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"Big picture”: thermal transports in Mott insulators

Low-T regime:
proximate to
ground state

Intermediate-T:
correlated/cooperative
paramagnet

High-T regime:
trivial paramagnet

various g-particle

description
O Transport of “un-particles” T
may provide understanding
about the interaction between [(XEINR[a)F; - FHL
RRES RS RS MR local moments with ETH IR crude IR ##]

There are some methods, but
not conclusive at all.



Transports of magnon quasiparticles

Observation of the Magnon Hall Effect L u2Vv207

Y. Onose,™?* T. Ideue,* H. Katsura,® Y. Shiomi,>* N. Nagaosa,** Y. Tokura™?*
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Fig. 1. The crystal structure of Lu,V>0; and the magnon Hall effect. (A) The V/ sublattice of Lu,V,0, which is hii ~ —Jy S(e_i¢ij bib. + ei®iipt b))+ | JS + E (bTbi +bip ).
composed of corner-sharing tetrahedra. (B) The direction of the Dzyaloshinskii-Moriya vector D;; on each J J v J 6 ’ A
bond of the tetrahedron. The Dzyaloshinskii-Moriya interaction Dj; - (S; x S;) acts between the i and  sites.

(€) The magnon Hall effect. A wave packet of magnon (a quantum of spin precession) moving from the hot DMI works as vector gauge potential for magnons

to the cold side is deflected by the Dzyaloshinskii-Moriya interaction playing the role of a vector potential.



Transports of magnon quasiparticles
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1. transport is from thermally activated magnons
2. Thermal Hall is from magnon Berry curvature
3. kxy/T ->0 as T ->0 due to the magnon gap in many cases.

The semiclassical language is effective Lorentz force.
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Giant thermal Hall conductivity in the pseudogap
phase of cuprate superconductors

G. Grissonnanche'*, A. Legros"?, S. Badoux', E. Lefrancois', V. Zatko!, M. Lizaire!, F. Laliberté!, A. Gourgout', J.-S. Zhou?,
S. Pyon*°, T. Takayama*®, H. Takagi*®’8, S. Ono?, N. Doiron-Leyraud' & L. Taillefer’!0*
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Fig. 1 | Phase diagram and thermal Hall conductivity of cuprates.

a, Temperature-doping phase diagram of Nd-LSCO, Eu-LSCO and LSCO,
showing the antiferromagnetic phase below the Néel temperature Ty and
the pseudogap phase below T* (ref. ?°), which ends at the critical doping
p* = 0.23 for both Nd-LSCO (ref. !7) and Eu-LSCO (ref. *°). For LSCO,

p* ~ 0.18 (ref. *°). Short-range incommensurate spin order occurs below
Tin» as measured by uSR on Nd-LSCO (squares®!), Eu-LSCO (circles®!) and
LSCO (triangles®). The coloured vertical strips indicate the temperature
range where the thermal Hall conductivity «,,/T at the corresponding
doping decreases towards negative values at low temperature (see b).

b, Thermal Hall conductivity x,,/T versus temperature in a field H = 15T,
for four materials and dopings as indicated, colour-coded with the vertical
strips in a. On the right vertical axis, the magnitude of x,,/T is expressed
in fundamental units of thermal conductance per plane (kg?/h).
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Fig. 2 | Thermal and electrical Hall conductivities of four cuprates.
Data panels show thermal Hall conductivity x,, plotted as xy,/T (red),
and electrical Hall conductivity oy, expressed as Lyoy, (blue), where

Lo = (w*/3)(kg/e)?, as a function of temperature: the material, its doping
p and field H are indicated. a, b, Nd-LSCO; ¢, sketch of the thermal Hall
measurement set-up (see Methods); d, Bi2201; e, Eu-LSCO; and f, LSCO.

(For Nd-LSCO p = 0.20 (b), o, was measured'” at H =33 T.)

In Nd-LSCO at p = 0.24, x,,/T and Loy, are both positive at all temperatures
and they track each other, satisfying the Wiedemann-Franz law in the T=0
limit. By contrast, for p < p* in all four materials, x,,/T falls to large and
negative values at low temperature, whereas Loy, remains positive.



Sign reversal across p*
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Fig. 3 | Thermal Hall conductivity across the pseudogap critical point
p*. Shown is thermal Hall conductivity x,,/T for Nd-LSCOin H=18 T

(a) and Eu-LSCO in H = 15 T (b), at dopings as indicated, on both sides
of the pseudogap critical point p* = 0.23. In both materials, ., becomes
negative at low temperature when p < p*.

Linearly increase with field
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Extended Data Fig. 4 | Magnetic field dependence of k., in LSCO.
a, Field dependence of the thermal Hall conductivity of LSCO at p = 0.06,
plotted as r,, versus H at various temperatures, as indicated (data points).

The dependence of #,, on H is linear at high T and it becomes sublinear at
lower T. b, Deviation from linearity displayed by plotting x.,/(TH) versus
T at four different fields H, as indicated (data points).



Table 1 | Thermal Hall conductivity in various insulators

Material fiy (MW K=1 m~1) ke (W K= m~1) | Akxx] (WK1 m=1) | Ak Fixx | T (K) H (T Reference
La,CuOg4 —38.6 124 ~0.06 ~0.005 20 15 This work
LSCO -30.0 5.1 ~0.02 ~0.004 15 15 This work
Eu-LSCO —13.2 4.5 ~0.015 ~0.003 15 15 This work
pyrochlore FM <=u2V20; 1.0 0.75 ND ND 50 9 28
FeaMo30Og 24 9 5 0.55 45 14 3
(Fe,Zn),Mo30g 24 10 3.2 0.32 30 9 3
3¢ :ocggr%cgll_ore(_ Th,Ti,07 1.2 0.37 0.12 0.32 15.5 8 12
RuCls 8 15.5 0.62 0.04 20 15 4
2d Kitaev QSL ¢ gy, 35 8 0.45 0.055 35 16 23
2d kagome QSL <= Ca kapellasite 1.1 0.2 ND ND 16 15 6

2d honeycomb € BasCuSb20q 0.008 0.07 0.0035 0.05 5 15 20

. Maximal value of the thermal Hall conductivity xy, (second column) in various insulators (first column), compared to our three cuprates (the first three entries, namely, La,CuOg4, LSCO p = 0.06 and
or trlangl'“ar QSL Eu-LSCO p = 0.08), measured at temperature T and field H as indicated (columns 6 and 7 respectively): the ferromagnet LuoV,07 (ref. 28); the multiferroic ferrimagnets FeoMozOg and (Feg.g75Zn0.125)2
MozOsg (ref. 3); the spin-ice material ThoTioO (ref. 12); and the spin-liquid candidates RuCls (refs 423), Ca kapellasite® and BazCuSb,0q (ref. 2). We also list the thermal conductivity s, measured at
the same temperature, in zero field (third column). The change induced in ky by the field, Aryx = rx(H) — kxx(0), is given in absolute and relative terms (fourth and fifth column, respectively). ND, not
determined.

Puzzle of experiments

Most striking is large thermal Hall effect in the Mott insulating phase [with no doping].
Thermal Hall transport is from the charge neutral particles/excitations in the Mott phase.

Thermal Hall effect kxy/T is as large as a quantized one.



Help us to understand

What is really the “parent” Mott state of high-Tc SC ?

What is inside the soup of excitations in the underdoped regime?



Magnon does not work

Quote from Consideration of Thermal Hall Effect in Undoped Cuprates

Jung Hoon Han,!>* Jin-Hong Park,! and Patrick A. Lee? T

on the whole is an attempt to fit the observation. On
the experimental side, the renormalized spin-wave theory
does a good job in accounting for the magnetic excita-
tions in the square-lattice antiferromagnet, as revealed
for instance in recent experiments [49, 50]. On the other
hand, some high-energy features in the magnetic excita-
tion are not fully explained within the spin-wave theory
alone [49, 50], which in turn prompted speculations about
residual spinon excitations in the Heisenberg model [51].
ior under the magnetic field. In the spin-wave scenario,
a magnon gap inevitably opens and suppresses magnon
contribution to transport. For the spinon-based scenario,

This paper was written in a very honest way.



The story of Subir’s theory

1. The Mott insulator Neel state is proximate to Neel-VBS transition.
2. This DQCP is likely dual to Dirac fermions [recent theory development].

3. A sizable scalar spin chirality from magnetic field generates a Dirac mass
and convert the system into a chiral spin liquid.

4. The field could drive a transition from Neel to Neel+CSL state.

Predictions: chiral edge states? surface sheath state?
Neel to Neel+CSL transition driven by magnetic field, this topological transition has
some interesting properties.

?issues: 1. whether the system is proximate to Neel-VBS transition?
2. whether the field coupling to scalar spin chirality is large enough to
take care of the experiments?



Enhanced thermal Hall effect in the square-lattice

Néel state

Rhine Samajdar©’, Mathias S. Scheurer©’, Shubhayu Chatterjee ®2, Haoyu Guo®?, Cenke Xu®?3

and Subir Sachdev®™

J/d,

Fig. 1| Schematic of proposed phase diagram of H,+ H; at B, =0. (See
Fig. 3a for a phase diagram with non-zero B,.) By varying the first, J,

and second, J,, nearest-neighbour exchange interactions and the orbital
coupling J, in equation (2), the antiferromagnet on the square lattice
shows phases with combinations of Néel, VBS and chiral spin liquid (CSL)
topological order. The phase boundaries are presumed to meet at an
SO(5)-symmetric (near) critical point at which J, is a relevant perturbatio
and the phase boundaries all scale as J, ~ |/, — 12C|’1”/ﬂz; we expect

A/ 4,>1. Here, we imagine starting from the Néel state at zero magnetic
field (J,=0), close to the boundary of the VBS order such that a small
value of field-induced J, can already drive the system close to the phase
boundary with Néel + CSL (indicated by the red arrow). The existence

of an SO(5) critical point is not a precondition for a continuous Néel to
Néel + CSL transition.

A
We are interested in spin S=1/2 antiferromagnets with spin
~ CSL with operators S; on the sites i of the square lattice and Hamiltonian
- semion topological order H=H,+ H,. The first term has the form
. VBS
> +CSL
Néel + CSL H, :Z]ijsi.str 1)
\ i<j
Néel VBS
1 - Hp=J, ) Si-(SxS)— > Bz-S, (2)
A i

tesimal J, is a relevant perturbation. The phase diagram we propose
for the square-lattice /,—J,—J, antiferromagnet is summarized in
Fig. 1, and the critical spin liquid is realized by the deconfined criti-
cal point at /|, =0 between the Néel and valence bond solid (VBS)

‘CSO(S) = il/?uyﬂ (aﬂ - iA/t)l//a + m)(li/ul//a (8)

where a=1, 2 is the flavour index.

The SO(5) symmetry is apparent after we express Lso(s) in terms of
Majorana fermions. The fermion mass m,J, is also SO(5) invariant and is a
perturbation on the putative SO(5)-invariant Néel-VBS critical point at m,=0. It
is plausible that m, is a relevant perturbation on such a critical point (with scaling
dimension 4,>0); then an infinitesimal J, will be sufficient to drive the critical
antiferromagnet into the chiral spin liquid phase. If the Néel-VBS transition is
weakly first-order, then a very small value of ], will be sufficient. Tuning away from

This proximity to Neel-VBS is independent from Neel-Neel+CSL.



Mean-field theory for Neel-Neel+CSL -
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Neel order is taken as a mean-field treatment.
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Neel-Neel+CSL transition
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Fig. 3 | Phase diagram and thermal Hall conductivity of spinon mean-field theory. a, The two different phases of H; in equation (3) are shown as a
function of it, (see Fig. 2a) and |B,|. Here, we take N = 0.5Z and measure all energies in units of t,. As discussed in the main text, it, is induced by the
orbital coupling of the magnetic field. Both t, and |B,| are linear functions of the applied magnetic field, and the dashed purple lines show three possible
trajectories for which we plot the field dependence of k,, in c-e for different T. b, Temperature dependence of the mean-field «,, as t, is tuned across the
phase boundary; the corresponding discrete values of |B,| and t, are indicated by green dots in a. The quantized value of the ordinate in the topological
phase is /3, and the bifurcation point as T approaches O is at ©/6. Both values are corrected by gauge fluctuations (the exact quantized value in the
topological phase is n/6). c-e, Field dependence of k,, for different T for the trajectories noted in a when |B,| =50t, (¢), 7t, (d) and t, (e).

XG Wen&YS Wu , W Chen, MPA Fisher, topological transition



The coupling to scalar spin chirality can come from DM interaction or from higher
order perturbation of Hubbard model. The former is tied to the direction of DMI
and is probably not a uniform coupling, the later is uniform.

Quote from Consideration of Thermal Hall Effect in Undoped Cuprates

Jung Hoon Han,!>* Jin-Hong Park.,! and Patrick A. Lee? T

the very small magnitude. One can make an estimate
of J, using the ¢t/U expansion by Motrunich [48], to
find J, = —48m(t2t?/U?)(¢/po) where ¢g = hc/e =
2.07 x 107 Wb is the flux quantum, and ¢ = BA is
the magnetic flux through a triangular plaquete of area
Ay ~ (3.84)%/2 for the cuprate. At B = 10T we find
¢/do ~ 3.5 x 10~%. Further using commonly accepted
values of to = —0.3t , U = 8t and J = 4t%/U, we find
J, =~ 5.6 x 107*J at B = 10T. The use of a smaller
effective U may increase this number a bit, but in any
case a very small number is expected for J,,, due to the
small ratio ¢/¢g. As we emphasized in this paper, the
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Effect of the external magnetic field
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The weak magnetic field polarizes Sz slightly, and thus modifies
the background electric field distribution. This further modulates
monopole band structure, creating “Hofstadter” monopole band,
which may be detectable in inelastic neutron.



For loop or coil of wire, can
still use 15t RHR, but direction

of current constantly changes.

Easier to use 2" Right Hand
Rule. Fingers curl in direction
of current, thumb points to
direction of magnetic field.
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Electromagnetic duality
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Duality

Electric loop current -> Magnetic field
Magnetic loop current -> Electric field

S, ~ F (emergent electric field)

G Chen, PRB 96, 195127 (2017)
G Chen, PRB 96, 085136 (2017)

Motrunich & Senthil, 2004,
Bergman, Fiete, Balents, 2006



Topological thermal Hall effect of “magnetic monopoles”
in pyrochlore U(1) spin liquid

Xiao-Tian Zhang’*, Yong Hao Gao**, Chunxiao Liu?, and Gang Chen**
International Center for Quantum Materials, Peking University, Beijing, 100871, China

netic monopoles” and creates a TTHE in the system. The
dual Hamiltonian for the “magnetic monopoles”, that
captures this effect, is given as

Hawa ==t Y _ @@, e727% — 1y "ol @,
re’ r

(1)

+ Z %(curl a—FE.,.)—K Z cos By

rr’

arXiv 1904.08865 i
PR Research 2020

Experiments by P Ong’s group
on Th2Ti207, Science



Large thermal Hall effect in spin-1/2 Kagome magnets
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1. Why it is finite? All neutral excitations.
2. Non-monotonic.
3. Opposite signs in two materials.



Our observation: induced internal gauge flux
and emergent Lorentz force

Yong Hao Gao

arxiv 1901 H=> J;Si-Sij+) Di-SixS8;—> BS;,
0] ] i

The combination of Zeeman coupling and DMI generates
an internal U(1) gauge flux distribution.

This provides a way to control emergent D.O.F. with external probes.



Topological thermal Hall effect

Yong Hao Gao
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Summary

1. point out the physical origin of emergent Lorentz force on spinons
and obtain the resulting topological thermal Hall eftects.

2. establish the connection between microscopic interactions and
emergent D.O.F. and thus provide a scheme to control the emergent D.O.F.

3. Thermal transports in Mott insulators are not well understood.
Thermal Hall reflects the internal structure of the excitations.



