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Boson Hubbard model

Particle-hole excitation in the  
Mott insulator costs energy ~ U (Mott gap).  

nothing below the Mott gap. 
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Fermion Hubbard model

Below the Mott gap: superexchange of spins

P. W. Anderson
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Electron carries spin. Even though the position of the electron is frozen, the spins are still active. 
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The idea of resonant valence bonds of spins

P. W. Anderson

benzene molecule
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e n e r g i e s  ex t rapo la te  r a t h e r  smooth ly  to 

E r a i l r o a d  ~ -0 .490  NJ + 0. 005 (13) 

which should be quite a c c u r a t e  and is u n m i s t a k e a b l y  be t t e r  than the sp in -wave  

resu l t .  

A l e s s  a c c u r a t e  ex t r apo la t ion  may  be made  f rom the l inea r  chain  via 

the r a i l r o a d  t r e s t l e  to the en t i r e  t r i ang le  la t t ice .  One finds 

E A ~- -(0. 54 .+. 0 . 0 1 ) N J .  (14) 

This  is n e a r l y  20% lower  than the sp in -wave  ene rgy  (11) of the Ndel s tate.  It 

s e e m s  a l m o s t  c e r t a i n  that it 
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r e p r e s e n t s  the ene rgy  of a , r  ,, ,, /, , .  ,, ,, ? 
I / l t / l / 

qua l i t a t ive ly  d i f fe ren t  s tate.  I 2 
j r  i r  iw iw / i  Sw l i t  iv Z i i  w 

I I S I O~ nS n' I '  I e d S ~ f • I Let us make some 

br ie f  c o m m e n t s  about the na ture  

of this  s tate .  A d i s c l a i m e r  is / 

in o rde r :  we r ea l l y  know ve ry  / / / ~kk ~k / 

l i t t le  about it. On the o ther  -- 

hand, there are a few very / / / ~k ~k / / / 
bas ic  th ings  which  can be said.  b) - -  / / / 

We note that w h e r e v e r  two 
bonds a r e  pa ra l l e l  ne ighbors ,  FIG. 3 

such as  (12) and (34) in Fig.  3a, Random a r r a n g e m e n t s  of pa i r  bonds on a 
t r i ang le  la t t ice .  (a) Shows a r e g u l a r  a t -  

e i t he r  (S 1" S 2) or  (S 3 • $4) p ro -  r a n g e m e n t  with 2N/4 a l t e r n a t i v e  d i s t inc t  
v ides  a m a t r i x  e l e m e n t  to the pa i r ings  ( " rhombus"  approx imat ion) .  
d e g e n e r a t e  conf igura t ion  (23)(41), (b) An a r b i t r a r y  a r r a n g e m e n t .  

while  only (S1S3) g ives  a m a t r i x  e l e m e n t  of opposi te  sign. Thus  we can a lways  
gain ene rgy  by l inea r ly  combin ing  d i f fe ren t  conf igura t ions  in which such bonds 
a r e  in t e rchanged .  Since t h e r e  a r e  in any r a n d o m  conf igura t ion  like Fig. 3b 

g r e a t  n u m b e r s  of s e t s  of pa ra l l e l  bonds,  one can a r r i v e  at any conI igu ra t ion  
f r o m  any other ;  and r e t u r n  to the o r ig ina l  one by ve ry  many paths.  What is 

not c l e a r  is that one wil l  r e t u r n  to the s ame  s ta te  in the s a m e  phase by t r a -  
ve r s ing  d i f f e ren t  paths. If one did,  the s ta te  would be e s s e n t i a l l y  a Bose  con-  
densed  s ta te  of pa i r -bonds  with a f o rm  of ODLRO. This would be c lo se ly  r e -  
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energies extrapolate rather smoothly to 

Erailroad ~ -0.490 NJ + 0. 005 (13) 

which should be quite accurate and is unmistakeably better than the spin-wave 

result. 

A less accurate extrapolation may be made from the linear chain via 

the railroad trestle to the entire triangle lattice. One finds 

E A ~- -(0. 54 .+. 0.01)NJ. (14) 

This is nearly 20% lower than the spin-wave energy (11) of the Ndel state. It 

seems almost certain that it 3 4 
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in order: we really know very / / / ~kk ~k / 

little about it. On the other -- 

hand, there are a few very / / / ~k ~k / / / 
basic things which can be said. b) -- / / / 

We note that wherever two 
bonds are parallel neighbors, FIG. 3 

such as (12) and (34) in Fig. 3a, Random arrangements of pair bonds on a 
triangle lattice. (a) Shows a regular at- 

either (S 1" S 2) or (S 3 • $4) pro- rangement with 2N/4 alternative distinct 
vides a matrix element to the pairings ("rhombus" approximation). 
degenerate configuration (23)(41), (b) An arbitrary arrangement. 

while only (S1S3) gives a matrix element of opposite sign. Thus we can always 
gain energy by linearly combining different configurations in which such bonds 
are interchanged. Since there are in any random configuration like Fig. 3b 

great numbers of sets of parallel bonds, one can arrive at any conIiguration 
from any other; and return to the original one by very many paths. What is 

not clear is that one will return to the same state in the same phase by tra- 
versing different paths. If one did, the state would be essentially a Bose con- 
densed state of pair-bonds with a form of ODLRO. This would be closely re- 
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Pauling’s RVB state  
of benzene molecule

Anderson’s spin singlet RVB states,  
then possible application to  

high-Tc superconductor in 1987.
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RESONATING VALENCE BONDS" A NEW KIND OF INSULATOR?*  

P. W. A n d e r s o n  
Bel l  L a b o r a t o r i e s ,  M u r r a y  Hill, New J e r s e y  07974 

and 
C a v e n d i s h  L a b o r a t o r y ,  C a m b r i d g e ,  England  

(Rece ived  D e c e m b e r  5, 1972; Invi ted**)  

A B S T R A C T  
The p o s s i b i l i t y  of a new kind of e l e c t r o n i c  s ta te  is poin ted  out, 
c o r r e s p o n d i n g  rough ly  to P a u l i n g ' s  idea of " r e s o n a t i n g  v a l e n c e  
bonds"  in m e t a l s .  As  o b s e r v e d  by Pau l ing ,  a pure  s ta te  of th i s  
type  would be insu la t ing ;  it would r e p r e s e n t  an a l t e r n a t i v e  s ta te  
to the  N6el  a n t t f e r r o m a g n e t i c  s ta te  for  S = 1/2.  An e s t i m a t e  of 
i ts  e n e r g y  is m a d e  in one case .  

Many y e a r s  ago Pau l i ng  gave a " r e s o n a t i n g  va l ence  bond" t h e o r y  of 

m e t a l s  (1) which  v i r t ua l l y  ignored  the  e l e c t r o n  gas  na tu re  of the  m e t a l l i c  s ta te  

and in s t ead  t r i e d  to r e l a t e  the  b inding  e n e r g i e s  s e m i q u a n t i t a t i v e l y  to known 

v a l e n c e  bond c o n c e p t s .  Only r e c e n t l y  ha s  the  conven t iona l  F e r m i  gas  t h e o r y  

begu n  to a d d r e s s  i t se l f  m o r e  a n a l y t i c a l l y  to the s a m e  p r o b l e m s .  But P a u l i n g ' s  

a t t e m p t  l e a v e s  behind  a ve ry  i n t e r e s t i n g  p r o b l e m  of p r inc ip l e :  i s  a s ta te  in 

which  va lence  bonds  move  a r o u n d  f r e e l y  b e t w e e n  p a i r s  of a t o m s  a m e t a l  in 

fact  ? Does  it conduc t  e l e c t r i c i t y  in the c h a r a c t e r i s t i c  m e t a l l i c  w a y ?  More  

*Work  at the C a v e n d i s h  L a b o r a t o r y  s u p p o r t e d  in pa r t  by the A i r  F o r c e  Office 
of Sc ien t i f i c  R e s e a r c h  Office of A e r o s p a c e  R e s e a r c h ,  U. S. A i r  F o r c e  
u n d e r  g r a n t  No. 1052-69. 

**Th i s  p a p e r  was  o r i g i n a l l y  in tended  for  the Pau l ing  F e s t s c h r i f t ,  V o l u m e  7, 
N u m b e r  11 ( N o v e m b e r  1972). 

1.53 

Mat. Res .  Bull .  Vol. 8, pp. 153-160,  1973. P e r g a m o n  P r e s s ,  Inc. P r i n t e d  
in the United S ta tes .  

RESONATING VALENCE BONDS" A NEW KIND OF I NSULATOR?*  

P. W. A n d e r s o n  
Bel l  L a b o r a t o r i e s ,  M u r r a y  Hill, New J e r s e y  07974 

and 
C a v e n d i s h  L a b o r a t o r y ,  C a m b r i d g e ,  England  

(Rece ived  D e c e m b e r  5, 1972; Invi ted**)  

A B S T R A C T  
The p o s s i b i l i t y  of a new kind of e l e c t r o n i c  s ta te  is poin ted  out, 
c o r r e s p o n d i n g  rough ly  to P a u l i n g ' s  idea of " r e s o n a t i n g  v a l e n c e  
bonds"  in m e t a l s .  As  o b s e r v e d  by Pau l ing ,  a pure  s ta te  of th i s  
type  would be insu la t ing ;  it would r e p r e s e n t  an a l t e r n a t i v e  s ta te  
to the  N6el  a n t t f e r r o m a g n e t i c  s ta te  for  S = 1/2.  An e s t i m a t e  of 
i ts  e n e r g y  is m a d e  in one case .  

Many y e a r s  ago Pau l i ng  gave a " r e s o n a t i n g  va l ence  bond" t h e o r y  of 

m e t a l s  (1) which  v i r t ua l l y  ignored  the  e l e c t r o n  gas  na tu re  of the  m e t a l l i c  s ta te  

and in s t ead  t r i e d  to r e l a t e  the  b inding  e n e r g i e s  s e m i q u a n t i t a t i v e l y  to known 

v a l e n c e  bond c o n c e p t s .  Only r e c e n t l y  ha s  the  conven t iona l  F e r m i  gas  t h e o r y  

begun  to a d d r e s s  i t se l f  m o r e  a n a l y t i c a l l y  to the s a m e  p r o b l e m s .  But P a u l i n g ' s  

a t t e m p t  l e a v e s  behind  a ve ry  i n t e r e s t i n g  p r o b l e m  of p r inc ip l e :  i s  a s ta te  in 

which  va lence  bonds  move  a r o u n d  f r e e l y  b e t w e e n  p a i r s  of a t o m s  a m e t a l  in 

fact  ? Does  it conduc t  e l e c t r i c i t y  in the c h a r a c t e r i s t i c  m e t a l l i c  w a y ?  More  

*Work  at the C a v e n d i s h  L a b o r a t o r y  s u p p o r t e d  in pa r t  by the A i r  F o r c e  Office 
of Sc ien t i f i c  R e s e a r c h  Office of A e r o s p a c e  R e s e a r c h ,  U. S. A i r  F o r c e  
u n d e r  g r a n t  No. 1052-69. 

**Th i s  p a p e r  was  o r i g i n a l l y  in tended  for  the Pau l ing  F e s t s c h r i f t ,  V o l u m e  7, 
N u m b e r  11 ( N o v e m b e r  1972). 

1.53 

It is NOT a Landau symmetry breaking state. This brings up an old and fundamental 
question, how do we characterize phase of matter?  Does spin liquid even exist?

it is very illuminating to trace the 
motivation of great physicists. 
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• Exactly solvable models: e.g. Kitaev model and its variants 

• Classification: many many spin liquids (X.-G. Wen, etc) 

• Numerical studies: DMRG, quantum Monte Carlo, exact diagonalization, etc

The existence of spin liquid (in theory) is well established and is supported by

a semi-realistic model study: 
Z2 spin liquid for Kagome Heisenberg model

S. White H.C. Jiang

QSL is a new phase of matter, and is not characterized by symmetry, but characterized by an 
emergent gauge structure and deconfined excitations that carry fractional (spin) quantum numbers. 

One-slide introduction to quantum spin liquids
one slide introduction to quantum spin 
liquids



 Candidate spin liquid materials

organics: kappa-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, κappa−H3(Cat-EDT-TTF)2   
herbertsmithite (ZnCu3(OH)6Cl2), Ba3NiSb2O9, Ba3CuSb2O9, LiZn2Mo3O8, ZnCu3(OH)6Cl2 
volborthite (Cu3V2O7(OH)2), BaCu3V2O3(OH)2, [NH4]2[C7H14N][V7O6F18], Na2IrO3, CsCu2Cl4,  
CsCu2Br4, NiGa2S4, He-3 layers on graphite, etc 

Some candidate materials have already been ruled out. 
Not being a QSL does not necessarily mean the physics is not interesting ! 

Na4Ir3O8, IrO2, Ba2YMoO6, Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7, Tb2Ti2O7, Nd2Zr2O7, FeSc2S4, etc

• 2D triangular and Kagome lattice

• 3D pyrochlore, hyperkagome, FCC lattice, diamond lattice, etc

• Ultracold atom and molecules on optical lattices: temperature is too high now. 

if you have any question about some 
material, we can chat after the seminar 

What’s needed? Experiments, and the connection from theory to experiments!

Gang Chen’s theory group 
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Organic spin liquids?

formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is
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c 
0 

(b) 
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t' t 
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a* 
a 

FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).

2.5

2.0

1.5

1.0

0.5

0.0

 (
10

-3
em

u/
m

ol
)

3002001000
 (K)

Triangular lattice, 
B = 80 K

B = 100 K

FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  

kappa−H3(Cat-EDT-TTF)2 a new one!
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U/t
Fermi liquid 

metal U(1) QSL with spinon Fermi surface 120-degree order

Hubbard Model : parent model of many 
phases (Metal, SC, AF, Spin Liquid, …)

Heisenberg model
120° AF order U/t

Fermi Liquid
Mott

transition

Metal I n s u l a t o r

Charge fluctuations / geometrical frustration may disrupt spins from 
ordering even at T=0 near the metal-insulator transition.

Mott  
transition

supported by various different numerics

weak Mott regime strong Mott regime

T SenthilSung-Sik Lee P Lee

H = �t
X

hiji,�

c†i�cj� + h.c.+ U
X

i

ni"ni#

• Theoretical understanding: expected phase diagram

These are high order processes, but  

Motrunich

• Physical mechanism for weak Mott insulator spin liquids: perturbation in t/U

Hpert =
X

ij

JijSi · Sj +K
X

1234

(P1234 + P�1
1234) + · · ·

4-site ring exchange

1

2

3

4
(S1 · S2)(S3 · S4)

+(S1 · S4)(S2 · S3)

�(S1 · S3)(S2 · S4)

Senthil’s cartoon
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Remark (on the mechanism NOT the properties):  
1. There is no sharp distinction between the charge fluctuations in the weak and strong Mott regimes.  
2.  Strong charge fluctuation in the weak Mott regime is a quantitative description.  
3.  Interesting physics occurs in the spin sector, but charge sector is completely trivial !

Question / observation (this goes beyond just spin liquid): 
1. What if the change fluctuation is very strong, and in the most extreme case,  

the charge sector forms a quantum charge liquid Mott insulator?  (tomorrow) 
2. What if the charge fluctuation leads to some structure in the charge sector?  

Spin sector is surely to be influenced in a non-trivial way. This would lead to  
a striking experimental consequence. If it is observed, it gives us confidence  
on the theoretical framework that we are developing. 

U/t
Fermi liquid 

metal U(1) QSL with spinon Fermi surface 120-degree order

weak Mott regime strong Mott regime
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Cluster Mott Insulator: a new class of Mott insulators

Electrons (or bosonic particles) are localized on some cluster units instead of the lattice sites. 
These cluster units build the lattice. 

Mg2Mo3O8, Mn2Mo3O8, Fe2Mo3O8, Co2Mo3O8, Ni2Mo3O8, Zn2Mo3O8, Cd2Mo3O8

LiScMo3O8, LiYMo3O8, LiInMo3O8, LiSmMo3O8, LiGdMo3O8, LiTbMo3O8, 
LiDyMo3O8, LiHoMo3O8, LiErMo3O8, LiYbMo3O8

NbO2, Mg3Nb6O11, Ba1.14Mo8O16, NaMo4O6,  GaTa4Se8, GaNb4S8, GaNb4Se8 , 
many organic materials……

A large class of cluster magnets (Mott insulators)

Cluster magnets can even be systematically fabricated in organic chemistry !

triangle clusters in kagome  
(J. Atwood, nature mat 2002) tetrahedral cluster in pyrochlore

Gang Chen’s theory group 
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1. Introduce the notion of cluster Mott insulator (they are interesting and they exist in 
nature, actually quite a lot, never been studied) 

2. Develop a new theoretical framework to understand the universal features of 
charge and spin fluctuation, and show the relation between the simple idea of 
cluster charge localization to something deep (quantum dimer model and lattice 
gauge theory) 

3. Apply to illustrative examples and explain the puzzling experiments in LiZn2Mo3O8. 

My Goal
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T. McQueen

One striking experiment on LiZn2Mo3O8

2.  Triangular lattice Hubbard model at 1/2 filling

1. Triangular lattice Heisenberg model 

Neither model works. 

LETTERS

NATUREMATERIALS DOI: 10.1038/NMAT3329
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range

494 NATUREMATERIALS | VOL 11 | JUNE 2012 | www.nature.com/naturematerials

© 2012 Macmillan Publishers Limited. All rights reserved

Nature Material 2012
• Why striking and difficult? 

• Further low-temperature experiments: NMR, muSR, neutron scattering, 
proposed as a spin liquid candidate. 



FQHE (Tsui, Stormer, and Gossard)

Xiao-Gang Wen: all the electrons in the Laughlin  
state are dancing collectively.

What do electrons do in LiZn2Mo3O8 ?  
Any collective behaviours? 

Laughlin

1st exotic phase known to us

Tsui
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1.  Explain the “fractional spin susceptibility” at finite temperature;  

2.  Explain the low-temperature (or ground state) properties, and  
     introduce the theoretical framework.  
      

What to do next?



LiZn2Mo3O8   structure
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Model

Claim: a single-band extended Hubbard model on an anisotropic Kagome lattice  
            with 1/6 electron filling.

2

smaller Curie-Weiss temperature (⇥L
CW = �14K) from

the high temperature one (⇥H
CW = �220K) and a much

reduced Curie constant which is 1/3 of the high temper-
ature one.

FIG. 1. (Color online.) (a) Mo
3

triangular clusters are orga-
nized into a triangular lattice structure. (b) After connecting
the longer neighboring Mo-Mo bonds in the down triangles,
the system becomes a kagome lattice. b

1

,b
2

are two kagome
lattice vectors that connect neighboring unit cells. We use r’
to label the kagome lattice unit cell and ‘A,B,C’ to label three
sublattices.

In a very recent theoretical work,11 Flint and Lee fol-
lowed the suggestion by the experiments8 and considered
the possibility of an emergent honeycomb lattice that is
centered by weakly coupled dangling spins. In their anal-
ysis, the emergent honeycomb system may form a gapped
QSL phase while the remaining dangling spin moments
dominate the low-temperature magnetic property which
then explains the 1/3 spin susceptibility anomaly. Their
theory invokes the phonon degrees of freedom to work in
a way to generate the emergent honeycomb lattice for the
spin system. Such a scenario might be plausible. In this
paper, however, we explore an alternative explanation
for the experiments that is based on electronic degrees of
freedom and their interactions.

We consider a generic extended Hubbard model for
the unpaired Mo electrons. The model is defined on an
kagome lattice with a 1/6 electron filling and is given as

H =
X

hiji2u
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where c†
i�

(c
i�

) creates (annihilates) an electron with
spin � at lattice site i, and t1, V1 and t2, V2 are nearest-
neighbor electron hopping and interaction on the up tri-
angles (denoted as ‘u’) and the down triangles (denoted
as ‘d’) (see Fig.1a), respectively. n

i

=
P

�

c†
i�

c
i�

is the
electron density at site i.

Why is this model (Eq.1) is appropriate for
LiZn2Mo3O8? Firstly, the Mo sites do form a kagome
lattice with a shorter (longer) nearest-neighbor bond on
the up (down) Mo3 triangular cluster. There is one un-
paired Mo electron for each up triangular cluster, giving

rise to 1/6 electron filling for the Hubbard model. Sec-
ondly, LiZn2Mo3O8 is found to be a Mott insulator with
a charge gap ⇠ 0.12eV.8 The charge gap is not very large,
so it is more appropriate to model the system with a Hub-
bard model. Seven valence electrons are localized on each
up Mo3 triangular cluster. Supported by a molecular or-
bital calculation, six of the seven electrons localize into
Mo-Mo bonds holding the cluster together.8 The seventh
electron remains unpaired in a totally symmetric (A1)
molecular orbital with equal contributions from all three
Mo atoms.8 This A1 molecular orbital is an equal weight
superposition of relevant electron orbital on each Mo sites
of the up Mo3 cluster.8 The extended Hubbard model in
Eq.1 simply moves one step back, being constructed di-
rectly from the relevant electron orbitals on the Mo sites
and also respecting the R3̄m space group symmetries.
We include the on-site Hubbard-U interaction as well as
two inter-site repulsions V1 and V2. Even though the
down triangles are larger in size than the up triangles
in LiZn2Mo3O8, because of the large spatial extension of
the 4d Mo electron orbitals we think it is necessary to
include the inter-site repulsion V2 for the down triangles.
Since the charge gap is relatively small, it makes sense to
explore possible proximate phases in LiZn2Mo3O8. For
LiZn2Mo3O8 one expects t1 > t2 and U > V1 > V2.
While still keeping the Hubbard-U as the largest energy
scale, we study the phase diagram of this model in much
broader parameter regimes in this paper.

Because of the fractional electron filling, the Mott tran-
sition is driven by the inter-site repulsion rather than the
on-site Hubbard interaction U and the electrons are lo-
calized on the triangular clusters of the kagome lattice
instead of the lattice sites. The electrons become local-
ized on the up (down) triangles when the inter-site re-
pulsion on up (down) triangles overweights the kinetic
energy gain from hoppings between up (down) triangles.
Because of the asymmetry between the up and down tri-
angles of the kagome lattice, the Mott localization on the
up and down triangles does not need to occur simulta-
neously. Therefore, two types of cluster Mott insulating

phases are clearly expected.

For the first kind of cluster Mott insulator, the inter-
site repulsion on one type (up or down) of triangles over-
weights the kinetic energy gain from hoppings between
this types of triangles and causes the electron localiza-
tion on these triangles while the inter-site repulsion on
the other type of triangles remains weak compared to
the kinetic energy gain from hopping between these tri-
angles. The electron occupation number on the triangles
with localized electrons is fixed to one electron per tri-
angle while the electron number on the other type of tri-
angles remains strongly fluctuating. This Mott insulator
is named as the type-I cluster Mott insulator. Moreover,
the triangular clusters that host localized electrons form
a triangular lattice. In the weak Mott regime, we show
the local spin moments form a U(1) QSL with the spinons
filling half the lowest kagome spinon band. We further
show this U(1) QSL is smoothly connected to the weak

t1, V1

A

B C
t2, V2

* Large U alone cannot localize the electron. 
* V1 and V2 are needed: because it is 4d orbital,  
   and also to localize the electron in the clusters.

• Minimal model allowed by symmetry [require quantum chemistry understanding]
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Generic phase diagram

spin sector is spin liquid
Here t1/t2 = 4, no qualitative difference  

for different t1/t2

snapshots of electron occupation in type-I CMI
V2 is small, V1 is large

* Electrons are localized in one type of triangles in type-I CMI; 
* Electrons are localized in both types of triangles in type-II CMI. 

FL-metal

type-Iu CMI

type-Id  
CMI

type-II  
CMI

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2
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• A “simple” understanding: 
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Sub-Mott-gap process: correlated electron motion

3rd order process in type-II CMI

dimer resonating 

6

identifying the rotor operators as the spin ladder opera-
tors, e±i✓i = L±

i

where

L±
i
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2
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i
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2
i. (8)

Thus the corresponding e↵ective spin-L model reads
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in which we have made a uniform mean-field approxima-
tion such that h

i

+ 3(V1 + V2) ⌘ Be↵. The 1/6 elec-
tron filling is mapped to the total “magnetization” con-
dition N

s

�1 P
i

Lz

i

= � 1
6 , where N

s

is the total number
of Kagome lattice sites.

(a) (b)

FIG. 4. (Color online.) (a) eA, eB and eC are three vectors
that connect the center of an up-triangle to the centers of the
neighboring down-triangles. (b) The centers of the triangles
on the Kagome lattice form a DHL.

The type-II CMI appears when the interactions V1, V2

are dominant over the hoppings t1, t2. In terms of the ef-
fective spin Lz

i

, the electron charge localization condition
in the type-II CMI is

X

i2u
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= �1

2
,
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i2d

Lz

i
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2
. (10)

In the type-II CMI, the allowed e↵ective spin configura-
tion is “2-down 1-up” in every triangle. These allowed
classical spin configuration are extensively degenerate.
The presence of the transverse e↵ective spin exchanges
lifts the classical ground state degeneracy and the ef-
fective interaction can be obtained from a third-order
degenerate perturbation theory. The resulting e↵ective
ring exchange Hamiltonian is given as

Hch,ring = �
X

7
Jring(L

+
1 L

�
2 L

+
3 L

�
4 L

+
5 L

�
6 + h.c.), (11)

where “7” refers to the elementary hexagon of the

Kagome lattice, Jring = 6(Jeff
1 )3

V

2
2

+ 6(Jeff
2 )3

V

2
1

and “1,2,3,4,5,6”

are the 6 vertices on the perimeter of the elementary
hexagon on the Kagome lattice (see Fig. 5).

FIG. 5. (Color online.) The two collective hopping processes
that contribute to the ring electron hopping or the ring ex-
change in Eq. (11). The (red) solid ball represents the electron
or the charge rotor.

We now map the e↵ective Hamiltonian Hch,ring into a
compact U(1) lattice gauge theory on the DHL. We in-
troduce the lattice U(1) gauge fields (E,A) by defining24

Lz

r,µ ⌘ Lz

r+
eµ
2

= Er,r+eµ , (12)

L±
r,µ ⌘ L±

r+
eµ
2

= e±iAr,r+eµ (13)

where r 2 u, Err0 = �Er0r, and Arr0 = �Ar0r.
The centers (labelled as r, r0) of the triangles form a
dual honeycomb lattice (see Fig. 4). The fields E and
A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory
and [Er,r+eµ , Ar,r+eµ ] = �i. With this identification,
the local “2-down 1-up” charge localization condition in
Eq. (10) is interpreted as the “Gauss’ law’’ for the emer-
gent U(1) lattice gauge theory. The e↵ective ring ex-
change Hamiltonian Hch,ring reduces to a gauge “mag-
netic” field term on the DHL,

Hch,ring = �2Jring
X

9
cos(�⇥A), (14)

where �⇥A is a lattice curl defined on the ‘9’ that refers
to the elementary hexagon on the honeycomb lattice. As
this internal gauge structure emerges at low energies in
the charge sector, in the following we will refer this gauge
field as the U(1)ch gauge field.

B. Slave-particle construction and mean-field
theory

Since the gauge theory in the charge sector is a com-
pact U(1) gauge theory defined on a 2D lattice, it would
be confining due to the well-known non-perturbative in-
stanton e↵ect if all the elementary excitations (except for
“photon”) is gapped. However, in our case, the spinon
excitations are gapless and possess spinon Fermi surfaces.
While these spinons do not directly couple to U(1)ch
gauge field, they would interact with charge excitations in
terms of U(1)sp gauge field and then can indirectly couple
to U(1)ch gauge field via the charge excitations. Thus, a
deconfined phase of the U(1)ch gauge field may still be
allowed if spinon Fermi surface fluctuations can suppress
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This collective tunnelling process preserves the center of mass of 3 electrons !
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settles down to a nonzero value on the left of the transition,
at v/t!"0.25, whereas it scales to zero on the right, for
v/t!"0.15. The transition is located around v/t!"0.2,
where the scaling appears inconclusive. From this, we think
it is conservative to estimate the transition point between the
two phases to be located at v/t!"0.2#0.05.
We conclude this section by addressing potential system-

atic errors arising from the introduction of the discretization
in the stacking direction, since the mapping to the quantum
dimer model is exact in the continuum limit only.
In Fig. 5, we show the plots of mrms vs v/t for a system of

2304 sites using different couplings in the stacking direction,
K", thus varying # , at a fixed quantum temperature. It can be
seen that the transition sharpens up as # is increased, but
moves only little as # changes from 10 to 20. As the quan-
tum temperature is lowered by a factor of 2 at #!20, the
transition sharpens further but again does not move signifi-
cantly. These effects are therefore certainly within the error
bars we give for the value of the critcal v/t . The case of the
largest system we have studied $also displayed in Fig. 5%
clearly also falls into this range.
We note that the absence of finite-size effects at v!0,

upon increasing the number of layers, N, at fixed &C and L,

implies the existence of a gap in this part of the phase dia-
gram. This is not surprising since at that point, we are far
away from the phase transition, which is first order at any
rate. However, this observation makes the existence of a gap-
less excitation at this point, suggested in Ref. 13, seem rather
unlikely. More generally, our results fit snugly into the ex-
pectations from the height representation analysis as well the
analysis of the transverse field Ising models $see below as
well% and so there seems little doubt that the analysis in Ref.
13 is flawed.

V. PHASE DIAGRAM

The phase diagram we have thus obtained is depicted in
Fig. 6. The columnar-plaquette phase transition is of first
order, whereas the one at the RK point is a second-order one,
albeit with the somewhat peculiar feature that, coming from
the right, it appears to be first order as no fluctuations are
visible leading up to the critical point. However, coming
from the left, a gap closes, giving rise to the gapless resonon
excitations.1
There are a number of theoretical reasons which lead us to

conclude that the transition from plaquette to columnar VBS
is first order, as the simulations suggest. Within the frame-
work of the Landau-Ginzburg-Wilson theory,15 the critical
point corresponds to the vanishing of the coefficent of the
sixfold clock term, so that the system could in principle fluc-
tuate between all the degenerate XY states $including the
columnar and plaquette ones% without encountering any bar-
riers. However, higher ‘‘harmonics’’ $clock terms% will pre-
sumably come into play as they are unlikely to vanish at
exactly the same point as the leading one; it is these which
will prevent the barriers between the plaquette and columnar
state from vanishing.
Further, we note that the symmetry groups of the two

VBS’s are not such that one of them is a subgroup of another,
which would be a criterion within Landau theory for a con-
tinuous transition. This is in fact a somewhat subtle point as
both phases break translational symmetry and retain a sixfold
rotational symmetry. However, when trying to form domains
of one phase within another, it turns out that the centers of
rotational symmetry lie in distinct places for the two phases.
This point, incidentally, is somewhat simpler in the square

lattice, where the columnar phase breaks translational sym-
metry in one direction and also rotational symmetry, whereas
the plaquette phase breaks translational symmetry in both
directions but retains a fourfold rotational symmetry.

VI. STACKED MAGNETS

Our simulations apply equivalently to the hexagonal
dimer model and to the stacked triangular magnets. We

FIG. 4. Scaling of mrms as a function of L"1, the inverse of the
linear system size. &Qt!0.083, #!10.

FIG. 5. Development of mrms as a function of # and &Q . The
dashed line is for 5184 sites; the others are for 2304 sites. Reducing
the discretization error $increasing #% and lowering the quantum
temperature $increasing N) sharpen up the transition.

FIG. 6. Phase diagram of the quantum dimer model on the hex-
agonal lattice. The nature of the ordered phases is indicated above
the axis.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.

R. MOESSNER, S. L. SONDHI, AND P. CHANDRA PHYSICAL REVIEW B 64 144416

144416-2

frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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• Remarks: 
 
* The plaquette charge order is a local charge “RVB”.  
   (This is not Anderson’s spin singlet RVB).  
* One may simply view each resonating hexagon as a benzene molecule.   
* It is a collective behaviour of 3 electrons.  
* It is a quantum effect. 

• A model study in 2001

• plaquette charge order
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• High energy d.o.f. (charge) usually influences low energy d.o.f. (spin). More practically,  
low d.o.f serves as a probe of the physical properties of the high energy d.o.f.. 

• Spin state reconstruction 
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FIG. 11. (Color online.) Three singlet positions that are
related by the 3-fold rotation.

What is the physical origin of this local 4-fold degener-
acy? Clearly, the 2-fold degeneracy of sz = ±1/2 arises
from the time-reversal symmetry and the Kramers’ the-
orem. The remaining 2-fold degeneracy comes from the
point group symmetry of the resonating hexagon. This
is easy to see if we freeze the positions of the 3 electrons.
To be concrete, let us fix the electrons to the sites 1,3,5
in Fig. 11. To optimize the exchange interaction, 2 elec-
trons must form a spin singlet, which leaves the remain-
ing electron as a dangling spin-1/2 moment. As shown
in Fig. 11, this singlet can be formed between any pair
of the electrons and the di↵erent locations of the spin
singlet are related by the 3-fold rotation. Even though
there seems to be 3 possible singlet positions, only 2 of
them are linearly independent, which gives to the 2-fold
⌧z degeneracy which survives even when the ring electron
hopping is turned on. As a result, the pseudospin ⌧ is
even under time-reversal and acts on the space of the sin-
glet position or equivalently the dangling spin position.
In fact, the two states in Eqs. (29) and (30) comprise the
E irreducible representation of the C3v point group.

B. Kugel-Khomskii model

Now we consider the spin and pseudospin interaction
between neighboring resonating hexagons. The neigh-
boring resonating hexagons are connected by a “bow-
tie” that is composed of one up and one down-triangle.
The local moment interaction comes from the remaining
exchange interaction between the 2 electron spins that
reside on the four outer vertices of the bow-tie. To be
concrete, we consider the bow-tie that connects the two
resonating hexagons at the R and R + a1 (see Fig. 1).
To derive the local moment interaction, one just needs to
project the remaining electron spin exchange interaction
onto the 4-fold ground state manifold of each resonat-
ing hexagon. To this end, we first write down the inter-
hexagon exchange interaction between the electrons at
the bow-tie vertices,

H 0
ex = �J 0

4
[n4(R) + n5(R)][n1(R+ a1) + n2(R+ a1)]

+J 0[S4(R)n4(R) + S5(R)n5(R)]⇥ [S1(R+ a1)

⇥n1(R+ a1) + S2(R+ a1)n2(R+ a1)], (31)

where we have considered the exchange interactions for
electrons at all 4 pairs of the sites. The exchange paths of
these pairs all go through the center vertex of the bow-
tie and thus are of equal length. As a result, we only
introduce one exchange coupling J 0 for the four pairs in
the above equation. Moreover, since J 0 is the exchange
coupling between the spins after the system develops the
PCO, clearly J 0 should be smaller than the intra-hexagon
exchange coupling J in Eq. (27).
We project H 0

ex onto the local ground state manifold
at resonating hexagon sites R and R + a1 and then ex-
press the resulting interaction in terms of the spin and
pseudospin operators. The e↵ective interaction on other
bonds can be obtained similarly. The final local moment
interaction reduces to a Kugel-Khomskii model[19] that
is defined on the ETL, which to the order of O(K2/K1)
is given as

HKK =
J 0

9

X

R

X

µ=x,y,z

⇥
s(R) · s(R+ a

µ

)
⇤

⇥[1 + 4⇡µ(R)][1� 2⇡µ(R+ a
µ

)] (32)

where the new set of pseudospin operators are defined

as ⇡x,y(R) = � 1
2⌧

z(R)⌥
p
3
2 ⌧x(R),⇡z(R) = ⌧z(R), and

a
x

= a1,ay = a2 and a
z

= �a1 � a2. In Eq. (32),
the exchange coupling is significantly reduced after the
projection compared to the original exchange coupling in
Eq. (31).
Since the pseudospin ⌧ does not directly couple to the

external magnetic field, the low-temperature Curie-Weiss
temperature (⇥L

CW) and Curie constant (CL) are straight-
forward to compute from HKK,

⇥L
CW = �z

t

s(s+ 1)

3

J 0

9
, CL =

g2µ2
Bs(s+ 1)

3kB

N�

3
,(33)

where z
t

= 6 is the coordination number for nearest
neighbors of the triangular lattice. The above results are
again consistent with the lower temperature 1/3 Curie-
constant of the spin susceptibility in LiZn2Mo3O8.
This Kugel-Khomskii model involves the spin-spin in-

teraction, the pseudospin-pseudospin interaction and also
the spin-pseudospin interaction, which make the model
analytically intractable. In the absence of the spin-
pseudospin interaction, the Heisenberg spin exchange
model would favor the classical 120-degree state. The
presence of spin-pseudospin interaction, however, com-
petes with the Heisenberg term, destabilizes the 120-
degree state and may potentially favor a spin liquid state.
Such a spin liquid, if exists, could be smoothly connected
to the U(1) QSL of the intermediate coupling regime in
Sec. III C. We leave this question for the future work.
Despite its complicated form, the Kugel-Khomskii

model becomes tractable in the presence of a strong ex-
ternal magnetic field. We apply a strong magnetic field to
fully polarize the local spin moments such that sz = 1/2
in every ETL unit cell but at the same time keep the
field from polarizing all the electron spins in the system.
The remaining active local moments are the pseudospins

An effective Kugel-Khomskii model on  
the emergent triangular lattice

K. Kugel D. Khomskii
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Explanation for fractional spin susceptibility at finite temperatures

type-II CMI (PCO)

1. Expect 1st order finite temperature transition,  
peak at ~100K, (was interpreted as Li freezing.)  
smeared out 1st transition?  

2.   High resolution X-ray, RIXS 
3.   Nuclear quadrupolar resonance: electric field  
      gradient  (suggested to me by Baskaran) 

T ⇤

⇥H
CW, CH

|⇥L
CW| < |⇥H

CW|
CL = 1/3CH

T

V2/t1

Type-II CMI (PCO)Type-I CMI

LiZn2Mo3O8
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1.  Explain the “fractional spin susceptibility” at finite temperature;  

2.  Explain the low-temperature (or ground state) properties, and  
     introduce the theoretical framework.  
      

What to do next?
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Low-temperature experiments 
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sufficient to completely quench it. The expected behavior if
there was only nuclear relaxation is indicated by the dashed
lines in Fig. 3(b). Interestingly, there remains a significant
relaxation even in a longitudinal field of µoH = 0.2 T, the
maximum field available on this spectrometer. In fact, the
unquenched relaxation observed at µoH = 0.01 T, which is
very similar to that observed at µoH = 0.2 T, is most likely the
result of slowly fluctuating electronic spins, which fluctuate all
the way down to T = 0.07 K.

The temperature dependence of this unquenched relaxation
rate λ at µoH = 0.01 T is shown in Fig. 3(d). Clearly,
there is a significant relaxation persisting at all temperatures,
indicative of electronic spin fluctuations with dynamics not
set by a thermal scale. There is, however, no signature
of the valence-bond condensation at T ∼ 100 K that was
inferred from bulk magnetic susceptibility and heat capacity
measurements [20]. Rather than indicating the absence of
valence-bond condensation, it is possible that the lack of a
change at T ∼ 100 K is due to the changes in the spin fluctuation
spectrum being outside the muon timescale. Above and below
the condensation temperature, the paramagnetic spins fluctuate
at the exchange frequency (J/! ∼ 1012 Hz), which is too fast
to be detected by the muons since muons are sensitive to
fluctuations in the v = 105 to 1010 Hz frequency range. Further,
the condensed valence bonds do not contribute to the local B
field, therefore a transition into a dynamic condensed valence-
bond state is effectively invisible to µSR spectroscopy.

III. DISCUSSION

More detail about the local susceptibility comes from
further analysis of the NMR and µSR relaxation dynamics and
comparison to bulk magnetization and neutron experiments.
The measured µSR (λ) and NMR [(T1)−1, from NMR FFT
line “a,” Figs. 2(b) and 2(c)] relaxation rates are related to the
local dynamical spin susceptibility since

λ

T
≃ 1

T1T
≃

∑
| A(q) |2 χ ′′(q,ωo)

ωo

, (2)

where A(q) is the appropriate wave vector-dependent form
factor for NMR [35] or µSR, ωo is the NMR or µSR
frequency, and χ ′′(q,ωo) is the imaginary part of the dynamical
electron spin susceptibility. Figure 4(a) shows λT −1 (µSR) and
(T1T )−1 (NMR) scaled for comparison to the bulk magnetic
susceptibility. These data show, consistent with the bulk
susceptibility, that the local magnetism in LiZn2Mo3O8 is
fluctuating at all accessible temperatures, with an increase
in short-range spin-spin correlations, and reduction in the
electron spin fluctuation rate, as the temperature is lowered.
The weak magnetic-field dependence of the electron relaxation
rate is similar to what is observed in a system with strong
antiferromagnetic interactions (on the scale of θ = −220 K in
LiZn2Mo3O8) such as herbertsmithite [25, 36]. The discernible
deviation or bump of (T1T )−1 and λT −1 in the range 50 K <
T < 100 K is likely due to the freezing of lithium ions. For
NMR, this bump originates from the merging of the “d”
(mobile lithium) peak with the main NMR peak “a” as the
lithium ions freeze. The bump in the µSR data is due to
changes in µ+ ion diffusion as the lithium ions freeze, as is well
known other systems with mobile lithium ions [37–40]. More

FIG. 4. (Color online) (a) NMR spin-lattice relaxation rate [of
peak “a,” see Fig. 2 (b)] divided by temperature, (T1T )−1, a measure
of electron spin relaxation scales with µSR λT −1. Both data sets
are compared to the previously reported bulk magnetic susceptibility,
shown as a gray line. The data are self-consistent and indicate gapless,
short-range spin-spin correlations. The characteristic measurement
frequencies for each technique are approximately ωo = 8 × 106 Hz
for µSR at µoH = 10 mT and ωo = 9 × 107 Hz for 7Li NMR at
µoH = 5.36 T. (b) The bulk susceptibility divided by NMR (T1T )−1

and µSR λT −1, a measure of relaxation rate as compared to inelastic
neutron scattering data [33]. The data show a slowing of spin fluctu-
ations as the temperature is lowered, in agreement with the electron
spin relaxation rate (%) extracted from inelastic neutron scattering
(blue diamonds). The red line is a guide to the eye, calculated by
fitting to the NMR data the exponential 0.004 ( e.m.u.·s·K0.71

Oe·molf.u.
)T 0.29. The

error bars on the µSR data were calculated by propagating errors on
both the bulk susceptibility and µSR datasets.

importantly, the trend of increasing (T1T )−1 as T approaches
zero indicates the onset of short-range spin correlations that
do not have a gap in the excitation spectrum. This is in
agreement with the dynamical susceptibility extracted from
inelastic neutron scattering [33], which shows an increase as
the temperature is lowered and was suggestive of gapless spin
excitations. Figure 4(b) shows previously reported [20] bulk
susceptibility divided by the µSR (λT −1) and NMR (T1T )−1,
which demonstrates the slowing of spin fluctuations as the
temperature is lowered. A fit of χ ′′(E) to the momentum
averaged neutron data yields the relaxation response (from

064407-4

0.21, and 6.6 meV. Contributions from the empty cryostat
were subtracted and the measured intensity was normalized
to Bragg scattering from the sample [27].
We start with the low-energy experiment for which the

cross section ~IðQ;EÞ≡ ki=kfðd2σ=dΩdEfÞ is plotted in
Figs. 2(a) and 2(b) as a function of neutron energy transfer
E≡ ℏω and momentum transfer ℏQ≡ ℏjQj. Besides
elastic nuclear scattering, there is for LiZn2Mo3O8 a broad
plume of scattering extending from the elastic line up to the
highest measured E ¼ 1.3 meV, concentrated at small
Q < 1.0 Å−1, and with a temperature-dependent character-
istic wave vector [Fig. 2(a)]. There is no such signal for
Zn2Mo3O8 in the same Q range, but instead a weak flat
mode at E ¼ 1.01ð1Þ meV, the intensity of which
decreases with Q and vanishes by Q≈1.0Å−1 [Fig. 2(b)].
For largerQ > 1.1 Å−1, both samples display V-like ridges
of intensity emerging from nuclear Bragg reflections. This
spurious signal is temperature independent and results
from incoherent elastic scattering from the monochromator
or analyzer and a nuclear Bragg reflection from the sample.
Our observations can be compared to the cross section

for inelastic magnetic neutron scattering associated with
Mo3O13 spins, ~ImðQ;EÞ¼ r20jðg=2ÞFðQÞj22~SðQ;EÞ. Here,
~SðQ;EÞ is the dynamical spin correlation function, FðQÞ
the spherically averaged form factor for unpaired electrons
in the sample, and r0 ¼ 0.539 × 10−12 cm. Within the
dipole approximation [28] and assuming a quenched orbital
contribution for Mo3O13ð7eÞ, we obtain the spin-only from
factor FðQÞ ¼

R
d3rρðrÞeiQ·r from the unpaired electron

density ρðrÞ of Fig. 1(a).
The spherically averaged squared amplitude jFðQÞj2

decreases with increasing Q and drops to 10% of its initial
value by Q ≈ 1.0 Å−1 [Fig. 1(b)]. This resembles the trend
observed experimentally for small Q in Figs. 2(a) and 2(b),
suggesting that both the broad signal in LiZn2Mo3O8 and
the flat excitation in Zn2Mo3O8 have a magnetic origin. For
LiZn2Mo3O8 this is reinforced by the temperature evolu-
tion of the signal, determined by subtracting 30 K data from
lower temperature measurements. Upon cooling to 1.7 K,
the intensity increases forQ < 1.0 Å−1 and from the elastic
line up to at least E ¼ 2.5 meV [Fig. 2(c)]. A more detailed
temperature dependence focusing on E ¼ 0.3 meV reveals
a substantial decrease of the Q < 1.0 Å−1 signal from
T ¼ 1.7 K to T ≈ 10 K while the Q > 1.4 Å−1 is T
independent [Fig. 2(d)].
In contrast, the signal observed in Zn2Mo3O8 [Fig. 2(b)]

consists of a weak resonant mode with integrated intensity
that follows jFðQÞj2 remarkably well, particularly for
0.4 < Q < 1.0 Å−1 [Fig. 2(e)]. This flat mode carries a
temperature-independent spectral weight corresponding to
≈10% of that observed in LiZn2Mo3O8 [Fig. 2(a)] or about
3% of that expected from one S ¼ 1=2 per Mo3O13 cluster.
We associate this scattering with a local intramolecular
excitation of Mo3O13ð6eÞ that validates the general trend of
our ab initio predictions for the form factor [Fig. 1(b)].

For a more quantitative understanding, we isolated
the inelastic magnetic scattering contribution, ~ImðQ;EÞ,
by subtracting the sample elastic nuclear scattering.
Specifically, the elastic incoherent line shape observed in
Zn2Mo3O8 for E < 0.8 meV and 0.3 ≤ Q ≤ 1.1 Å−1 was
scaled to the ~IðQ;E ¼ 0Þ intensity of LiZn2Mo3O8 and
subtracted [Figs. 3(a) and 3(b)].
The momentum dependence of the resulting intensity,

~ImðQÞ ¼
R
dE~ImðQ;EÞ, was extracted by integrating

over 0.2 < E < 1.3 meV. A peak is observed for Q ¼
0.41ð2Þ Å−1 at 1.7 K, which shifts to a lower
Q ¼ 0.35ð2Þ Å−1 upon warming to 30 K [Fig. 3(c)].
This indicates the signal is a collective excitation of the
Mo3O13ð7eÞ spins rather than a local intramolecular
excitation. The latter would peak at a much higher Q,
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FIG. 3 (color online). Neutron scattering intensity in
LiZn2Mo3O8 (Ef ¼ 2.5 meV) at (a) 1.7 K and (b) 30 K corrected
for the sample incoherent scattering. (c) Momentum dependence
of ~ImðQÞ for LiZn2Mo3O8 compared to Zn2Mo3O8

(0.2 ≤ E ≤ 0.8 meV) revealing background contributions below
Q ≈ 0.3 Å−1 (black arrow). Fits to ~IvbðQÞ are indicated by thick
black lines (solid 1.7 K, dashed 30 K). The thin lines are fits to
~IdðQÞ at 1.7 K with d0 ¼ 2.6 Å (dotted gray), d1 ¼ 5.8 Å (solid
blue), and d2 ¼ 10.0 Å (dashed red). (d) Energy dependence of
χ00ðEÞ at 1.7 K (full symbols) and 30 K (open symbols). Solid and
dashed lines are fits to a relaxation response. Error bars represent
1 standard deviation.
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* No magnetic order is detected.  
* The behaviour is compatible with a gapless spin liquid state.
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E Fradkin S Kivelson

• Quantum Dimer Model = Lattice Gauge Theory; 
      bipartite: compact U(1) gauge theory,  
      non-bipartite: Z2 gauge theory. 

HQDM ⇠ �
X

(| ih |+ | ih |)

R. MoessnerS. Sondhi

A. Polyakov

6

identifying the rotor operators as the spin ladder opera-
tors, e±i✓i = L±

i

where

L±
i

|Lz

i

= ⌥1

2
i = |Lz

i

= ±1

2
i. (8)

Thus the corresponding e↵ective spin-L model reads

Hch =
X

hiji

⇥�Je↵
ij

(L+
i

L�
j

+ h.c.) + V
ij

Lz

i

Lz

j

⇤

+Be↵
X

i

Lz

i

, (9)

in which we have made a uniform mean-field approxima-
tion such that h

i

+ 3(V1 + V2) ⌘ Be↵. The 1/6 elec-
tron filling is mapped to the total “magnetization” con-
dition N

s

�1 P
i

Lz

i

= � 1
6 , where N

s

is the total number
of Kagome lattice sites.

(a) (b)

FIG. 4. (Color online.) (a) eA, eB and eC are three vectors
that connect the center of an up-triangle to the centers of the
neighboring down-triangles. (b) The centers of the triangles
on the Kagome lattice form a DHL.

The type-II CMI appears when the interactions V1, V2

are dominant over the hoppings t1, t2. In terms of the ef-
fective spin Lz

i

, the electron charge localization condition
in the type-II CMI is

X

i2u

Lz

i

= �1

2
,

X

i2d

Lz

i

= �1

2
. (10)

In the type-II CMI, the allowed e↵ective spin configura-
tion is “2-down 1-up” in every triangle. These allowed
classical spin configuration are extensively degenerate.
The presence of the transverse e↵ective spin exchanges
lifts the classical ground state degeneracy and the ef-
fective interaction can be obtained from a third-order
degenerate perturbation theory. The resulting e↵ective
ring exchange Hamiltonian is given as

Hch,ring = �
X

7
Jring(L

+
1 L

�
2 L

+
3 L

�
4 L

+
5 L

�
6 + h.c.), (11)

where “7” refers to the elementary hexagon of the

Kagome lattice, Jring = 6(Jeff
1 )3

V

2
2

+ 6(Jeff
2 )3

V

2
1

and “1,2,3,4,5,6”

are the 6 vertices on the perimeter of the elementary
hexagon on the Kagome lattice (see Fig. 5).

FIG. 5. (Color online.) The two collective hopping processes
that contribute to the ring electron hopping or the ring ex-
change in Eq. (11). The (red) solid ball represents the electron
or the charge rotor.

We now map the e↵ective Hamiltonian Hch,ring into a
compact U(1) lattice gauge theory on the DHL. We in-
troduce the lattice U(1) gauge fields (E,A) by defining24

Lz

r,µ ⌘ Lz

r+
eµ
2

= Er,r+eµ , (12)

L±
r,µ ⌘ L±

r+
eµ
2

= e±iAr,r+eµ (13)

where r 2 u, Err0 = �Er0r, and Arr0 = �Ar0r.
The centers (labelled as r, r0) of the triangles form a
dual honeycomb lattice (see Fig. 4). The fields E and
A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory
and [Er,r+eµ , Ar,r+eµ ] = �i. With this identification,
the local “2-down 1-up” charge localization condition in
Eq. (10) is interpreted as the “Gauss’ law’’ for the emer-
gent U(1) lattice gauge theory. The e↵ective ring ex-
change Hamiltonian Hch,ring reduces to a gauge “mag-
netic” field term on the DHL,

Hch,ring = �2Jring
X

9
cos(�⇥A), (14)

where �⇥A is a lattice curl defined on the ‘9’ that refers
to the elementary hexagon on the honeycomb lattice. As
this internal gauge structure emerges at low energies in
the charge sector, in the following we will refer this gauge
field as the U(1)ch gauge field.

B. Slave-particle construction and mean-field
theory

Since the gauge theory in the charge sector is a com-
pact U(1) gauge theory defined on a 2D lattice, it would
be confining due to the well-known non-perturbative in-
stanton e↵ect if all the elementary excitations (except for
“photon”) is gapped. However, in our case, the spinon
excitations are gapless and possess spinon Fermi surfaces.
While these spinons do not directly couple to U(1)ch
gauge field, they would interact with charge excitations in
terms of U(1)sp gauge field and then can indirectly couple
to U(1)ch gauge field via the charge excitations. Thus, a
deconfined phase of the U(1)ch gauge field may still be
allowed if spinon Fermi surface fluctuations can suppress

• Charge sector is described by a compact U(1) gauge theory on the dual  
honeycomb lattice. Having one electron in each triangle is like a Gauss’ law  
constraint.  

• The PCO in type-II CMI can be understood as the confining phase of compact  
U(1) gauge theory in 2D.  

• This implies 3D CMI supports change fractionalization !
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type-I CMI as a Higgs’ phase

• In type-I CMI, one charge boson is condensed, and the internal U(1)c gauge field 
in the charge sector is Higgsed, but the U(1)sp gauge field remains deconfined. 

• Only in type-I CMI, the triangular cluster can be viewed as a supersite of the 
triangular lattice, and the system is smoothly connected to triangular Hubbard 
model at 1/2 filling. 

FL-metal

type-Iu CMI
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Framework: a new parton construction

Sung-Sik Lee P Lee

E Fradkin

ci� = e�i✓ifi�

charge-qe 
spinless boson 

charge-neutral 
spin-1/2 fermion 

one U(1) gauge field

S Florens A Georges

L Balents

• The slave rotor construction is used to describe the conventional 
Mott insulator, e.g. triangular lattice Hubbard model at 1/2 filling

f†
j�

�†
r

�r0

eiArr0

c†j� ⇠ f†
j��

†
r�r0e

iArr0

U(1)c ⇥ U(1)sptwo U(1) gauge fields: 

• A new parton gauge construction is required for cluster Mott insulators 
to capture additional U(1) gauge structure in the charge sector



Hastings’ theorem: spin liquid of type-II CMI

M. Hastings
k
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Brillouin zone of  
type-I & type-II CMIs

tripled unit cell, 
host 3 electrons
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PCO splits the spinon band, creates a direct band gap, and narrows the effective bandwidth.

Implication to susceptibility from bandwidth and filling
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Prediction: low-T QSL
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =P

N

i=1(x

i+1 �x

i

)/2
p

(�y

i+1)2 +(�y

i

)2, where the error bars
are given by �S

N

, and �y

i

is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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sufficient to completely quench it. The expected behavior if
there was only nuclear relaxation is indicated by the dashed
lines in Fig. 3(b). Interestingly, there remains a significant
relaxation even in a longitudinal field of µoH = 0.2 T, the
maximum field available on this spectrometer. In fact, the
unquenched relaxation observed at µoH = 0.01 T, which is
very similar to that observed at µoH = 0.2 T, is most likely the
result of slowly fluctuating electronic spins, which fluctuate all
the way down to T = 0.07 K.

The temperature dependence of this unquenched relaxation
rate λ at µoH = 0.01 T is shown in Fig. 3(d). Clearly,
there is a significant relaxation persisting at all temperatures,
indicative of electronic spin fluctuations with dynamics not
set by a thermal scale. There is, however, no signature
of the valence-bond condensation at T ∼ 100 K that was
inferred from bulk magnetic susceptibility and heat capacity
measurements [20]. Rather than indicating the absence of
valence-bond condensation, it is possible that the lack of a
change at T ∼ 100 K is due to the changes in the spin fluctuation
spectrum being outside the muon timescale. Above and below
the condensation temperature, the paramagnetic spins fluctuate
at the exchange frequency (J/! ∼ 1012 Hz), which is too fast
to be detected by the muons since muons are sensitive to
fluctuations in the v = 105 to 1010 Hz frequency range. Further,
the condensed valence bonds do not contribute to the local B
field, therefore a transition into a dynamic condensed valence-
bond state is effectively invisible to µSR spectroscopy.

III. DISCUSSION

More detail about the local susceptibility comes from
further analysis of the NMR and µSR relaxation dynamics and
comparison to bulk magnetization and neutron experiments.
The measured µSR (λ) and NMR [(T1)−1, from NMR FFT
line “a,” Figs. 2(b) and 2(c)] relaxation rates are related to the
local dynamical spin susceptibility since

λ

T
≃ 1

T1T
≃

∑
| A(q) |2 χ ′′(q,ωo)

ωo

, (2)

where A(q) is the appropriate wave vector-dependent form
factor for NMR [35] or µSR, ωo is the NMR or µSR
frequency, and χ ′′(q,ωo) is the imaginary part of the dynamical
electron spin susceptibility. Figure 4(a) shows λT −1 (µSR) and
(T1T )−1 (NMR) scaled for comparison to the bulk magnetic
susceptibility. These data show, consistent with the bulk
susceptibility, that the local magnetism in LiZn2Mo3O8 is
fluctuating at all accessible temperatures, with an increase
in short-range spin-spin correlations, and reduction in the
electron spin fluctuation rate, as the temperature is lowered.
The weak magnetic-field dependence of the electron relaxation
rate is similar to what is observed in a system with strong
antiferromagnetic interactions (on the scale of θ = −220 K in
LiZn2Mo3O8) such as herbertsmithite [25, 36]. The discernible
deviation or bump of (T1T )−1 and λT −1 in the range 50 K <
T < 100 K is likely due to the freezing of lithium ions. For
NMR, this bump originates from the merging of the “d”
(mobile lithium) peak with the main NMR peak “a” as the
lithium ions freeze. The bump in the µSR data is due to
changes in µ+ ion diffusion as the lithium ions freeze, as is well
known other systems with mobile lithium ions [37–40]. More

FIG. 4. (Color online) (a) NMR spin-lattice relaxation rate [of
peak “a,” see Fig. 2 (b)] divided by temperature, (T1T )−1, a measure
of electron spin relaxation scales with µSR λT −1. Both data sets
are compared to the previously reported bulk magnetic susceptibility,
shown as a gray line. The data are self-consistent and indicate gapless,
short-range spin-spin correlations. The characteristic measurement
frequencies for each technique are approximately ωo = 8 × 106 Hz
for µSR at µoH = 10 mT and ωo = 9 × 107 Hz for 7Li NMR at
µoH = 5.36 T. (b) The bulk susceptibility divided by NMR (T1T )−1

and µSR λT −1, a measure of relaxation rate as compared to inelastic
neutron scattering data [33]. The data show a slowing of spin fluctu-
ations as the temperature is lowered, in agreement with the electron
spin relaxation rate (%) extracted from inelastic neutron scattering
(blue diamonds). The red line is a guide to the eye, calculated by
fitting to the NMR data the exponential 0.004 ( e.m.u.·s·K0.71

Oe·molf.u.
)T 0.29. The

error bars on the µSR data were calculated by propagating errors on
both the bulk susceptibility and µSR datasets.

importantly, the trend of increasing (T1T )−1 as T approaches
zero indicates the onset of short-range spin correlations that
do not have a gap in the excitation spectrum. This is in
agreement with the dynamical susceptibility extracted from
inelastic neutron scattering [33], which shows an increase as
the temperature is lowered and was suggestive of gapless spin
excitations. Figure 4(b) shows previously reported [20] bulk
susceptibility divided by the µSR (λT −1) and NMR (T1T )−1,
which demonstrates the slowing of spin fluctuations as the
temperature is lowered. A fit of χ ′′(E) to the momentum
averaged neutron data yields the relaxation response (from

064407-4

1/(T1T ) / D(EF )
2

Cv ⇠ T 2/3, � ⇠ const

at very low temperature (<1K), but may be hard to observe.

0.21, and 6.6 meV. Contributions from the empty cryostat
were subtracted and the measured intensity was normalized
to Bragg scattering from the sample [27].
We start with the low-energy experiment for which the

cross section ~IðQ;EÞ≡ ki=kfðd2σ=dΩdEfÞ is plotted in
Figs. 2(a) and 2(b) as a function of neutron energy transfer
E≡ ℏω and momentum transfer ℏQ≡ ℏjQj. Besides
elastic nuclear scattering, there is for LiZn2Mo3O8 a broad
plume of scattering extending from the elastic line up to the
highest measured E ¼ 1.3 meV, concentrated at small
Q < 1.0 Å−1, and with a temperature-dependent character-
istic wave vector [Fig. 2(a)]. There is no such signal for
Zn2Mo3O8 in the same Q range, but instead a weak flat
mode at E ¼ 1.01ð1Þ meV, the intensity of which
decreases with Q and vanishes by Q≈1.0Å−1 [Fig. 2(b)].
For largerQ > 1.1 Å−1, both samples display V-like ridges
of intensity emerging from nuclear Bragg reflections. This
spurious signal is temperature independent and results
from incoherent elastic scattering from the monochromator
or analyzer and a nuclear Bragg reflection from the sample.
Our observations can be compared to the cross section

for inelastic magnetic neutron scattering associated with
Mo3O13 spins, ~ImðQ;EÞ¼ r20jðg=2ÞFðQÞj22~SðQ;EÞ. Here,
~SðQ;EÞ is the dynamical spin correlation function, FðQÞ
the spherically averaged form factor for unpaired electrons
in the sample, and r0 ¼ 0.539 × 10−12 cm. Within the
dipole approximation [28] and assuming a quenched orbital
contribution for Mo3O13ð7eÞ, we obtain the spin-only from
factor FðQÞ ¼

R
d3rρðrÞeiQ·r from the unpaired electron

density ρðrÞ of Fig. 1(a).
The spherically averaged squared amplitude jFðQÞj2

decreases with increasing Q and drops to 10% of its initial
value by Q ≈ 1.0 Å−1 [Fig. 1(b)]. This resembles the trend
observed experimentally for small Q in Figs. 2(a) and 2(b),
suggesting that both the broad signal in LiZn2Mo3O8 and
the flat excitation in Zn2Mo3O8 have a magnetic origin. For
LiZn2Mo3O8 this is reinforced by the temperature evolu-
tion of the signal, determined by subtracting 30 K data from
lower temperature measurements. Upon cooling to 1.7 K,
the intensity increases forQ < 1.0 Å−1 and from the elastic
line up to at least E ¼ 2.5 meV [Fig. 2(c)]. A more detailed
temperature dependence focusing on E ¼ 0.3 meV reveals
a substantial decrease of the Q < 1.0 Å−1 signal from
T ¼ 1.7 K to T ≈ 10 K while the Q > 1.4 Å−1 is T
independent [Fig. 2(d)].
In contrast, the signal observed in Zn2Mo3O8 [Fig. 2(b)]

consists of a weak resonant mode with integrated intensity
that follows jFðQÞj2 remarkably well, particularly for
0.4 < Q < 1.0 Å−1 [Fig. 2(e)]. This flat mode carries a
temperature-independent spectral weight corresponding to
≈10% of that observed in LiZn2Mo3O8 [Fig. 2(a)] or about
3% of that expected from one S ¼ 1=2 per Mo3O13 cluster.
We associate this scattering with a local intramolecular
excitation of Mo3O13ð6eÞ that validates the general trend of
our ab initio predictions for the form factor [Fig. 1(b)].

For a more quantitative understanding, we isolated
the inelastic magnetic scattering contribution, ~ImðQ;EÞ,
by subtracting the sample elastic nuclear scattering.
Specifically, the elastic incoherent line shape observed in
Zn2Mo3O8 for E < 0.8 meV and 0.3 ≤ Q ≤ 1.1 Å−1 was
scaled to the ~IðQ;E ¼ 0Þ intensity of LiZn2Mo3O8 and
subtracted [Figs. 3(a) and 3(b)].
The momentum dependence of the resulting intensity,

~ImðQÞ ¼
R
dE~ImðQ;EÞ, was extracted by integrating

over 0.2 < E < 1.3 meV. A peak is observed for Q ¼
0.41ð2Þ Å−1 at 1.7 K, which shifts to a lower
Q ¼ 0.35ð2Þ Å−1 upon warming to 30 K [Fig. 3(c)].
This indicates the signal is a collective excitation of the
Mo3O13ð7eÞ spins rather than a local intramolecular
excitation. The latter would peak at a much higher Q,
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FIG. 3 (color online). Neutron scattering intensity in
LiZn2Mo3O8 (Ef ¼ 2.5 meV) at (a) 1.7 K and (b) 30 K corrected
for the sample incoherent scattering. (c) Momentum dependence
of ~ImðQÞ for LiZn2Mo3O8 compared to Zn2Mo3O8

(0.2 ≤ E ≤ 0.8 meV) revealing background contributions below
Q ≈ 0.3 Å−1 (black arrow). Fits to ~IvbðQÞ are indicated by thick
black lines (solid 1.7 K, dashed 30 K). The thin lines are fits to
~IdðQÞ at 1.7 K with d0 ¼ 2.6 Å (dotted gray), d1 ¼ 5.8 Å (solid
blue), and d2 ¼ 10.0 Å (dashed red). (d) Energy dependence of
χ00ðEÞ at 1.7 K (full symbols) and 30 K (open symbols). Solid and
dashed lines are fits to a relaxation response. Error bars represent
1 standard deviation.
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• U(1) QSL with spinon Fermi surfaces 
* strongly coupled field theory, still under active research

• Large density of low-energy spin excitations  
because of the reduced bandwidth

• It would be nice to compare the prediction from the  
spinon band structure in future work. Single crystal  
data and better resolution are preferred. 
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Where is type-I CMI? 

no susceptibility anomaly ! 
Li2InMo3O8 as a type-I CMI ? 

quantum spin liquid ?

type-I CMI is a triangular lattice spin liquid

16

tem can be thought as the high temperature limit of the
type-I CMI. The electrons form localized S = 1

2 moments
on the up-triangles. Like the KCI, all the spins are ac-
tive and contribute to the Curie-Weiss law. So the high-
temperature Curie-Weiss law is governed by

⇥H
CW = �z

t

s(s+ 1)

3
JH, CH =

g2µ2
Bs(s+ 1)

3kB
NM, (49)

where z
t

= 6 is the coordination number for nearest
neighbors in the triangular lattice. Here the triangular
lattice is formed by the up-triangles. So CH = CM = 3CL.
In Eq. (49), we assume a Heisenberg exchange interac-
tion between the electron spins in the nearest-neighbor
up-triangles with an exchange coupling JH. If we set
JH = J 0, we have ⇥H

CW = 9⇥L
CW(see Eq. (45)).

We now comment on the S = 1/2 cluster spin pic-
ture that is assumed in the Refs. 13 and 16. In this pic-
ture, each Mo3O13 cluster contains one unpaired electron
which is delocalized over the three Mo atoms in the clus-
ter and this delocalized electron gives rise to the S = 1/2
cluster spin in each Mo3O13 cluster. In our theory for
LiZn2Mo3O8, however, this cluster spin picture is only
valid if the system is in the type-I CMI. Although the
S = 1/2 cluster spin is probably not a valid description
of the magnetic properties of the low-temperature type-II
CMI, it can become valid in the high-temperature type-I
CMI above the crossover temperature T ⇤⇤.

The inter-site repulsion V1 is expected to be a large
energy scale, so we do not discuss any further finite-
temperature crossover when the temperature is further
increased.

B. Further experimental predictions for
LiZn2Mo3O8

In the case of a U(1) QSL with spinon Fermi sur-
faces (as well as the PCO) of the type-II CMI, we ex-
pect the usual behaviors of a 2D U(1) QSL with spinon
Fermi surfaces would show up. That is, the specific heat
C

v

⇠ T 2/3, and a Pauli-like spin susceptibility in the
low temperature limit.4 The crossover in the behavior
of the spin susceptibility from the local moment Curie-
Weiss regime to the Pauli-like behavior is expected to
happen at the temperature set by the bandwidth of ac-
tive spinon bands (see Sec. III C), or equivalently, by the
low-temperature Curie-Weiss temperature |⇥L

CW|. This
crossover temperature should be very small because of
the suppressed Curie-Weiss temperature at low temper-
atures. As a result, the Pauli-like spin susceptibility may
be smeared out by various extrinsic factors like local mag-
netic impurities at very low temperatures. Likewise, even
though the C

v

/T experiences a upturn below 10K in the
absence of external magnetic fields, it is likely that the
nuclear Schottky anomalies may complicate the specific
heat data.

On the other hand, the apparently gapless spec-
trum of the spin excitations in the inelastic neutron

[Mo-Mo]u [Mo-Mo]d � e�/Mo3 Ref

LiZn2Mo3O8 2.6Å 3.2Å 1.23 7 [13]

Li2InMo3O8 2.54Å 3.25Å 1.28 7 [41]

ScZnMo3O8 2.58Å 3.28Å 1.27 7 [42]

TABLE II. Mo-Mo bond lengths, anisotropic parameters (�)
and number of electrons per Mo3O13 cluster for three di↵er-
ent cluster magnets. The electron number is counted from
stoichiometry.

scattering measurement15 is consistent with the gap-
less spinon Fermi surface of our U(1) QSL. Moreover,
the measurements of relaxation rate from both NMR
(1/(T1T )) and µSR (�T�1) also indicate gapless spin-
spin correlations.14 In our U(1) QSL, the reduction of
the spinon bandwidth due to the PCO increases the den-
sity of the low-energy magnetic excitations. This would
lead to a low-temperature upturn of the spin-lattice re-
laxation, which is in fact observed in NMR and µSR
experiments.14

In future experiments, it might be interesting to ap-
ply a pressure to the material and to drive the system
from the type-II CMI to the type-I CMIs and/or to the
FL-metal. This can not only confirm our phase diagram
but also provide an opportunity to explore the interest-
ing phase transitions and the critical Fermi surfaces that
may occur in the system. Since the type-I CMI is also a
U(1) QSL, the large exchange energy scale in the type-I
CMI may provide a wide temperature window to study
the intrinsic properties of the QSL at low temperatures.
A direct measurement of the PCO at low temperatures
is crucial for our theory. To this end, a high resolution
X-ray scattering measurement can be helpful. Moreover,
the presence of local quantum entanglement within the
resonant hexagon may be probed optically by measur-
ing the local exciton excitations. Furthermore, if the
system is in a U(1) QSL with a spinon Fermi surface,
the low-temperature thermal conductivity can be an in-
direct probe of the low-energy spinon excitation, and a
direct measurement of the correlation of the emergent
U(1) gauge field might be possible because the strong
spin-orbit coupling of the Mo atoms can enhance the cou-
pling between the spin moment and the spin texture.40

C. Other Mo based cluster magnets

The compounds that incorporate the Mo3O13 cluster
unit represent a new class of magnetic materials called
“cluster magnets”. Several families of materials, such
as M2Mo3O8 (M=Mg,Mn,Fe,Co,Ni,Zn,Cd), LiRMo3O8

(R=Sc,Y,In,Sm,Gd,Tb,Dy,Ho,Er,Yb) and other related
variants,41–44 fall into this class. The magnetic proper-
ties of most materials have not been carefully studied so
far. In Tab. II, we list three cluster magnets with odd
number of electrons in the Mo3O13 cluster unit. We in-
troduce a phenomenological parameter � to characterize

P Gall, etc, J Solid State Chem. 2013

17

the anisotropy of the Mo Kagome lattice, which is defined
as the ratio between inter-cluster (or down-triangle) and
intra-cluster (or up-triangle) Mo-Mo bond lengths,

� =
[Mo-Mo]d
[Mo-Mo]u

. (50)

According to our theory, more anisotropic systems tend
to favor the QSL of the type-I CMI. As shown in Tab. II,
Li2InMo3O8 has a larger anisotropic parameter than
LiZn2Mo3O8. Unlike LiZn2Mo3O8, the spin suscepti-
bility of Li2InMo3O8 does not show the “1/3 anomaly”
but is instead characterized by one Curie-Weiss tempera-
ture ⇥CW = �207K down to 25K.41 Moreover, the Curie
constant is consistent with one unpaired spin-1/2 mo-
ment per Mo3O13 cluster in the type-I CMI. Below 25K,
the spin susceptibility of Li2InMo3O8 saturates to a con-
stant, which is consistent with the Pauli-like spin sus-
ceptibility for a spinon Fermi surface U(1) QSL. Besides
the structural and spin susceptibility data, very little is

known about Li2InMo3O8. Thus, more experiments are
needed to confirm the absence of magnetic ordering in
Li2InMo3O8 and also to explore the magnetic properties
of ScZnMo3O8 and other cluster magnets.
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Question / observation (this goes beyond just spin liquid): 
1. What if the change fluctuation is very strong, and in the most extreme case, the charge  

sector forms a quantum charge liquid Mott insulator?  (tomorrow) 
2. What if the charge fluctuation leads to some structure in the charge sector? Spin sector  

is surely to be influenced in a non-trivial way. This would lead to a striking  
experimental consequence. If it is observed, it gives us confidence on the theoretical  
framework that we are developing. 

Summary

• I provide specific examples to illustrate some of the physics in cluster Mott insulators.  

• There is a very interesting interplay between the charge and spin degrees of freedom  
in both 2D and 3D cluster Mott insulators, maybe also with disorders in the future!

• Cluster Mott insulators are new physical systems that may host various emergent 
and exotic physics.
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Quantum chemistry: molecular orbitals and bands
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Triangular lattice of  
Mo3O13 clusters
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FIG. 3. (Color online.) (a) The Mo3O13 cluster (adapted
from Ref. 13). (b) The schematic energy level diagram of the
molecular orbitals for a single Mo3O13 cluster. The molecular
orbitals are classified according to the irreducible representa-
tions of the C3v point group of the cluster.20 The unfilled
molecular orbitals at high energies are not shown.

on the DHL. We generalize the Levin-Wen string mean-
field theory to study the reconstruction of the spinon
band structure by the PCO. We explain the consequence
of this reconstructed spinon band structure and discuss
the low-temperature magnetic susceptibility. In Sec. IV,
we consider the strong coupling regime of the type-II
CMI with the PCO and identify the structure of the lo-
cal moments formed by the 3 electrons in an individual
resonating hexagon. The interaction between these local
moments is described by a Kugel-Khomskii model on the
ETL. In Sec. VA and Sec. VB, we connect our theory
to the experiments on LiZn2Mo3O8 and suggest possible
future experiments. Finally in Sec. VC, we discuss other
Mo based cluster magnets. Some details of the compu-
tations are included in the Appendices.

II. MOLECULAR ORBITALS AND THE
HUBBARD MODEL

As suggested by Refs. 13 and 19, the Mo electrons
in an isolated Mo3O13 cluster form molecular orbitals
because of the strong Mo-Mo bonding. Among the 7
valence electrons in the cluster, 6 of them fill the lowest

three molecular orbitals {A2, E
(1)
2 , E(2)

2 } in pairs, and the
seventh electron remains unpaired in a totally symmetric
A1 molecular orbital with equal contributions from all
three Mo atoms (see Fig. 3).

We first consider the molecular orbital states in the
group {A1, E(1)

1 , E(2)
1 }. This group can be described

by a linear combination of an atomic state | 1i at each
Mo site (which is in turn a linear combination of five 4d

atomic orbitals).

|A1i = 1p
3

⇥| 1iA + | 1iB + | 1iC
⇤
, (2)

|E(1)
1 i = 1p

3

⇥| 1iA + ei
2⇡
3 | 1iB + e�i

2⇡
3 | 1iC

⇤
, (3)

|E(2)
1 i = 1p

3

⇥| 1iA + e�i

2⇡
3 | 1iB + ei

2⇡
3 | 1iC

⇤
, (4)

where µ(= A,B,C) labels the three Mo sites in the cluster
and the atomic state | 1iµ is the contribution from the
Mo atom at µ. The atomic states | 1iµ at di↵erent Mo
sites are related by the 3-fold rotation about the center of

the cluster. Likewise, the fully-filled {A2, E
(1)
2 , E(2)

2 } and
other unfilled molecular orbitals at higher energies are
constructed from the atomic state | 2i and other atomic
states | 

j

i (j = 3, 4, 5), respectively. Here, the atomic

states {| 
j

i
µ

} (j = 1, 2, 3, 4, 5) represent a distinct or-
thonormal basis from the five 4d atomic orbitals that are
the eigenstates of the local Hamiltonian of the MoO6 oc-
tahedron.

We group the molecular orbitals based on the atomic
state from which they are constructed. In this classifi-

cation, for example, {A1, E
(1)
1 , E(2)

1 } fall into one group

while {A2, E
(1)
2 , E(2)

2 } fall into another group as they are
constructed from two di↵erent atomic states.

In LiZn2Mo3O8, the di↵erent molecular orbitals of the
neighboring clusters Mo3O13 overlap and form molecu-
lar bands. To understand how the molecular orbitals
overlap with each other, we consider the wavefunction
overlap of di↵erent atomic states | 

j

i. Since the down-
triangle has the same point group symmetry as the up-
triangle in LiZn2Mo3O8, the wavefunction overlap of the
atomic states in the down-triangles should approximately
resemble the one in the up-triangles. More precisely, the
wavefunction of the atomic state (e.g. | 1i) has similar
lobe orientations both inward into and outward from the
Mo3O13 cluster, with di↵erent spatial extensions due to
the asymmetry between up-triangles and down-triangles.
Consequently, the orbital overlap between the molecular
orbitals from the same group is much larger than the one
between the molecular orbitals from the di↵erent groups.
Therefore, each molecular band cannot be formed by one
single molecular orbital but is always a strong mixture of
the three molecular orbitals in the same group.

We now single out the three molecular bands that are

primarily formed by the group of {A1, E
(1)
1 , E(2)

1 }molecu-
lar orbitals. There are four energy scales associated with
these three molecular orbitals and bands:
(1) the energy separation �E between the {A1, E(1)

1 ,

E(2)
1 } group and other groups of orbitals (both filled and

unfilled),
(2) the total bandwidth W of the three molecular bands

formed by the {A1, E
(1)
1 , E(2)

1 } molecular orbitals,
(3) the intra-group interaction between two electrons on

any one or two orbitals of the {A1, E
(1)
1 , E(2)

1 } group,21

(4) the inter-group interaction between the electron on an

17

FIG. 13. (Color online.) (a) The Mo3O13 cluster (adapted
from Ref. 14). (b) The schematic energy level diagram of the
molecular orbitals for a single Mo3O13 cluster. The molecular
orbitals are classified according to the irreducible representa-
tions of the C3v point group of the cluster45. The unfilled
molecular orbitals at high energies are not shown.

V. DISCUSSION

In the following, we first discuss microscopic physics
of LiZn2Mo3O8 and explain from quantum chemistry
why the extended Hubbard model can be an appro-
priate model for LiZn2Mo3O8. After that, we discuss
the connection of our results to Flint-Lee’s scenario and
explain under what situation that the starting point
of Flint-Lee’s proposal can be valid. In Sec. VB, we
connect our theoretical prediction to the existing ex-
periments on LiZn2Mo3O8 and make further prediction
about LiZn2Mo3O8. In Sec. VC, we discuss other Mo-
based cluster Mott insulator.

A. Appropriateness of extended Hubbard model
for LiZn2Mo3O8

1. Quantum chemistry and molecular orbitals

As suggested by Refs. 14 and 44, the Mo electrons in
an isolated Mo3O13 cluster form molecular orbitals be-
cause of the strong Mo-Mo bonding. Among the 7 va-
lence electrons in the cluster, 6 of them fill the lowest

three molecular orbitals {A2, E
(1)
2 , E(2)

2 } in pairs, and the
seventh electron remains unpaired in a totally symmet-
ric A1 molecular orbital with equal contributions from
all three Mo atoms (see Fig. 13). We explain below how
to obtain the extended Hubbard model from examining
the electrons on these molecular orbitals and their inter-
action.

Let us first consider the molecular orbital states in the
group {A1, E

(1)
1 , E(2)

1 }. This group can be described by a
linear combination of an atomic state | 1i at each Mo site
(which is in turn a linear combination of five 4d atomic

orbitals).

|A1i = 1p
3
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⇤
, (58)
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, (59)

|E(2)
1 i = 1p

3

⇥| 1iA + e�i
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3 | 1iC

⇤
, (60)

where µ (= A, B, C) labels the three Mo sites in the clus-
ter and the atomic state | 1i

µ

is the contribution from
the Mo atom at µ. The atomic states | 1i

µ

at di↵er-
ent Mo sites are related by the 3-fold rotation about the

center of the cluster. Likewise, the fully-filled {A2, E
(1)
2 ,

E(2)
2 } and other unfilled molecular orbitals at higher en-

ergies are constructed from the atomic state | 2i and
other atomic states | 

j

i (j = 3, 4, 5), respectively. Here,
the atomic states {| 

j

i
µ

} (j = 1, 2, 3, 4, 5) represent a
distinct orthonormal basis from the five 4d atomic or-

bitals that are the eigenstates of the local Hamiltonian of
the MoO6 octahedron.

We group the molecular orbitals based on the atomic
state from which they are constructed. In this classifi-

cation, for example, {A1, E
(1)
1 , E(2)

1 } fall into one group

while {A2, E
(1)
2 , E(2)

2 } fall into another group as they are
constructed from two di↵erent atomic states.

In LiZn2Mo3O8, the di↵erent molecular orbitals of the
neighboring clusters Mo3O13 overlap and form molecu-
lar bands. To understand how the molecular orbitals
overlap with each other, we consider the wavefunction
overlap between di↵erent atomic states | 

j

i. Since the
down-triangle has the same point group symmetry as the
up-triangle in LiZn2Mo3O8, the wavefunction overlap of
the atomic states on the down-triangles should approxi-
mately resemble the one on the up-triangles. More pre-
cisely, the wavefunction of the atomic state (e.g. | 1i)
has similar lobe orientations both inward into and out-
ward from the Mo3O13 cluster, with di↵erent spatial
extensions due to the asymmetry between up-triangles
and down-triangles. Consequently, the orbital overlap
between the molecular orbitals from the same group is
larger than the one between the molecular orbitals from
the di↵erent groups. Therefore, each molecular band can-
not be formed by one single molecular orbital but is al-
ways a strong mixture of the three molecular orbitals in
the same group.

We now single out the three molecular bands that are

primarily formed by the group of {A1, E
(1)
1 , E(2)

1 }molecu-
lar orbitals. There are four energy scales associated with
these three molecular orbitals and bands:
(1) the energy separation �E between the {A1, E(1)

1 ,

E(2)
1 } group and other groups of orbitals (both filled and

unfilled),
(2) the total bandwidth W of the three molecular bands

formed by the {A1, E
(1)
1 , E(2)

1 } molecular orbitals,
(3) the intra-group interaction between two electrons on

any one or two orbitals of the {A1, E
(1)
1 , E(2)

1 } group46,
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Instead of a multi-molecular-band model on a triangular lattice, we go back to the  
atomic state on each Mo site and build an extended Hubbard model from there.

2

smaller Curie-Weiss temperature (⇥L
CW = �14K) from

the high temperature one (⇥H
CW = �220K) and a much

reduced Curie constant which is 1/3 of the high temper-
ature one.

FIG. 1. (Color online.) (a) Mo
3

triangular clusters are orga-
nized into a triangular lattice structure. (b) After connecting
the longer neighboring Mo-Mo bonds in the down triangles,
the system becomes a kagome lattice. b

1

,b
2

are two kagome
lattice vectors that connect neighboring unit cells. We use r’
to label the kagome lattice unit cell and ‘A,B,C’ to label three
sublattices.

In a very recent theoretical work,11 Flint and Lee fol-
lowed the suggestion by the experiments8 and considered
the possibility of an emergent honeycomb lattice that is
centered by weakly coupled dangling spins. In their anal-
ysis, the emergent honeycomb system may form a gapped
QSL phase while the remaining dangling spin moments
dominate the low-temperature magnetic property which
then explains the 1/3 spin susceptibility anomaly. Their
theory invokes the phonon degrees of freedom to work in
a way to generate the emergent honeycomb lattice for the
spin system. Such a scenario might be plausible. In this
paper, however, we explore an alternative explanation
for the experiments that is based on electronic degrees of
freedom and their interactions.

We consider a generic extended Hubbard model for
the unpaired Mo electrons. The model is defined on an
kagome lattice with a 1/6 electron filling and is given as

H =
X

hiji2u

[�t1(c
†
i�

c
j�

+ h.c.) + V1ni

n
j

]

+
X

hiji2d

[�t2(c
†
i�

c
j�

+ h.c.) + V2ni

n
j

]

+
X

i

U

2
(n

i

� 1

2
)2, (1)

where c†
i�

(c
i�

) creates (annihilates) an electron with
spin � at lattice site i, and t1, V1 and t2, V2 are nearest-
neighbor electron hopping and interaction on the up tri-
angles (denoted as ‘u’) and the down triangles (denoted
as ‘d’) (see Fig.1a), respectively. n

i

=
P

�

c†
i�

c
i�

is the
electron density at site i.

Why is this model (Eq.1) is appropriate for
LiZn2Mo3O8? Firstly, the Mo sites do form a kagome
lattice with a shorter (longer) nearest-neighbor bond on
the up (down) Mo3 triangular cluster. There is one un-
paired Mo electron for each up triangular cluster, giving

rise to 1/6 electron filling for the Hubbard model. Sec-
ondly, LiZn2Mo3O8 is found to be a Mott insulator with
a charge gap ⇠ 0.12eV.8 The charge gap is not very large,
so it is more appropriate to model the system with a Hub-
bard model. Seven valence electrons are localized on each
up Mo3 triangular cluster. Supported by a molecular or-
bital calculation, six of the seven electrons localize into
Mo-Mo bonds holding the cluster together.8 The seventh
electron remains unpaired in a totally symmetric (A1)
molecular orbital with equal contributions from all three
Mo atoms.8 This A1 molecular orbital is an equal weight
superposition of relevant electron orbital on each Mo sites
of the up Mo3 cluster.8 The extended Hubbard model in
Eq.1 simply moves one step back, being constructed di-
rectly from the relevant electron orbitals on the Mo sites
and also respecting the R3̄m space group symmetries.
We include the on-site Hubbard-U interaction as well as
two inter-site repulsions V1 and V2. Even though the
down triangles are larger in size than the up triangles
in LiZn2Mo3O8, because of the large spatial extension of
the 4d Mo electron orbitals we think it is necessary to
include the inter-site repulsion V2 for the down triangles.
Since the charge gap is relatively small, it makes sense to
explore possible proximate phases in LiZn2Mo3O8. For
LiZn2Mo3O8 one expects t1 > t2 and U > V1 > V2.
While still keeping the Hubbard-U as the largest energy
scale, we study the phase diagram of this model in much
broader parameter regimes in this paper.

Because of the fractional electron filling, the Mott tran-
sition is driven by the inter-site repulsion rather than the
on-site Hubbard interaction U and the electrons are lo-
calized on the triangular clusters of the kagome lattice
instead of the lattice sites. The electrons become local-
ized on the up (down) triangles when the inter-site re-
pulsion on up (down) triangles overweights the kinetic
energy gain from hoppings between up (down) triangles.
Because of the asymmetry between the up and down tri-
angles of the kagome lattice, the Mott localization on the
up and down triangles does not need to occur simulta-
neously. Therefore, two types of cluster Mott insulating

phases are clearly expected.

For the first kind of cluster Mott insulator, the inter-
site repulsion on one type (up or down) of triangles over-
weights the kinetic energy gain from hoppings between
this types of triangles and causes the electron localiza-
tion on these triangles while the inter-site repulsion on
the other type of triangles remains weak compared to
the kinetic energy gain from hopping between these tri-
angles. The electron occupation number on the triangles
with localized electrons is fixed to one electron per tri-
angle while the electron number on the other type of tri-
angles remains strongly fluctuating. This Mott insulator
is named as the type-I cluster Mott insulator. Moreover,
the triangular clusters that host localized electrons form
a triangular lattice. In the weak Mott regime, we show
the local spin moments form a U(1) QSL with the spinons
filling half the lowest kagome spinon band. We further
show this U(1) QSL is smoothly connected to the weak

Physical meaning of electron operator, 
Large U alone cannot localize the electron. 
V1 and V2 are needed: because it is 4d orbital,  
and also to localize the electron in the clusters.

t1, V1

t2, V2

Minimal model allowed by symmetry
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ordered. We shall show later that coupling to the orphan
spins drives the state towards the spin liquid, so we take the
variational energy associated with the gapped spin liquid
found for J2=J1 ! 0:06, which is "0:5J1 per honeycomb
spin [9]. At this point, we ignore the J2 coupling of the
orphan spins and treat them as free, making the energy per
siteEhex ¼ "0:33ð1þ xÞJ01 . The triangular lattice energy is
"0:537J01 per site [18]. The honeycomb and undistorted
triangular energies cross at intermediate x ¼ 0:63. The real
honeycomb lattice energy will have several corrections that
willmove this crossing around: a negative shift proportional
to J2 due to the orphan spin correlations; a negative shift due
to coupling between the honeycomb and central spins, aswe
shall show later; and anOðx2Þ positive shift due to the lattice
cost of the rotations,whichwe expect to be small both due to
its rotational nature and the cluster structure.

How might these rotations be detected? They triple the
size of the unit cell [Fig. 1(b)], but leave the trigonal
symmetry unchanged. If the rotations form a static order,
they should be seen with x-ray scattering. So far this has
not been found [17]; however, they could instead be short
range or even dynamic. Short range order should be seen
with further NMR or!SRmeasurements, but no matter the
nature of the order, a soft phonon corresponding to these
rotations should appear at the reciprocal lattice vectors of
the honeycomb lattice.

In our variational picture, we left the central spins
completely decoupled, both from the honeycomb lattice
and from each other. It turns out that these orphan spins
favor the spin liquid over the competing Néel and VBS
phases, as we shall now show by looking at a single central
spin impurity in each of the four relevant phases. The likely
phase diagram of the J1-J2 honeycomb lattice is shown in
Fig. 2(a). Most studies [9,10,13–15] agree that the Néel
phase is stable below J2=J1 ! 0:2 and that a staggered
VBS (sVBS) is stable above J2=J1 ! 0:35, but the middle
of the phase diagram is more muddled. There is a plaquette
VBS below the sVBS, and there may be a narrow spin
liquid region around J2=J1 ! 0:22–0:25 [[10]], whose en-
ergy is consistent with the sublattice pairing state (SPS)
[7,8,10]. This phase disappears quickly with either positive
or negative J3 [[10,13]], so the spin liquid region, if it
exists, is clearly very narrow. All studies find a surprising
second order phase transition between the Néel state and
either the spin liquid [10] or pVBS [13–15], suggesting
deconfined criticality [8,19,20].

FIG. 2 (color online). (a) Rough phase diagram of the J1-J2
honeycomb lattice [10], with Néel, plaquette VBS (pVBS) and
staggered VBS (sVBS) states, with a small controversial spin
liquid region, thought to be the sublattice pairing state (SPS).

(b) Diagram for the second order energy shift, !Eð2Þ
SPS generated

by a single central spin impurity in the SPS. Solid lines are
fermionic spinons, while the dashed line represents the central

spin. (c) Diagrams for the second order energy shift, !Eð2Þ
AFM for

the single central impurity in the Néel state. Squiggly lines
represent Holstein-Primakoff bosons, "y

k, not magnons, and
the dashed lines are the Holstein-Primakoff bosons, dy repre-
senting the central spin. (d) Initial and final spin configurations

for calculating !Eð2Þ
sVBS, where the red ellipses represent singlet

valence bonds. Diagrams for !Eð2Þ
pVBS are similar.

FIG. 1 (color online). (a) J1-J2-J
0 lattice, where J0 ¼ J1 de-

scribes the triangular lattice and J0 ¼ 0 describes decoupled
honeycomb (J1-J2) and triangular (J2) lattices. The A and B
sublattices of the honeycomb lattice and the C sublattice of
central spins are labeled. (b) Unit cells: Blue dotted lines show
the small initial unit cell, while orange dashed lines show the
larger final unit cell. Both have trigonal symmetry—only the
lattice vector changes. (c) These rotations convert the triangular
lattice into the J1-J2-J

0 lattice: the A and B clusters rotate in
opposite directions, while the C clusters do not rotate. Inset
shows original configuration. (d) The basic unit of the depleted
fcc lattice: strong bonds are shown as red (solid) lines, weak
bonds as blue (dashed) lines. The central layer forms the emer-
gent honeycomb lattice.
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1. It requires lattice degrees of freedom to work in  
a special way to generate the honeycomb lattice.  

2. It may also need a large spin gap, not seem to be supported  
by J1-J2 honeycomb lattice model because both the “orphan”  
spins and honeycomb spins contribute to the spin susceptibility.
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In this paper, we study the J1-J2 Heisenberg model on
a honeycomb lattice using the DMRG57 with spin rotational
SU(2) symmetry58 and VMC simulations. We set J1 as the
energy scale, and lattice spacing between nearest-neighbor
sites as the length scale. By extrapolating the staggered
magnetic moment m2

s on cylinder systems with a width slightly
over 15 lattice spacings (while the largest sizes are 10 and 12
lattice spacings in Refs. 54 and 55, respectively), we find the
Néel order vanishing at J2 ≃ 0.22. To determine the PVB
order, we study the width dependence of the PVB correlation
length on the cylinder systems, where open boundaries break
translational symmetry. We find the PVB correlation length
grows strongly with increasing system width for 0.25 < J2 !
0.35. In the widest cylinders with a width larger than 15 lattice
spacings, we observe the long-range PVB order emerging
with an energy lower than the uniform state. The Néel and
PVB phases are consistent with the gapless and gapped spin
excitations extrapolated from the finite-size spin gaps on the
torus.

The spin and dimer orders vanish in the two-dimensional
(2D) limit through finite-size scaling for 0.22 < J2 " 0.25. To
check the possible topological nature of the state, we obtain
topological entanglement entropy (TEE) γ by extrapolating
the entanglement entropy (EE).59–61 It is found that γ ≃ 0.51
for 0.22 < J2 " 0.25. For J2 = 0.3, γ ≃ 0.66 is close to the
TEE value of ln 2 of Z2 SL, even though the system has PVB
order; this indicates that the TEE is not a conclusive measure
on our system sizes.

We also compare the spin and dimer correlations at J2 =
0.25 on the N = 2 × 6 × 6 torus with VMC wave functions
at different parameters, and find a striking match from a
Z2 SL trial wave function. While our finite-size results are
consistent with a SL phase, we are challenged by the fact
that spin liquid is not likely to have a continuous transition
to Néel phase,62 making it also possible that the system has
a Néel-PVB deconfined quantum critical point with a larger
length scale beyond our system length.

By employing SU(2) symmetry in DMRG, we can get
access to larger system sizes with high accuracy, which is
essential for distinguishing a SL from competing weakly
ordered states. For cylinder systems with an open edge, the
U(1) DMRG is usually limited to the system width of 12 lattice
spacings by keeping 6000–8000 states.54,55 In our calculations,
we study cylinder systems with a width of more than 15 lattice
spacings by keeping up to 24 000 states to obtain the converged
results. With the SU(2)-symmetric implementation, we can
also study the torus system up to the size 2 × 6 × 6 by keeping
more than 40 000 states. The truncation error is controlled
below 10−6 in most cases, which gives well converged results.

We study the model on both the torus and cylinder. The
torus geometry is denoted as N = 2 × L1 × L2, where L1
and L2 are the number of unit cells along the two primitive
vector directions (the inset of Fig. 1 shows the N = 2 × 4 × 4
torus). For cylinder geometry, we study the systems with three
different boundaries. The first cylinder [Fig. 2(a)] has zigzag
open edges and is denoted as the ZCm-n cylinder, where m
is the number of two-site unit cells along the column and n is
the number of columns along the axis direction. The ZCm-n
cylinder is equivalent to the XC2m cylinder in Ref. 55. DMRG
calculations in our studied region give the uniform states

∆

FIG. 1. (Color online) Phase diagram of the spin- 1
2 J1-J2 hon-

eycomb Heisenberg model for J2 " 0.35 obtained by our SU(2)
DMRG studies. With increasing J2, the model has a Néel phase
for J2 ! 0.22 and a PVB phase for 0.25 ! J2 ! 0.35. Between these
two phases, there is a small region that exhibits no order in our
calculations. The main panel shows Néel order parameter ms and
spin gap "ET . The inset is the sketch of the J1-J2 honeycomb lattice
on a N = 2 × L1 × L2 torus (here with four unit cells, L1 = L2 = 4,
along the two primitive vector directions).

without translational symmetry breaking in the ZC cylinder. To
induce the PVB order, we can change the couplings of some
edge bonds to introduce pinning force. The second cylinder
ACm-n [Fig. 2(b)] has armchair open edges, where m is the
number of unit cells in the column direction and must be even to
form the periodic boundary condition in the column direction;
this system is equivalent to the YCm cylinder in Ref. 55. The

FIG. 2. (Color online) Cylinders used in DMRG calculations.
(a) ZC4-12 cylinder with zigzag open edges. It has four unit cells
along the zigzag direction (Wy = 4

√
3) and 12 columns along the axis

direction. (b) AC4-12 cylinder with armchair open edges. It has four
vertical bonds along the armchair direction (Wy = 6) and 12 armchair
columns along the axis direction. (c) Trimmed ZC cylinder tZC6-18
with trimmed zigzag edges. It has six unit cells along the zigzag
direction (Wy = 6

√
3) and 18 columns along the axis direction.
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In this paper, we study the J1-J2 Heisenberg model on
a honeycomb lattice using the DMRG57 with spin rotational
SU(2) symmetry58 and VMC simulations. We set J1 as the
energy scale, and lattice spacing between nearest-neighbor
sites as the length scale. By extrapolating the staggered
magnetic moment m2

s on cylinder systems with a width slightly
over 15 lattice spacings (while the largest sizes are 10 and 12
lattice spacings in Refs. 54 and 55, respectively), we find the
Néel order vanishing at J2 ≃ 0.22. To determine the PVB
order, we study the width dependence of the PVB correlation
length on the cylinder systems, where open boundaries break
translational symmetry. We find the PVB correlation length
grows strongly with increasing system width for 0.25 < J2 !
0.35. In the widest cylinders with a width larger than 15 lattice
spacings, we observe the long-range PVB order emerging
with an energy lower than the uniform state. The Néel and
PVB phases are consistent with the gapless and gapped spin
excitations extrapolated from the finite-size spin gaps on the
torus.

The spin and dimer orders vanish in the two-dimensional
(2D) limit through finite-size scaling for 0.22 < J2 " 0.25. To
check the possible topological nature of the state, we obtain
topological entanglement entropy (TEE) γ by extrapolating
the entanglement entropy (EE).59–61 It is found that γ ≃ 0.51
for 0.22 < J2 " 0.25. For J2 = 0.3, γ ≃ 0.66 is close to the
TEE value of ln 2 of Z2 SL, even though the system has PVB
order; this indicates that the TEE is not a conclusive measure
on our system sizes.

We also compare the spin and dimer correlations at J2 =
0.25 on the N = 2 × 6 × 6 torus with VMC wave functions
at different parameters, and find a striking match from a
Z2 SL trial wave function. While our finite-size results are
consistent with a SL phase, we are challenged by the fact
that spin liquid is not likely to have a continuous transition
to Néel phase,62 making it also possible that the system has
a Néel-PVB deconfined quantum critical point with a larger
length scale beyond our system length.

By employing SU(2) symmetry in DMRG, we can get
access to larger system sizes with high accuracy, which is
essential for distinguishing a SL from competing weakly
ordered states. For cylinder systems with an open edge, the
U(1) DMRG is usually limited to the system width of 12 lattice
spacings by keeping 6000–8000 states.54,55 In our calculations,
we study cylinder systems with a width of more than 15 lattice
spacings by keeping up to 24 000 states to obtain the converged
results. With the SU(2)-symmetric implementation, we can
also study the torus system up to the size 2 × 6 × 6 by keeping
more than 40 000 states. The truncation error is controlled
below 10−6 in most cases, which gives well converged results.

We study the model on both the torus and cylinder. The
torus geometry is denoted as N = 2 × L1 × L2, where L1
and L2 are the number of unit cells along the two primitive
vector directions (the inset of Fig. 1 shows the N = 2 × 4 × 4
torus). For cylinder geometry, we study the systems with three
different boundaries. The first cylinder [Fig. 2(a)] has zigzag
open edges and is denoted as the ZCm-n cylinder, where m
is the number of two-site unit cells along the column and n is
the number of columns along the axis direction. The ZCm-n
cylinder is equivalent to the XC2m cylinder in Ref. 55. DMRG
calculations in our studied region give the uniform states

∆

FIG. 1. (Color online) Phase diagram of the spin- 1
2 J1-J2 hon-

eycomb Heisenberg model for J2 " 0.35 obtained by our SU(2)
DMRG studies. With increasing J2, the model has a Néel phase
for J2 ! 0.22 and a PVB phase for 0.25 ! J2 ! 0.35. Between these
two phases, there is a small region that exhibits no order in our
calculations. The main panel shows Néel order parameter ms and
spin gap "ET . The inset is the sketch of the J1-J2 honeycomb lattice
on a N = 2 × L1 × L2 torus (here with four unit cells, L1 = L2 = 4,
along the two primitive vector directions).

without translational symmetry breaking in the ZC cylinder. To
induce the PVB order, we can change the couplings of some
edge bonds to introduce pinning force. The second cylinder
ACm-n [Fig. 2(b)] has armchair open edges, where m is the
number of unit cells in the column direction and must be even to
form the periodic boundary condition in the column direction;
this system is equivalent to the YCm cylinder in Ref. 55. The

FIG. 2. (Color online) Cylinders used in DMRG calculations.
(a) ZC4-12 cylinder with zigzag open edges. It has four unit cells
along the zigzag direction (Wy = 4

√
3) and 12 columns along the axis

direction. (b) AC4-12 cylinder with armchair open edges. It has four
vertical bonds along the armchair direction (Wy = 6) and 12 armchair
columns along the axis direction. (c) Trimmed ZC cylinder tZC6-18
with trimmed zigzag edges. It has six unit cells along the zigzag
direction (Wy = 6

√
3) and 18 columns along the axis direction.
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• Low-energy physics of the charge is described by an emergent (compact) quantum 
electrodynamics in 3+1D. Charge excitation carries 1/2 the electron charge !
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• (Inelastic) X-ray scattering measures U(1) gauge field correlation  
in the charge sector

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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Pinch points in equal-time charge structure  
factor at T > ring hopping. “classical charge ice”
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emergent light in quantum charge ice !

Hermele etc 2004 
N Shannon etc 2012, 

L Savary etc 2012

Gang Chen’s theory group 

Gang Chen’s theory group


