�⇤x)23 (25)

Gy
i =

1

2

⇤

⌥⇧

�i
i

�i
i

⌅

�⌃ =
1

2
(⇤y)14 ⇤ (�⇤y)23 (26)

Gz
i =

1

2

⇤

⌥⇧

�1
1

�1
1

⌅

�⌃ =
1

2
(�⇤z)14 ⇤ (⇤z)23, (27)

in which the empty matrix entries are zero and we have ex-
pressed these generators as the direct sum of two Pauli matri-
ces, one (�14) for the subspace of jzi = ±3/2 states and the
other (�23) for the subspace of jzi = ±1/2 states. One in-
tuitive way to think about these SU(2) generators is that they
transform the spin components in the jzi = ±3/2 subspace
coherently with jzi = ±1/2 subspace and this is a global sym-
metry of Hex-1.

Now we consider the other two interactions, Hex�2 and
Hquad. We find that the quadrupole-quadrupole interaction
Hquad also commutes with G. On the other hand, the ferro-
magnetic exchange interaction Hex-2 breaks this SU(2) sym-
metry; thus

[H,G] ⌃ J ⇥. (28)

For J ⇥ ⇧ J, V , we have an approximate continuous symme-
try, which can have important consequences for the excitation
spectrum of our model.

It is important to notice that because of the complication
of the Hamiltonian there might be other hidden symmetries
that we haven’t discovered. In the following sections, we are
going to explore the ground state of this Hamiltonian with the
help of the symmetry properties.

III. THE “HIDDEN ORDER” GROUND STATE

In the last section, we defined our model Hamiltonian and
analyzed its symmetry properties. In this section, we propose
a candidate ground state for this Hamiltonian. This ground
state does not have magnetic/dipolar order, but higher mag-
netic multipolar order (octupolar order). Therefore we shall
name it “hidden order” ground state. In the following we are
going to explore the properties of this candidate ground state
with the multipolar order parameters and the finite temper-
ature transition in which the multipolar orders are involved.
We will start our analysis from the more accessible case with
a strong easy-axis anisotropy along z direction, then move to
the cubic case, and finally discuss the low-lying excitation and
the finite temperature phase transition.

J ⌧ � Projecting to j=3/2 basis
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Spin-Liquid State in the S = 1/2 Hyperkagome Antiferromagnet Na4Ir3O8
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1RIKEN (The Institute of Physical and Chemical Research),
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2Department of Advanced Materials,
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A spinel related oxide, Na4Ir3O8, was found to have a three dimensional network of corner shared
Ir4+ (t2g

5) triangles. This gives rise to an antiferromagnetically coupled S = 1/2 spin system formed
on a geometrically frustrated hyperkagome lattice. Magnetization M and magnetic specific heat Cm
data showed the absence of long range magnetic ordering at least down to 2 K. The large Cm at low
temperatures is independent of applied magnetic field up to 12 T, in striking parallel to the behavior
seen in triangular and kagome antiferromagnets reported to have a spin-liquid ground state. These
results strongly suggest that the ground state of Na4Ir3O8 is a three dimensional manifestation of
a spin liquid.

PACS numbers: Valid PACS appear here

The experimental realization of a quantum spin liquid
in geometrically frustrated magnets has been one of the
biggest challenges in the field of magnetism since An-
derson proposed resonating valence bond theory [1] for
antiferromagnetically coupled S = 1/2 spins on a trian-
gular lattice. Geometrical frustration in magnets arises
from the incompatibility of local spin-spin interactions,
which gives rise to macroscopic degeneracy of the ground
state. Possible playgrounds for this include triangular,
kagome, pyrochlore and garnet lattices essentially con-
sisting of networks of triangles. In real materials, how-
ever, it is not easy to prevent spin ordering at substan-
tially lower temperatures than the Curie-Weiss temper-
ature θW. This is because the spin degeneracy can be
lifted by coupling with the other degrees of freedom such
as the orbitals, lattice and charges. Such an interplay
between the frustrated spins, orbitals and lattice, for ex-
ample, can be realized in the trimer singlet formation in
the S = 1 triangular LiVO2 [2, 3] with orbital ordering or
the spin-Jahn-Teller transition in the S = 3/2 pyrochlore
ZnCr2O4 [4]. In addition, only a minute amount of dis-
order can strongly influence the spin-liquid state in ge-
ometrically frustrated magnets and may give rise to the
formation of a glassy state of spins.

The most likely candidate for the realization of a spin-
liquid ground state has been the two dimensional kagome
antiferromagnet SrCr9pGa12−9pO19 (S = 3/2) [5, 6]. It
does not show any evidence for long range ordering down
to 100 mK, and a large and field independent magnetic
specific heat was observed which was ascribed to spin-
liquid contributions. Nevertheless, the strong spin glass-
like behavior at low temperatures instills a certain am-
biguity in identifying the spin-liquid state. Recently, a
new generation of spin-liquid compounds has emerged,
the S = 1/2 triangular magnet κ-(ET)2Cu2(CN)3 [7], an
organic Mott insulator, and the S = 1 triangular magnet

NiGa2S4 [8]. They were reported to have a spin-liquid
ground state or at least a robust liquid phase down to
100 mK. Their magnetic and thermal properties are in
striking parallel to those of SrCr9pGa12−9pO19 but the
disorder effect appears to be much weaker.
Here we report on a three dimensional analogue of

these two dimensional spin liquids. Na4Ir3O8 was first
reported as an unidentified phase in the Na-Ir-O ternary
system by McDaniel [9]. We find that it is isostructural
to Na4Sn3O8 [10] and that a S = 1/2 hyperkagome sys-
tem, consisting of low spin d5 Ir4+ ions, is realized in
Na4Ir3O8. The magnetization and specific heat measure-
ments on the ceramic samples indicate that S = 1/2 spins
are highly frustrated and remain in a liquid state down
to the lowest temperature measured.
Polycrystalline samples of Na4Ir3O8 were prepared

by a solid-state reaction. Stoichiometric amounts of
Na2CO3 and IrO2 were mixed, and the mixture was cal-
cined at 750◦C for 18 h. We added 5 % excess of Na2CO3

to compensate the loss of Na during the calcination. The
product was finely ground, pressed into a pellet, sintered
at 1020◦C for 22 h on gold foil, and then quenched in air.
Powder x-ray diffraction (XRD) data showed that the
powders were single phase. The crystal structure was
determined by performing Rietveld analysis on the pow-
der XRD data using RIETAN-2000 program [11]. Ther-
modynamic and magnetic properties were measured by a
Physical Properties Measurement System (Quantum De-
sign) and a Magnetic Properties Measurement System
(Quantum Design).
We were able to refine the powder XRD pattern with

the cubic Na4Sn3O8 structure (P4132 or P4332) [10].
The result of this refinement is summarized in Table I
and Fig. 1 (b). The structure of Na4Ir3O8, shown in
Fig. 1 (a), is derived from those of spinel oxides (AB2O4),
which can be intuitively demonstrated by rewriting the

2

Ir
(c)

(a) NaO6

IrO6

Na1
P4332P4132
(d)

Na1
Ir

(b)

in
te

ns
ity

 (a
rb

. u
ni

t)

120100806040200
2θ - Cu Kα (degree)

Na4Ir3O8 Rwp = 12.16 %
RB = 5.40 %
S = 1.45

FIG. 1: (a) Crystal structure of Na4Ir3O8 with the space
group P4132. Among the three Na sites, only Na1 site is
shown for clarity. Black and gray octahedra represent IrO6

and NaO6 respectively. The spheres inside the octahedra rep-
resent Ir and Na atoms and oxygens occupy all the corners.
(b) The x-ray diffraction pattern of Na4Ir3O8 at room tem-
perature. The crosses indicate the raw data and the solid line
indicates the spectrum calculated based on the refinement
using P4132. (c) and (d) Hyperkagome Ir and Na sublat-
tice derived from the structure of Na4Ir3O8 with the space
group P4132 (c) and P4332 (d). These two structures with
different chirality are indistinguishable by conventional x-ray
diffraction, giving the identical result in refinement.

TABLE I: Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a = 8.985 Å. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)
Ir 12d 0.61456(7) x + 1/4 5/8 1.00 0.15

Na1 4b 7/8 7/8 7/8 1.00 2.6
Na2 4a 3/8 3/8 3/8 0.75 2.6
Na3 12d 0.3581(8) x + 1/4 5/8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6

chemical formulae as (Na1.5)1(Ir3/4, Na1/4)2O4. The
B -sublattice of spinel oxides forms the so-called py-
rochlore lattice, a network of corner shared tetrahedra.
In Na4Ir3O8, each tetrahedron in the B -sublattice is oc-
cupied by three Ir and one Na (Na1). These Ir and Na
atoms form an intriguing ordering pattern as shown in
Fig. 1 (c), giving rise to a network of corner shared Ir
triangles, called a hyperkagome lattice [12]. All the Ir
sites and Ir-Ir bonds are equivalent and, therefore, strong
geometrical frustration is anticipated. Hyperkagome is
also realized in the A-sublattice of the garnet A3B5O12

but these it is distorted. It might be interesting to infer
here that there exists a chirality in this hyperkagome lat-
tice and that the two structures P4132 [Fig. 1 (c)] and
P4332 [Fig. 1 (d)] have different degenerate chiralities.
Na1.5 in Na1.5(Ir3/4, Na1/4)2O4 occupies the octahedral
A site rather than the tetrahedral A site normally occu-
pied in a conventional spinel structure [10]. We refined

6
4
2
0

S m
 (J

/K
m

ol
 Ir

)

60

40

20

0

C m
/T

 (m
J/K

2 m
ol

 Ir
)

300250200150100500
T (K)

2000

1500

1000

500

0

(a) Na4Ir3O8

(c) 

(b)

−1
(m

ol
 Ir

/e
m

u)

1

10

100

C m
/T

 (m
J/K

2 m
ol

 Ir
)

1 10 100
T (K)

Cm ∝ T2

Cm ∝ T3

12 T
8 T0 T

4 T

1.6

1.2

0.8

 (1
0-3

em
u/

m
ol

 Ir
)

0.01 T
0.1 T
1 T
5 T

FIG. 2: Temperature dependence of the inverse magnetic sus-
ceptibility χ−1 under 1 T (a), magnetic specific heat Cm

divided by temperature T (b) and magnetic entropy Sm

(c) of polycrystalline Na4Ir3O8. To estimate Cm, data for
Na4Sn3O8 is used as a reference of the lattice contribution.
Inset: (a) Temperature dependence of magnetic susceptibil-
ity χ of Na4Ir3O8 in various fields up to 5 T. For clarity, the
curves are shifted by 3, 2 and 1 × 10−4 emu/mol Ir for 0.01,
0.1 and 1 T data respectively. (b) Cm/T vs T of Na4Ir3O8

in various fields up to 12 T. Broken lines indicate Cm propor-
tional to T 2 and T 3 respectively.

the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75 % occupation fol-
lowing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect ex-
pected for 5d orbitals, it is natural for Ir4+ to have a low
spin (t2g5) state with S = 1/2. The electrical resistiv-
ity ρ of a ceramic sample at room temperature was ∼10
Ωcm, followed by a thermally activated increase with an
activation energy of 500 K with decreasing temperature.
This, together with the magnetic properties described be-
low, indicates that Na4Ir3O8 is a S = 1/2 Mott insulator
formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
χ(T ), shown in Fig. 2 (a), indicates that Na4Ir3O8 is
indeed a frustrated S = 1/2 system with a strong anti-
ferromagnetic interaction. In the χ−1 vs T plot in Fig. 2
(a), Curie-Weiss like behavior can be seen. The Curie-
Weiss fit around room temperature yields a large anti-
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FIG. 4. 23T�1
1 (left axis, black circles) and C/T from [14]

(right axis, blue squares) as a function of temperature. The
purple lines are fits. Inset: (i) The stretch exponent, �, as
described in the text as a function of temperature. (ii) The
relaxation curve (solid circles) at 1.3 K fit with a stretched
exponent (blue line, � = 0.4) and exponential fit (grey line,
� = 1).

was argued to be the signature of configurationally de-
generate phases with fluctuating order [29]. Recent LDA
calculations on model systems [37, 38] show the µ+, as a
positive charge, might induce local deformations in its en-
vironment which could a↵ect the dynamics of Ir4+ close
to the muon probe.

From the experimental results to be discussed below,
two T -regions emerge from our study: one typical of the
ideal hyperkagome, Na

4

Ir
3

O
8

, at high T and one whose
physics deviates from the ideal Hamiltonian(s) proposed,
leading to a fully frozen phase below ⇠ 7 K.

Based on our NMR data we draw the conclusion that
a bulk and static disordered spin freezing occurs at Tf

with inhomogeneous dynamics in the ground state. Bulk
spin freezing might appear to conflict with the signature
of a ZFC-FC splitting in �macro which was attributed
to ”defect” spins. This could have been interpreted as a
marginal spin glass transition implying a weak coupling
of such defects, e.g. mediated through a spin liquid back-
ground but these defect spins, which dominate the low-T
susceptibility, might act simply as a fingerprint of the
bulk physics.

In view of the 75% partial occupancy of Na [14], we
propose that some local charge disorder occurs. This cer-
tainly a↵ects the Ir4+ environments and leads to a dis-
tribution of magnetic interactions on the hyperkagome
lattice, especially if interactions are dominantly due to
direct exchange as argued in many papers [39]. Devia-
tions to equilateral interaction triangles have always led
to transitions at T ⌧ J such as observed in Volborthite

[40] and Vesignieite [41, 42] kagome-based compounds.
Digging out why a distribution of interactions could lead
to such a weak or no signature in � and C/T respec-
tively should be addressed theoretically which may help
discriminate between models proposed for this iridate.
We note that in all investigated models, the T 2 and pos-
sibly T -linear ultimate behavior of the specific heat has
played a central role. This should be now toned down
in view of the freezing evident in our data which inval-
idates the use of T < Tf thermodynamic quantities as
characteristic of the spin liquid behavior.
Above the freezing temperature, a broad range of tem-

peratures probes the e↵ects of frustration on the spin liq-
uid state since J/2Tf ⇠ 20. First, in the Tf -2 Tf range,
the increase of 1/T

1

may be interpreted as a slowing down
of magnetic fluctuations. Whether this extended range of
critical fluctuations could be explained by disorder or it
rather appears as a signature of a crossover region coin-
ciding with the maximum of the specific heat at T ⇠ 3 Tf

remains speculative. Above 3 Tf , three landmarks of the
spin liquid regime now clearly appear, the pseudo-gap
like behavior of T�1

1

, the leveling o↵ of � at 80 K con-
firmed by our shift measurements, which both add up
to the broad maximum in C/T at 24 K. Various models
have been explored which we discuss with respect to our
results:
(i) A fermionic approach naturally leading to a spinon

Fermi surface. The maximum of C/T , far too high for
a spin glass freezing [43], could be the landmark of a
crossover from a U(1) spin liquid to a Z

2

one with a
paired spinon state and line nodes in the gap below 20 K
[18]. The mixing with triplet states induced by SOC or
Dzyaloshinkii-Moriya interactions could explain why the
susceptibility keeps its Pauli-like behavior. Yet, our 1/T

1

data, if intrinsic, contradicts the existence of a gap as it
does not decrease, below the maximum of the specific
heat. Furthermore, for a Dirac U(1) spin liquid, one ex-
pects 1/T

1

⇠ T ⌘ where ⌘ is related to the shape of the
correlation function and remains unknown [44]. This is
not what is observed here since T

1

is dominated by a
constant term for T > 20 K.
(ii) The transition to metallicity, observed either under

pressure [45] or in depleted Na samples [21–24], might
indicate the proximity to a quantum critical point. In
this context, modeling has focused on the metallic rather
than insulating side [26, 27]; here, the T�dependence of
T�1

1

is a crucial test.
(iii) A 72-sites valence bond crystal has also been pro-

posed as a trial ground state [46] but, with a gap of the
order of J , is not relevant. However, a valence bond
glass state with a transition at ⇠ J/10 as argued for the
kagome lattice is worth further exploration [47]. The low-
T behavior of C(T ) might originate from the free energy
landscape typical of disordered systems such as conven-
tional spin glasses [43].
In conclusion, our T

1

data opens up the space of phys-
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(right axis, blue squares) as a function of temperature. The
purple lines are fits. Inset: (i) The stretch exponent, �, as
described in the text as a function of temperature. (ii) The
relaxation curve (solid circles) at 1.3 K fit with a stretched
exponent (blue line, � = 0.4) and exponential fit (grey line,
� = 1).

was argued to be the signature of configurationally de-
generate phases with fluctuating order [29]. Recent LDA
calculations on model systems [37, 38] show the µ+, as a
positive charge, might induce local deformations in its en-
vironment which could a↵ect the dynamics of Ir4+ close
to the muon probe.

From the experimental results to be discussed below,
two T -regions emerge from our study: one typical of the
ideal hyperkagome, Na

4

Ir
3

O
8

, at high T and one whose
physics deviates from the ideal Hamiltonian(s) proposed,
leading to a fully frozen phase below ⇠ 7 K.

Based on our NMR data we draw the conclusion that
a bulk and static disordered spin freezing occurs at Tf

with inhomogeneous dynamics in the ground state. Bulk
spin freezing might appear to conflict with the signature
of a ZFC-FC splitting in �macro which was attributed
to ”defect” spins. This could have been interpreted as a
marginal spin glass transition implying a weak coupling
of such defects, e.g. mediated through a spin liquid back-
ground but these defect spins, which dominate the low-T
susceptibility, might act simply as a fingerprint of the
bulk physics.

In view of the 75% partial occupancy of Na [14], we
propose that some local charge disorder occurs. This cer-
tainly a↵ects the Ir4+ environments and leads to a dis-
tribution of magnetic interactions on the hyperkagome
lattice, especially if interactions are dominantly due to
direct exchange as argued in many papers [39]. Devia-
tions to equilateral interaction triangles have always led
to transitions at T ⌧ J such as observed in Volborthite

[40] and Vesignieite [41, 42] kagome-based compounds.
Digging out why a distribution of interactions could lead
to such a weak or no signature in � and C/T respec-
tively should be addressed theoretically which may help
discriminate between models proposed for this iridate.
We note that in all investigated models, the T 2 and pos-
sibly T -linear ultimate behavior of the specific heat has
played a central role. This should be now toned down
in view of the freezing evident in our data which inval-
idates the use of T < Tf thermodynamic quantities as
characteristic of the spin liquid behavior.
Above the freezing temperature, a broad range of tem-

peratures probes the e↵ects of frustration on the spin liq-
uid state since J/2Tf ⇠ 20. First, in the Tf -2 Tf range,
the increase of 1/T

1

may be interpreted as a slowing down
of magnetic fluctuations. Whether this extended range of
critical fluctuations could be explained by disorder or it
rather appears as a signature of a crossover region coin-
ciding with the maximum of the specific heat at T ⇠ 3 Tf

remains speculative. Above 3 Tf , three landmarks of the
spin liquid regime now clearly appear, the pseudo-gap
like behavior of T�1

1

, the leveling o↵ of � at 80 K con-
firmed by our shift measurements, which both add up
to the broad maximum in C/T at 24 K. Various models
have been explored which we discuss with respect to our
results:
(i) A fermionic approach naturally leading to a spinon

Fermi surface. The maximum of C/T , far too high for
a spin glass freezing [43], could be the landmark of a
crossover from a U(1) spin liquid to a Z

2

one with a
paired spinon state and line nodes in the gap below 20 K
[18]. The mixing with triplet states induced by SOC or
Dzyaloshinkii-Moriya interactions could explain why the
susceptibility keeps its Pauli-like behavior. Yet, our 1/T

1

data, if intrinsic, contradicts the existence of a gap as it
does not decrease, below the maximum of the specific
heat. Furthermore, for a Dirac U(1) spin liquid, one ex-
pects 1/T

1

⇠ T ⌘ where ⌘ is related to the shape of the
correlation function and remains unknown [44]. This is
not what is observed here since T

1

is dominated by a
constant term for T > 20 K.
(ii) The transition to metallicity, observed either under

pressure [45] or in depleted Na samples [21–24], might
indicate the proximity to a quantum critical point. In
this context, modeling has focused on the metallic rather
than insulating side [26, 27]; here, the T�dependence of
T�1

1

is a crucial test.
(iii) A 72-sites valence bond crystal has also been pro-

posed as a trial ground state [46] but, with a gap of the
order of J , is not relevant. However, a valence bond
glass state with a transition at ⇠ J/10 as argued for the
kagome lattice is worth further exploration [47]. The low-
T behavior of C(T ) might originate from the free energy
landscape typical of disordered systems such as conven-
tional spin glasses [43].
In conclusion, our T

1

data opens up the space of phys-
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Na4Ir3O8 is a unique case of a hyperkagome 3D corner sharing triangular lattice which can be
decorated with quantum spins. It has spurred a lot of theoretical interest as a spin liquid candidate.
We present a comprehensive set of NMR data taken on both the 23Na and 17O sites. We show
that disordered magnetic freezing of all Ir sites sets in below T

f

⇠ 7 K, well below J = 300 K,
with a drastic slowing down of fluctuations to a static state revealed by our T1 measurements.
Above typically 2 T

f

, physical properties are relevant to the spin liquid state induced by this exotic
geometry. While the shift data shows that the susceptibility levels o↵ below 80 K, 1/T1 has little
variation from 300 K to 2 T

f

. We discuss the implication of our results in the context of published
experimental and theoretical work.

Geometric frustration has long been known as an essen-
tial ingredient to stabilize a quantum spin liquid (QSL)
state in more than one dimension (1D)[1, 2]. Since ex-
perimental realizations are rare, Herbertsmithite [3] trig-
gered a lot of excitement with its discovery in 2005. It is
the most well known example of a two dimensional (2D)
QSL where S = 1

2

Cu2+ spins form a perfect kagome lat-
tice of corner-sharing triangles with dominant Heisenberg
interactions, no sign of ordering [4, 5]and a continuum of
excitations interpreted as a fractionalization of excita-
tions into S = 1

2

spinons [6], similar to 1D S = 1

2

Heisen-
berg chains. Recently other routes to 2D QSL physics
have been explored such as frustration induced by com-
peting interactions with Kapellasite [7, 8] and, outside
of cuprates, the kagome vanadate DQVOF with S = 1

2

V4+ [9], Mo5+ double perovskite [10], and organic com-
pounds which are driven by proximity to a Mott transi-
tion [11, 12].

Currently, Na
4

Ir
3

O
8

is one of the most compelling
frustrated QSL candidate in three-dimensions (3D) [13]
where Ir4+ ions with e↵ective J

e↵

= 1

2

form a corner-
sharing lattice of triangles named ”hyperkagome” [14].
Strong spin-orbit coupling, SOC, has been identified as
an important ingredient in the Hamiltonian. Several pos-
sible theoretical scenarios have been proposed thus far,
including a classical long-ranged order-by-disorder 120o

coplanar ground state [15] which in the quantum limit
melts into a gapped QSL [16] and a gapless QSL [17, 18].
More generally, iridates appear as an ideal playground
for the study of novel physics governed by strong SOC
in competition with Coulomb repulsion, crystal field ef-
fects, and inter-site hopping. This has led theorists to
promote, for example, the Heisenberg-Kitaev model [19]
and the spin-orbit Mott insulator [20]. Na

4

Ir
3

O
8

also ap-
pears to be close to an insulator-metal transition [21–25]
and weak Mottness has been proposed as a possible sce-
nario for a spin-liquid ground state [26, 27], like in the
case of organic triangular spin-liquids [12].

The macroscopic susceptibility, �, is typical of J
e↵

= 1

2

moments with antiferromagnetic interactions J ⇠ 300 K

[14, 28]. Heat capacity, C, shows no sign of a bulk transi-
tion and has two remarkable features: at 24 K ⇠ J/10 a
broad maximum and at low temperatures C = �T +�Tn

where 2 < n < 3 [14, 21]. Both � and C suggest the pres-
ence of a gapless ground state [17, 18]. Magnetocaloric
measurements suggest a quantum critical behavior in
zero-field [21]. Although no signs of a bulk transition
exist, there is a small splitting of the field-cooled (FC)
and zero field-cooled (ZFC) magnetization at T ⇠ 6 K
[29]. Initially, this splitting was proposed to be associ-
ated with a ⇠ 1% defect or impurity term [14, 21], but
recent µSR measurements [29] suggest quasi-static short
range spin correlations appear below T = 6 K.

Probing the role of these defects on the physics of this
compound, disentangling their contribution to the sus-
ceptibility from that of intrinsic origin and revealing the
low energy spin dynamics are the central unexplored fo-
cus of the 23Na and 17O NMR studies presented in this
Letter, down to 1.2 K . After explaining the site assign-
ment and respective advantages of both probes, we are
able to study di↵erent aspects of the underlying physics.
The 17O shift points to a plateau in the local suscep-
tibility at low temperatures which may be viewed as a
partial confirmation of the predictions of [14, 28]. The
evolution of the broadening of 17O and 23Na lines reveals
a bulk transition to a frozen state at T ⇠ 7 K with a
magnetic moment, µ

Ir

⇠ 0.27µB . Relaxation data, T�1

1

,
on 23Na line confirms a phase transition at T = 7.5 K
while at high temperature, it has very little T -variation
which serves as an additional signature of the spin liquid
regime in this exotic geometry.

The synthesis and the quality assessment of our sam-
ple are detailed in [30]. NMR measurements on 23Na,
nuclear spin I = 3

2

and gyromagnetic ratio 23�/2⇡
= 11.262 MHz/T, and 17O, I = 5

2

and 17�/2⇡ =
5.772 MHz/T, were performed in a pure sample and, for
comparison, in a depleted sample (Na

4�xIr3O8

), in fixed
and variable field magnets in a range of 4 T to 11 T us-
ing home-built probes. Fourier-transformed spectra were
obtained using a standard Hahn echo pulse sequence.
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Why Ir ion behaves as a spin-1/2 ?

hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.
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FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.

6
4
2
0

S m
 (J

/K
m

ol
 Ir

)

60

40

20

0

C
m

/T
 (m

J/
K

2 m
ol

 Ir
)

300250200150100500
T (K)

2000

1500

1000

500

0

(a) Na4Ir3O8

(c) 

(b)

−1
(m

ol
 Ir

/e
m

u)

1

10

100

C
m

/T
 (m

J/
K

2 m
ol

 Ir
)

1 10 100
T (K)

Cm ∝ T
2

Cm ∝ T
3

12 T
8 T0 T

4 T

1.6

1.2

0.8

 (1
0-3

em
u/

m
ol

 Ir
)

0.01 T
0.1 T
1 T
5 T

FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
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theoriest2g orbitals in octahedral crystal field

IrO6 octahedron
t2g: xy,xz,yz
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Crystal electric field Spin-orbit coupling

j = 3/2

j = 1/2

Gang Chen, Balents PRB 2008, B.J. Kim etc, Science 2008, G. Jackeli, Khaliullin PRL 2009

h{t2g}|L|{t2g}i = �l, H
soc

= ��l · S, j = l+ S

It is interesting to look at how the magnetic moment M = L+2S = -l+2S varies.

BTW, SOC is quenched for eg orbitals.

4

2
3

|d0|
2

|d0|
2+|d|2

)Y (T ), where Y (T ) is the Yosida function, χs

is the spin susceptibility below Tc and χN is the Pauli
spin susceptibility at the normal state. Therefore χs

χN
re-

duces to 2
3 − 2

3
|d0|

2

|d0|
2+|d|2

at zero temperature. If the spin

triplet pairing dominates, χs

χN
→ 2

3 ; if the spin singlet

pairing dominates, χs

χN
→ 0. Neither of these cases are

observed in experiment, where χ changes little below Tc.
In order to explain the absence of change in χ below

20 K, we appeal to the effect of spin-orbit coupling. It
is well known that in conventional BCS singlet super-
conductors, the Knight shift hardly changes below Tc for
heavy elements such as Sn and Hg.[11] It was quickly
realized that this is due to the destruction of spin con-
servation due to the spin-orbit coupling. A clear expla-
nation was given by Anderson [12], who introduced the
notion of time reversed pairing states. Let us consider
the imaginary part of the spin response function χ′′(q,ω).
If total spin is conserved, the dynamics is diffusive and
χ′′(q,ω) will have a central peak in ω space with width
Dq2 which goes to zero as q → 0. Superconductivity
gaps out all low frequency excitations, thus removing this
central peak. By Kramers-Krong relation the real part
χ′(q = 0,ω = 0) vanishes in the superconducting ground
state. In the presence of spin-orbit coupling, the total
spin is not conserved, but decays with a lifetime τs. In
this case χ′′(q = 0,ω) has a central peak with a width 1

τs
.

The superconducting gap ∆ cuts a hole in the χ′′(ω) for
ω < ∆, but leaves the region ω ≫ ∆ intact, in agreement
with physical expectation that the high frequency region
should be unaffected by pairing. By Kramer-Kronig re-
lation, χ′ will be reduced, but if the spin-orbit coupling
is sufficiently strong such that

1

τs
≫ ∆ (7)

the reduction will be small, i.e. χs

χN
= 1−O(∆τs). Equa-

tion (7) is the criterion needed to have very little charge
in the spin susceptibility below Tc.
Let us now discuss to what extent our model may be

applicable to Na4Ir3O8. The t2g levels are split by crystal
fields due to the presence of Na by an amount of order
E3. Chen and Balents [3] made the important observa-
tion that the t2g levels may be considered as a L⃗ = 1
multiplet and distinguish between the strong and weak
coupling limits, depending on the spin-orbit energy λ. In
the strong coupling case

λ ≫ E3, (8)

the spin and orbital degrees of freedom lock to form
J⃗ = L⃗ + S⃗ and it turns out that J = 1

2 . In this case,
the direct exchange between the Ir ions gives an isotropic

Heisenberg model JS⃗i · S⃗j , if S⃗ is interpreted as J⃗ . The
g factor is 2 while superexchange via oxygen gives rise to
anisotropy and Dzyaloshinski-Moriya (DM) terms. Since

the experimentally measured g coupling is close to 2,
Chen and Balents concluded that the Na4Ir3O8 system
must be either close to weak coupling or strong coupling
in the sense of Eq.(8), and strong coupling seems more
likely, given the size of λ. Provided that the exchange
path is dominated by direct exchange, our starting point
with the isotropic Heisenberg model and the fermion rep-
resentation model remains valid, provided that the spin
labels in Eq.(2) are to be understood as Jz = ± 1

2 . The
correction terms are anisotropy and DM terms which are
expected to be of order (E3/λ)2 ≈ (g − 2)2 in this case.
These correction terms spoil the conservation of total J ,
giving rise to a decay rate analogous to 1

τs
. In the limit

∆τs ≪ 1 we again expect that the spin susceptibility
is not much affected by the onset of pairing. This may
be the case closest to experiment. We emphasize that
the criterion for strong or weak spin-orbit coupling given
by Eq.(8) is different from Eq.(7) which determines the
magnitude of the drop in χ.
In summary, we studied fermionic spin liquid states

described by trial Hamiltonian (1) on a 3D hyperkagome
lattice, and classified all possible flux states, which all
have Fermi surfaces. The broken inversion symmetry
may lead to the mixing of spin singlet and triplet states
in the spinon paired states, resulting in formation of
line nodal gaps, which provides a natural explanation to
the observed low temperature specific heat CV ∼ T 2 in
Na4Ir3O8. The strong spin-orbit coupling explains to the
observed spin susceptibility, which is more or less tem-
perature independent at temperatures below ∼ Tc. The
transition at 20 K is then interpreted as a transition be-
tween a U(1) spin liquid to a Z2 spin liquid where spinons
are paired at low temperature. This theory also predicts
the appearance of superconductivity if the Na4Ir3O8 sys-
tem can be doped.
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Fermionic alkaline-earth atoms have unique properties that make them attractive candidates for the
realization of novel atomic clocks and degenerate quantum gases. At the same time, they are attracting
considerable theoretical attention in the context of quantum information processing. Here we demon-
strate that when such atoms are loaded in optical lattices, they can be used as quantum simulators of
unique many-body phenomena. In particular, we show that the decoupling of the nuclear spin from the
electronic angular momentum can be used to implement many-body systems with an unprecedented de-
gree of symmetry, characterized by the SU(N) group with N as large as 10. Moreover, the interplay of
the nuclear spin with the electronic degree of freedom provided by a stable optically excited state allows
for the study of spin-orbital physics. Such systems may provide valuable insights into strongly correlated
physics of transition metal oxides, heavy fermion materials, and spin liquid phases.

The interest in fermionic alkaline-earth atoms [1, 2, 3, 4, 5,
6, 7, 8] stems from their two key features: (1) the presence of
a metastable excited state 3P0 coupled to the ground 1S0 state
via an ultranarrow doubly-forbidden transition [1] and (2) the
almost perfect decoupling [1] of the nuclear spin I from the
electronic angular momentum J in these two states, since they
both have J = 0. This decoupling implies that s-wave scat-
tering lengths involving states 1S0 and 3P0 are independent
of the nuclear spin, aside from the restrictions imposed by
fermionic antisymmetry. We show that the resulting SU(N)
spin symmetry (where N = 2I + 1 can be as large as 10) to-
gether with the possibility of combining (nuclear) spin physics
with (electronic) orbital physics open up a wide field of ex-
tremely rich many-body systems with alkaline-earth atoms.

In what follows, we derive the two-orbital SU(N)-
symmetric Hubbard model describing alkaline-earth atoms
in 1S0 and 3P0 states trapped in an optical lattice. We fo-
cus on specific parameter regimes characterized by full or
partial atom localization due to strong atomic interactions,
where simpler effective spin Hamiltonians can be derived.
The interplay between orbital and spin degrees of freedom
in such effective models is a central topic in quantum mag-
netism and has attracted tremendous interest in the condensed
matter community. Alkaline earth atoms thus provide, on
the one hand, a unique opportunity for the implementation
of some of these models for the first time in a defect-free
and fully controllable environment. On the other hand, they
open a new arena to study a wide range of models, many of
which have not been discussed previously, even theoretically.
We demonstrate, in particular, how to implement the Kugel-
Khomskii model studied in the context of transition metal ox-
ides [9, 10, 11, 12, 13], the Kondo lattice model [14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26] studied in context of

manganese oxide perovskites [20] and heavy fermion materi-
als [25], as well as various SU(N)-symmetric spin Hamilto-
nians that are believed to have spin liquid and valence-bond-
solid ground states [27, 28, 29, 30, 31, 32, 33, 34]. For ex-
ample, we discuss how, by appropriately choosing the initial
state, a single alkaline-earth atom species with I = 9/2 (such
as 87Sr) can be used to study experimentally such a distinc-
tively theoretical object as the phase diagram as a function of
N for all N ≤ 10.

Before proceeding, we note that, while an orthogonal sym-
metry group SO(5) can be realized in alkali atoms [35],
proposals to obtain SU(N>2)-symmetric models with alkali
atoms [36, 37] and solid state systems [11, 38] are a sub-
stantial idealization due to strong hyperfine coupling and a
complex solid state environment, respectively. In this context,
alkaline-earth-like atoms make a truly exceptional system to
study models with SU(N>2) symmetry.
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FIG. 1: Interaction parameters between g (green) and e (yel-
low) atoms loaded in the lowest vibrational state of the corre-
sponding optical lattice. Here we assumed I = 1/2, and the ar-
rows indicate the mI = ±1/2 spin states. |s, t⟩ denote the singlet
and triplet nuclear spin states of the two atoms (only one of three
triplet states - | ↑↑⟩ - is shown). The dashed circle represents anti-
symmetrization of the nuclear spin state (i.e. |s⟩). The interaction en-
ergy UX (X = gg, ee, eg+, eg−) is proportional to the correspond-
ing scattering length aX .

Many-body dynamics of alkaline-earth atoms in an optical
lattice

We begin with the Hamiltonian describing cold fermionic
alkaline-earth atoms in an external trapping potential:

H =
∑

αm

∫

d3rΨ†
αm(r)(−

!2

2M
∇2 + Vα(r))Ψαm(r) (1)

+!ω0

∫

d3r(ρe(r) − ρg(r)) +
g+eg + g−eg

2

∫

d3rρe(r)ρg(r)

+
∑

α,m<m′

gαα

∫

d3rραm(r)ραm′(r)

+
g+eg − g−eg

2

∑

mm′

∫

d3rΨ†
gm(r)Ψ†

em′(r)Ψgm′ (r)Ψem(r).

Here Ψαm(r) is a fermion field operator for atoms in internal
state |αm⟩, where α = g (1S0) or e (3P0) denotes the elec-
tronic state andm = −I, . . . , I denotes one of theN = 2I+1
nuclear Zeeman states. The density operators are defined as
ραm(r) = Ψ†

αm(r)Ψαm(r) and ρα(r) =
∑

m ραm(r). The
term Vα(r) describes the external trapping potential, which
we will assume to be an optical lattice independent of the nu-
clear spin: even for a relatively deep lattice with a 100 kHz
trap frequency, tensor and vector light shifts should be well
below 1 Hz [1]. !ω0 is the transition energy between |g⟩ and
|e⟩. Extra lasers can be used to drive transitions between |g⟩
and |e⟩ levels [1, 2]. Since we will only need these extra lasers
for system preparation, we have not included the correspond-
ing terms in the Hamiltonian.
The interaction is characterized by four s-wave scattering

lengths aX , X = gg, ee, eg+, eg−, which define four interac-
tion parameters gX = 4π!2aX/M , whereM is atomic mass.
agg, aee, and a±eg are the scattering length for two atoms in
the electronic state |gg⟩, |ee⟩, and |±⟩ = (|ge⟩ + |eg⟩)/

√
2,

respectively. As shown in Fig. 1, the fermionic antisymmetry
then forces the nuclear state to be symmetric for the only anti-
symmetric electronic state |−⟩ and antisymmetric otherwise.
Very few aX are known at the moment (see Supplementary

Information).

The independence of each of the four scattering lengths
from the nuclear spin state is essential to the fulfillment of
the SU(N) symmetry of our model (see next Section). This
independence is a consequence of the decoupling between
nuclear and electronic degrees of freedom exhibited during
the course of a collision involving any combination of g or
e states, which both have J = 0. While for the |e⟩ ≡ 3P0

atom, the decoupling is slightly broken by the admixture with
higher-lying P states with J ̸= 0, this admixture is very small
[1] and the resulting nuclear-spin-dependent variation of the
scattering lengths is also expected to be very small, on the or-
der of 10−3 (see Supplementary Information). For agg , which
does not involve state |e⟩, this variation should be even smaller
(∼ 10−9).

The interaction terms in Eq. (1) describe the most general
s-wave two-body interaction consistent with elastic collisions
as far as the electronic state is concerned and with the inde-
pendence of the scattering length from the nuclear spin. While
the assumption of elasticity for g-g and e-g collisions is well
justified, since no inelastic exit channels exist, e-e collisions
are likely to be accompanied by large losses, which means that
the magnitudes of the imaginary and real parts of the e-e scat-
tering length are likely to be comparable (see Supplementary
Information). Therefore, we focus below on those situations
where two e atoms never occupy the same site.

We assume that only the lowest band in both e and g lat-
tices is occupied and expand the field operators in terms of
the corresponding (real) Wannier basis functions Ψαm(r) =
∑

j wα(r − rj)cjαm, where c†jαm creates an atom in internal
state |αm⟩ at site j (centered at position rj). Eq. (1) reduces
then to a two-orbital single-band Hubbard Hamiltonian

H = −
∑

⟨j,i⟩α,m

Jα(c
†
iαmcjαm + h.c.) +

∑

j,α

Uαα

2
njα(njα − 1)

+V
∑

j

njenjg + Vex

∑

j,m,m′

c†jgmc†jem′cjgm′cjem. (2)

Here Jα = −
∫

d3rwα(r)(− !
2

2M∇2 + Vα(r))wα(r− r0) are
the tunneling energies, r0 connects two nearest neighbors,
h.c. stands for Hermitian conjugate, njαm = c†jαmcjαm, and
njα =

∑

m njαm. The tunneling is isotropic, which is a cru-
cial difference between this model and its analogues in solid
state systems with orbital degeneracy [9]. The sum ⟨j, i⟩ is
over pairs of nearest neighbor sites i, j. V = (U+

eg + U−
eg)/2

and Vex = (U+
eg − U−

eg)/2 describe the direct and exchange
interaction terms. The onsite interaction energies are Uαα =
gαα

∫

d3rw4
α(r) and U±

eg = g±eg
∫

d3rw2
e(r)w

2
g(r). Constant

terms, proportional to
∑

j njα, are omitted in Eq. (2). Exper-
imental control over the parameters in Eq. (2) will allow us to
manipulate the atoms (see Methods).
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then forces the nuclear state to be symmetric for the only anti-
symmetric electronic state |−⟩ and antisymmetric otherwise.
Very few aX are known at the moment (see Supplementary
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The independence of each of the four scattering lengths
from the nuclear spin state is essential to the fulfillment of
the SU(N) symmetry of our model (see next Section). This
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nuclear and electronic degrees of freedom exhibited during
the course of a collision involving any combination of g or
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Information). Therefore, we focus below on those situations
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FIG. 3: The ground-state phase diagram for the SU(N=2) Kugel-
Khomskii model restricted to two wells, left (L) and right (R). a,
The phase diagram for Tz = −1 (two g atoms). |gg⟩ = |gg⟩LR.
|s⟩ and |t⟩ are spin singlet and triplet states, respectively. b, The
phase diagram for Tz = 0 (one g atom and one e atom). |Σ⟩ =
1

√
2
(|eg⟩LR − |ge⟩LR) and |τ ⟩ = 1

√
2
(|eg⟩LR + |ge⟩LR) are anti-

symmetric and symmetric orbital states, respectively. See Supple-
mentary Information for a detailed discussion of both of these dia-
grams.

acts on, has nie and nig constant for all i, which not only
forces κ̃ij

ge = λ̃ij
ge = 0 but also allows one to ignore the con-

stant κij
α and κij

ge terms. We now discuss two special cases of
H(p,q) shown in Fig. 2b. A third case, (p, q) = (1, 1), which
reduces for N = 2 to the spin-1 Heisenberg antiferromagnet
is discussed in the Supplementary Information.
(1) In the case of one atom per site, (p, q) = (1, 0). H(p,q) is

then a generalization to arbitrary N of the SU(N = 2) Kugel-
Khomskii model [9, 13], and we rewrite it as (see Supplemen-
tary Information)

H(1,0) =
∑

⟨i,j⟩

[

2(κ̃ge + λ̃geS
2
ij)(T

x
i T

x
j + T y

i T
y
j ) + λgeS

2
ij

−[A+BS2
ij ](T

z
i T

z
j +

1

4
) + h(1− S2

ij)(T
z
i + T z

j )
]

, (6)

where S2
ij =

∑

mn S
n
m(i)Sm

n (j) is +1 (−1) for a symmetric
(antisymmetric) spin state, A = 2κge− κe− κg, B = 2λge +
κe + κg, and h = (κe − κg)/2. The N = 2 Kugel-Khomskii
Hamiltonian is used to model the spin-orbital interactions (not
to be confused with relativistic spin-orbit coupling) in transi-
tion metal oxides with perovskite structure [13]. Our imple-
mentation allows to realize clean spin-orbital interactions un-
altered by lattice and Jahn-Teller distortions present in solids
[13].
To get a sense of the competing spin and orbital orders

[10, 11, 12] characterizing H(1,0), we consider the simplest
case of only two sites (L and R) and N = 2 (with spin states
denoted by ↑ and ↓). To avoid losses in e-e collisions, we set
Uee = ∞ (see Supplementary Information). The double-well
ground-state phase diagram for T z = 1 (two e atoms) is then
trivial, while the T z = −1 (two g atoms) and T z = 0 (one g
atom and one e atom) diagrams are shown in Fig. 3. One can
see that, depending on the signs and relative magnitudes of the
interactions, various combinations of ferromagnetic (triplet)
and antiferromagnetic (singlet) spin and orbital orders are fa-

ba

1

6
5
4
3
2
1

65432
- Neel - VBS
- possible critical
  spin liquid

FIG. 4: Probing the phases of the SU(N) antiferromagnet on a 2D
square lattice. a shows the phase diagram for the case nA + nB =
N . Some points on this diagram have been explored in earlier nu-
merical studies [29, 30, 31] and are marked according to the ground
state obtained: Neel (circles), columnar-valence-bond solid (VBS)
[shown schematically in b] (squares), and possibly critical spin liq-
uid (triangle) [30, 31]. Since for sufficiently large N quantum fluc-
tuations tend to destabilize long-range magnetic ordering, it is likely
that VBS ordering characterizes the ground state for all N > 4 (i.e.
above the wavy line).

vored. In the Methods, we propose a double-well experiment
along the lines of Ref. [39] to probe the spin-orbital interac-
tions giving rise to the T z = 0 diagram in Fig. 3b. Multi-well
extensions of this experiment may shed light on the model’s
many-body phase diagram, which has been studied forN = 2
and mostly at mean-field level or in special cases, such as in
one dimension or in the presence of enhanced symmetries (see
e.g. [10, 11, 12]).
(2) In order to study SU(N) spin physics alone, we con-

sider the case of g atoms only. On a bipartite lattice with
sublattices A and B, we choose A sites to have nA < N
atoms [(p, q) = (nA, 0)] and B sites to have nB < N atoms
[(p, q) = (nB , 0)]. This setup can be engineered in cold atoms
by using a superlattice to adjust the depths of the two sublat-
tices favoring a higher filling factor in deeper wells. H(p,q)

then reduces to

H(p,0) =
2J2

gUgg

U2
gg − (Ugg(nA − nB) +∆)2

∑

⟨i,j⟩

S2
ij , (7)

where ∆ is the energy offset between adjacent lattice sites.
The coupling constant can be made either positive (antifer-
romagnetic) or negative (ferromagnetic) depending on the
choice of parameters [39]. Three body recombination pro-
cesses will likely limit the lifetime of the atoms when nj ≥ 3
(see Supplementary Information).
We focus on the 2D square lattice in the antiferromag-

netic regime. The case nA + nB = N shares with the
SU(2) Heisenberg model the crucial property that two ad-
jacent spins can form an SU(N) singlet, and has thus been
studied extensively as a large-N generalization of SU(2) mag-
netism [27, 28]. Fig. 4a shows the expected phase diagram
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].
Specifically, we consider the large-U (insulating) limit

of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable form not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.
It is convenient to define the model in terms of f †

rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr′⟩

Sαβ(r)Sβα(r
′), Sαβ(r) = f †

rαfrβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †
rαfrα = m. Study of correction terms arising away
from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a

17

VII. DISCUSSION

We analyzed a variety of SU(N) symmetric Heisen-
berg models in two dimensions on the square lattice and
gave arguments that topologically ordered spin liquids
are among their ground states. In view of their potential
realization with alkaline earth atoms placed on optical
lattices, we now summarize what we know about realis-
tically achievable SU(N) Heisenberg models. Following
that discussion, we conclude by mentioning some direc-
tions for future study.
The Heisenberg models with nc = 1 can be obtained

simply as a large-U limit (Mott insulator phase) of a Hub-
bard model representing alkaline earth atoms hopping on
a lattice with m atoms (in their ground electronic state
g) per site. Such Heisenberg models are within the reach
of experiment.28,31 The main issue is temperature, since
the achieved temperature in experiments is in the range
t2/U < kBT < U , and not kBT < t2/U (t is the Hub-
bard hopping) necessary for observing effects of magnetic
exchange. Yet this is similar to the issues encountered
in studying the SU(2) Hubbard model with cold alkali
atoms, and currently a significant amount of effort is be-
ing spent trying to devise techniques to lower the tem-
perature of Mott insulators. Assuming this is done, the
study of the nc = 1 Heisenberg model will be possible in
the future.
We summarize what we know about the nc = 1 Heisen-

berg model in Fig. 6. On the horizontal axis of this figure,
we plot m, the number of atoms in the same electronic
state g per site. On the vertical axis we plot k, which is
k = N/m. The dashed-dotted line represents roughly the
curve km = 10. The significance of this curve lies in the
fact that km = N and N = 10 is the largest experimen-
tally achievable N . Therefore, all the points on the plot
which lie above the curve km = 10 cannot be reached
experimentally while those below the curve can. The ac-
tual curve on Fig. 6 is corrected to take into account that
k and m are integers.
We emphasize that any N ≤ 10 is within reach of an

experiment. Indeed, working with 87Sr, for example, one
can selectively populate its nuclear spin states so that
only a subset of those are populated with a total number
of populated states equal to N .21 At the same time, we
expect that m = 1 and m = 2 columns of the figure are
easiest to reach, as higher m will likely experience losses
due to 3-body recombination.
At m = 1 and k = 2, the ground state is of course the

Néel state. There is also evidence for magnetic order at
m = 1, k = 337 and at m = 1 and k = 4.40 For k = 2 and
m ≥ 3, it is believed that the ground state is a valence
bond solid. This is established by quantum Monte Carlo
for m = 3, 4,104 and is proven in the limit m → ∞.43

In addition to that, in this paper we proved that at
m → ∞, k < 5, the ground states are valence cluster
states, of which valence bond solid is a particular exam-
ple. Finally, we have shown that at k > 5 and at least for
k ≤ 8, and possibly for k > 8 as well, and at m → ∞, the

k
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FIG. 6. Phase diagram of the SU(N) Heisenberg model in
two dimensions on the square lattice with nc = 1 and with
N = mk. In terms of an underlying Hubbard model, m is
the number of fermions per site, while k is the inverse filling.
Regions where there is substantial evidence for a given ground
state – or where the ground state is known – are shaded. The
Abelian chiral spin liquid (ACSL) and valence cluster state
(VCS) regions on the right are established by our large-N
analysis; the boundary between these regions in large-N is
shown by a dashed line. For k = 2, m = 1 the Neel state is the
well-known ground state. There is also evidence for magnetic
order at k = 3, m = 137 and k = 4, m = 1.40 Valence-bond
solid (VBS) order (which is a type of VCS) was found for
k = 2 and m = 3, 4.104 The dashed-dot line separates the
range of parameters beyond the reach of current experiments
(above and to the right of the line) and the range within the
reach of the experiments (below and to the left of the line).
The experimentally relevant part of the phase diagram with
the greatest potential for novel ground states – in particular,
the Abelian chiral spin liquid – is indicated with a question
mark.

ground state is the Abelian chiral spin liquid. The rest
of the phase diagram remains to be filled in. Of course
other phases not discussed here may well be present, and
there is some evidence this is the case, in particular at
k = 2, m = 2.104

The experiments will be conducted at m = 1 or m = 2,
and at k as large as 10. The ground state of the Heisen-
berg model under these conditions is not known; this is
represented by a question mark in Fig. 6. We believe it is
unlikely that the Néel state can survive to large k, even
at m = 1. Indeed, as discussed earlier, the amount of
frustration increases with increasing k.35 What happens
in this region needs to be investigated further. Unfortu-
nately, numerical study is difficult, especially since these
models [except when k = 2 (Ref. 104)] suffer from the
quantum Monte Carlo minus sign problem, even on bi-
partite lattices, in both world-line and fermion determi-
nantal approaches. However, it may be possible to obtain
useful information from analytical and density matrix
renormalization group studies of quasi-one-dimensional
systems. Ultimately, experiment will need to tell us what
happens in this part of the phase diagram. An intrigu-
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Mott Insulators of Ultracold Fermionic Alkaline Earth Atoms:
Underconstrained Magnetism and Chiral Spin Liquid
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We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models
with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins
are required to form a singlet. On the square lattice, the classical ground state is highly degenerate
and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with
topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral
spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

An exciting thread in the study of strongly interact-
ing cold atomic gases is the notion that such systems
can be used as quantum simulators of strongly correlated
materials [1]. Simple model systems can be engineered
with a high degree of control, and studied as analogs of
solid state materials. On the other hand, in some cold
atom systems the simplest realizations of strong correla-
tion physics may have no solid state analog. This raises
the exciting prospect of systems and phenomena that are
thus far unanticipated.

Recently, it has been argued that fermionic alkaline
earth atoms (AEA) in optical lattice potentials can real-
ize a variety of model correlated systems, many of which
lack solid state analogs and are relatively unexplored the-
oretically [2]. Fermionic AEA have nuclear spins as large
as I = 9/2 for 87Sr; due to lack of hyperfine coupling
with the electronic ground state (1S0), the nuclear spin is
essentially decoupled from the electronic degrees of free-
dom. This decoupling, also present in the lowest elec-
tronic excited state (3P0), implies that the s-wave scat-
tering length is independent of nuclear spin, and leads
to an enlargement of the spin rotation symmetry from
SU(2) to SU(N), where N = 2I + 1 [2, 3]. This observa-
tion, together with recent progress in and prospects for
manipulating AEA [4], opens the door to experimental
studies of SU(N) magnetism. We shall see here that the
enlarged symmetry has striking physical consequences.

In this Letter, we study the simplest antiferromagnetic
square-lattice SU(N) Heisenberg model that can be re-
alized with AEA in the electronic ground state. We find
that, as in some geometrically frustrated systems, for
N ≥ 3 magnetic order is underconstrained and there
is a large degeneracy of classical ground states. Here,
the degeneracy arises not from geometrical frustration
but from the structure of the SU(N) exchange interac-
tion, and is present on any lattice for large enough N .
This result indicates that magnetic order is unlikely, so
we focus instead on non-magnetic ground states, which
are controllably accessed in a large-N limit, where we
find the ground state is the long-sought chiral spin liquid
(CSL) [5, 6, 7, 8]. The CSL spontaneously breaks time-

reversal (T ) and parity (P) symmetries, and is closely
related to fractional quantum Hall liquids, sharing their
remarkable topological properties [9].
Specifically, we consider the large-U (insulating) limit

of a Hubbard model with m < N atoms per site. N ≤ 10
can be realized with 87Sr by populating a subset of the
nuclear spin levels [2]. For m = 1, the spin at each site
transforms in the fundamental representation of SU(N),
and N sites are needed to form a singlet, a crucial differ-
ence from SU(2) magnetism. While m = 1 best avoids
three-body losses, we also consider m = N/k for integer
k ≥ 2; in this case k sites are needed to form a singlet.
Such models, which may be realizable form not too large,
allow us to consider a solvable large-N limit, where N is
taken large with k fixed. This is a large-N generalization
of the model with m = 1 and N = k, as the number of
sites needed to form a singlet is preserved.
It is convenient to define the model in terms of f †

rα

(α = 1 . . . , N), which creates a fermion on the square
lattice site r. The Hamiltonian is

H = J
∑

⟨rr′⟩

Sαβ(r)Sβα(r
′), Sαβ(r) = f †

rαfrβ , (1)

where the sum is over nearest-neighbor bonds, and J
is the exchange energy. We have a local constraint,
f †
rαfrα = m. Study of correction terms arising away
from the large-U limit will be deferred to future work.
Most studies of SU(N) magnetism have focused on

models where two sites can be combined to form a sin-
glet. The most-studied cases are the k = 2 model defined
above [10], and models defined by placing conjugate rep-
resentations on the two sublattices of a bipartite lattice
[11]. Spin-3/2 alkali fermionic atoms exhibit an enlarged
SO(5) symmetry, where also two sites can be combined to
form a singlet [12]. Finally, we note that the models we
discuss here have been solved exactly in one dimension for
m = 1 [13]. In two dimensions, the N = 4, m = 1 model
has been studied in the context of orbitally-degenerate
Mott insulators, although there the SU(4) symmetry re-
quires substantial fine-tuning [14]. On the cubic lattice,
plaquette states (see Fig. 1c) have been studied using a
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Abstract

In systems with many local degrees of freedom, high-symmetry points in the phase
diagram can provide an important starting point for the investigation of their
properties throughout the phase diagram. In systems with both spin and orbital
(or valley) degrees of freedom such a starting point gives rise to SU(4)-symmetric
models. Here we consider SU(4)-symmetric “spin” models, corresponding to
Mott phases at half-filling, i.e. the six-dimensional representation of SU(4). This
may be relevant to twisted multilayer graphene. In particular, we study the
SU(4) antiferromagnetic “Heisenberg” model on the triangular lattice, both in the
classical limit and in the quantum regime. Carrying out a numerical study using
the density matrix renormalization group (DMRG), we argue that the ground
state is non-magnetic. We then derive a dimer expansion of the SU(4) spin
model. An exact diagonalization (ED) study of the e↵ective dimer model suggests
that the ground state breaks translation invariance, forming a valence bond solid
(VBS) with a 12-site unit cell. Finally, we consider the e↵ect of SU(4)-symmetry
breaking interactions due to Hund’s coupling, and argue for a possible phase
transition between a VBS and a magnetically ordered state.
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Emergent Fermi surface in a triangular-lattice SU(4) quantum antiferromagnet
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Motivated by multiple possible physical realizations, we study the SU(4) quantum antiferromagnet
with a fundamental representation on each site of the triangular lattice. We provide evidence for a
gapless liquid ground state of this system with an emergent Fermi surface of fractionalized fermionic
partons coupled with a U(1) gauge field. Our conclusions are based on numerical simulations using
the density matrix renormalization group (DMRG) method, which we support with a field theory
analysis.

PACS numbers:

Realizations of quantum spin liquids — quantum
phases of spins whose ground state is not described by lo-
cal ordering patterns but instead characterized by exotic
quantum entanglement — have been highly sought-after
since such phase was first hypothesized [1]. Within the
broad family of spin liquids, a particularly elusive cate-
gory are gapless spin liquids that exhibit gapless excita-
tions on an extended region in the momentum space, akin
to the Fermi surface in ordinary metals. The known real-
izations of such gapless phases in systems of SU(2) spins
usually require complicated Hamiltonians beyond the
Heisenberg interaction, such as ring exchange terms [2–9],
staggered chiral three-spin interactions [10, 11], or anti-
ferromagnetic Kitaev interactions in an external field [12–
14].

Here, we report strong evidence for a gapless liquid
with an emergent Fermi surface of fractionalized par-
tons in the nearest-neighbor SU(4) Heisenberg quantum
antiferromagnet on the triangular lattice with a funda-
mental representation on each site. While SU(N) an-
tiferromagnets were suspected to harbor exotic phases
already in the early days of the field [15–21] and recent
work has demonstrated the presence of a Dirac spin liq-
uid in the same model on the honeycomb lattice [22],
our motivation for studying this model stems primar-
ily from the availability of several possible experimen-
tal realizations. In transition metal oxides, spin and or-
bital degrees of freedom may be described by an e↵ec-
tive SU(4) quantum magnet [23–25]. Cold atomic gases
formed by atoms with large hyperfine spin component
can form e↵ective SU(N) quantum antiferromagnet [26],
and spin-3/2 atoms can naturally form Sp(4) or SU(4)
quantum antiferromanget [27–29] when only the s-wave
scattering between the atoms is considered. Most re-
cently, it was also proposed that some of the 2d sys-
tems with Moiré superlattices may be described by an
approximate SU(4) quantum antiferromagnet [30–34] at
commensurate fillings where correlated insulators were
observed recently [35–37].

In the following, we will first introduce a parton mean-
field construction for a candidate liquid state for the
model. We then carefully examine the properties of
this state when placed on quasi-one-dimensional cylin-

der geometries, including the e↵ects of symmetry-allowed
perturbations specific to these geometries. These will
also be the target of unbiased numerical simulations us-
ing the density-matrix renormalization group (DMRG)
method [38, 39]. We find our numerical results to be in
agreement with predictions from the field theory that de-
scribes the proposed liquid state. For two cases of even
circumference, we find gapped states with ordering pat-
terns which are consistent with the one-dimensional field
theory that contains relevant symmetry-allowed pertur-
bations deviating from a gapless fixed point; while in a
case with odd circumference, where there are no relevant
translation-symmetric operators, we find a gapless state
whose structure factor exhibits sharp features consistent
with the field theory. We thus conclude that our pro-
posed theory describes the system accurately in quasi-
one-dimensional geometries and thus likely also in the
two-dimensional limit.
Model- We study the Kugel-Khomskii model [40] on

the two-dimensional triangular lattice at the SU(4) sym-
metric point

H = J
X

hiji
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· V
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+
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2

◆
, (1)

where J > 0 is an antiferromagnetic coupling, and S
i

(V
i

) denote the S = 1/2 spin (orbital) degrees of freedom
at site i. We denote the three Pauli matrices that act
on the two-fold spin (orbital) indices as �a (⌧a), such
that Sa = �a/2 (V a = ⌧a/2) with a = x, y, z. We can
view the degrees of freedom on each site as a pseudospin
in the fundamental representation of SU(4), with the 15
operators {�a, ⌧ b, �a⌧ b}

a,b=x,y,z

being the 15 generators
of SU(4). The Hamiltonian Eq. (1) can be interpreted as
an SU(4) antiferromagnetic Heisenberg model.

The Hamiltonian Eq. (1) is invariant under the global
SU(4) pseudospin rotation symmetry, as well as the spa-
tial symmetries of the triangular lattice including the
translation symmetries T1,2, the mirror symmetry M and
the 6-fold rotation symmetry C6 as shown in Fig. 1(a).
In addition, as a spin-orbital system, the model naturally
admits a time-reversal (TR) symmetry T whose action
depends on the physical nature of the orbital degrees of
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May be relevant to twisted bilayer graphene

more delocalized in local Hilbert space 
even with a large local Hilbert space 



Summary

This field is quite rich.  
 
There is no general guiding principle.  


