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1. A couple random motivations
2. Candidate spin liquids in Kitaev materials w/o fields

3. Thoughts about thermal Hall transports in fields

| am not intending to explain any specific experiments but provide a different way of thinking.



Iridates (in time order of modern times)

NaslrsOs: hyperkagome quantum spin liquid

NazlrOs: alpha-Li2lrOs, beta-Li2lrOs “Kitaev materials”

Ralr207: topological insulator, Weyl semimetal, ABL semimetal

A2lrOa4: candidate for high-Tc superconductor, isostructure with A2CuO4
Sralrz07 : metamagnetic transition, isostructure with SrsRu207

IrO2: pyrochlore lattice spin liquid

AlrOs perovskite heterostructure: topological crystalline metal

HLi3Ir206, fcc iridates, etc



Na:lrsOs: hyperkagome guantum spin liquid 7
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Why Ir ion behaves as a spin-1/2 7



tog orbitals in octahedral crystal field

€yg : 2 —y2,322 — r?

_._ —_— j=1/2
Irdt . 5d° “ “ ‘ . |
t2g: Xy,Xx2,yz —.— —‘— —‘— —.— J=3/2
IrOe octahedron
Crystal electric field Spin-orbit coupling

({t2gr|Li{teg}) = =1, Hsoe = —Al-S, j=1+8S
It is interesting to look at how the magnetic moment M = L+2S = -I+25 varies.

BTW, SOC is guenched for eg orbitals.

Gang Chen, Balents PRB 2008,
B.J. Kim etc, Science 2008,
G. Jackeli, Khaliullin PRL 2009



Exchange interaction: direct + indirect via oxygen

Spin-orbit entangled j=1/2 doublet

a) = 7(‘dmy 1)+ ldyz,)) +ildez, ),

b) = (\da:y 1) = |dyz 1) +ildeer)),

S\H

Surprisingly, direct hopping gives us a Heisenberg model !
This is very special especially since orbitals have orientations.

Indirect exchange via oxygen gives highly anisotropic coupling

Hop=—JS5SE + JSUS) + JS5SS

two neighboring IrOe octahedra: — 2JS%8% + JS,4-Sp

they share 2 oxygens.

G Chen, Balents PRB 2008



Honeycomb iridate: Kitaev interaction
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Kitaev term for gamma bond
HY = —JS7S? ev term for gamma bon
J g after including Hund'’s coupling

G. Jackeli, G Khaliullin PRL 2009
ignited the field of Kitaev materials.



Most Kitaev materials are ordered

PRL 108, 127204 (2012)

PHYSICAL REVIEW LETTERS

week ending

23 MARCH 2012

Spin Waves and Revised Crystal Structure of Honeycomb Iridate Na,IrO;

S.K. Choi,l R. Coldea,l A.N. Kolmogorov,2 T. Lancaster,"* 1. 1. Mazin,> S.J. Blundell,1 P.G. Radaelli,1 Yogesh Singh,4’5
P. Gegenwart,4 K.R. Choi,6 S.-W. Cheong,6’7 P.J. Baker,8 C. Stock,8 and J. Taylor8
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Further extension to RuCI3

PHYSICAL REVIEW B 90, 041112(R) (2014)

a-RuClj: A spin-orbit assisted Mott insulator on a honeycomb lattice

K. W. Plumb,! J. P. Clancy,! L. J. Sandilands,' V. Vijay Shankar,' Y. F. Hu,> K. S. Burch, '3
Hae-Young Kee,"* and Young-June Kim'-"

Later known to have zig-zag order
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More complex interactions

1. Really, 4d/5d electrons are more extended spatially, allowing
more distant interactions.

2. More generally, many other symmetry allowed interactions on
many neighbors should be there, the selected exchange path
only produces limited form of interactions.



Non-Kitaev spin liguids”

If Kitaev did not propose his QSL, ......

We point out that the Kitaev materials may not necessarily support Kitaev spin liquid. It is
well-known that having a Kitaev term in the spin interaction is not the sufficient condition for
the Kitaev spin liquid ground state. Many other spin liquids may be stabilized by the competing
spin interactions of the systems. We thus explore the possibilities of non-Kitaev spin liquids in the
honeycomb Kitaev materials. We carry out a systematic classification of gapped Z» spin liquids using
the Schwinger boson representation for the spin variables. The presence of strong spin-orbit coupling
in the Kitaev materials brings new ingredients into the projective symmetry group classification of
the non-Kitaev spin liquid. We predict the spectroscopic properties of these gapped non-Kitaev
spin liquids. Moreover, among the gapped spin liquids that we discover, we identify the spin liquid
whose spinon condensation leads to the zig-zag magnetic order that was observed in NazIrOs and
a-RuCls. We further discuss the possibility of gapped Zs spin liquid and the deconfined quantum
criticality from the zig-zag magnetic order to spin dimerization in pressurized a-RuCls.

Yaodong Li, Yang Xu, Yi Zhou, Gang Chen, PRB 2019
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FIG. 1. The honeycomb lattice and its symmetries. Blue/red
circles indicate the two sublattices denoted as u/v. The space-
group generators are translations 77 and T3, sixfold rotation
(s around the plaquette center, and horizontal reflection o
through the hexagon center.

PSG

bosonic variables. In the Schwinger boson representation,
the effective spin S; on site ¢ is given by S, = %bj;aa'a sbis
where b;,, (o =T,]) is the bosonic spinon operator. The
Hilbert space is enlarged due to the introduction of the
spinons; to project out unphysical states, the constraint

> bl-Labm = 1 on local boson number is imposed. The
most general candidate mean-field Hamiltonian for the
Z5 spin liquids has the following form.,

(ij),ap

D1 blabia = 1) (1)

Yaodong Li, Yang Xu, Yi Zhou, Gang Chen, PRB 2019



SOC-PSG

same hexagon center. Under the symmetry operation O,
the bosonic spinon transforms as

where Qg(z.) — ¢?0lO0)] ig a local U(1) gauge trans-
formation, which leaves the spin operators invari-
ant. The gauge transformation is generally nontriv-

Ué(i)@(j) aB = (gg j ) gg(j) (UO) 4 (Uo)m Ué,y»(‘l)
U'B( )O(j),aB — g@ g@(] (Z/[O) (MO)B)\ uiB;',v)\? (5)

where we have used the fact that U» commutes with G©.
For a general pair of sites (7, 7), the above equations are
solvable if for each group relation O:05---O,, = 1, the
following identities are satisfied,

Z/{O]_Z/{OQ Z/{O g01 g0203 g O (7,) gg:(z) — Zl:l
o
< G 1g(9203 0, (z)g O (i) gon(i) =+£1, (6)

where +1 is either element of Zs, the invariant gauge
group (IGG). The IGG turns out to be the gauge group
of the low-energy effective theory of the QSL state3?:4?,
Here, since we are considering Zo QSLs, the IGG should
also be Zy. The two lines in Eq. (6) are equivalent be-
cause the identity element involves either rotation by 0 or
2w, soUp,Uo, - - -Up, = 1, and the group relations con-
straint only the phases ¢¢». Given the defining relations
between group generators 14,15, (s, 0, we can solve for
all the possible gauge transformation functions ¢ (i)’s
compatible with Eq. (6).

Yaodong Li, Yang Xu, Yi Zhou, Gang Chen, PRB 2019



SOC-PSG

Zy QSL|G™ G Gee G [u] G v]
Z2A000| 1 1 1 1 1
Z2A001| 1 1 1 1 —1
Z2A010| 1 1 1 1 1
Z2A011| 1 1 —1 1 —1
Z2A100| 1 1 1 1 1
Z2A101| 1 1 —1 —1 1
Z2A110| 1 1 —1 i i
Z2A111] 1 1 —1 —1 1
Z2B000| 1 (—1)® ¢@+2y=1 2oty g2etu(y+l)
Z2B001| 1 (—1)* j2(@F2y—1)+1 2z+y(y+1)+1 2x+y(y+1)-1
Z2B010| 1 (=1)* ¢=@t2y=D+1 2etylytl)  2ety(y+l)
Z2B011| 1 (—=1)* jZ(@EH2y—1)+2 2z4y(y+1)+1 20+y(y+1)—1
Z2B100| 1 (—1)® =@ F2y=DF1 2ety(yrD+1 j2ety(y+l)+1
Z2B101| 1 (—1)% @@ H2y=D+2 j2ety(ytD+2 2ety(y+1)
Z2B110| 1 (—1)* j2(@+2y—1)+2 2z4y(y+1)+1 2z+y(y+1)+1
Z2B111| 1 (—1)% #@+2v=D43 j2ety(y+D+2 p2ety(y+1)
TABLE 1. List of the gauge transformations associated with

the symmetry operations of the 16 Zs QSLs, where (x,y, w)
denotes the site in the honeycomb coordinate system.

Yaodong Li, Xu Yang, Yi Zhou, Gang Chen, PRB 2019

Z> QSL |u? ul ub uB
Z2A000(#£ 0 # 0 0 0
Z2A001(0 #0 # 0 0
Z2A010(#£ 0 #0 # 0 0
Z2A011|0 #£0 0 0
Z2A100(#£ 0 #£0 #£ 0 £ 0
Z2A101|0 #£0 0 # 0
Z2A110|# 0 #0 0 # 0
Z2A111|0 #£0 # 0 # 0
Z7:2B000 | # 0 #£0 0 0
72B001 |0 #0 # 0 0
Z2B010|#£ 0 # 0 #£ 0 0
Z2B011 |0 #£0 0 0
Z2B100|# 0 #£0 #£ 0 #£ 0
72B101|0 #£0 0 #£ 0
Z2B110|#£ 0 Z£0 0 # 0
72B111|0 # 0 # 0 # 0




Spinon condensation
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FIG. 2. The phase diagrams for representative mean-field Hamiltonians. Here k is the average boson density, defined to be
Dia (bl b;0)/Naite, and Q is the position in Brillouin zone of the spinon band minimum. In (a) and (c), we choose u% /uZ = 0.6

and ©? =0, and in (b) and (d) we choose u? = 0. The solid line marks the phase boundary between magnetic ordered state
(above solid line) and the Zs QSL states (below solid line). Here we use different colors for solid lines to indicate different
ordered states above the solid lines. The choice of the momenta can be found in Appendix A.



Proximate orders

FIG. 4. (Color online.) The magnetic order for a Z2B100 state. We have split the components in z-z plane and along y-direction
for clarity. Blue and red sites are the antiferromagnetically aligned chains along the direction prependicular to 2Q. The gray
dashed lines denote the enlarged unit cell. The parameters of the Hamiltonian are the same as in Fig. 3. In (a) and (b), we
have chosen |23| = |25}, and arg zz — arg z1 = 7/3. In (c) and (d), we depict the order for |z5¥| = 0. Notice that in the latter
case the magnetic order is completely in the z-z plane.



Spinon continua and symmetry enrichment
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. o >« ° » of spinon variables. In inelastic neutron scattering exper-
2t boe . | - iments, one neutron flip event creates a spin-1 excitation,
1 0 1 and the energy-transfer of the neutron is shared between
h a pair of spin-1/2 spinons,
q = k1 + ko, (13)
FIG. 3. (Color online.) Intensity plot of lower excitation edges Q(q) = w(k1) +w(k2). (14)

of §(q,w) for the (a) Z2A100 and (b) Z2B100 states. We have
chosen v =2, u? =12, v =0, u? =1 (see Tab. II and
Appendix B for definitions of the parameters). The white
dashed lines mark the Brillouin zone boundary.

Yaodong Li, Yang Xu, Yi Zhou, Gang Chen, PRB 2019



Even the zero-field state is ordered, the finite field regime can be gapped Kitaev spin liquid.

How about finite field?
Quantized thermal Hall effect in RuCI3 ?
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Again, | am not trying to explain expts.



Numerics

ARTICLE

Emergence of a field-driven U(1) spin liquid in the
Kitaev honeycomb model

Ciaran Hickey® ' & Simon Trebst® '

Model. We start our discussion by considering the pure Kitaev
honeycomb model in the presence of a uniform magnetic field of

arbitrary orientation, defined by the Hamiltonian

H,=+K Y SIS -> h-s, 1)
( i

ij)€y

C. Hickey and S. Trebst, Emergence of a field-driven U(1) spin
liquid in the Kitaev honeycomb model, Nat. Commun. 10, 530

(2019).
H.-C. Jiang, C.-Y. Wang, B. Huang, and Y.-M. Lu, Field in-

duced quantum spin liquid with spinon Fermi surfaces in the

Kitaev model, arXiv:1809.08247.
L. Zou and Y.-C. He, Field-induced neutral Fermi surface and

QCD;-Chern-Simons quantum criticalities in Kitaev materials,
arXiv:1809.09091.

F Pollmann’s group, Trivedi’'s group
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Dzyaloshinskil-Moriya interaction

Dzyaloshinskii-Moriya interaction is prohibited. How-
ever, the second neighbor Dzyaloshinskii-Moriya inter-
action is allowed by symmetry since the second neighbor
magnetic bonds have no inversion center. According tc
Moriya’s rules®!, there are components of D;; perpendic-
ular to the planes with strength D, as schematically de-
picted in Fig. 4(a) and all the in-plane components vanish
when the honeycomb plane is a mirror plane of the crys-
tal structure. Therefore, a representative Dzyaloshinskii-

Moriya interaction of the honeycomb lattice Mott insu-
lator up to second neighbor has the form,

Hpym = Z Dij . Sz X Sj. (11)
((%,5))

For example, it has been estimated!® that a large sec-
ond neighbor Dzyaloshinskii-Moriya term |D;;| > 4 meV
for the Kitaev material a-LisIrOs, which is usually not
considered in the literatures.



Thermal Hall signatures of non-Kitaev spin liquids in honeycomb Kitaev materials

Yong Hao Gao!, Ciardn Hickey?, Tao Xiang®*, Simon Trebst?, and Gang Chen®

PR research 2019

H= Y KS/S]+ ) D;;-S;xS;—) h;i-Si. (18)

(ig)ey ({(4,4)) g

In Fig. 6 we show the resulting phase diagram, with the
U(1) spin liquid region stable up to a maximal Dzyaloshinskii-
Moriya interaction of about |D| ~ 0.025K. We should
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With more generic interactions in RuClI3,
can this state be realized in finite field ?



Thermal Hall effect

FIG. 1. (Color online.) The schematic plot of the thermal
Hall effect of charge-neutral spinons under the external mag-
netic field in honeycomb Kitaev materials with the spinon
Fermi surface state.

1
SiIlQb = 551 . SQ X 53.

[Wen, Wilczek, Zee, PRB, 1989]

ay = = [acle =P o 0. s)

Here f(e,pu, T) = 1/[e#*"#) 4+ 1] is the Fermi-Dirac dis-
tribution and the derivate of the distribution func-
tion Of (e, u, T')/O¢ indicates that the integral dominates
around the Fermi energy. Moreover,

1
kagn,k<€
8’Uﬂnk 8unk
Qe = — 2T (Linke | Ttk
Ok, | Ok,



hermal Hall effects
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FIG. 6. (a) Berry curvatures for different energy bands and all 0. 0.3 0.6 0.9 1.2
the parameters are set as in Fig. 5. The red (orange, purple, kgT/ fi/
blue) line is for the first/lowest (second, third, fourth) spinon
band. (b) The corresponding evaluation of the thermal Hall FIG. 8. The actual evaluation of the thermal Hall conductiv-
conductivity as a function of temperature. ity for Dirac spin liquid as a function of temperature at the

gauge flux ¢ = 7/10, here to is set as 0.4 t].



Summary

Kitaev material is interesting on its own, and may bring more physics
beyond Kitaev physics due to the spin-orbit entanglement and
anisotropic interactions.



