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1. A couple random motivations

2. Candidate spin liquids in Kitaev materials w/o fields

3. Thoughts about thermal Hall transports in fields

I am not intending to explain any specific experiments but provide a different way of thinking. 



Iridates (in time order of modern times)

A2IrO4: candidate for high-Tc superconductor, isostructure with A2CuO4 

AIrO3 perovskite heterostructure: topological crystalline metal

Sr3Ir2O7 : metamagnetic transition, isostructure with Sr3Ru2O7

Na2IrO3: alpha-Li2IrO3, beta-Li2IrO3 “Kitaev materials”

Na4Ir3O8: hyperkagome quantum spin liquid

R2Ir2O7: topological insulator, Weyl semimetal, ABL semimetal

IrO2: pyrochlore lattice spin liquid

HLi3Ir2O6, fcc iridates, etc



Na4Ir3O8: hyperkagome quantum spin liquid ?

Why Ir ion behaves as a spin-1/2 ?

hyperkagome lattice is also realized in the A sublattice of
the garnet A3B5O12 but in these it is distorted. It might be
interesting to infer here that there exists a chirality in this
hyperkagome lattice and that the two structures P4132
[Fig. 1(c)] and P4332 [Fig. 1(d)] have different degenerate
chiralities. Na1:5 in Na1:5!Ir3=4;Na1=4"2O4 occupies the oc-
tahedral A site rather than the tetrahedral A site normally
occupied in a conventional spinel structure [10]. We re-
fined the structure by assuming two Na positions, Na2 and
Na3, in the octahedral A-site with 75% occupation follow-
ing Ref. [10].

Ir in this compound is tetravalent with five electrons in
5d orbitals. Because of the octahedral coordination with
the oxygens and the large crystal field splitting effect
expected for 5d orbitals, it is natural for Ir4# to have a
low spin (t2g

5) state with S $ 1=2. The electrical resistivity
! of a ceramic sample at room temperature was
%10 ! cm, followed by a thermally activated increase

with an activation energy of 500 K with decreasing tem-
perature. This, together with the magnetic properties de-
scribed below, indicates that Na4Ir3O8 is a S $ 1=2 Mott
insulator formed on a hyperkagome lattice.

The temperature dependent magnetic susceptibility
"!T", shown in Fig. 2(a), indicates that Na4Ir3O8 is indeed
a frustrated S $ 1=2 system with a strong antiferromag-
netic interaction. In the "&1 vs T plot in Fig. 2(a), Curie-
Weiss like behavior can be seen. The Curie-Weiss fit
around room temperature yields a large antiferromagnetic
Curie-Weiss constant #W % 650 K and an effective mo-
ment peff $ 1:96$B, which is slightly larger than those
expected for S $ 1=2 spins. In geometrically frustrated
antiferromagnets, it is known that the Curie-Weiss behav-
ior expected above T $ #W persists even below #W . The
observed Curie-Weiss behavior of "!T" below #W is con-
sistent with the presence of the S $ 1=2 antiferromagnetic
spins on a frustrated hyperkagome lattice. The large anti-
ferromagnetic interaction inferred from #W is supported by

FIG. 1 (color online). (a) Crystal structure of Na4Ir3O8 with
the space group P4132. Among the three Na sites, only Na1 site
is shown for clarity. Black and gray octahedra represent IrO6 and
NaO6, respectively. The spheres inside the octahedra represent Ir
and Na atoms and oxygens occupy all the corners. (b) The x-ray
diffraction pattern of Na4Ir3O8 at room temperature. The crosses
indicate the raw data and the solid line indicates the spectrum
calculated based on the refinement using P4132. (c) and
(d) Hyperkagome Ir and Na sublattice derived from the structure
of Na4Ir3O8 with the space group P4132 (c) and P4332 (d).
These two structures with different chirality are indistinguish-
able by conventional x-ray diffraction, giving the identical result
in refinement.
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FIG. 2 (color online). Temperature dependence of the inverse
magnetic susceptibility "&1 under 1 T (a), magnetic specific heat
Cm divided by temperature T (b) and magnetic entropy Sm (c) of
polycrystalline Na4Ir3O8. To estimate Cm, data for Na4Sn3O8 is
used as a reference of the lattice contribution. Inset:
(a) Temperature dependence of magnetic susceptibility " of
Na4Ir3O8 in various fields up to 5 T. For clarity, the curves are
shifted by 3, 2, and 1' 10&4 emu=mol Ir for 0.01, 0.1, and 1 T
data, respectively. (b) Cm=T vs T of Na4Ir3O8 in various fields up
to 12 T. Broken lines indicate Cm proportional to T2 and T3,
respectively.

TABLE I. Atomic parameters obtained by refining x-ray pow-
der diffraction for Na4Ir3O8 at room temperature with a space
group P4132. The cubic lattice constant is a $ 8:985 "A. g of
Na2 and Na3 are fixed to 0.75 according to Ref. [10].

x y z g B (Å)

Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6
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der diffraction for Na4Ir3O8 at room temperature with a space
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Na2 and Na3 are fixed to 0.75 according to Ref. [10].
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Ir 12d 0.61456(7) x# 1=4 5=8 1.00 0.15
Na1 4b 7=8 7=8 7=8 1.00 2.6
Na2 4a 3=8 3=8 3=8 0.75 2.6
Na3 12d 0.3581(8) x# 1=4 5=8 0.75 2.6
O1 8c 0.118(11) x x 1.00 0.6
O2 24e 0.1348(9) 0.8988(8) 0.908(11) 1.00 0.6

PRL 99, 137207 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
28 SEPTEMBER 2007

137207-2

hyperkagome

Takagi,etc, PRL, 2007

� ⇠ constant, Cv/T ⇠ constant



t2g orbitals in octahedral crystal field

IrO6 octahedron
t2g: xy,xz,yz

Ir4+ : 5d5

eg : x2 � y

2
, 3z2 � r

2

Crystal electric field Spin-orbit coupling

j = 3/2

j = 1/2

Gang Chen, Balents PRB 2008,  
B.J. Kim etc, Science 2008, 

G. Jackeli, Khaliullin PRL 2009

h{t2g}|L|{t2g}i = �l, H
soc

= ��l · S, j = l+ S

It is interesting to look at how the magnetic moment M = L+2S = -l+2S varies.

BTW, SOC is quenched for eg orbitals.



Exchange interaction: direct + indirect via oxygen

2

spin supercurrent ?”. The answer to this question can
be found in the Aharonov-Casher (AC) effect [14] and
Dzyaloshinskii-Moriya (DM) interaction [6, 7]. The con-
ventional DM interaction[7] is given by

HDM =
∑

<ij>

D⃗ij · (S⃗i × S⃗j). (4)

When the DM vector D⃗ij = Dij êz, the total Hamiltonian
Htotal = HXY + HDM with HXY in eq. (1) is written as

Htotal = −
∑

<ij>

J̃⊥ij

2
(e−iAij S+

i S−
j + eiAij S+

i S−
j ) (5)

where J̃⊥ijeiAij = J⊥ij + iDij . Therefore the DM vec-

tor D⃗ acts as the vector potential or gauge field to the
spin current. It is well known that the DM interaction
exists only when the inversion symmetry is broken at the
middle point between the two spins. Therefore when the
crystal structure has the inversion symmetry, the exter-
nal electric field E⃗ induces the DM interaction. Namely
D⃗ij ∝ E⃗× e⃗ij, where e⃗ij is the unit vector connecting the
two sites i and j. This form is identical to the Aharanov-
Casher (AC) effect, where the Lorentz transformation of
the electric field induces the magnetic field in the moving
frame which interacts with the spin moment. However
the magnitude of the coupling constant for AC effect is
extremely small in vacuum since it contains the rest mass
of the electron mc2 ∼= 5×105eV in the denominator. The
situation is different for the DM interaction in solids, i.e.,
the electrons are trapped in the strong potential of the
atoms with large momentum distribution leading to the
enhanced spin-orbit interaction. Therefore the gauge po-
tential Aij could be (a fraction) of the order of unity, e.g.
Aij ∼ 2π as seen below.

To illustrate this, consider the electron energy levels in
the ligand field of 3d-transition metal [16]. In the octa-
hedral ligand field, the d-orbitals are split into eg orbitals
and t2g orbitals. The t2g orbitals, i.e., dxy, dyz, and dzx,
have energy lower than eg orbitals. If we take account
of the spin degree of freedom, there is 6-fold degeneracy
in t2g energy level. Due to the on-site spin-orbit interac-
tion, however, this degeneracy is lifted and we have two
groups of spin-orbit coupled states, labeled Γ7 and Γ8.
The 2-fold degenerate states, i.e., Γ7, are given by

|a⟩ =
1√
3
(|dxy,↑⟩ + |dyz,↓⟩ + i|dzx,↓⟩), (6)

and

|b⟩ =
1√
3
(|dxy,↓⟩ − |dyz,↑⟩ + i|dzx,↑⟩), (7)

respectively, where the quantization axis of spin is taken
to be the z axis. For the sake of simplicity, we consider

the above two states alone. However, our method is valid
for more general cases and one can easily generalize it to
any other spin-orbit strongly coupled situation.

We consider the case where the inversion symmetry
exists at the middle point of the two magnetic ions, and
the generic non-collinear magnetic ordering is realized
by the competing exchange interactions J ’s and/or by
the symmetry breaking due to the spin-orbit interaction.
Here the magnetic moment at j-th site points to the unit
vector e⃗j = (cosφj sin θj , sin φj sin θj , cos θj). The mean
field Hamiltonian applied to the Hubbard model is given
by ( we take the unit where h̄ = 1 hereafter): H =
−U

∑

j e⃗j · S⃗j, where U is energy of Coulomb repulsion.
For each site j, we restrict the Hilbert space to the 2-
dimensional one spanned by the above two states, and
the effective Hamiltonian is reduced to the 2× 2 matrix

−
U

3

[

− cos θ sin θe−iφ

sin θeiφ cos θ

]

. (8)

We diagonalize this Hamiltonian matrix to obtain eigen-
states |P ⟩, |AP ⟩ as

|P ⟩ = sin
θ

2
|a⟩ + eiφ cos

θ

2
|b⟩,

|AP ⟩ = cos
θ

2
|a⟩ − eiφ sin

θ

2
|b⟩. (9)

Here |P ⟩ and |AP ⟩ means the spin state parallel and
anti-parallel to the unit vector e⃗, and the corresponding
eigenvalues are −U

3 and +U
3 , respectively. For conve-

nience, we define the coefficients Aiσ and Biσ and ab-
breviate the above two states as, |P ⟩ =

∑

iσ Aiσ|diσ⟩,
|AP ⟩ =

∑

iσ Biσ|diσ⟩, where i = xy, yz, zx, σ =↑, ↓.
From now on, we focus on the three atom model as

shown in Fig.1, which represents the bond between the
two transition metal ions M1, M2 through the oxygen
atom O. We take the hole picture below, where the oxy-
gen orbitals are empty. We assume the generic case of e⃗1

and e⃗2 including the non-collinear configuration. Each
site has two states, i.e., |P ⟩ and |AP ⟩, mentioned above.
So we define |P ⟩j and |AP ⟩j (j = 1, 2) corresponding to
the magnetic order on each site. Because of the existence
of the oxygen atom, there are hopping processes between
the M site and the O site. The transfer integrals between
the d- and p-orbitals can be found in the Slater-Koster
tables[17, 18], and the hopping Hamiltonian is given as
follows:

Ht = H1−m
t + Hm−1

t + H2−m
t + Hm−2

t ,

H1−m
t = +V

∑

σ

(p†y,σd(1)
xy,σ + p†z,σd(1)

zx,σ) = (Hm−1
t )†

H2−m
t = −V

∑

σ

(p†y,σd(2)
xy,σ + p†z,σd(2)

zx,σ) = (Hm−2
t )†,

2
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t ,

H1−m
t = +V
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σ

(p†y,σd(1)
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zx,σ) = (Hm−1
t )†
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∑

σ
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Spin-orbit entangled j=1/2 doublet

this symmetry operation, x→−y, y→−x, and z→−z. Ac-
cordingly, we can group the 5d orbitals into even and odd
parity sectors, as shown in Table I.

A large cubic crystal field splits the eg and t2g states. The
surrounding O2− octahedron is slightly distorted to further
split all the three t2g states. Ultimately no degeneracy is pro-
tected because the C2 symmetry has only one-dimensional
irreducible representations. The energetic ordering of orbitals
shown in Fig. 5 was determined by looking at Coulomb in-
teraction from surrounding O2− and ignoring the spin-orbit
interaction.

C. Microscopic theory of exchange spin Hamiltonian

Although symmetry determines the allowed nonzero com-
ponents of the Dzyaloshinskii-Moriya !DM" interaction, it
does not give any guidance as to their relative and absolute
magnitudes.13,16,17 In this part, we will derive the exchange
spin Hamiltonian from a microscopic point of view and ob-
tain expressions from which crude estimates of the magni-
tude of various terms can be obtained.13,16,17 We consider
both the hopping between Ir and O orbitals, and direct hop-

ping between Ir orbitals. We also assume that the eg-t2g split-
ting is much greater than the splittings among the three t2g
states so that we can completely project out the two eg states.
The model is then of five electrons on the t2g orbitals of
every Ir4+. Following some notations in Ref. 17, we can
write the Hamiltonian of the Ir and O sublattice as

H = H0 + Ht + HLS, !19"

where,

H0 = #
jm!

"mdjm!
† djm! + #

kn!

"pn
pkn!

† pkn!

+
Ud

2 #
jmm!!!!

djm!
† djm!!!

† djm!!!djm!

+
Up

2 #
knn!!!!

pkn!
† pkn!!!

† pkn!!!pkn!, !20"

Ht = #
jm!

#
k!j"n

!tjm,kndjm!
† pkn! + H.c."

+ #
$j j!%

#
mm!

tjm,j!m!
d djm!

† dj!m!!, !21"

HLS = ##
j

! j · s j . !22"

k!j" denotes the O2− of the neighboring Ir4+ site j, djm!
† is the

creation operator of an electron with spin ! of the mth 5d
orbital of ith Ir ion, and "m is the energy of this orbital. m
will take 1, 2, and 3. pkn!

† is the creation operator of an
electron on the 2pn orbital with spin !. The energies are
measured from the lowest energy level of the Ir 5d orbitals,
and Ud and Up are the Coulomb interaction constants be-
tween holes on the Ir4+ site and O2− site, respectively. We
assume that Ud and Up are orbital independent and ignore
other “Kanamori parameters:”18 the interorbital exchange
coupling and the pair-hopping amplitude, which should be
small compared to Coulomb interaction. We also ignore the
Coulomb interaction between two electrons on different in-
termediate O2− ions. Here tjm,kn denotes the transfer of an
electron between the mth orbital of Ir4+ ion j and one of the
2pn orbitals of the neighboring O2− ions k. Similarly, tjm,j!m!

d

TABLE I. The parity sectors of 5d electron orbitals by C2
rotation.

State 5d orbitals at A 3d orbitals at B Parity

&1% xy yz even
&2% 1

'2 !xz−yz" 1
'2 !yx+zx" odd

&3% 1
'2 !xz+yz" 1

'2 !yx−zx" even

&4% x2−y2 y2−z2 odd
&5% 3z2−r2 3x2−r2 even

A

1

3

2!3'"
4

5!6'"6

4'

1'

2'

5'
B

C2

C2

x
y

z

x
y

z

FIG. 4. !Color online" Ir4+ and octahedron O2− environment
!thin black line". Two neighboring Ir4+ are denoted by A and B !in
orange". A /B’s six O2− are labeled as 1 /1!, 2 /2!, 3 /3!, 4 /4!, 5 /5!,
and 6 /6! !in pink", in which, 2 and 3!, 5 and 6! label the same
points. The distances between Ir4+ and O2− order this way: &A5&
= &A6&= &B5!&= &B6!&$ &A3&= &A4&= &B3!&= &B4!&$ &A1&= &A2&= &B1!&
= &B2!&. The C2 axis !thick dash line" orients along 1

'2 !1,−1,0" at
Ir4+ A and 1

'2 !0,1 ,1" at Ir4+ B. Mapped to the ideal hyper-kagome
lattice, A and B correspond to point 4 and 8 in Fig. 3, respectively.
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FIG. 5. The splitting and electron occupation of 5d orbitals of
Ir4+ ions in the absence of spin-orbit interaction. The states are
defined in Table I.
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Surprisingly, direct hopping gives us a Heisenberg model !  
This is very special especially since orbitals have orientations. 

J =
2!t̃i j

d !2

Ud
, "46#

Dij = −
4i

Ud
"Cij

d t̃ ji
d − t̃i j

d C ji
d # , "47#

!Jij =
4

Ud
"C! ij

d C" ji
d + C! ji

d C" ij
d − 1"Cij

d · C ji
d ## . "48#

F. Strong spin-orbit interaction

As discussed in Sec. I, in the strong spin-orbit limit, "
# !$1,2−$3!, one can obtain effective total angular momentum
eigenstates with j=1 /2. Choosing Eq. "28#, and rewriting the
corresponding eigenstates in the canonical t2g basis, Eq. "32#
becomes

ai3↑ =
1
$3

""− i#di,xz↓ + di,yz↓ + di,xy↑# , "49#

ai3↓ =
1
$3

""i#di,xz↑ + di,yz↑ − di,xy↓# , "50#

in which we have expressed ai3↑ /ai3↓ in terms of the t2g
annihilation operator to avoid the position dependence of the
coefficients.

1. Superexchange through oxygen ions

The complicated expression of Eq. "42# requires simplifi-
cation if we want to have a quantitative understanding of the
exchange coupling. However, some information can be im-
mediately obtained from Eq. "50#, in particular that all t̃i3,kn

=0, which makes J, Dij, and !Jij only the remaining terms
with Ci,kn. To simplify further, we need some explicit form
for the transfer integrals tjm,kn. Hence, we will make further
approximation that the surrounding octahedra of Ir4+ are per-
fect so that we can apply the cubic symmetry to find out the
nonvanishing transfer integrals and also the relation between

them, which is listed in Table II for Ir4+ A and B in Fig. 4.
Deviations from these forms should presumably be small
since the noncubic distortion is.

Based on the transfer integrals listed in Table II, we evalu-
ate the exchange coupling constant J and !JAB. For bond AB,
collecting nonzero coupling constants "actually J=0, DAB
=0#, we obtain

HAB = − JSA
x SB

x + JSA
y SB

y + JSA
z SB

z , "51#

with

J =
4
9

!t!4"2g2px,5px
− g2px,2px

− g5px,5px
# . "52#

Since from Eq. "45# g2px,5px
%g2px,2px

,g5px,5px
, then J%0.

Thus we find ferromagnetic interaction between the x com-
ponents and antiferromagnetic interactions between the y and
z components along this link. This corresponds to the form in
Eq. "1# of Sec. I, with $ij

y =$ij
z =−$ij

x =1 for this link.
Because all links are equivalent by point-group opera-

tions, we can deduce the exchange interactions of all other
bonds by symmetry. The sites A and B correspond to point 4
and 8 in our notation in Fig. 3. The result is that the ex-
change interactions on each bond are ferromagnetic between
one component, and antiferromagnetic between the other
two. These principal components are always along x, y, or z.
We will call a bond in which the x component is ferromag-
netic a “type-x bond,” and similarly for y and z. The type of
each bond is listed in Table III. This Hamiltonian breaks spin
rotational symmetry strongly. A simple rule can be used to
characterize the Hamiltonian of a given bond: if bond "ij# is
located in y-z plane, then the bond is type-x bond and has
type-x exchange Hamiltonian; if it is located in x-z plane,
then the bond is type-y bond and has type-y exchange Hamil-
tonian; if it is located in x-y plane, the bond is type-z bond
and has type-z exchange Hamiltonian. As a result, the three
bonds in every triangle "see Fig. 3# have different exchange
Hamiltonian. The ground states of this Hamiltonian will be
studied in Sec. IV.

TABLE II. The transfer integrals between the t2g orbitals on A
and B Ir4+ and the px,y,z orbitals on the intermediate O2− ions. “2px”
represents the px orbital on the second O2− ion in Fig. 4, “A, xz”
represents the xz orbital on the A ion, and the entry t on the row of
“A, xz” and the column of “2px” denotes the hopping amplitude
"transfer integral# from xz orbital at A ion to px orbital on second
O2− ion. Other notation can be understood likewise.

2px 2py 2pz 5px 5py 5pz

A, xz t 0 0 0 0 0
A, yz 0 t 0 0 0 −t
A, xy 0 0 0 −t 0 0
B, xz 0 0 0 −t 0 0
B, yz 0 0 t 0 −t 0
B, xy t 0 0 0 0 0

TABLE III. The bond types of 24 bonds in one unit cell. Points
and bonds are based on the notation in Fig. 3. “ī” is used for the
points which are simply a translation by a basis vector from point
“i.”

Type x Type y Type z

"1,2# "1,3# "2,3#
"3,5# "3,4# "4,5#

"5̄ ,7# "5̄ ,6# "6,7#

"4,8# "8,9# "4,9#
"8,11# "7,11# "7,8#

"1̄ , 6̄# "6̄ ,12# "1̄ ,12#
"9,10# "2̄ ,9# "2̄ ,10#
"10,12# "10,11# "11,12#
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Indirect exchange via oxygen gives highly anisotropic coupling
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated

pyxy xy

pzxz xz
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pz
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xz yz

yz xz
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FIG. 2: (Color online) Two possible geometries of a TM-
O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass
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FIG. 1: (Color online) Density profile of a hole in the isospin
up state (without tetragonal distortion). It is a superposition
of a spin up hole density in |xy⟩-orbital, lz = 0, (middle) and
spin down one in (|yz⟩ + i|xz⟩) state, lz = 1, (right).

by a coherent superposition of different orbital and spin
states, leading to a peculiar distribution of spin densi-
ties in real space (see Fig. 1). This will have important
consequences for the symmetry of the intersite interac-
tions. Namely, the very form of the exchange Hamilto-
nian depends on bond geometry through a density profile
of Kramers states, as we demonstrate below.

Exchange couplings of neighboring Kramers states.–
We consider the limit of the strong spin-orbit coupling,
i.e., when λ is larger than exchange interaction between
the isospins. The exchange Hamiltonians for isospins
are then obtained by projecting the corresponding su-
perexchange spin-orbital models onto the isospin states
Eq. (1). First, we present the results for the case of cubic
symmetry (∆ = 0, sin θ = 1/

√
3), and discuss later the

effects of a tetragonal distortion. We consider two com-
mon cases of TM-O-TM bond geometries: (A) 180◦-bond
formed by corner-shared octahedra as in Fig. 2(a), and
(B) 90◦-bond formed by edge-shared ones, Fig. 2(b).

(A) 180◦-bond: For this geometry, the nearest-
neighbor t2g hopping matrix is diagonal in the orbital
space and, on a given bond, only two orbitals are active,
e.g., |xy⟩ and |xz⟩ orbitals along a bond in x-direction
[Fig. 1(a)]. The spin-orbital exchange Hamiltonian for
such a system has already been reported: see Eq. (3.11)
in Ref. [12]. After projecting it onto the ground state
doublet, we find an exchange Hamiltonian for isospins in
a form of Heisenberg plus a pseudo-dipolar interaction:

Hij = J1S⃗i · S⃗j + J2(S⃗i · r⃗ij)(r⃗ij · S⃗j) , (2)

where S⃗i is the S = 1/2 operator for isospins (referred to
as simply spins from now on), r⃗ij is the unit vector along
the ij bond, and J1(2) = 4

9ν1(2). Hereafter, we use the en-
ergy scale 4t2/U where t is a dd-transfer integral through
an intermediate oxygen, and U stands for the Coulomb
repulsion on the same orbitals. The parameters ν1(2)

controlling isotropic (anisotropic) couplings are given by
ν1 = (3r1 + r2 + 2r3)/6 and ν2 = (r1 − r2)/4, where
the set of rn characterizing the multiplet structure of the
excited states depends solely on the ratio η = JH/U of
Hund’s coupling and U [24]. At small η, one has ν1 ≃ 1
and ν2 ≃ η/2. Thus, we find a predominantly isotropic
Hamiltonian, with a weak dipolar-like anisotropy term.
While the overall form of Eq. (2) could be anticipated
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O-TM bond with corresponding orbitals active along these
bonds. The large (small) dots stand for the transition metal
(oxygen) ions. (a) 180◦-bond formed by corner shared octa-
hedra, and (b) 90◦-bond formed by edge shared octahedra.

from symmetry arguments, the explicit derivation led us
to an unexpected result: In the limit of strong SO cou-
pling, the magnetic degrees are governed by a nearly
Heisenberg model just like in the case of small λ, and,
surprisingly enough, its anisotropy is entirely due to the
Hund’s coupling. This is opposite to a conventional situ-
ation: typically, the anisotropy corrections are obtained
in powers of λ while the Hund’s coupling is not essential.

(B) 90◦-bond: There are again only two orbitals active
on a given bond, e.g., |xz⟩ and |yz⟩ orbitals along a bond
in the xy-plane. However, the hopping matrix has now
only non-diagonal elements and there are two possible
paths for a charge transfer [via upper or lower oxygen,
see Fig. 2(b)]. This peculiarity of a 90◦-bond leads to
an exchange Hamiltonian drastically different from that
of a 180◦ geometry. Two transfer amplitudes via upper
and lower oxygen interfere in a destructive manner and
the isotropic part of the Hamiltonian exactly vanishes.
The finite, anisotropic interaction appears, however, due
to the JH -multiplet structure of the excited levels. Most
importantly, the very form of the exchange interaction
depends on the spatial orientation of a given bond. We
label a bond ij laying in the αβ plane perpendicular to
the γ(= x, y, z) axis by a (γ)-bond. With this in mind,
the Hamiltonian can be written as:

H(γ)
ij = −JSγ

i Sγ
j , (3)

with J = 4
3ν2. Remarkably, this Hamiltonian is pre-

cisely a quantum analog of the so-called compass model.
The latter, introduced originally for the orbital degrees of
freedom in Jahn-Teller systems [5], has been the subject
of numerous studies as a prototype model with protected
ground state degeneracy of topological origin (see, e.g.,
Ref. 25). However, to our knowledge, no magnetic real-
ization of the compass model has been proposed so far.

Implementing the Kitaev model in Mott insulators.–
The Kitaev model is equivalent to a quantum compass

Kitaev term for gamma bond 
after including Hund’s coupling

Honeycomb iridate: Kitaev interaction
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ignited the field of Kitaev materials. 
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We report inelastic neutron scattering measurements on Na2IrO3, a candidate for the Kitaev spin model

on the honeycomb lattice. We observe spin-wave excitations below 5 meV with a dispersion that can be

accounted for by including substantial further-neighbor exchanges that stabilize zigzag magnetic order.

The onset of long-range magnetic order below TN ¼ 15:3 K is confirmed via the observation of

oscillations in zero-field muon-spin rotation experiments. Combining single-crystal diffraction and

density functional calculations we propose a revised crystal structure model with significant departures

from the ideal 90" Ir-O-Ir bonds required for dominant Kitaev exchange.

DOI: 10.1103/PhysRevLett.108.127204 PACS numbers: 75.10.Jm, 61.72.Nn, 75.40.Gb, 76.75.+i

Transition metal oxides of the 5d group have recently
attracted attention as candidates to exhibit novel electronic
ground states stabilized by the strong spin-orbit (SO) cou-
pling, including topological band or Mott insulators [1],
quantum spin liquids [2], field-induced topological order
[3], topological superconductors [4], and spin-orbital Mott
insulators [5]. The compounds A2IrO3 (A ¼ Li, Na)
[6,7], in which edge-sharing IrO6 octahedra form a honey-
comb lattice [see Fig. 1(b)], have been predicted to display
novel magnetic states for composite spin-orbital moments
coupled via frustrated exchanges. The exchange between
neighboring Ir moments (called Si;j, S ¼ 1=2) is proposed
to be [2]

H ij ¼ #JKS
!
i S

!
j þ J1Si % Sj; (1)

where JK > 0 is an Ising ferromagnetic (FM) term arising
from superexchange via the Ir-O-Ir bond, and J1 > 0 is the
antiferromagnetic (AFM) Heisenberg exchange via direct
Ir-Ir 5d overlap. Because of the strong spin-orbital admix-
ture the Kitaev term JK couples only the components in the
direction !, normal to the plane of the Ir-O-Ir bond [2,8].
Because of the orthogonal geometry, different spin com-
ponents along the cubic axes (! ¼ x, y, z) of the IrO6

octahedron are coupled for the three bonds emerging out
of each site in the honeycomb lattice. This leads to the
strongly frustrated Kitaev-Heisenberg (KH) model [2],
which has conventional Néel order for large J1, a stripy
collinear AFM phase (to be discussed later) for 0:4 & " &
0:8, where " ¼ JK=ðJK þ 2J1Þ (exact ground state at " ¼
1=2), and a quantum spin liquid with Majorana fermion
excitations [9] at large JK (" * 0:8). In spite of many

theoretical studies [2–4,10–13] very few experimental re-
sults are available for A2IrO3 [6,7,14]. Evidence of un-
conventional magnetic order in Na2IrO3 came from
resonant x-ray scattering [14] which showed magnetic
Bragg peaks at wave vectors consistent with either an in-
plane zigzag or stripy order (to be discussed later).
Measurements of the spin excitations are very important

to determine the overall energy scale and the relevant
magnetic interactions, however, because Ir is a strong
neutron absorber inelastic neutron scattering (INS) experi-
ments are very challenging. Using an optimized setup we
here report the first observation of dispersive spin-wave
excitations of Ir moments via INS. We show that the
dispersion can be quantitatively accounted for by including
substantial further-neighbor in-plane exchanges, which in
turn stabilize zigzag order. To inform future ab initio stud-
ies of microscopic models of the interactions we combine
single-crystal x-ray diffraction with density functional cal-
culations to determine precisely the oxygen positions,
which are a key in mediating the exchange and controlling
the spin-orbital admixture via crystal field effects. We
propose a revised crystal structure with much more sym-
metric IrO6 octahedra, but with substantial departures from
the ideal 90" Ir-O-Ir bonds required for dominant Kitaev
exchange [8], and with frequent structural stacking faults.
This differs from the currently adopted model, used by
several band-structure calculations [13,14], with asymmet-
rically distorted IrO6 octahedra, with Ir-O bonds differing
in length by more than 20%, improbably large in the
absence of any Jahn-Teller interaction, and with the short-
est Ir-O bond length below 2 Å, highly unlikely for a large
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signal and predicts stronger scattering at larger Q’s not
seen. Calculations for the KHHamiltonian (1) are shown in
Fig. 3(j) for ! ¼ 0:4 (lower limit for the stripy phase) and
J1 ¼ 25:85 meV to reproduce the CW temperature [20]

! ¼ "SðSþ 1ÞðJ1 " JK=3Þ=kB. The lower boundary of
the scattering at low Q (solid line) is predicted to have a
quadratic shape near the first softening point, a robust
feature for any ! throughout the stripy phase. This is in
contrast to the data where the dispersion boundary (marked
by filled symbols) has a distinctly different, sinusoidal-like
shape with a curvature the opposite way. In addition, a
different distribution of scattering weight to higher ener-
gies is predicted, but not seen in the data. We conclude that
the KH model in the stripy phase has a qualitatively differ-
ent spin-wave spectrum compared to the data. A minimal
model that can reproduce the observed low-Q dispersion
and which predicts distribution of magnetic scattering in
broad overall agreement with the data up to some intensity
modulations is shown in Fig. 3(h) and requires substantial
couplings up to third neighbors, which stabilize zigzag
magnetic order. Recent theory [12] proposed that in
addition to couplings up to third neighbors, a Kitaev term
may also exist. We have compared the data with such a
model as well [15] and estimate that a Kitaev term, if
present, is smaller than an upper bound corresponding to
! & 0:40ð5Þ.
We note that sizable J3’s are not uncommon in triangular

plane metal oxides. The reason is that even though J1
involves two hoppings and J3 four, the two additional
hoppings are strong pd" ones, and the hopping proceeds
through intermediate unoccupied eg states [21]. In the

case of Na2IrO3 the hopping proceeds through somewhat
higher Na s orbitals, but these are very diffuse, and
the corresponding tsp" parameter is sizable. Near cancel-

lation of the AFM and FM superexchange interaction
for the nearest-neighbor path further reduces J1 compared
to J3.
To summarize, by combining single-crystal diffraction

and local-density approximation calculations we proposed
a revised crystal structure for the spin-orbit coupled honey-
comb antiferromagnet Na2IrO3 that highlights important
departures from the ideal case where the Kitaev exchange
dominates. We observed dispersive spin-wave excitations
in inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model for
the magnetic ground state that could support such a dis-
persion relation.
We thank G. Jackeli for providing notes on spin-wave

dispersions for the KH model in the rotated frame, A.
Amato for technical support, N. Shannon, J. T. Chalker,
and L. Balents for discussions, and EPSRC for funding.
Work at Rutgers was supported by DOE (DE-FG02-
07ER46382).
Note added in proof.—Very recently, neutron diffraction

data on single crystals ofNa2IrO3 was reported, which also
provided evidence in support of zigzag magnetic order, and
x-ray studies obtained similar structural informa-
tion [22].

FIG. 3 (color online). Diagram of (a) Néel, (b) zigzag, and
(c) stripy order. (d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
(e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering at low
Q [filled (magenta) symbols in (h)–(j)], which we associatewith a
sinusoidal spin-wave dispersion; this becomes damped out in the
paramagnetic phase in (f). Slanted thick dashed arrow shows the
scan direction in (g). Gray shading marks the inaccessible region
close to the elastic line dominated by incoherent elastic scattering.
(g) Energy scan (solid points 4.6 K, open symbols 55 K) through
the maximum spin-wave energy seen in (e) fitted to a Gaussian
peak (solid line), dashed line is estimated background. (h)–(j)
Calculated spherically averaged spin-wave intensity [15] for the
J1;2;3 model with (h) zigzag or (i) stripy order, and (j) the KH
model with stripy order for parameters given in the text. Solid red
line in (j) highlights the low-energy boundary, which coincides
with the dispersion from " to the first softening point.
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signal and predicts stronger scattering at larger Q’s not
seen. Calculations for the KHHamiltonian (1) are shown in
Fig. 3(j) for ! ¼ 0:4 (lower limit for the stripy phase) and
J1 ¼ 25:85 meV to reproduce the CW temperature [20]

! ¼ "SðSþ 1ÞðJ1 " JK=3Þ=kB. The lower boundary of
the scattering at low Q (solid line) is predicted to have a
quadratic shape near the first softening point, a robust
feature for any ! throughout the stripy phase. This is in
contrast to the data where the dispersion boundary (marked
by filled symbols) has a distinctly different, sinusoidal-like
shape with a curvature the opposite way. In addition, a
different distribution of scattering weight to higher ener-
gies is predicted, but not seen in the data. We conclude that
the KH model in the stripy phase has a qualitatively differ-
ent spin-wave spectrum compared to the data. A minimal
model that can reproduce the observed low-Q dispersion
and which predicts distribution of magnetic scattering in
broad overall agreement with the data up to some intensity
modulations is shown in Fig. 3(h) and requires substantial
couplings up to third neighbors, which stabilize zigzag
magnetic order. Recent theory [12] proposed that in
addition to couplings up to third neighbors, a Kitaev term
may also exist. We have compared the data with such a
model as well [15] and estimate that a Kitaev term, if
present, is smaller than an upper bound corresponding to
! & 0:40ð5Þ.
We note that sizable J3’s are not uncommon in triangular

plane metal oxides. The reason is that even though J1
involves two hoppings and J3 four, the two additional
hoppings are strong pd" ones, and the hopping proceeds
through intermediate unoccupied eg states [21]. In the

case of Na2IrO3 the hopping proceeds through somewhat
higher Na s orbitals, but these are very diffuse, and
the corresponding tsp" parameter is sizable. Near cancel-

lation of the AFM and FM superexchange interaction
for the nearest-neighbor path further reduces J1 compared
to J3.
To summarize, by combining single-crystal diffraction

and local-density approximation calculations we proposed
a revised crystal structure for the spin-orbit coupled honey-
comb antiferromagnet Na2IrO3 that highlights important
departures from the ideal case where the Kitaev exchange
dominates. We observed dispersive spin-wave excitations
in inelastic neutron scattering and showed that substantial
further-neighbor exchange couplings are required to ex-
plain the observed dispersion and we proposed a model for
the magnetic ground state that could support such a dis-
persion relation.
We thank G. Jackeli for providing notes on spin-wave

dispersions for the KH model in the rotated frame, A.
Amato for technical support, N. Shannon, J. T. Chalker,
and L. Balents for discussions, and EPSRC for funding.
Work at Rutgers was supported by DOE (DE-FG02-
07ER46382).
Note added in proof.—Very recently, neutron diffraction

data on single crystals ofNa2IrO3 was reported, which also
provided evidence in support of zigzag magnetic order, and
x-ray studies obtained similar structural informa-
tion [22].

FIG. 3 (color online). Diagram of (a) Néel, (b) zigzag, and
(c) stripy order. (d) Reciprocal space diagram showing locations
of magnetic Bragg peaks for various magnetic phases (inner
hexagon shows first Brillouin zone of the honeycomb lattice).
(e) Powder inelastic neutron scattering data. The notable well-
defined feature is the sharp lower boundary of the scattering at low
Q [filled (magenta) symbols in (h)–(j)], which we associatewith a
sinusoidal spin-wave dispersion; this becomes damped out in the
paramagnetic phase in (f). Slanted thick dashed arrow shows the
scan direction in (g). Gray shading marks the inaccessible region
close to the elastic line dominated by incoherent elastic scattering.
(g) Energy scan (solid points 4.6 K, open symbols 55 K) through
the maximum spin-wave energy seen in (e) fitted to a Gaussian
peak (solid line), dashed line is estimated background. (h)–(j)
Calculated spherically averaged spin-wave intensity [15] for the
J1;2;3 model with (h) zigzag or (i) stripy order, and (j) the KH
model with stripy order for parameters given in the text. Solid red
line in (j) highlights the low-energy boundary, which coincides
with the dispersion from " to the first softening point.
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We examine the role of spin-orbit coupling in the electronic structure of α-RuCl3, in which Ru ions in 4d5

configuration form a honeycomb lattice. Our x-ray absorption spectroscopy measurements at the Ru L edges
exhibit distinct spectral features associated with the presence of substantial spin-orbit coupling, as well as
an anomalously large branching ratio. Furthermore the measured optical spectra can be described very well
with first-principles electronic structure calculations obtained by taking into account both spin-orbit coupling and
electron correlations. We propose that α-RuCl3 is a spin-orbit assisted Mott insulator, and that the bond-dependent
Kitaev interaction may be important for understanding magnetism of this compound.
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Novel electronic ground states can often result from the
interplay of many competing energy scales. In magnetic ma-
terials containing heavy transition metals such as iridium, the
combination of electronic correlations and spin-orbit coupling
(SOC) can give rise to exotic topological phases [1–11]. For
example, when a 4d5 or 5d5 ion is subject to an octahedral
crystal field environment, SOC mixes the wave functions of
the triply degenerate t2g electronic states and the low-energy
magnetic degrees of freedom are described by spin-orbital
mixed Kramers doublets, termed Jeff states [6,7,12]. One of
many interesting consequences of Jeff states in real materials
is the presence of an unusual bond-dependent exchange term
called the Kitaev interaction. This bond-dependent magnetic
interaction is fundamentally different from the usual isotropic
or anisotropic Heisenberg interaction, since frustration is
naturally present on a single site. This allows unconventional
quantum ground states, such as spin liquids, to emerge
even in the absence of geometrical frustration [1,7]. Such a
bond-dependent interaction is an important ingredient for the
quantum compass model, which is relevant in various physical
contexts ranging from ultracold atomic gases to topological
quantum computing [13].

Experimentally, current efforts are mostly directed towards
studying the 5dA2IrO3 (A = Na or Li) compounds where IrO6
octahedra share edges to form a honeycomb network [14–20].
The edge-sharing geometry suppresses isotropic Heisenberg
interactions, while Kitaev interactions are believed to be
substantial [6,7]. However, due to monoclinic and trigonal
distortions, the applicability of the localized Jeff picture to
these compounds is still controversial [21,22]. Materials with
4d electrons have not drawn much attention due to their
smaller SOC compared to 5d systems. However, even if the
absolute value of SOC in 4d systems is smaller than that of 5d
elements, the Jeff state may still be realized as long as the t2g

states remain degenerate in the absence of SOC [23]. α-RuCl3
is an insulating 4d transition-metal halide with honeycomb
layers composed of nearly ideal edge-sharing RuCl6 octahedra,

*yjkim@physics.utoronto.ca

and therefore an excellent candidate material in which bond-
dependent Kitaev interactions may be found. In addition,
single crystal samples are extremely micaceous, similar to
graphite, and can potentially be used to produce a truly
two-dimensional quantum magnet. While earlier transport
measurements have implicated α-RuCl3 to be a conventional
semiconductor [24], subsequent spectroscopic investigations
suggest that it may be a Mott insulator [25]. However, a
systematic examination of the role of SOC in the electronic
structure of α-RuCl3 has not been conducted until now.

In this Rapid Communication, we show that the insulat-
ing state in α-RuCl3 arises from the combined effects of
electronic correlations and strong SOC. Our x-ray absorption
spectroscopy (XAS) data directly indicates that substantial
SOC of Ru is present in α-RuCl3. In order to probe the detailed
electronic structure, we have carried out optical spectroscopy
measurements. The origins of the optical gap in α-RuCl3
are elucidated by our band structure calculations. We find
that while strong electronic correlations are necessary to
describe this material, SOC is essential to account for the
magnitude of the optical gap. Taken as a whole, our results
indicate that α-RuCl3 is best described as a spin-orbit assisted
Mott insulator and strong SOC effects must be considered to
understand this material.

The crystal structure of α-RuCl3 is shown in Fig. 1.
Edge-sharing RuCl6 octahedra form a honeycomb network
in the a-b plane and the weakly coupled honeycomb layers are
stacked along the c direction to form a CrCl3-type structure
P 3112 [27]. As shown in Fig. 1(c), the Cl-Ru-Cl angles
are all within 1◦ of 90◦ and the Ru-Cl bond lengths are
within 0.3% of one another. Thus, the RuCl6 octahedron in
this compound is very close to ideal. In fact, the absence
of appreciable electric quadrupole interactions from the 99Ru
Mössbauer spectroscopy study was interpreted to result from
the highly symmetric octahedral configuration of the ligand
Cl ions [28]. This structural detail is quite important since
such an ideal octahedral environment will leave the t2g states
degenerate in the absence of SOC. In contrast, Na2IrO3 has an
O-Ir-O bond angle of about 85◦ [17,18]. Another important
structural difference between Na2IrO3 and α-RuCl3 is the lack

1098-0121/2014/90(4)/041112(5) 041112-1 ©2014 American Physical Society
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More complex interactions

1. Really, 4d/5d electrons are more extended spatially, allowing  
more distant interactions. 

2.  More generally, many other symmetry allowed interactions on  
    many neighbors should be there, the selected exchange path  
   only produces limited form of interactions. 



Non-Kitaev spin liquids?Non-Kitaev spin liquids in Kitaev materials

Yao-Dong Li1,2, Xu Yang3,5, Yi Zhou4, and Gang Chen1,5⇤
1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China

2Department of Physics, University of California Santa Barbara, CA 93106, United States
3Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, United States

4Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China and
5Department of Physics and Center of Theoretical and Computational Physics,

The University of Hong Kong, Pokfulam Road, Hong Kong, China
(Dated: April 26, 2019)

We point out that the Kitaev materials may not necessarily support Kitaev spin liquid. It is
well-known that having a Kitaev term in the spin interaction is not the su�cient condition for
the Kitaev spin liquid ground state. Many other spin liquids may be stabilized by the competing
spin interactions of the systems. We thus explore the possibilities of non-Kitaev spin liquids in the
honeycomb Kitaev materials. We carry out a systematic classification of gapped Z2 spin liquids using
the Schwinger boson representation for the spin variables. The presence of strong spin-orbit coupling
in the Kitaev materials brings new ingredients into the projective symmetry group classification of
the non-Kitaev spin liquid. We predict the spectroscopic properties of these gapped non-Kitaev
spin liquids. Moreover, among the gapped spin liquids that we discover, we identify the spin liquid
whose spinon condensation leads to the zig-zag magnetic order that was observed in Na2IrO3 and
↵-RuCl3. We further discuss the possibility of gapped Z2 spin liquid and the deconfined quantum
criticality from the zig-zag magnetic order to spin dimerization in pressurized ↵-RuCl3.

I. INTRODUCTION

Kitaev spin liquid was proposed by A. Kitaev when he
constructed an elegant model and solved it exactly1. An
interesting connection to Na2IrO3 was made by G. Jack-
eli and G. Khaliulin2. It was shown that the strong spin-
orbit coupling (SOC) of iridium electrons could give rise
to a Kitaev interaction in the e↵ective spin Hamiltonian
for the j = 1/2 iridium local moments. Since then, many
iridates were synthesized and explored3–12, including the
recent ↵-RuCl313–18 and the very early hyperkagome lat-
tice spin liquid material Na4Ir3O8

19 where the j = 1/2
local moment20 and the anisotropic spin interaction were
proposed21. These materials are dubbed “Kitaev mate-
rials” and have sparked an active search of Kitaev spin
liquid22–26.

Generally speaking, the list of Kitaev materials goes
beyond iridates and ruthenates27–29. What gives the Ki-
taev interaction is the strong SOC, and this is common
to magnetic materials with heavy atoms. Therefore, any
strong spin-orbit-coupled Mott insulator with spin-orbit-
entangled e↵ective spin-1/2 moments and a proper lat-
tice geometry can be a Kitaev material. In particular,
the rare-earth magnets, that have the same lattice struc-
ture as iridates and ruthenates, could be ideal Kitaev
materials27. Despite the growing list of Kitaev materi-
als, all these systems face one crucial issue—there are
many competing interactions that coexist with the Ki-
taev interaction. For example, for the nearest-neighbor
bonds in Na2IrO3 and ↵-RuCl3, three extra interactions
beyond the Kitaev interaction are present30, not to men-
tion many further neighbor (anisotropic) spin interac-
tions that arise from the large spatial extension of the
4d/5d electron wavefunction.

In fact it has been shown that Kitaev spin liquid is

fragile and small perturbation could actually destabilze
it31–35. Meanwhile, the real materials contain many com-
peting interactions that may be as important as the
Kitaev interaction, the candidate quantum spin liquids
(QSLs) for these materials remain to be examined. On
the other hand, for any other gapped QSL that is not Ki-
taev spin liquid, if it is realized, it will be stable against
small local perturbations regardless of the Kitaev inter-
action. This means that having the Kitaev interaction
in the Hamiltonian is insu�cient to induce Kitaev spin
liquid and other competing interactions could instead fa-
vor di↵erent QSL ground states. For example, the J1-
J2 spin-1/2 Heisenberg model on the honeycomb lattice
in certain parameter regime was proposed to support a
gapped QSL that is clearly not a Kitaev spin liquid36.

In this work, we deviate from the “hot spot” of search-
ing for Kitaev spin liquid in Kitaev materials. Instead,
our goal here is to find possible candidate QSLs in Kitaev
materials that are not Kitaev spin liquid and to predict
the experimental consequences of them. Considering the
richness of Kitaev materials, it is very likely that these
non-Kitaev QSLs may actually be stabilized in certain
systems. A recent study of pressurized ↵-RuCl3 indeed
suggested some evidence for a possible QSL37. This ex-
perimental work motivates us to search for non-Kitaev
QSLs in these systems. We carry out a systematic pro-
jective symmetry group (PSG) classification of gapped
Z2 QSLs on a honeycomb lattice using Schwinger bo-
son38–42 representation of the spins. Due to the spin-
orbit-entangled nature of the local moments, the sym-
metry transformation operates both on the spin compo-
nents and on the spin position43–45. This new symmetry
property gives a di↵erent classification scheme from the
existing PSG analysis. From the PSG results, we pre-
dict the spectroscopic properties of di↵erent Z2 QSLs on
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the honeycomb lattice. Moreover, we study the prox-
imate magnetic orders out of the QSLs by condensing
the spinons38,46. The magnetic wavevector of the zig-zag
magnetic order, that was observed in Na2IrO3 and ↵-
RuCl37,32,47, naturally connects with the Z2B QSLs via
the spinon condensation.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we introduce the Schwinger boson con-
struction for the Z2 QSLs with spin-orbit-entangled local
moments. In Sec. III, we explain the specific properties
of the symmetry operations under the Schwinger boson
framework. In Sec. IV, we obtain 16 distinct Z2 QSLs
from the PSG classifications and study the phase dia-
gram of several representative mean-field QSL states. In
Sec. V, we explore the spectroscopic properties and the
proximate magnetic phases of the aforementioned mean-
field Z2 QSLs. Finally in Sec. VI, we discuss the relevant
experiments and especially explain the possibilities for
the pressurized ↵-RuCl3.

II. SCHWINGER BOSON CONSTRUCTION

The gapped Z2 spin liquids can be studied by either
Schwinger boson or Abrikosov fermion approach. We
here adopt the Schwinger boson construction since it
is easier to explore the proximate magnetic orders with
bosonic variables. In the Schwinger boson representation,
the e↵ective spin Si on site i is given by Si =

1
2b

†
i↵�↵�bi�

where bi↵ (↵ =", #) is the bosonic spinon operator. The
Hilbert space is enlarged due to the introduction of the
spinons; to project out unphysical states, the constraintP

↵ b†i↵bi↵ = 1 on local boson number is imposed. The
most general candidate mean-field Hamiltonian for the
Z2 spin liquids has the following form,

HMF =
X

hiji,↵�
(uA

ij,↵�b
†
i↵bj� + uB

ij,↵�bi↵bj� + h.c.)

+
X

i

µi(
X

↵

b†i↵bi↵ � 1) (1)

where we have restricted the mean-field ansatz to near-
est neighbors and introduced the chemical potential µi to
enforce the boson number constraint and we have used
the superscript A/B to represent hopping/pairing terms
in the coe�cients u. Due to the spin-orbit-entangled na-
ture of the local moments, the SU(2) symmetry break-
ing terms exist in the mean-field ansatz. Using the
hermiticity of the Hamiltonian and bosonic statistics
of the spinons, it is easy to show that uB

ij,"# = uB
ji,#",

uB
ij,↵↵ = uB

ji,↵↵, u
A
ij,↵↵ = (uA

ji,↵↵)
⇤, and uA

ij,"# = (uA
ji,#")

⇤.

III. PROJECTIVE SYMMETRY GROUP

In this section we follow the projective symmetry group
(PSG) approach introduced in Refs. 39 and 40 to classify
the spinon mean field states based on the symmetries of

the honeycomb layers of Kitaev materials. The spinon
mean field state will be a reasonable description of the
QSLs, provided the QSL survives the quantum fluctua-
tions beyond mean field.
The physical symmetry group of the Hamiltonian con-

tains both space group symmetries and the time-reversal
symmetry. For simplicity, we fix the representation of
the time-reversal symmetry to be the following through-
out the paper:

T : bi" ! bi#, bi# ! �bi#. (2)

The space group symmetries, on the other hand, can be
represented projectively by the spinons. Therefore, we
will only take the space group symmetries into account
for the PSG classification; the time-reversal symmetry
commutes with all the space group symmetries and does
not a↵ect the classification (see Appendix B). The time-
reversal symmetry will nevertheless restrict the form of
the mean-field Hamiltonian (see Appendix C).
The lattice system of the honeycomb layer is shown

in Fig. 1 and defined in Appendix A. The space group
is generated by two translations T1 and T2, a counter-
clockwise sixfold rotation C6 around the hexagon center,
and a reflection � around the horizontal axis through the
same hexagon center. Under the symmetry operation O,
the bosonic spinon transforms as

bi ! Ô†biÔ = GO
O(i) UO bO(i) (3)

where GO
O(i) = ei�O[O(i)] is a local U(1) gauge trans-

formation, which leaves the spin operators invari-
ant. The gauge transformation is generally nontriv-
ial, hence incorporated in the symmetry operation in
Eq. (3). After projection into the physical Hilbert
space, spinons states related by a pure gauge trans-
formation should give the same physical state. In
Eq. (3) we have introduced the spin rotation UO to ac-
count for the e↵ects of SOC, which rotates the posi-
tion and spin simultaneously. In explicit forms, we have
UT1 = UT2 = 12⇥2,UC6 = exp

�
i⇡3

�
z

2

�
,U� = exp

�
i⇡ �

x

2

�
.

For mean-field Hamiltonian of the form in Eq. (1) to
be invariant under the symmetry transformation O, the

FIG. 1. The honeycomb lattice and its symmetries. Blue/red
circles indicate the two sublattices denoted as u/v. The space-
group generators are translations T1 and T2, sixfold rotation
C6 around the plaquette center, and horizontal reflection �

through the hexagon center.
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the honeycomb lattice. Moreover, we study the prox-
imate magnetic orders out of the QSLs by condensing
the spinons38,46. The magnetic wavevector of the zig-zag
magnetic order, that was observed in Na2IrO3 and ↵-
RuCl37,32,47, naturally connects with the Z2B QSLs via
the spinon condensation.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we introduce the Schwinger boson con-
struction for the Z2 QSLs with spin-orbit-entangled local
moments. In Sec. III, we explain the specific properties
of the symmetry operations under the Schwinger boson
framework. In Sec. IV, we obtain 16 distinct Z2 QSLs
from the PSG classifications and study the phase dia-
gram of several representative mean-field QSL states. In
Sec. V, we explore the spectroscopic properties and the
proximate magnetic phases of the aforementioned mean-
field Z2 QSLs. Finally in Sec. VI, we discuss the relevant
experiments and especially explain the possibilities for
the pressurized ↵-RuCl3.
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Schwinger boson or Abrikosov fermion approach. We
here adopt the Schwinger boson construction since it
is easier to explore the proximate magnetic orders with
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The space group symmetries, on the other hand, can be
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formation, which leaves the spin operators invari-
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space, spinons states related by a pure gauge trans-
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the honeycomb lattice. Moreover, we study the prox-
imate magnetic orders out of the QSLs by condensing
the spinons38,46. The magnetic wavevector of the zig-zag
magnetic order, that was observed in Na2IrO3 and ↵-
RuCl37,32,47, naturally connects with the Z2B QSLs via
the spinon condensation.

The remaining parts of the paper are organized as fol-
lows. In Sec. II, we introduce the Schwinger boson con-
struction for the Z2 QSLs with spin-orbit-entangled local
moments. In Sec. III, we explain the specific properties
of the symmetry operations under the Schwinger boson
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gram of several representative mean-field QSL states. In
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�
.

For mean-field Hamiltonian of the form in Eq. (1) to
be invariant under the symmetry transformation O, the

FIG. 1. The honeycomb lattice and its symmetries. Blue/red
circles indicate the two sublattices denoted as u/v. The space-
group generators are translations T1 and T2, sixfold rotation
C6 around the plaquette center, and horizontal reflection �

through the hexagon center.
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Z2 QSL GT1 GT2 GC6 G�[u] G�[v]

Z2A000 1 1 1 1 1

Z2A001 1 1 i i �i

Z2A010 1 1 i 1 1

Z2A011 1 1 �1 i �i

Z2A100 1 1 i i i

Z2A101 1 1 �1 �1 1

Z2A110 1 1 �1 i i

Z2A111 1 1 �i �1 1

Z2B000 1 (�1)x i

x(x+2y�1)
i

2x+y(y+1)
i

2x+y(y+1)

Z2B001 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)+1
i

2x+y(y+1)�1

Z2B010 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)
i

2x+y(y+1)

Z2B011 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+1
i

2x+y(y+1)�1

Z2B100 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)+1
i

2x+y(y+1)+1

Z2B101 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+2
i

2x+y(y+1)

Z2B110 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+1
i

2x+y(y+1)+1

Z2B111 1 (�1)x i

x(x+2y�1)+3
i

2x+y(y+1)+2
i

2x+y(y+1)

TABLE I. List of the gauge transformations associated with
the symmetry operations of the 16 Z2 QSLs, where (x, y, w)
denotes the site in the honeycomb coordinate system.

coe�cients should satisfy

uA
O(i)O(j),↵� =

⇣
GO
O(i)

⌘⇤
GO
O(j) (U⇤

O)↵⌫ (UO)�� u
A
ij,⌫�,(4)

uB
O(i)O(j),↵� = GO

O(i)GO
O(j) (UO)↵⌫ (UO)�� u

B
ij,⌫�, (5)

where we have used the fact that UO commutes with GO.
For a general pair of sites (i, j), the above equations are
solvable if for each group relation O1O2 · · · On = 1, the
following identities are satisfied,

UO1UO2 · · · UO
n

GO1
i GO2

O2O3···On

(i)GO3

O3···On

(i) · · · GO
n

O
n

(i) = ±1

, GO1
i GO2

O2O3···On

(i)GO3

O3···On

(i) · · · GO
n

O
n

(i) = ±1, (6)

where ±1 is either element of Z2, the invariant gauge
group (IGG). The IGG turns out to be the gauge group
of the low-energy e↵ective theory of the QSL state39,40.
Here, since we are considering Z2 QSLs, the IGG should
also be Z2. The two lines in Eq. (6) are equivalent be-
cause the identity element involves either rotation by 0 or
2⇡, so UO1UO2 · · · UO

n

= ±1, and the group relations con-
straint only the phases �O. Given the defining relations
between group generators T1, T2, C6,�, we can solve for
all the possible gauge transformation functions �O(i)’s
compatible with Eq. (6).

Z2 QSL
u

A

s

u

A

a

u

B

s

u

B

a

Z2A000 6= 0 6= 0 0 0

Z2A001 0 6= 0 6= 0 0

Z2A010 6= 0 6= 0 6= 0 0

Z2A011 0 6= 0 0 0

Z2A100 6= 0 6= 0 6= 0 6= 0

Z2A101 0 6= 0 0 6= 0

Z2A110 6= 0 6= 0 0 6= 0

Z2A111 0 6= 0 6= 0 6= 0

Z2B000 6= 0 6= 0 0 0

Z2B001 0 6= 0 6= 0 0

Z2B010 6= 0 6= 0 6= 0 0

Z2B011 0 6= 0 0 0

Z2B100 6= 0 6= 0 6= 0 6= 0

Z2B101 0 6= 0 0 6= 0

Z2B110 6= 0 6= 0 0 6= 0

Z2B111 0 6= 0 6= 0 6= 0

TABLE II. A simplified list of coe�cients in the mean-field
Hamiltonians of each class of Z2 QSLs. In the list, u

A

s/a

stands for coe�cients for spin-preserving/spin-flipping spinon
hopping terms, and u

B

s/a

stands for coe�cients for spin-
preserving/spin-flipping spinon pairing terms. The list em-
phasizes the vanishing parameters; for a complete list, see
Tab. III.

IV. THE 16 CLASSES OF Z2 QSLS AND THE
MEAN-FIELD PHASE DIAGRAM

The solutions of the �O’s for equations of the form in
Eq. (6) are as follows:

�T1(x, y, w) = 0, (7)

�T2(x, y, w) = p1⇡x, (8)

�C6(x, y, w) =
⇡

2
(p1x(x+ 2y � 1) + p7 + p8 + p9) ,(9)

��(x, y, u) =
⇡

2
(2p1x+ p1y(y + 1) + p7 + p9) , (10)

��(x, y, v) =
⇡

2
(2p1x+ p1y(y + 1) + p7 � p9) . (11)

where w = u, v and p1, p7, p8, p9 are free to take either
0 or 1 in Z2. Details of the derivation can be found in
Appendix B. Therefore there are in total 16 states la-
beled by p1, p7, p8 and p9. Specifically, the state is called
Z2Ap7p8p9 states when p1 = 0, and Z2Bp7p8p9 states
when p1 = 1. This p1 variable is proportional to the mag-
netic flux p1⇡ through each unit cell felt by the spinon.
It signifies the fractionalization of translation symmetry
to be discussed in Sec. V.
With the PSG solutions in Tab. I, we obtain the mean-

field Hamiltonians for Schwinger bosons in Appendix C.
The simplified results are summarized in Tab. II. Due to
constraints from the PSG, the hermiticity of the Hamil-
tonian, and time-reversal symmetry, some of the coe�-
cients are fixed to be 0.

3

Z2 QSL GT1 GT2 GC6 G�[u] G�[v]

Z2A000 1 1 1 1 1

Z2A001 1 1 i i �i

Z2A010 1 1 i 1 1

Z2A011 1 1 �1 i �i

Z2A100 1 1 i i i

Z2A101 1 1 �1 �1 1

Z2A110 1 1 �1 i i

Z2A111 1 1 �i �1 1

Z2B000 1 (�1)x i

x(x+2y�1)
i

2x+y(y+1)
i

2x+y(y+1)

Z2B001 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)+1
i

2x+y(y+1)�1

Z2B010 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)
i

2x+y(y+1)

Z2B011 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+1
i

2x+y(y+1)�1

Z2B100 1 (�1)x i

x(x+2y�1)+1
i

2x+y(y+1)+1
i

2x+y(y+1)+1

Z2B101 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+2
i

2x+y(y+1)

Z2B110 1 (�1)x i

x(x+2y�1)+2
i

2x+y(y+1)+1
i

2x+y(y+1)+1

Z2B111 1 (�1)x i

x(x+2y�1)+3
i

2x+y(y+1)+2
i

2x+y(y+1)

TABLE I. List of the gauge transformations associated with
the symmetry operations of the 16 Z2 QSLs, where (x, y, w)
denotes the site in the honeycomb coordinate system.

coe�cients should satisfy

uA
O(i)O(j),↵� =

⇣
GO
O(i)

⌘⇤
GO
O(j) (U⇤

O)↵⌫ (UO)�� u
A
ij,⌫�,(4)

uB
O(i)O(j),↵� = GO

O(i)GO
O(j) (UO)↵⌫ (UO)�� u

B
ij,⌫�, (5)

where we have used the fact that UO commutes with GO.
For a general pair of sites (i, j), the above equations are
solvable if for each group relation O1O2 · · · On = 1, the
following identities are satisfied,

UO1UO2 · · · UO
n

GO1
i GO2

O2O3···On

(i)GO3

O3···On

(i) · · · GO
n

O
n

(i) = ±1

, GO1
i GO2

O2O3···On

(i)GO3

O3···On

(i) · · · GO
n

O
n

(i) = ±1, (6)

where ±1 is either element of Z2, the invariant gauge
group (IGG). The IGG turns out to be the gauge group
of the low-energy e↵ective theory of the QSL state39,40.
Here, since we are considering Z2 QSLs, the IGG should
also be Z2. The two lines in Eq. (6) are equivalent be-
cause the identity element involves either rotation by 0 or
2⇡, so UO1UO2 · · · UO

n

= ±1, and the group relations con-
straint only the phases �O. Given the defining relations
between group generators T1, T2, C6,�, we can solve for
all the possible gauge transformation functions �O(i)’s
compatible with Eq. (6).

Z2 QSL
u

A

s

u

A

a

u

B

s

u

B

a

Z2A000 6= 0 6= 0 0 0

Z2A001 0 6= 0 6= 0 0

Z2A010 6= 0 6= 0 6= 0 0

Z2A011 0 6= 0 0 0

Z2A100 6= 0 6= 0 6= 0 6= 0

Z2A101 0 6= 0 0 6= 0

Z2A110 6= 0 6= 0 0 6= 0

Z2A111 0 6= 0 6= 0 6= 0

Z2B000 6= 0 6= 0 0 0

Z2B001 0 6= 0 6= 0 0

Z2B010 6= 0 6= 0 6= 0 0

Z2B011 0 6= 0 0 0

Z2B100 6= 0 6= 0 6= 0 6= 0

Z2B101 0 6= 0 0 6= 0

Z2B110 6= 0 6= 0 0 6= 0

Z2B111 0 6= 0 6= 0 6= 0

TABLE II. A simplified list of coe�cients in the mean-field
Hamiltonians of each class of Z2 QSLs. In the list, u

A

s/a

stands for coe�cients for spin-preserving/spin-flipping spinon
hopping terms, and u

B

s/a

stands for coe�cients for spin-
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phasizes the vanishing parameters; for a complete list, see
Tab. III.

IV. THE 16 CLASSES OF Z2 QSLS AND THE
MEAN-FIELD PHASE DIAGRAM
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Eq. (6) are as follows:
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where w = u, v and p1, p7, p8, p9 are free to take either
0 or 1 in Z2. Details of the derivation can be found in
Appendix B. Therefore there are in total 16 states la-
beled by p1, p7, p8 and p9. Specifically, the state is called
Z2Ap7p8p9 states when p1 = 0, and Z2Bp7p8p9 states
when p1 = 1. This p1 variable is proportional to the mag-
netic flux p1⇡ through each unit cell felt by the spinon.
It signifies the fractionalization of translation symmetry
to be discussed in Sec. V.
With the PSG solutions in Tab. I, we obtain the mean-

field Hamiltonians for Schwinger bosons in Appendix C.
The simplified results are summarized in Tab. II. Due to
constraints from the PSG, the hermiticity of the Hamil-
tonian, and time-reversal symmetry, some of the coe�-
cients are fixed to be 0.
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Z2B101 0 6= 0 0 6= 0

Z2B110 6= 0 6= 0 0 6= 0

Z2B111 0 6= 0 6= 0 6= 0

TABLE II. A simplified list of coe�cients in the mean-field
Hamiltonians of each class of Z2 QSLs. In the list, u

A

s/a

stands for coe�cients for spin-preserving/spin-flipping spinon
hopping terms, and u

B

s/a

stands for coe�cients for spin-
preserving/spin-flipping spinon pairing terms. The list em-
phasizes the vanishing parameters; for a complete list, see
Tab. III.

IV. THE 16 CLASSES OF Z2 QSLS AND THE
MEAN-FIELD PHASE DIAGRAM

The solutions of the �O’s for equations of the form in
Eq. (6) are as follows:

�T1(x, y, w) = 0, (7)

�T2(x, y, w) = p1⇡x, (8)

�C6(x, y, w) =
⇡

2
(p1x(x+ 2y � 1) + p7 + p8 + p9) ,(9)

��(x, y, u) =
⇡

2
(2p1x+ p1y(y + 1) + p7 + p9) , (10)

��(x, y, v) =
⇡

2
(2p1x+ p1y(y + 1) + p7 � p9) . (11)

where w = u, v and p1, p7, p8, p9 are free to take either
0 or 1 in Z2. Details of the derivation can be found in
Appendix B. Therefore there are in total 16 states la-
beled by p1, p7, p8 and p9. Specifically, the state is called
Z2Ap7p8p9 states when p1 = 0, and Z2Bp7p8p9 states
when p1 = 1. This p1 variable is proportional to the mag-
netic flux p1⇡ through each unit cell felt by the spinon.
It signifies the fractionalization of translation symmetry
to be discussed in Sec. V.
With the PSG solutions in Tab. I, we obtain the mean-

field Hamiltonians for Schwinger bosons in Appendix C.
The simplified results are summarized in Tab. II. Due to
constraints from the PSG, the hermiticity of the Hamil-
tonian, and time-reversal symmetry, some of the coe�-
cients are fixed to be 0.

SOC-PSG
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FIG. 2. The phase diagrams for representative mean-field Hamiltonians. Here  is the average boson density, defined to beP
i,↵

hb†
i↵

b

i↵

i/Nsite, and Q is the position in Brillouin zone of the spinon band minimum. In (a) and (c), we choose uA

a

/u

A

s

= 0.6

and u

B

s

= 0, and in (b) and (d) we choose u

B

s

= 0. The solid line marks the phase boundary between magnetic ordered state
(above solid line) and the Z2 QSL states (below solid line). Here we use di↵erent colors for solid lines to indicate di↵erent
ordered states above the solid lines. The choice of the momenta can be found in Appendix A.

The classification of Z2 QSLs incorporate a wide range
of phases (at least one for each class) and encode di↵er-
ent types of interactions. This is particularly relevant to
Kitaev materials, where interactions beyond the Kitaev
model compete with the Kitaev term. These interac-
tions can drive the system away from the Kitaev spin
liquid state into other Z2 QSLs, or even destablize the
spin liquid and introduce a magnetic order. It is there-
fore desirable to investigate the phase diagram for the Z2

QSL states in our classification and determine the ranges
of the parameters that support a QSL phase. We can fur-
ther predict their proximate magnetic orders that can be
directly compared with experiments.

The magnetic order out of the Z2 QSLs can be under-
stood in the following manner. In the Z2 QSL phases,
the spinons are fully gapped, and the system are absent
from developing long-range order. However, as we have
mentioned in Sec. II, the spinon density must satisfy the
uniform filling condition

 = hb†i↵bi↵i = 1. (12)

Such a constraint is met by tuning the chemical potential
µ within the mean field theory. At a critical value of µ,
the spinon gap will close and the spinons condense at the
band miminum Q with hbQ↵i 6= 0. It will correspond-
ingly give rise to a magnetic order or spin density wave
with ordering wavevector 2Q (see Sec. VB).

Here we choose four representative classes, Z2A100,
Z2A111, Z2B100, Z2B111, and solve for their mean-field
phase diagrams (see Fig. 2). We found that the Z2A111,
Z2B100, Z2B111 states all support paramagnetic QSL
phases in the chosen parameter regime, and all of these
QSL states can be driven to magnetic order when certain
parameters are tuned.

V. EXPERIMENTAL CONSEQUENCES OF Z2

QSLS

In this section we discuss two experimental conse-
quences of the Z2 QSLs. First, we note that translation
symmetry fractionalization in Z2B states will result in
an enhanced periodicity of the lower edge of the dynamic
spin structure factor, which serves as a direct spectro-
scopic probe for the QSLs. Second, we study magnetic
ordered states adjacent to QSLs via the condensation of
Schwinger bosons. It turns out that the ordering na-
ture of the boson-condensed state are determined by the
classes of QSLs. Therefore the experimentally measured
magnetic ordered states will impose restrictions on possi-
ble adjacent Z2 QSLs, which helps determine the nature
of the experimentally realized spin liquids.

A. Spectroscopic signatures of translational
symmetry fractionalization

A unique feature of QSLs is the emergent fractional-
ized excitations; in our case, these are the gapped spinons
or visons. The spinons carry quantum numbers that are
fractions of a physical spin. This fact prevents spinons
from being directly probed, since any local observable is
necessarily with integer quantum number, and the ob-
servable necessarily adopts a “convoluted” form in terms
of spinon variables. In inelastic neutron scattering exper-
iments, one neutron flip event creates a spin-1 excitation,
and the energy-transfer of the neutron is shared between
a pair of spin-1/2 spinons,

q = k1 + k2, (13)

⌦(q) = !(k1) + !(k2). (14)

In the previous section we classified gapped Z2 QSLs
on the honeycomb lattice, each characterized by a pro-
jective representation the emergent spinons live in. It
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FIG. 4. (Color online.) The magnetic order for a Z2B100 state. We have split the components in x-z plane and along y-direction
for clarity. Blue and red sites are the antiferromagnetically aligned chains along the direction prependicular to 2Q. The gray
dashed lines denote the enlarged unit cell. The parameters of the Hamiltonian are the same as in Fig. 3. In (a) and (b), we
have chosen |zQ1 | = |zQ2 |, and arg z2 � arg z1 = ⇡/3. In (c) and (d), we depict the order for |zQ2 | = 0. Notice that in the latter
case the magnetic order is completely in the x-z plane.

Although the order di↵ers from the zig-zag or stripe
ones, we suspect that this is an artifact of the spinon
mean-field theory approach. In this framework, we are
e↵ectively dealing with a theory of free spinons with only
nearest neighbor hopping. We expect that when further
neighbor hoppings and interlayer interactions are taken
into account, the magnetic order should be closer to real-
ity. On the other hand, the ⇡-flux is a robust feature and
will survive interactions. Consequently, the 2Q ordering
wave vector will exist for a large range of parameters.

To further constrast the Z2B states with the Z2A
states, we note that the proximate magnetic orders in the
phase diagrams of Z2A states in Fig. 2 are either incom-
mensurate with the lattice, or have an ordering vector
of 2� or 2K. As a consequence, the resulting magnetic
order is either ferromagnetic (see Appendix. E) or an an-
tiferromagnetic order. Both are drastically di↵erent from
the zig-zag order that was observed.

In summary, we have pointed out that the Z2B100
state is likely to be the QSL state adjacent to the zig-zag
ordered states observed in Kitaev materials ↵-RuCl3 and
Na2IrO3.

VI. DISCUSSION

The proposed honeycomb lattice Kitaev materials are
Li2IrO3, Na2IrO3, and ↵-RuCl3 with 4d/5d magnetic
ions. Unfortunately, all three materials develop long-
range magnetic orders, and the relevant magnetic or-
ders were proposed to be the zig-zag like with a mag-
netic unit cell that is twice of the crystal unit cell7,32,47.
For ↵-RuCl3 that is under an active study recently, the
magnetic field is found to suppress the magnetism and
possibly generate a QSL state at intermediate magnetic
fields. The thermal Hall measurement has found a non-
vanishing thermal Hall e↵ect that seems to be consis-
tent with the prediction from the chiral majorana fermion
edge state that is obtained from the Kitaev spin liquid by
the magnetic field50–52. Because of the particular experi-
mental setup in the thermal Hall measurements, Refs. 53
and 54 carefully considered the e↵ect of the spin-lattice
coupling and suggested that the quantization of the ther-

mal Hall e↵ect may survive and can actually be robust
even with the spin-lattice coupling. These results may
explain the thermal Hall e↵ect in ↵-RuCl3. In contrast,
our result in this paper is not dealing with the actual spin
state in the intermediate magnetic fields. Instead, we are
interested in the zero-field magnetic state and try to un-
derstand whether the magnetic orders can be thought as
the proximate magnetic orders of the nearby Z2 QSLs.
Thus, an indirect experimental signature would be a pos-
sible quantum phase transition from the current magnetic
orders to the nearly Z2 QSLs. It is not obvious if this
transition can be induced by the external magnetic field.
It is, however, possible that the magnetic field induces
the magnetic order from the Z2 QSLs via the spinon con-
densation where the magnetic field suppresses the spinon
band gap.
On the other hand, a recent theoretical development55

has extended the Schwinger boson construction to un-
derstand the dynamical properties of the magnetically
ordered state that is obtained by condensing the bosonic
spinons. Ref. 55 applies this theory to study the dy-
namical properties of the triangular lattice Heisenberg
model, despite this model supports the well-known 120-
degree magnetic order. Their results suggested that the
Schwinger boson approach can be an adequate starting
point for describing the excitation spectrum of some mag-
netically ordered compounds that are near the quantum
melting point separating this ordered phase from the
proximate QSL. In ↵-RuCl3, the ordered moment is only
about 1/3 of the full magnetic moment in the param-
agnetic phase18. Thus, it is natural and interesting to
see whether Ref. 55’s approach can be adapted to pro-
vide a new understanding of the spin dynamics inside the
magnetic ordered state of ↵-RuCl3 rather than making
connection to the Kitaev spin liquid.
Quite recently, the pressurized ↵-RuCl3 has been stud-

ied experimentally37, as well as other strain e↵ect ex-
periments have been performed. We focus our discus-
sion on the pressurized experiments37. It is found that,
above a critical pressure, the antiferromagnetic order in
↵-RuCl3 disappears and a possible QSL state appears.
At even higher pressures, the system experiences a re-
sistance drop by several orders in magnitude. This was
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FIG. 3. (Color online.) Intensity plot of lower excitation edges
of S(q,!) for the (a) Z2A100 and (b) Z2B100 states. We have
chosen u

A

s

= 2, u

A

a

= 1.2, u

B

s

= 0, u

B

a

= 1 (see Tab. II and
Appendix B for definitions of the parameters). The white
dashed lines mark the Brillouin zone boundary.

was realized that the symmetry class of spinons has dra-
matic e↵ects on the neutron spectrum48,49. For the lat-
tice translation, the relevant quantum number is p1, and
we find

�T1(x, y, w) = 0, (15)

�T2(x, y, w) = p1⇡x. (16)

For the Z2B states, p1 = 1, and the PSG elements corre-
sponding to T1 and T2 anticommute,

T̂1T̂2T̂
�1
1 T̂�1

2 = �1. (17)

where T̂1 and T̂2 act on the spinon degrees of freedom
instead on the spins. As a consequence, the periodicity
of the lower excitation edge of the dynamic spin structure
factor defined by

edge(q) = min
k

[!(k) + !(q � k)] (18)

is doubled (see Appendix C),
For the Z2A states, the lower excitation edge should

have the usual periodicity of 2⇡ in both directions of
Brillouin zone basis.

We illustrate the two possible fractionalization pat-
terns in Fig. 3 representative Z2A and Z2B states. This
pattern is accessible to neutron scattering experiments.

B. Proximate magnetic orders of Z2 QSLs

Besides the symmetry fractionalization in the QSL
phases, the proximate magnetic orders in the spinon-
condensed phases provide a complementary description
of the system. Instead of two-spinon continuum, one ex-
pects to see sharp magnon peaks in the neutron or the
resonant inelastic X-ray scattering data. Therefore, the
enhanced spectral periodicity in the previous section is
no longer a relevant description; it is much more feasible
to directly probe the magnetic order. It would make a

strong case for the Z2 QSL parent state if some of the
magnetic orders depicted in Fig. 2 are observed.
In fact, we show here that the proximate magnetic or-

der of the Z2B100 state (see Fig. 2c) has the same order-
ing wave vector (⇡, 0) as the zig-zag order with ordering
wave vector observed in Kitaev materials ↵-RuCl3 and
Na2IrO3.
The mean-field Hamiltonian Eq. (1) of a typical Z2B

state in momentum space reads

H =
X

k2 1
2BZ

 †
k(h(k)� µ) k (19)

where

 k = (bk,w,↵,m, b†�k,w,↵,m) (20)

and w = u, v labels the u and v sublattices of the honey-
comb lattice, ↵ =", # labels the spin indices, andm = 0, 1
labels the sites in each magnetic unit cell (due to the ⇡-
flux in each of the original unit cell). The spectrum has
an enhanced periodicity as expected.
As we see from Fig. 2c, in a large range of parame-

ters the high symmetry points ±Q = �0
1 = (±⇡/2, 0) are

the two independent minimum of the spinon band struc-
ture in the magnetic Brillouin zone for the Z2B100 state.
Moreover, the spinons condense at band minima in that
regime, and the system is magnetically ordered. The cor-
responding spinon condensate has the following form:

[hbr,u,",0i, hb†r,u,",0i, . . . , hbr,v,#,1i, hb†r,v,#,1i]T

= zQ1  
Q
1 eiQ·r + z�Q

1  �Q
1 e�iQ·r

+ zQ2  
Q
2 eiQ·r + z�Q

2  �Q
2 e�iQ·r, (21)

where  Q
1,2 and  

�Q
1,2 are eigenvectors of h(k) at ±Q with

the lowest energy, respectively.
The choices of the coe�cient z’s are subject to follow-

ing constraints:
1) The condition hbr,↵i⇤ = hb†r,↵i for all r fixes z�Q

1,2

with respect to zQ1,2;

2) The boson density hnri =
P

↵hb†r,↵ihbr,↵i should be
uniform across the lattice system. This condition will fix
|zQ1 |2 + |zQ2 |2.

With the condensate, it is ready to calculate the mag-
netic order with

hSri = 1

2
hb†r,↵i�↵�hbr,�i. (22)

We see immediately that the magnetic order has an or-
dering wave vector of 2Q = (⇡, 0), consistent with the
experimentally observed magnetic Bragg peak, and the
magnetic order is controlled by two real parameters while
the overall phase factor is inessential. We have a lim-
ited set of free parameters for the magnetic order, so the
magnetic order would take a rather fixed pattern, as il-
lustrated in Fig. 4. As the zig-zag order, the ordering
pattern is periodic in the chain direction and antiferro-
magnetic between the neighboring chains.
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FIG. 2. The phase diagrams for representative mean-field Hamiltonians. Here  is the average boson density, defined to beP
i,↵

hb†
i↵

b

i↵

i/Nsite, and Q is the position in Brillouin zone of the spinon band minimum. In (a) and (c), we choose uA

a

/u

A

s

= 0.6

and u

B

s

= 0, and in (b) and (d) we choose u

B

s

= 0. The solid line marks the phase boundary between magnetic ordered state
(above solid line) and the Z2 QSL states (below solid line). Here we use di↵erent colors for solid lines to indicate di↵erent
ordered states above the solid lines. The choice of the momenta can be found in Appendix A.

The classification of Z2 QSLs incorporate a wide range
of phases (at least one for each class) and encode di↵er-
ent types of interactions. This is particularly relevant to
Kitaev materials, where interactions beyond the Kitaev
model compete with the Kitaev term. These interac-
tions can drive the system away from the Kitaev spin
liquid state into other Z2 QSLs, or even destablize the
spin liquid and introduce a magnetic order. It is there-
fore desirable to investigate the phase diagram for the Z2

QSL states in our classification and determine the ranges
of the parameters that support a QSL phase. We can fur-
ther predict their proximate magnetic orders that can be
directly compared with experiments.

The magnetic order out of the Z2 QSLs can be under-
stood in the following manner. In the Z2 QSL phases,
the spinons are fully gapped, and the system are absent
from developing long-range order. However, as we have
mentioned in Sec. II, the spinon density must satisfy the
uniform filling condition

 = hb†i↵bi↵i = 1. (12)

Such a constraint is met by tuning the chemical potential
µ within the mean field theory. At a critical value of µ,
the spinon gap will close and the spinons condense at the
band miminum Q with hbQ↵i 6= 0. It will correspond-
ingly give rise to a magnetic order or spin density wave
with ordering wavevector 2Q (see Sec. VB).

Here we choose four representative classes, Z2A100,
Z2A111, Z2B100, Z2B111, and solve for their mean-field
phase diagrams (see Fig. 2). We found that the Z2A111,
Z2B100, Z2B111 states all support paramagnetic QSL
phases in the chosen parameter regime, and all of these
QSL states can be driven to magnetic order when certain
parameters are tuned.

V. EXPERIMENTAL CONSEQUENCES OF Z2

QSLS

In this section we discuss two experimental conse-
quences of the Z2 QSLs. First, we note that translation
symmetry fractionalization in Z2B states will result in
an enhanced periodicity of the lower edge of the dynamic
spin structure factor, which serves as a direct spectro-
scopic probe for the QSLs. Second, we study magnetic
ordered states adjacent to QSLs via the condensation of
Schwinger bosons. It turns out that the ordering na-
ture of the boson-condensed state are determined by the
classes of QSLs. Therefore the experimentally measured
magnetic ordered states will impose restrictions on possi-
ble adjacent Z2 QSLs, which helps determine the nature
of the experimentally realized spin liquids.

A. Spectroscopic signatures of translational
symmetry fractionalization

A unique feature of QSLs is the emergent fractional-
ized excitations; in our case, these are the gapped spinons
or visons. The spinons carry quantum numbers that are
fractions of a physical spin. This fact prevents spinons
from being directly probed, since any local observable is
necessarily with integer quantum number, and the ob-
servable necessarily adopts a “convoluted” form in terms
of spinon variables. In inelastic neutron scattering exper-
iments, one neutron flip event creates a spin-1 excitation,
and the energy-transfer of the neutron is shared between
a pair of spin-1/2 spinons,

q = k1 + k2, (13)

⌦(q) = !(k1) + !(k2). (14)

In the previous section we classified gapped Z2 QSLs
on the honeycomb lattice, each characterized by a pro-
jective representation the emergent spinons live in. It
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In the field of quantum magnetism, the exactly solvable Kitaev honeycomb model serves as a

paradigm for the fractionalization of spin degrees of freedom and the formation of Z2

quantum spin liquids. An intense experimental search has led to the discovery of a number of

spin-orbit entangled Mott insulators that realize its characteristic bond-directional interac-

tions and, in the presence of magnetic fields, exhibit no indications of long-range order. Here,

we map out the complete phase diagram of the Kitaev model in tilted magnetic fields and

report the emergence of a distinct gapless quantum spin liquid at intermediate field strengths.

Analyzing a number of static, dynamical, and finite temperature quantities using numerical

exact diagonalization techniques, we find strong evidence that this phase exhibits gapless

fermions coupled to a massless U(1) gauge field. We discuss its stability in the presence of

perturbations that naturally arise in spin-orbit entangled candidate materials.
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Quantum spin liquids are highly entangled quantum states
of matter that exhibit fractionalized excitations1. A
principle example for such a fractionalization are the

spinon excitations of a resonating valence bond (RVB) liquid2,
which carry spin-1/2 and arise only after breaking apart a spin-1
excitation originating from an elementary spin-flip process.
Crucially, once a pair of spinons has been created in an RVB
liquid, they can be separated to arbitrary distances at no energy
cost—the spinons are deconfined. This reveals the emergence of a
much larger underlying structure present in any quantum spin
liquid—a lattice gauge theory in its deconfined regime. The
interplay of fractionalization and lattice gauge theory can be
conceptualized by a parton construction3, which decomposes the
original spin degrees of freedom in terms of partons that repre-
sent the emergent fractional degrees of freedom. These partons
can be chosen to be complex Abrikosov fermions4, real Majorana
fermions5,6, or bosons. Concomitantly, the system is found to be
enriched by an emergent gauge structure, with examples includ-
ing continuous U(1) or discrete Z2 gauge symmetry7,8. One of the
most beautiful examples of a parton construction has been
introduced by Kitaev, who was able to devise an exactly solvable
spin-1/2 model on the honeycomb lattice with several quantum
spin liquid ground states6. Here, the fractionalization of the ori-
ginal spin degrees of freedom into Majorana fermions and an
emergent Z2 gauge structure naturally appear in the framework of
Kitaev’s exact solution, which has led to a plethora of theoretical
investigations and deep analytical insights into spin liquid
physics9.

On a microscopic level, the key ingredients of the Kitaev model
are its bond-directional Ising-type exchange interactions.
Remarkably, these seemingly unusual interactions are found to be
realized via an intricate interplay of spin–orbit coupling, crystal
field effects, and strong interactions10,11 in a variety of 4d and 5d
materials12. However, these spin–orbit entangled Mott insulators
are typically found to exhibit ordered states at low temperatures
in lieu of the sought-after spin liquid physics, consistent with a
theoretical analysis of perturbed Kitaev magnets that exhibit more
conventional types of exchanges beyond a dominant bond-
directional interaction13–20.

Recently considerable excitement has arose due to the fact that
in one of these materials, RuCl3, the magnetic order can be
suppressed with an in-plane magnetic field21–28. Probably the
most spectacular result is a report29 for tilted field directions,
which suggests that a phase, intermediate between the magneti-
cally ordered state at low fields and the high-field polarized state,
exhibits a half-quantized thermal Hall conductance—a unique
signature for a gapped topological spin liquid. The precise nature
of the putative quantum spin liquid regime and its microscopic
description, however, still remain open.

Here, motivated by these observations, we return to the ori-
ginal Kitaev model and explore its phase diagram in the presence
of tilted magnetic fields using numerical exact diagonalization
(ED) techniques. As we report in this Article, there are two dis-
tinct spin liquid regimes already present in this model. For small
magnetic field strengths, there is a gapped spin liquid phase
whose non-Abelian topological nature has first been rationalized
by Kitaev using perturbative arguments for a field pointing along
the out-of-plane [111] direction6. Here we demonstrate that this
phase is stable when tilting the magnetic field to generic direc-
tions and well beyond the perturbative regime by explicitly cal-
culating the modular S-matrix from its (quasi-)degenerate ground
states, which unambiguously confirms that its inherent topolo-
gical nature is indeed given by the Ising topological quantum field
theory (TQFT). The second spin liquid, on which we focus in this
Article, is both manifestly distinct from the gapped topological
spin liquid and at the same time can be considered, in many ways,

to be a descendent of it. One key distinction between the two
phases is their underlying gauge structure. While the Kitaev spin
liquid is accompanied by a Z2 gauge structure with gapped vison
excitations in the gauge sector, the second spin liquid is found to
exhibit the gapless gauge structure typically associated with a U(1)
spin liquid.

Results
Overview. In what follows, we provide multi-faceted evidence
that the phase transition between the two spin liquids at finite
field strengths is driven by the closing of the gap for vison exci-
tations of the Z2 spin liquid and that the emergent gapless spin
liquid is a U(1) spin liquid with a spinon Fermi surface, by
investigating the evolution of the energy spectrum, the dynamical
structure factor, and thermodynamic signatures in the specific
heat. We discuss aspects of the underlying field theory governing
this phase transition at the end of the Article.

It should be noted that the occurrence of two stable spin
liquid regimes in the Kitaev model exposed to a (tilted)
magnetic field is closely linked to whether the applied field
matches the underlying antiferromagnetic (AFM) or ferro-
magnetic (FM) spin correlations, with an order of magnitude
difference in the critical fields between the two cases. Only for
AFM Kitaev couplings and a uniform magnetic field, do we
observe the two spin liquids discussed above. For FM Kitaev
couplings the gapped Kitaev spin liquid is found to be
considerably less stable than in the AFM case, consistent with
a number of recent numerical studies30–32 (with ref. 31 also the
first to report the existence of an intermediate phase for an
AFM coupling). Notably, this situation can be reversed by
staggering the magnetic field, which dramatically increases the
stability of the FM Kitaev phase, while the AFM spin liquid
then covers a significantly smaller parameter space. To round
off our discussion, we demonstrate the stability of the emergent
gapless spin liquid when perturbing the Kitaev model with a
conventional Heisenberg interaction or an off-diagonal Γ-
exchange, which constitute further ingredients of the micro-
scopic description of Kitaev materials17.

Model. We start our discussion by considering the pure Kitaev
honeycomb model in the presence of a uniform magnetic field of
arbitrary orientation, defined by the Hamiltonian

H± ¼ ±K
X

i;jh i 2 γ

Sγi S
γ
j "

X

i

h # Si ; ð1Þ

where H± indicates an AFM/FM Kitaev coupling and the bond
directions are denoted by γ ∈ {x, y, z}. We parametrize the
orientation of the magnetic field as h ¼ h sin θbh111 þ h cos θbh?,
where the unit vectors bh111 and bh? point along the [111] and
either [112̄] or [1̄10] directions. For materials such as (Na,
Li)2IrO3 and RuCl3 these directions correspond to the out-of
plane, c-axis, and in-plane, a or b-axes, respectively. The angle θ
thus measures the tilt away from the honeycomb planes.

Phase diagrams. The phase diagram of the model for various tilt
angles of a uniform external magnetic field is presented in Fig. 1
for both the AFM and FM Kitaev cases. The phase boundaries,
presented in this Figure, are based on a number of different
signatures, including the second derivative of the ground-state
energy and the ground-state fidelity (see Methods for more
details). There are certain limits which have previously been
discussed:

(i) h= 0. In the case of zero magnetic field the Kitaev
Hamiltonian is exactly solvable6. Following Kitaev’s
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original solution, each spin-1/2 can be split into four
Majorana fermions, three are associated with the adjacent
bonds and one with the original site. The bond Majoranas
can be recombined to form a static Z2 gauge field, leaving
us with a single free Majorana fermion moving in a
background field. Its spectrum is gapless, with Dirac points
located at the corners of the Brillouin zone, while the vison
excitations of the gauge field remain gapped6,9. The net
result is a gapless Z2 spin liquid.

(ii) hjj½111"; h # K . In the presence of a magnetic field along
the [111] direction, Kitaev showed, using perturbation
theory, that a small field opens up a gap in the Majorana
spectrum. Furthermore, the resulting Majorana insulator
has a non-trivial band structure, with a Chern number C=
1 for the lower, fully filled band. This corresponds to a
gapped non-Abelian spin liquid with Ising anyon topolo-
gical order, which we will refer to as the Kitaev spin liquid
(KSL). The gapped flux excitations (visons) now bind a
Majorana fermion and there is a single chiral gapless
Majorana edge mode, which gives rise to a quantized
thermal quantum Hall effect. Our numerical data confirms
that this scenario remains true away from the perturbative
limit, for generic field directions, and applies to both the
AFM and FM cases. Technically, we do so by calculating33
the modular S-matrix from the three (quasi-)degenerate

ground states in the KSL phase for various parameters of
Fig. 1. The entries Sab encode the braiding properties of
quasiparticles a and b in the underlying TQFT (fixing the
entries to certain universal values) and thereby allow for its
unambiguous identification. Numerically, we find, e.g., the
following S-matrix

SED ¼
0:46 0:74 0:47

0:71 0:04e%0:91i % 0:70

0:49 % 0:67e0:02i 0:58e%0:13i

0

B@

1

CA; ð2Þ

computed for a [111] field of magnitude h ( hcritKSL=2. For
the Ising TQFT the expected S-matrix has corner entries
+1/2, a middle entry of zero, and the remaining four
entries ± 1=

ffiffiffi
2

p
. We see that, even for the N= 24 site

cluster at hand, we are able to numerically resolve this
structure, confirming that the KSL is indeed a non-Abelian
quantum spin liquid described by an Ising TQFT.

(iii) h ) K . For sufficiently large magnetic field the system will
clearly become polarized along the axis of the external field.
In this polarized phase (PL) the ground state is a trivial
product state and the lowest energy excitations are
conventional magnon modes.

The phase diagrams of Fig. 1 expand this perspective by
providing the critical field strengths, at which the KSL is
destroyed, for tilted field setups. As can be seen in Fig. 1, the
critical field does not depend sensitively on the field direction
(though in real materials anisotropic g-factors need to be
considered that will distort the phase diagram). What is strikingly
evident, however, is that there is a marked contrast in the stability
of the KSL in the case of AFM versus FM coupling, with an order
of magnitude difference in the critical fields. To investigate the
source of this difference we show in Fig. 2 the phase diagrams for
a staggered external field, with + h applied on one sublattice and
−h on the other sublattice of the honeycomb lattice. We see that,
in this case, there is still an order of magnitude difference in the
critical fields but now the situation has been reversed. The AFM
KSL is significantly less stable in a staggered field compared to a
uniform one, while the FM KSL is less stable in a uniform field
and significantly more stable in a staggered one. The stability of
the KSL thus crucially depends on whether the applied field
matches the underlying spin correlations or not. We expect this
observation to generically hold and to also apply to the three-
dimensional generalizations of the Kitaev model34 under an
external field. Though it is experimentally not possible to generate
a staggered field using conventional magnets, it may be possible
to realize the desired effect by placing thin samples of a Kitaev
material on a substrate which is a trivial honeycomb antiferro-
magnet, producing a staggered field by proximity, and thereby
allowing to probe this effect.

Intermediate gapless phase. Beyond the KSL there is, for a wide
range of field angles in the case of AFM Kitaev couplings, an
intermediate phase before entering the high-field PL state. To
investigate the properties of this phase we focus on two generic
cuts away from any high-symmetry directions, shown by the
dashed (red) lines in Fig. 1, one close to the in-plane [1̄10]
direction at θ= 7.5° (π/24) and the other close to the out-of-plane
[111] direction at θ= 82.5° (11π/24) (for an example of a cut in
which there is a single, direct KSL-PL transition see Supple-
mentary Note 2).

One striking signature for the transition from the KSL to this
intermediate phase is a dramatic increase in the density of states
at low energies. This is illustrated in Fig. 3a, b, which show the full
low-energy spectrum as a function of increasing field magnitude
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Fig. 1 Phase diagrams in a uniform magnetic field. a The pure AFM Kitaev
model and b the pure FM Kitaev model for various tilt angles. For AFM
couplings the gapped Kitaev spin liquid (KSL) is surrounded, for a wide
range of tilt angles, by a gapless spin liquid (GSL) before giving way to a
trivial polarized state (PL). For FM couplings, in contrast, the KSL is found to
cover a considerably smaller parameter region with no intermediate GSL
(see Supplementary Note 1 for a zoomed-in view of the FM phase diagram).
The two (purple) points in (a) mark the parameters at which the dynamical
structure factor in Fig. 4b, c is plotted
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FIG. 3. Stripy antiferromagnetic state on the honeycomb lat-
tice. Each stripy is composed of the two-site clusters (circled
by the dashed gray ellipse) that reside on a given line.

honeycomb lattice was found exactly solvable since it can
be mapped to a simple Heisenberg model on all bonds si-
multaneously, with a hidden ferromagnet exposed by the
sit-dependent spin rotation that quadruples the original
unit cell. This mapping has been known as the four-
sublattice spin rotation trick after a work42 for t2g or-
bitals in a cubic environment, whose general structure is
later elucidated and referred as Klein duality in Ref. 43
The site-dependent ⇡ rotations of the four-sublattice spin
transformation connect to the Kitaev exchange through
the multiplication rules of the Klein four group.

To be concrete for the honeycomb lattice, we consider
the rotated spin operators S̃ where S̃ = S for one sub-
lattice and, depending on the particular sublattice they
belong to, S̃ on the remaining three sublattices di↵ers
from the original S by the sign of two appropriate com-
ponents44. Written in the rotated basis, Eq. (8) reads

Hex1 =
X

hi,ji2x

�JS̃
i

· S̃
j

(10)

with the ferromagnetic interaction. It is straightforward
to obtain from Eq. (10) that the exact ground state of
Eq. (8) is a fully polarized ferromagnetic state in the ro-
tated basis. After applying the rotation defined by the
Klein duality on this magnetic order and mapping it back
to the original spin basis, the resulting order is depicted
in Fig. 3, which corresponds to a stripy collinear anti-
ferromagnetic pattern of the original magnetic moments.
Each stripy is composed of the two-site clusters (circled
by the dashed gray ellipse in Fig. 3) that reside on a
given line. Despite belonging to an antiferromagnetic
type, this stripy order is fluctuation-free and would show
a fully saturated antiferromagnetic order parameter44.

Moreover, to make use of the Klein duality, the lat-
tice should usually be considered to be just the pure
nearest-neighbor Kitaev-Heisenberg model. The duality
properties generally break down when the Dzyaloshinskii-
Moriya interaction and/or other further-neighbor inter-
actions are included.

C. Electron-hole doping asymmetry

Since the proposal of Kitaev model and Kitaev spin liq-
uid in real materials, there has been one direction of e↵ort
in the field that tries to study the e↵ect of dopings in the
relevant materials45. This is certainly a natural direction
of thinking on both the model level and the experimental
level. One strong motivation comes from the cuprate su-
perconductivity that was often viewed as a doped Mott
insulating spin liquid. The pairing already occurs in the
spin liquid regime, and condensed doping holes generate
superconductivity. If one of honeycomb Kitaev materi-
als realizes Kitaev spin liquid, doping it would proba-
bly generate topological superconductivity. This state-
ment, however, ignores the detailed evolution of spin-
orbital structure of the system under doping. There is
an electron-hole doping asymmetry for such materials. If
doping happens on the transition metal ions, the elec-
tron doping would create d6 electron configuration that
has no spin or orbital structure. In contrast, the hole
doping would create d4 electron configuration that has
a reconstructed spin-orbit structure46. The local energy
level would be a total J = 0 ground state, J = 1 triplet
excited states and J = 2 quintuplets46. This would cre-
ate a big di↵erence between the electron doping and the
hole doping. One may compare with cuprates when the
electron-hole doping asymmetry also occurs. Over there,
electron is doped on the Cu site, while hole is doped on
the O site47. This is due to the charge transfer nature of
the insulating phase.
This electron-hole doping asymmetry and the recon-

structed spin-orbital structure are beyond iridates or
honeycomb Kitaev materials and occur quite generically
in the strong spin-orbit-coupled correlated materials with
rather di↵erent electron configurations. An earlier work
that considered to dope d4 Mott insulators with exci-
tonic magnetism has noticed that doping constructs the
spin and orbital for d4 Mott insulators48. We will give a
general and broad discussion in a forthcoming paper49.

D. Antisymmetric Dzyaloshinskii-Moriya
interaction

In the presence of SOC, antisymmetric Dzyaloshinskii-
Moriya interactions50,51 are also expected when the mag-
netic bonds have no inversion center. For the two di-
mensional honeycomb lattice, the first neighbor magnetic
sites have inversion symmetry, thus the first neighbor
Dzyaloshinskii-Moriya interaction is prohibited. How-
ever, the second neighbor Dzyaloshinskii-Moriya inter-
action is allowed by symmetry since the second neighbor
magnetic bonds have no inversion center. According to
Moriya’s rules51, there are components of Dij perpendic-
ular to the planes with strength D

z

as schematically de-
picted in Fig. 4(a) and all the in-plane components vanish
when the honeycomb plane is a mirror plane of the crys-
tal structure. Therefore, a representative Dzyaloshinskii-
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FIG. 4. (a) Symmetry allowed Dzyaloshinskii-Moriya inter-
actions between second neighbors on the honeycomb lattice,
where D

z

is the z component. The arrows specify the order
of the cross product Si ⇥Sj . The two sublattices are labeled
by colors. (b) Schematic view of the gauge flux � induced by
the external magnetic field in the presence of the next-nearest
neighbor Dzyaloshinskii-Moriya interaction. (c) The net flux
in one unit cell is zero and the space translation symmetry is
well preserved.

Moriya interaction of the honeycomb lattice Mott insu-
lator up to second neighbor has the form,

HDM =
X

hhi,jii

D
ij

· Si ⇥ Sj . (11)

For example, it has been estimated18 that a large sec-
ond neighbor Dzyaloshinskii-Moriya term |D

ij

| > 4 meV
for the Kitaev material ↵-Li2IrO3, which is usually not
considered in the literatures.

Our purpose is not to solve for the ground state of a
specific Hamiltonian. We assume that the system sta-
bilizes a U(1) spin liquid as suggested by the numeri-
cal studies34–37 and clarify how the spinons acquire an
emergent Lorentz force in the external field through the
Dzyaloshinskii-Moriya interaction. Due to the Zeeman
coupling, a moderate magnetic field partially polarizes
the spins and generate a finite second neighbor scalar spin
chirality on the lattice through Dzyaloshinskii-Moriya in-
teraction. We show in Sec. III B, if the system resides in
the U(1) spin liquid phase, it means to induce an internal
gauge flux for the spinons.

III. THERMAL HALL EFFECT FOR SPIN
LIQUID WITH SPINON FERMI SURFACE

A. Field induced spinon Fermi surface
U(1) spin liquid

Recently, strong evidences for a spinon Fermi surface
spin liquid on the honeycomb lattice in magnetic fields

have been reported in several numerical works34–36, as an
intermediate gapless phase before entering the high-field
trivial polarized state. It describes a highly entangled
quantum state with gapless fermionic spinons coupled to
a massless U(1) gauge field. The mean-field Hamiltonian
constructed for the neutral spinon Fermi surface state is
given by

HMF = Hhop +H
B

, (12)

where Hhop contains only spinon hopping operators on
the honeycomb lattice and

H
B

= �B

2

X

i,↵�

f†
i,↵

(�
x

+ �
y

+ �
z

)
↵�

f
i,�

(13)

represents the Zeeman coupling to an external magnetic
field B along the (111) direction, with f

i,↵

(f†
i,↵

) be-
ing the spinon annihilation (creation) operator at site i.
The (111) direction is normal to the honeycomb plane.
By studying the relation between the relevant projec-
tive symmetry groups (PSGs)52 and numerical technique,
three kinds of U(1) spin liquids are obtained35 to be con-
nected to the Kitaev Z2 spin liquid state through a con-
tinuous phase transition without the symmetry breaking.
Out of the U(1) spin liquid, this transition to Kitaev Z2

spin liquid is a version of Higgs’ transition, and it would
be continuous if the gauge fluctuation is ignored. More-
over, only one of them is proved to support robust spinon
Fermi surfaces and this state was labeled as U1Ak=0 in
Ref. 35. Its mean-field Hamiltonian is given in the Ap-
pendix A. In the numerical calculation, the physical spin
model that was used is the original Kitaev model with
magnetic field and exchange anisotropy, while the e↵ect
of the Dzyaloshinskii-Moriya interaction was not consid-
ered. This free spinon mean-field Hamiltonian simply
describes a U(1) spin liquid with a neutral spinon Fermi
surface in the intermediate magnetic field range. We will
use this mean-field Hamiltonian as our starting point in
this section.

B. Field induced internal flux via
Dzyaloshinskii-Moriya interaction

For the U(1) spin liquid with spinon Fermi surface in
the weak Mott regime, by switching on an external mag-
netic field, the ring exchange interaction derived from the
Hubbard model can come to contribute to the thermal
Hall conductivity31–33. It is originally proposed for the
well-known triangular lattice organic spin liquid candi-
date -(ET)2Cu2(CN)3 due to its proximity to the Mott
transition32. However, since we are working in the strong
Mott regime, such a mechanism does not apply because of
the large charge gap. On the other hand, as we have men-
tioned in Sec. IID, the combination of the microscopic
Dzyaloshinskii-Moriya interaction and Zeeman coupling
further induces an internal U(1) gauge flux distribution
on the honeycomb plane.
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FIG. 4. (a) Symmetry allowed Dzyaloshinskii-Moriya inter-
actions between second neighbors on the honeycomb lattice,
where D
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is the z component. The arrows specify the order
of the cross product Si ⇥Sj . The two sublattices are labeled
by colors. (b) Schematic view of the gauge flux � induced by
the external magnetic field in the presence of the next-nearest
neighbor Dzyaloshinskii-Moriya interaction. (c) The net flux
in one unit cell is zero and the space translation symmetry is
well preserved.

Moriya interaction of the honeycomb lattice Mott insu-
lator up to second neighbor has the form,

HDM =
X

hhi,jii

D
ij

· Si ⇥ Sj . (11)

For example, it has been estimated18 that a large sec-
ond neighbor Dzyaloshinskii-Moriya term |D

ij

| > 4 meV
for the Kitaev material ↵-Li2IrO3, which is usually not
considered in the literatures.

Our purpose is not to solve for the ground state of a
specific Hamiltonian. We assume that the system sta-
bilizes a U(1) spin liquid as suggested by the numeri-
cal studies34–37 and clarify how the spinons acquire an
emergent Lorentz force in the external field through the
Dzyaloshinskii-Moriya interaction. Due to the Zeeman
coupling, a moderate magnetic field partially polarizes
the spins and generate a finite second neighbor scalar spin
chirality on the lattice through Dzyaloshinskii-Moriya in-
teraction. We show in Sec. III B, if the system resides in
the U(1) spin liquid phase, it means to induce an internal
gauge flux for the spinons.
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A. Field induced spinon Fermi surface
U(1) spin liquid

Recently, strong evidences for a spinon Fermi surface
spin liquid on the honeycomb lattice in magnetic fields

have been reported in several numerical works34–36, as an
intermediate gapless phase before entering the high-field
trivial polarized state. It describes a highly entangled
quantum state with gapless fermionic spinons coupled to
a massless U(1) gauge field. The mean-field Hamiltonian
constructed for the neutral spinon Fermi surface state is
given by

HMF = Hhop +H
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where Hhop contains only spinon hopping operators on
the honeycomb lattice and
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The (111) direction is normal to the honeycomb plane.
By studying the relation between the relevant projec-
tive symmetry groups (PSGs)52 and numerical technique,
three kinds of U(1) spin liquids are obtained35 to be con-
nected to the Kitaev Z2 spin liquid state through a con-
tinuous phase transition without the symmetry breaking.
Out of the U(1) spin liquid, this transition to Kitaev Z2

spin liquid is a version of Higgs’ transition, and it would
be continuous if the gauge fluctuation is ignored. More-
over, only one of them is proved to support robust spinon
Fermi surfaces and this state was labeled as U1Ak=0 in
Ref. 35. Its mean-field Hamiltonian is given in the Ap-
pendix A. In the numerical calculation, the physical spin
model that was used is the original Kitaev model with
magnetic field and exchange anisotropy, while the e↵ect
of the Dzyaloshinskii-Moriya interaction was not consid-
ered. This free spinon mean-field Hamiltonian simply
describes a U(1) spin liquid with a neutral spinon Fermi
surface in the intermediate magnetic field range. We will
use this mean-field Hamiltonian as our starting point in
this section.

B. Field induced internal flux via
Dzyaloshinskii-Moriya interaction

For the U(1) spin liquid with spinon Fermi surface in
the weak Mott regime, by switching on an external mag-
netic field, the ring exchange interaction derived from the
Hubbard model can come to contribute to the thermal
Hall conductivity31–33. It is originally proposed for the
well-known triangular lattice organic spin liquid candi-
date -(ET)2Cu2(CN)3 due to its proximity to the Mott
transition32. However, since we are working in the strong
Mott regime, such a mechanism does not apply because of
the large charge gap. On the other hand, as we have men-
tioned in Sec. IID, the combination of the microscopic
Dzyaloshinskii-Moriya interaction and Zeeman coupling
further induces an internal U(1) gauge flux distribution
on the honeycomb plane.

6

K

�

M
b1

b2

(a) (b)

E n
/tx 0

FIG. 5. (a) Representative spinon dispersions for the non-zero
mean field parameters (s3, t
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along the high symmetry line. Here the magnetic field is set
as B = 1 and the induced gauge flux � = ⇡/20. (b) The Bril-
louin zone of honeycomb lattice with reciprocal lattice vectors
b1 = 2⇡(0, 2/

p
3) and b2 = 2⇡(1,�1/

p
3). The arrows indi-

cate the direction of the high symmetry line in (a).

More explicitly, in the U(1) spin liquid phase, the
guage fluctuation is described by continuous lattice U(1)
guage theory and the internal gauge flux is related to the
underlying spin chirality as53–55.

sin� =
1

2
S1 · S2 ⇥ S3. (14)

According to a previous work of us38, one then estab-
lishes sin� ' �D

z

�B/2 under an external magnetic field
B, where � is the flux defined on the triangular plaquette
formed by three second neighbor sites of the honeycomb
lattice and � is the magnetic susceptibility. As schemati-
cally illustrated in Fig. 4(b), the flux through the triangle
formed by sites 1, 2 and 3 in the anticlockwise direc-
tion is �. Similarly, the flux through the triangle formed
by sites 4, 5 and 6 in the anticlockwise direction is still
�, i.e., the fluxes of the triangles formed by the second
neighbor bonds in one hexagon are exactly equal for two
sublattices. However, the flux for the triangle formed by
the second neighbor bonds of three di↵erent hexagons
acquires a minus sign if adopting the anticlockwise loop
convention. That is to say, the net flux in one unit cell
is zero and the space translation symmetry is not de-
stroyed, as shown in Fig. 4(c), where we only plot the
triangles formed by one sublattice for simplicity, but the
situation for the other sublattice is similar. The spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field, thus the spinons will
feel such gauge flux as the spinons hop between second
neighbor sites on the lattice. It is necessary to stress that
the first neighbor spinon hopping does not pick up any
phase since the net flux in a unit cell is zero, much like
the Haldane model for the spinless fermions.

C. Reconstructed fermionic spinon bands

Physically, as the spinon moves on the lattice, it will
experience a Lorentz force from the induced internal flux.
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FIG. 6. (a) Berry curvatures for di↵erent energy bands and all
the parameters are set as in Fig. 5. The red (orange, purple,
blue) line is for the first/lowest (second, third, fourth) spinon
band. (b) The corresponding evaluation of the thermal Hall
conductivity as a function of temperature.

The spinon motion will be twisted and reflected, resulting
in a spinon thermal Hall e↵ect. This is a semiclassical
description. From a quantum mechanical level, this is
understood from the spinon Berry curvature, which we
explain below.
The internal gauge flux pattern is depicted in Fig. 4(b)

and (c). To capture the flux, modifying the spinon mean-
field Hamiltonian by adding the U(1) gauge potential to
the next-nearest neighbor hopping terms, one can obtain
a modified spinon dispersion. Combining the two sub-
lattices with the two spin labels, a total of four spinon
bands are obtained, which are half-filled. As depicted in
Fig. 5(a), the internal U(1) gauge flux reconstructs the
spinon bands and there still exist Fermi pockets. When
the magnetic field exceeds some critical value where the
pockets vanish, according to Polyakov’s argument56, the
dynamical U(1) gauge field will be confined due to the
non-perturbative instanton events and the system enters
a trivial polarized state. To describe the thermal Hall
e↵ect in the spin liquid, we only focus on the deconfined
spin liquid regime and further clarify the induced inter-
nal gauge flux would contribute to the spinon thermal
Hall e↵ect.
Let us now explicitly demonstrate the finite thermal

Hall conductivity for spin liquid in the presence of mag-
netic field. By the aid of Luttinger’s pseudogravitational
potential57, the thermal Hall conductivity formula for a
general noninteracting fermionic system with a nonzero
chemical potential µ was obtained58 as


xy

= � 1

T

Z
d✏(✏� µ)2

@f(✏, µ, T )

@✏
�
xy

(✏). (15)

Here f(✏, µ, T ) = 1/[e�(✏�µ) + 1] is the Fermi-Dirac dis-
tribution and the derivate of the distribution func-
tion @f(✏, µ, T )/@✏ indicates that the integral dominates
around the Fermi energy. Moreover,

�
xy

(✏) = �1

~
X
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Motivated by the recent surge of field-driven phenomena discussed for Kitaev materials, in particular the
experimental observation of a finite thermal Hall effect and theoretical proposals for the emergence of additional
spin liquid phases beyond the conventional Kitaev spin liquid, we develop a theoretical understanding of the
thermal Hall effect in honeycomb Kitaev materials in magnetic fields. Our focus is on gapless U(1) spin liquids
with a spinon Fermi surface, which have been shown to arise as field-induced phases. We demonstrate that
in the presence of symmetry-allowed, second-neighbor Dzyaloshinskii-Moriya interactions these spin liquids
give rise to a finite, non-quantized, thermal Hall conductance in a magnetic field. The microscopic origin of
this thermal Hall effect can be traced back to an interplay of Dzyaloshinskii-Moriya interaction and Zeeman
coupling, which generates an internal U(1) gauge flux that twists the motion of the emergent spinons. We argue
that such a non-quantized thermal Hall effect is a generic response in Kitaev models for a range of couplings.

I. INTRODUCTION

The first experimental observation of a quantum Hall ef-
fect in two-dimensional electron systems1 has proved to be a
scientific revolution, with its exact quantization of Hall resis-
tance raising measurement standards to unprecedented levels
of precision2. It has also served as a blueprint for the inter-
play between experimental breakthroughs and deep concep-
tual progress on the theory side. For the integer quantum Hall
effect, it has been the seminal introduction of topological in-
variants3 to explain the quantization of conductance. For the
subsequent fractional quantum Hall effect4, it has been the
theoretical concepts of emergence and fractionalization5. The
observation of the quantum spin Hall effect6 has marked the
birth of the topological insulator7. It is therefore that the more
recent observation of a half-integer quantized thermal Hall ef-
fect8,9 has caught the imagination of experimentalists and the-
orists alike.

In one of these experiments8, a thermal Hall effect is ob-
served in crystalline samples of RuCl

3

– a Mott insulator,
in which the electronic degrees of freedom are frozen out10

and the heat transport11 must be facilitated through charge-
neutral modes. With the thermal conductance being quan-
tized at a half-integer value, this points to the striking pos-
sibility of a Majorana fermion edge current forming in these
systems. On the theoretical side, this is rationalized by the
designation of RuCl

3

as a “Kitaev material”12–special types
of spin-orbit assisted Mott insulators13,14, in which local spin-
orbit entangled j = 1/2 moments15–17 form that are subject
to bond-directional exchanges18 familiar from the celebrated
Kitaev model19. The appeal of making such a direct connec-
tion to this elementary spin model comes from the fact that
the latter exhibits a number of quantum spin liquid ground
states20,21. Out of these, the field-induced, gapped topological
spin liquid, often simply referred to as “Kitaev spin liquid”, is
a chiral spin liquid with gapless Majorana edge modes. As
such it appears to be a natural fit to explain the quantized

thermal Hall effect in RuCl
3

, in particular after considering
the subtle interplay of gapless Majorana and phonon modes in
such a chiral spin liquid22,23.

The observation of a finite, but non-quantized thermal Hall
effect is an even more general, though still unusual phe-
nomenon, which has been reported not only for a broad tem-
perature and magnetic field range for RuCl

3

24,25 (in addi-
tion to the quantized regime), but also a number of other
spin liquid candidate materials such as the kagome mag-
nets volborthite26 Cu

3

V
2

O
7

(OH)
2

· 2H
2

O and kapellasite27

CaCu
3

(OH)
6

Cl
2

· 0.6H
2

O, as well as the pyrochlore spin ice
material28 Tb

2

Ti
2

O
7

. This points to an alternative micro-
scopic origin of charge-neutral thermal transport beyond the
one sketched above for the gapped, chiral spin liquid, which
always leads to a quantized Hall effect22,23. Indeed, as some
of us have recently pointed out in the context of kagome spin
liquids29, there is the possibility that even a gapless quantum
spin liquid can exhibit a finite thermal Hall conductivity. The
microscopic mechanism at play involves an interplay between
the emergent, charge-neutral spinon degrees of freedom and
certain types of Dzyaloshinskii-Moriya interactions that lead

T + �T
B

J

�T

T

FIG. 1. Schematic illustration of the thermal Hall effect of charge-
neutral spinons arising for a field-induced U(1) spin liquid with a
spinon Fermi surface in honeycomb Kitaev materials in an external
magnetic field.
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FIG. 3. Dzyaloshinskii-Moriya interactions. (a) Symmetry al-
lowed Dzyaloshinskii-Moriya interactions between second neigh-
bors on the honeycomb lattice, where D111 is the [111] component.
The arrows specify the order of the cross product Si ⇥ Sj . The two
sublattices are labeled by colors. (b) Schematic view of the gauge
flux � induced by the external magnetic field in the presence of the
next-nearest neighbor Dzyaloshinskii-Moriya interaction. (c) The
net flux in one unit cell is zero and the space translation symmetry is
well preserved.

With these microscopic considerations in place, we note
again that our purpose in the following is not to solve for the
ground state of a specific Hamiltonian. Instead, we assume
that the system stabilizes in the presence of an external mag-
netic field a non-Kitaev spin liquid as suggested by numerical
studies30–32,41 and clarify how the elementary spinons in these
spin liquids acquire an emergent Lorentz force in the exter-
nal field through the Dzyaloshinskii-Moriya interaction. Due
to the Zeeman coupling, a moderate magnetic field partially
polarizes the spins and generates a finite second neighbor
scalar spin chirality on the lattice through the Dzyaloshinskii-
Moriya interaction. This in turn induces an internal gauge
flux for the spinons, as we will show in the following, and
ultimately give rise to a thermal Hall effect.

III. THERMAL HALL EFFECT FOR SPIN LIQUID WITH
SPINON FERMI SURFACE

As first instance of a non-Kitaev spin liquid we consider
the scenario of a U(1) spin liquid with a spinon Fermi surface.
This is motivated by a recent string of numerical works30–32

that report strong evidence for the emergence of such a U(1)
spin liquid as an intermediate gapless phase in the antiferro-
magnetic Kitaev model before entering the high-field trivial
polarized state.

In more technical terms, the U(1) spin liquid describes
a highly entangled quantum state with gapless fermionic
spinons coupled to a massless U(1) gauge field. On a mean-
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FIG. 4. (a) Representative spinon dispersions for the non-zero
mean field parameters (s3, t

x

0 , t
y

0) = (�1,�1,�0.2), (s̃0, s̃3) =
(�0.2, 0.2) and (t̃x0 , t̃
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3) = (�0.2,�0.2,�0.02,�0.02)
along the high symmetry line. Here the magnetic field is set as B = 1
and the induced gauge flux � = ⇡/20. (b) The Brillouin zone of hon-
eycomb lattice with reciprocal lattice vectors b1 = 2⇡(0, 2/

p
3) and

b2 = 2⇡(1,�1/
p
3). The arrows indicate the direction of the high

symmetry line in (a).

field level, a Hamiltonian for the neutral spinon Fermi surface
state can be constructed as

H
MF

= H
hop

+ H
B

, (11)

where H
hop

contains only spinon hopping operators on the
honeycomb lattice and

H
B

= �B

2

X

i,↵�

f†
i,↵

(�
x

+ �
y

+ �
z

)
↵�

f
i,�

(12)

represents the Zeeman coupling to an external magnetic field
B along the [111] direction, with f

i,↵

(f†
i,↵

) being the spinon
annihilation (creation) operator at site i. The [111] direction
is normal to the honeycomb plane. By studying the relation
between the relevant projective symmetry groups (PSGs)42,
three kinds of U(1) spin liquids are obtained31 that are con-
nected to the Kitaev Z

2

spin liquid state through a continuous
phase transition without symmetry breaking. Moreover, only
one of them, labeled as U

1

A
k=0

in Ref. 31, was shown to
support robust spinon Fermi surfaces. A representative mean-
field Hamiltonian for such a state, i.e. a U(1) spin liquid with
a neutral spinon Fermi surface on the honeycomb lattice, is
given in Appendix A. We will use this mean-field Hamilto-
nian as our starting point in the following discussion.

A. Field induced internal flux via Dzyaloshinskii-Moriya
interaction

For the U(1) spin liquid with spinon Fermi surface in the
weak Mott regime, by switching on an external magnetic field,
a ring exchange interaction derived from the Hubbard model
can contribute to the thermal Hall conductivity43–45. It was
originally proposed for the well-known triangular lattice or-
ganic spin liquid candidate -(ET)

2

Cu
2

(CN)
3

, due to its prox-
imity to the Mott transition44. However, since we are working
in the strong Mott regime, such a mechanism does not apply
because of the large charge gap. On the other hand, as we have

6

Hamiltonian generates non-trivial spinon Berry curvatures for
each band due to the influence of the induced internal gauge
flux. The numerical results for the thermal Hall conductiv-
ity are presented in Fig. 5(b). For a second neighbor hopping
coefficient t

2

= 0.5t
1

, we obtain a monotonic temperature de-
pendence of 

xy

/(k2

B

T/~). In the zero temperature limit, it
trends to a non-zero and non-quantized value. In the finite
temperature region, the thermal Hall conductivity decreases
monotonically and finally vanishes at high temperatures. The
vanishing thermal Hall conductivity in the high temperature
region originates from the almost equally populated spinon
bands and the corresponding Berry curvature cancellation.

C. Stability of the U(1) spin liquid

Numerical evidence for a U(1) spin liquid in the Kitaev
honeycomb model was recently reported for an intermediate
magnetic field range30–32. Here, we investigate the stability of
this U(1) spin liquid to a finite Dzyaloshinskii-Moriya inter-
action using exact diagonalization techniques. For fields close
to the (111) direction the intermediate U(1) spin liquid occurs
in a field range of h ⇠ 0.35�0.60K (where h is the field mag-
nitude, h = |h|). We focus on this field range and consider
the effects of adding a Dzyaloshinskii-Moriya interaction of
the form given in Eq. (10). The Hamiltonian is thus

H =
X

hiji2�

KS�

i

S�

j

+
X

hhi,jii

D
ij

·Si⇥Sj�
X

i

h
i

·S
i

. (18)

In Fig. 6 we show the resulting phase diagram, with the
U(1) spin liquid region stable up to a maximal Dzyaloshinskii-
Moriya interaction of about |D| ⇠ 0.025K. We should

KSL

AFMU(1) QSL

PL

FIG. 6. Phase diagram for an extended Kitaev model in the
combined presence of a finite Dzyaloshinskii-Moriya interaction, of
strength |D|, and a finite magnetic field, of magnitude h and oriented
close to the [111] direction. The energy unit is in the Kitaev cou-
plinng K of Eq. (18). In the figure, “U(1) QSL” specifically refers to
our spinon Fermi surface U(1) spin liquid, “KSL” refers to the Kitaev
spin liquid, “AFM” refers to the antiferromagnetic ordered state, and
“PL” refers to the polarized state.

note however that additional interactions, relevant for real Ki-
taev materials, could further increase or decrease the stabil-
ity of the U(1) spin liquid against the effects of the finite
Dzyaloshinskii-Moriya term. In any case, the U(1) spin liq-
uid is stable to adding finite, though small, Dzyaloshinskii-
Moriya interactions. This justifies our starting point of U(1)
spin liquid even in the presence of Dzyaloshinskii-Moriya in-
teractions.

IV. THERMAL HALL EFFECT FOR DIRAC SPIN LIQUID

For particular magnetic field directions on the honeycomb
plane, a gapless Dirac spin liquid and a gapped Kalmeyer-
Laughlin-type52 chiral spin liquid were both numerically ob-
tained in Ref. 41 for certain parameter regimes of the so-called
Kitaev-� model – a microscopic model with additional sym-
metric off-diagonal � terms beyond the Kitaev exchange that
has been argued14,34,35 to be particularly relevant to experi-
mental Kitaev materials.

The gapped chiral spin liquid can be characterized by the
net Chern number of the occupied spinon bands. In addition,
note that the ansatz of such a chiral spin liquid readily breaks
both time-reversal symmetry T and reflection P , while their
combination PT is well preserved. Generically, this leads to
a nonvanishing expectation value for the chiral order param-
eter S

i

· (S
j

⇥ S
k

), where i, j, k are three nearby sites. The
chiral spin liquid is effectively described by the Chern-Simons
theory with semion topological order, especially, this state has
chiral edge modes and would show an integer-quantized ther-
mal Hall effect. Thus we are not going to further discuss the
influence of the induced internal gauge flux on this state due
to the Chern-Simons term in the theory for gauge fluctuations.

Here we consider the situation where the system stabilizes
and stays in a gapless Dirac spin liquid state. Such a Dirac
spin liquid is a deconfined state with Dirac band touchings
at the Fermi level and its low-energy effective theory is de-
scribed by the Dirac equation. Usually, a Dirac spin liq-
uid has no thermal Hall effect associated with it. A repre-
sentative spinon dispersion for the Dirac spin liquid realized
in the Kitaev-� model for the honeycomb lattice is depicted
in Fig. 7(a), where we have adopted the spinon mean-field
Hamiltonian constructed in Ref. 41 (see Appendix B for de-
tails). One can see that, at the Fermi level, there is a Dirac

(a) (b)

E n
/t� 1

E n
/t� 1

FIG. 7. (a) Spinon dispersion for the Dirac spin liquid. (b) The
induced flux for the second neighbor hopping terms reconstructs the
spinon bands and the resulting state is a spinon Fermi surface spin
liquid. There is a Fermi pocket around the K point of the Brillouin
zone.

With more generic interactions in RuCl3,  
can this state be realized in finite field ?
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We develop a theoretical understanding of the thermal Hall e↵ect in honeycomb Kitaev materials
in magnetic fields. The motivation is partly from the proposal of non-Kitaev spin liquid in the Kitaev
materials and the observation of non-quantized thermal Hall e↵ect. We seek to understand whether
non-Kitaev spin liquids could generate a finite thermal Hall conductance. For the honeycomb
lattice U(1) spin liquids that were proposed for Kitaev materials in magnetic fields, we realize that
the second-neighbor Dzyaloshinskii-Moriya interaction of the honeycomb lattice could generate a
finite but non-quantized thermal Hall e↵ect in the magnetic field. Our observation is that, the
combination of Dzyaloshinskii-Moriya interaction and Zeeman coupling generates an internal U(1)
gauge flux and twists the motion of the spinons. This is the underlying mechanism for topological
thermal Hall e↵ect for non-Kitaev U(1) spin liquids. Thus, our results, that deal with non-quantized
thermal Hall e↵ect, may provide a di↵erent perspective from the existing trend in this field.

I. INTRODUCTION

The study of the Kitaev spin liquid has been a rather
active field of research now. The Kitaev spin liquid was
obtained by A. Kitaev when he solved his spin model ex-
actly on a honeycomb lattice both with and without the
external magnetic field1. The relevance of the Kitaev
model with the honeycomb iridates was suggested by G.
Jackeli and G. Khalliulin2 by studying the superexchange
interaction between the spin-orbit-entangled J = 1/2 lo-
cal moments3–5. Really, the Kitaev-like anisotropic spin
interaction is widely present in a large family of spin-
orbit-coupled quantum magnets5–11, and many other
competing interactions12–18 are present, too. Thus, hav-
ing a Kitaev interaction in the model Hamiltonian of a
relevant material does not guarantee the presence of Ki-
taev spin liquid, many other non-Kitaev spin liquids or
exotic phases may emerge instead in the materials with-
out magnetic fields19. The inelastic neutron scattering
measurement in the zero-field ↵-RuCl3 does show an in-
teresting excitation continuum20,21. Since the system de-
velops magnetic orders at low temperatures22,23, the pre-
cise nature of the excitation continuum may require a bit
more scrutiny.

The zero-field Kitaev spin liquid at the isotropic point
is a gapless Z2 spin liquid, while the one in the magnetic
field is gapped spin liquid with a chiral majorana edge
mode. Because of the gap, the finite-field Kitaev spin liq-
uid is more robust against the perturbation than the gap-
less one. It is thus thought or suggested after the thermal
Hall experiments of ↵-RuCl324,25, even if the zero-field
phase of ↵-RuCl3 is an ordered one, the ground state in
the magnetic field can still be a gapped Kitaev spin liquid
due to more stability. This suggestion seems to be quite
a natural explanation of the half-quantized thermal Hall

conductivity in ↵-RuCl3. As this half-quantized thermal
Hall conductivity is self-supportive for the gapped Kitaev
spin liquid, it would be exciting if complementary experi-
mental techniques such as inelastic neutron scattering or
directly detecting the defect/edge majorana modes can
also support the gapped Kitaev spin liquid.
Besides the very exciting prospect of finding a gapped

Kitaev spin liquid from the half-quantized 
xy

/T with
specifically-chosen field orientation and magnitudes and
at finite temperatures25, a more robust experimental re-
sult is a large and non-quantized thermal Hall conduc-
tance 

xy

/T in the magnetic field24,26. Our goal here
is to understand this phenomenon, i.e., the origin of the
large (and non-quantized) thermal Hall e↵ect. Why is
this an interesting question? The material ↵-RuCl3 is
a Mott insulator with a charge gap. The relevant de-
grees of freedom are the charge-neutral spins. It is also
so for the honeycomb iridates and the rare-earth honey-

ϕ
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B

J

�T

T

FIG. 1. (Color online.) The schematic plot of the thermal
Hall e↵ect of charge-neutral spinons under the external mag-
netic field in honeycomb Kitaev materials with the spinon
Fermi surface state.
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along the high symmetry line. Here the magnetic field is set
as B = 1 and the induced gauge flux � = ⇡/20. (b) The Bril-
louin zone of honeycomb lattice with reciprocal lattice vectors
b1 = 2⇡(0, 2/
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3) and b2 = 2⇡(1,�1/
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3). The arrows indi-

cate the direction of the high symmetry line in (a).

More explicitly, in the U(1) spin liquid phase, the
guage fluctuation is described by continuous lattice U(1)
guage theory and the internal gauge flux is related to the
underlying spin chirality as53–55.

sin� =
1

2
S1 · S2 ⇥ S3. (14)

According to a previous work of us38, one then estab-
lishes sin� ' �D

z

�B/2 under an external magnetic field
B, where � is the flux defined on the triangular plaquette
formed by three second neighbor sites of the honeycomb
lattice and � is the magnetic susceptibility. As schemati-
cally illustrated in Fig. 4(b), the flux through the triangle
formed by sites 1, 2 and 3 in the anticlockwise direc-
tion is �. Similarly, the flux through the triangle formed
by sites 4, 5 and 6 in the anticlockwise direction is still
�, i.e., the fluxes of the triangles formed by the second
neighbor bonds in one hexagon are exactly equal for two
sublattices. However, the flux for the triangle formed by
the second neighbor bonds of three di↵erent hexagons
acquires a minus sign if adopting the anticlockwise loop
convention. That is to say, the net flux in one unit cell
is zero and the space translation symmetry is not de-
stroyed, as shown in Fig. 4(c), where we only plot the
triangles formed by one sublattice for simplicity, but the
situation for the other sublattice is similar. The spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field, thus the spinons will
feel such gauge flux as the spinons hop between second
neighbor sites on the lattice. It is necessary to stress that
the first neighbor spinon hopping does not pick up any
phase since the net flux in a unit cell is zero, much like
the Haldane model for the spinless fermions.

C. Reconstructed fermionic spinon bands

Physically, as the spinon moves on the lattice, it will
experience a Lorentz force from the induced internal flux.
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FIG. 6. (a) Berry curvatures for di↵erent energy bands and all
the parameters are set as in Fig. 5. The red (orange, purple,
blue) line is for the first/lowest (second, third, fourth) spinon
band. (b) The corresponding evaluation of the thermal Hall
conductivity as a function of temperature.

The spinon motion will be twisted and reflected, resulting
in a spinon thermal Hall e↵ect. This is a semiclassical
description. From a quantum mechanical level, this is
understood from the spinon Berry curvature, which we
explain below.
The internal gauge flux pattern is depicted in Fig. 4(b)

and (c). To capture the flux, modifying the spinon mean-
field Hamiltonian by adding the U(1) gauge potential to
the next-nearest neighbor hopping terms, one can obtain
a modified spinon dispersion. Combining the two sub-
lattices with the two spin labels, a total of four spinon
bands are obtained, which are half-filled. As depicted in
Fig. 5(a), the internal U(1) gauge flux reconstructs the
spinon bands and there still exist Fermi pockets. When
the magnetic field exceeds some critical value where the
pockets vanish, according to Polyakov’s argument56, the
dynamical U(1) gauge field will be confined due to the
non-perturbative instanton events and the system enters
a trivial polarized state. To describe the thermal Hall
e↵ect in the spin liquid, we only focus on the deconfined
spin liquid regime and further clarify the induced inter-
nal gauge flux would contribute to the spinon thermal
Hall e↵ect.
Let us now explicitly demonstrate the finite thermal

Hall conductivity for spin liquid in the presence of mag-
netic field. By the aid of Luttinger’s pseudogravitational
potential57, the thermal Hall conductivity formula for a
general noninteracting fermionic system with a nonzero
chemical potential µ was obtained58 as
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Here f(✏, µ, T ) = 1/[e�(✏�µ) + 1] is the Fermi-Dirac dis-
tribution and the derivate of the distribution func-
tion @f(✏, µ, T )/@✏ indicates that the integral dominates
around the Fermi energy. Moreover,
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b1 = 2⇡(0, 2/
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3) and b2 = 2⇡(1,�1/
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3). The arrows indi-

cate the direction of the high symmetry line in (a).

More explicitly, in the U(1) spin liquid phase, the
guage fluctuation is described by continuous lattice U(1)
guage theory and the internal gauge flux is related to the
underlying spin chirality as53–55.

sin� =
1

2
S1 · S2 ⇥ S3. (14)

According to a previous work of us38, one then estab-
lishes sin� ' �D

z

�B/2 under an external magnetic field
B, where � is the flux defined on the triangular plaquette
formed by three second neighbor sites of the honeycomb
lattice and � is the magnetic susceptibility. As schemati-
cally illustrated in Fig. 4(b), the flux through the triangle
formed by sites 1, 2 and 3 in the anticlockwise direc-
tion is �. Similarly, the flux through the triangle formed
by sites 4, 5 and 6 in the anticlockwise direction is still
�, i.e., the fluxes of the triangles formed by the second
neighbor bonds in one hexagon are exactly equal for two
sublattices. However, the flux for the triangle formed by
the second neighbor bonds of three di↵erent hexagons
acquires a minus sign if adopting the anticlockwise loop
convention. That is to say, the net flux in one unit cell
is zero and the space translation symmetry is not de-
stroyed, as shown in Fig. 4(c), where we only plot the
triangles formed by one sublattice for simplicity, but the
situation for the other sublattice is similar. The spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field, thus the spinons will
feel such gauge flux as the spinons hop between second
neighbor sites on the lattice. It is necessary to stress that
the first neighbor spinon hopping does not pick up any
phase since the net flux in a unit cell is zero, much like
the Haldane model for the spinless fermions.

C. Reconstructed fermionic spinon bands

Physically, as the spinon moves on the lattice, it will
experience a Lorentz force from the induced internal flux.
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FIG. 6. (a) Berry curvatures for di↵erent energy bands and all
the parameters are set as in Fig. 5. The red (orange, purple,
blue) line is for the first/lowest (second, third, fourth) spinon
band. (b) The corresponding evaluation of the thermal Hall
conductivity as a function of temperature.

The spinon motion will be twisted and reflected, resulting
in a spinon thermal Hall e↵ect. This is a semiclassical
description. From a quantum mechanical level, this is
understood from the spinon Berry curvature, which we
explain below.
The internal gauge flux pattern is depicted in Fig. 4(b)

and (c). To capture the flux, modifying the spinon mean-
field Hamiltonian by adding the U(1) gauge potential to
the next-nearest neighbor hopping terms, one can obtain
a modified spinon dispersion. Combining the two sub-
lattices with the two spin labels, a total of four spinon
bands are obtained, which are half-filled. As depicted in
Fig. 5(a), the internal U(1) gauge flux reconstructs the
spinon bands and there still exist Fermi pockets. When
the magnetic field exceeds some critical value where the
pockets vanish, according to Polyakov’s argument56, the
dynamical U(1) gauge field will be confined due to the
non-perturbative instanton events and the system enters
a trivial polarized state. To describe the thermal Hall
e↵ect in the spin liquid, we only focus on the deconfined
spin liquid regime and further clarify the induced inter-
nal gauge flux would contribute to the spinon thermal
Hall e↵ect.
Let us now explicitly demonstrate the finite thermal

Hall conductivity for spin liquid in the presence of mag-
netic field. By the aid of Luttinger’s pseudogravitational
potential57, the thermal Hall conductivity formula for a
general noninteracting fermionic system with a nonzero
chemical potential µ was obtained58 as
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Here f(✏, µ, T ) = 1/[e�(✏�µ) + 1] is the Fermi-Dirac dis-
tribution and the derivate of the distribution func-
tion @f(✏, µ, T )/@✏ indicates that the integral dominates
around the Fermi energy. Moreover,
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is the zero temperature anomalous Hall coe�cient for a
system with the chemical potential ✏. ⌦

nk is the Berry
curvature for the fermions and is defined as

⌦
nk = �2Imh@unk

@k
x

|@unk

@k
y

i (17)

with eigenstate |u
nki for band indexed by n. Eq. (15)

suggests that the thermal Hall conductivity is directly re-
lated to the spinon Berry curvature in momentum space
and a finite Berry curvature is necessarily required to
generate 

xy

. We show below that the magnetic field in-
duced internal U(1) gauge flux generates a finite Berry
curvature and use Eq. (15) as our basis to calculate ther-
mal Hall conductivity for the spinon metal in a U(1) spin
liquid. As depicted in Fig. 6(a), one can see that the
modified mean-field Hamiltonian generates non-trivial
spinon Berry curvatures for each band with the influ-
ence of the induced internal gauge flux. The numeri-
cal result of thermal Hall conductivity is presented in
Fig. 6(b), for the second neighbor hopping coe�cient
t2 = 0.5t1, we obtain a monotonic temperature depen-
dence of 

xy

/(k2
B

T/~). In the zero temperature limit, it
trends to a non-zero and non-quantized constant, coin-
ciding with the Wiedemann-Franz Law (here we mean
the relation between the thermal Hall conductivity and
the zero temperature anomalous Hall coe�cient, not be
confused with the usual Wiedemann-Franz Law for elec-
trons). At the finite temperature region, the thermal
Hall conductivity decreases monotonically and vanishes
finally. The vanishing thermal Hall conductivity in the
higher temperature region originates from the almost
equally populated spinon bands and the corresponding
Berry curvature cancellation.

IV. THERMAL HALL EFFECT FOR DIRAC
SPIN LIQUID

For particular magnetic field directions on the honey-
comb plane, a gapless Dirac spin liquid and a gapped
Kalmeyer-Laughlin-type chiral spin liquid were both nu-
merically obtained in Ref. 37 for the Kitaev-� model
with certain parameters. This model is not a pure Ki-
taev model, containing both Kitaev and symmetric o↵-
diagonal � terms, but it may be relevant to the experi-
mental Kitaev materials.

The gapped chiral spin liquid has net Chern number
of the occupied spinon bands and the ansatz of it breaks
both time-reversal symmetry T and reflection P , while
their combination PT is well preserved. Generically, this
leads to a nonvanishing expectation value for the chi-
ral order parameter S

i

· (S
j

⇥ S
k

), where i, j, k are three
nearby sites. The chiral spin liquid is e↵ectively described
by the Chern-Simons theory with semion topological or-
der, especially, this state has chiral edge modes and would
show an integer-quantized thermal Hall e↵ect. Thus we
are not going to further discuss the influence of the in-
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FIG. 7. (a) Spinon dispersion for the Dirac spin liquid. (b)
The induced flux for the second neighbor hopping terms re-
constructs the spinon bands and the resulting sate is a spinon
Fermi surface spin liquid. There is a Fermi pocket around the
K point of the Brillouin zone.

duced internal gauge flux on this state due to Chern-
Simons term in the theory for gauge fluctuations.
Here we consider the situation when the system stays

in a gapless Dirac spin liquid state since, usually, the
Dirac spin liquid has no thermal Hall e↵ect. Dirac spin
liquid is a deconfined state with Dirac band touching at
the Ferimi level and its low-energy e↵ective theory is de-
scribed by the Dirac equation. A representative spinon
dispersion for the Dirac spin liquid realized in Kitaev-�
model for the honeycomb lattice is depicted in Fig. 7(a),
where we have adopted the spinon mean-field Hamilto-
nian constructed in Ref. 37 (see Appendix B for details).
One can see that, at the Fermi level, there is a Dirac
band touching at the K point of the Brillouin zone. We
assume that this deconfined spin liquid state is stabilized
in a finite region of the phase diagram and the presence
of the second neighbor Dzyaloshinskii-Moriya interaction
would not destroy it.
As in the spinon Fermi surface U(1) spin liquid case,

the gauge fluctuation of Dirac spin liquid is described by
the U(1) gauge theory, thus the external magnetic field
also induces an internal gauge flux for the second neigh-
bor spinon hopping channels through the second neighbor
Dzyaloshinskii-Moriya interaction and leads to a spinon
thermal Hall e↵ect. Such flux will reconstruct the spinon
bands and the resulting sate is a spinon Fermi surface
spin liquid with Fermi pocket around the K point, as
shown in Fig. 7(b). Although the Dirac band touching is
eliminated when we consider the influence of the gauge
flux, the system is still in a deconfined phase since the
matter field is also gapless and the gap between the sec-
ond and third bands is not relevant. Following the similar
procedure of calculation in Sec. III, in Fig. 8, we plot the
temperature dependence of thermal Hall conductivity for
this state. In contrast to Fig. 6(b), the ratio of thermal
Hall conductivity and temperature for this state increases
rapidly with temperature and then decreases gradually
after reaching a maximum at the finite temperature re-
gion. Such a di↵erent temperature dependence originates
from the special spinon dispersion and the corresponding
spinon Berry curvature of this state. The finally van-
ishing thermal Hall conductivity can also be explained
by the Berry curvature cancellation of di↵erent spinon
bands in the higher temperature region.

[Wen, Wilczek, Zee, PRB, 1989]
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More explicitly, in the U(1) spin liquid phase, the
guage fluctuation is described by continuous lattice U(1)
guage theory and the internal gauge flux is related to the
underlying spin chirality as53–55.

sin� =
1

2
S1 · S2 ⇥ S3. (14)

According to a previous work of us38, one then estab-
lishes sin� ' �D

z

�B/2 under an external magnetic field
B, where � is the flux defined on the triangular plaquette
formed by three second neighbor sites of the honeycomb
lattice and � is the magnetic susceptibility. As schemati-
cally illustrated in Fig. 4(b), the flux through the triangle
formed by sites 1, 2 and 3 in the anticlockwise direc-
tion is �. Similarly, the flux through the triangle formed
by sites 4, 5 and 6 in the anticlockwise direction is still
�, i.e., the fluxes of the triangles formed by the second
neighbor bonds in one hexagon are exactly equal for two
sublattices. However, the flux for the triangle formed by
the second neighbor bonds of three di↵erent hexagons
acquires a minus sign if adopting the anticlockwise loop
convention. That is to say, the net flux in one unit cell
is zero and the space translation symmetry is not de-
stroyed, as shown in Fig. 4(c), where we only plot the
triangles formed by one sublattice for simplicity, but the
situation for the other sublattice is similar. The spinons
carry emergent U(1) gauge charges and are minimally
coupled to the U(1) gauge field, thus the spinons will
feel such gauge flux as the spinons hop between second
neighbor sites on the lattice. It is necessary to stress that
the first neighbor spinon hopping does not pick up any
phase since the net flux in a unit cell is zero, much like
the Haldane model for the spinless fermions.

C. Reconstructed fermionic spinon bands

Physically, as the spinon moves on the lattice, it will
experience a Lorentz force from the induced internal flux.
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FIG. 6. (a) Berry curvatures for di↵erent energy bands and all
the parameters are set as in Fig. 5. The red (orange, purple,
blue) line is for the first/lowest (second, third, fourth) spinon
band. (b) The corresponding evaluation of the thermal Hall
conductivity as a function of temperature.

The spinon motion will be twisted and reflected, resulting
in a spinon thermal Hall e↵ect. This is a semiclassical
description. From a quantum mechanical level, this is
understood from the spinon Berry curvature, which we
explain below.
The internal gauge flux pattern is depicted in Fig. 4(b)

and (c). To capture the flux, modifying the spinon mean-
field Hamiltonian by adding the U(1) gauge potential to
the next-nearest neighbor hopping terms, one can obtain
a modified spinon dispersion. Combining the two sub-
lattices with the two spin labels, a total of four spinon
bands are obtained, which are half-filled. As depicted in
Fig. 5(a), the internal U(1) gauge flux reconstructs the
spinon bands and there still exist Fermi pockets. When
the magnetic field exceeds some critical value where the
pockets vanish, according to Polyakov’s argument56, the
dynamical U(1) gauge field will be confined due to the
non-perturbative instanton events and the system enters
a trivial polarized state. To describe the thermal Hall
e↵ect in the spin liquid, we only focus on the deconfined
spin liquid regime and further clarify the induced inter-
nal gauge flux would contribute to the spinon thermal
Hall e↵ect.
Let us now explicitly demonstrate the finite thermal

Hall conductivity for spin liquid in the presence of mag-
netic field. By the aid of Luttinger’s pseudogravitational
potential57, the thermal Hall conductivity formula for a
general noninteracting fermionic system with a nonzero
chemical potential µ was obtained58 as
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tribution and the derivate of the distribution func-
tion @f(✏, µ, T )/@✏ indicates that the integral dominates
around the Fermi energy. Moreover,
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FIG. 8. The actual evaluation of the thermal Hall conductiv-
ity for Dirac spin liquid as a function of temperature at the
gauge flux � = ⇡/10, here t2 is set as 0.4 t�1 .

V. DISCUSSION

In reality, Kitaev materials do not necessarily mean
Kitaev spin liquid. Making a claim that certain material
is a Kitaev material is not equivalent to claiming this
material is a Kitaev spin liquid. Many other states be-
yond Kitaev spin liquid or even beyond spin liquid states
can be stabilized by other interactions in the systems. It
is especially so for non-honeycomb based iridates with a
3D lattice where more complicated lattices allow more
spin interactions. The honeycomb Kitaev material ↵-
RuCl3 at zero field develops a magnetic order in the zero
temperature limit. So even magnetic ordered states can
be stabilized, and indeed, most proposed Kitaev materi-
als except few ones are ordered magnetically59–62. The
system contains more spin interactions than the Kitaev
interaction. Because of the complexity of the system,
putting too much emphasis on the microscopics may not
be quite profitable. A di↵erent and maybe slightly use-
ful approach would be to assume the realization of rele-
vant and interesting phases in the system and ask for the
experimental consequence or establish the experimental
connection. Assuming that the half-quantized thermal
Hall conductance is due to the gapped Kitaev spin liquid,
Refs. 63 and 64 consider the e↵ect of the thermal phonon
scattering and show that the quantization does not get
modified much. This result provides a positive support
of gapped Kitaev spin liquid for ↵-RuCl3 in a magnetic
field24,25,65,66. Nevertheless, the generic experimental re-
sult for the thermal Hall transport of ↵-RuCl3 in the
magnetic field is not quantized. Considering the theoret-
ical proposal of non-Kitaev spin liquids such as spinon
Fermi surface U(1) spin liquid and others for the honey-
comb Kitaev materials in the field, we naturally wonder
if these proposals have any experimental connection as
there has been experimental evidence of gapless spin liq-
uid in fields67. We are able to show that, the combina-
tion and Zeeman coupling and the Dzyaloshinskii-Moriya
interaction could be the source of an emergent Lorentz

force on the spinons for the U(1) spin liquids. Under this
observation and mechanism, we explicitly calculate the
topological thermal Hall conductivity for the spinons.

There is a recent proposal of Kitaev spin liquid in
the honeycomb iridate material H3LiIr2O6

68. Unlike ↵-
RuCl3 and Na2IrO3, H3LiIr2O6 remains disordered down
to the lowest measured temperature, so it may be a bet-
ter candidate for Kitaev spin liquid even in the absence
of magnetic field. The system exhibits a constant sus-
ceptibility and sub-linear power law heat capacity. The
constant susceptibility is not so surprising. The Ir 5d
electrons have a strong SOC, and the magnetization is
not a good quantum number and cannot be used to la-
bel the many-body states. The magnetic susceptibility is
always a constant. This physics was actually discussed
more generally in Ref. 5. Due to the presence of Li and
H, the system may experience some amount of quenched
disorders. To explain the divergent low-energy density
of states, one direction is to start from the gapless Ki-
taev spin liquid, and consider various perturbations such
as interlayer coupling69 and quenched bond disorder70

on the gapless majorana fermions to enhance the low en-
ergy density of states. The other theory is to consider the
possibility of random singlet phase by extending the 1D
random singlet phase to high dimensions with spin-orbit
anisotropy71. This can be an interesting possibility, ex-
cept that there are key di↵erences from the 1D case. For
the random antiferromagnetic spin-1/2 chain, the ran-
dom singlet phase was obtained quite nicely from real
space renormalization group and master equation flow72,
and this approach is asymptotically exact. Although
this approach has been applied to other problems such
as disordered boson chain73, this flow is not asymptoti-
cally exact. In high dimensions, the spatial connectivity
and the sign of the interactions may further complicate
the problem. The suggestion of the random singlets is
clearly an interesting one. The formal implementation
of the actual real space renormalization group calcula-
tion may have some technical obstacles. Nevertheless,
since now single crystal samples are avaiable, it would be
nice to perform the thermal Hall measurements in this
system under external magnetic field. If the disorder is
weak, the field may induce a fully gapped Kitaev spin
liquid that may overcome the disorder e↵ect and show
a half-quantized thermal Hall e↵ect. It is also interest-
ing to check if it can realize a spinon Fermi surface state
in magnetic fields and produce a non-quantized thermal
Hall e↵ect and the interesting spinon wave mode (a col-
lective mode due to short-range anisotropic spin inter-
action)74. Quite recently, honeycomb Kitaev materials
have been extended to rare-earth magnets6,10,11,75 and
3d7 Co-based magnets7,8, and the honeycomb structure
can also been realized with A-B stacked triangular bi-
layer76. This may open more rooms for the search of
Kitaev materials.

In summary, we have provided a rather new perspec-
tive on the thermal Hall e↵ect of the honeycomb Kitaev
material, di↵erent from the existing thoughts on this
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Summary

Kitaev material is interesting on its own, and may bring more physics 
beyond Kitaev physics due to the spin-orbit entanglement and 
anisotropic interactions. 


