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Symmetry enriched topological order

Symm. breaking orders and symm. protected topo. orders

• If the Hamiltonian H has some symmetries, its phases will
correspond to equivalent classes of symmetric LU transformations:
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• SRE states with di↵erent symmetries
! Landau’s symmetry breaking orders.

• SRE states with the same symmetry can belong to di↵erent classes
! symmetry protected topological orders (SPT) (symmetry
protected trivial orders). Gu-Wen 09, Pollmann-Berg-Turner-Oshikawa 09

Examples: Haldane phase and Sz = 0 phase of spin-1 XXZ chain.
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Here, I am using a more general notion of “topological order” here. 
I include the exotic phases whose gauge sector is gapless. 

Intrinsic topological order has long range 
entanglement (LRE).
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We point out that the Ce local moment in the newly discovered quantum spin liquid (QSL)
candidate material Ce2Sn2O7 is a dipole-octupole doublet. The generic spin model that describes
the interaction between these unusual doublets on a pyrochlore lattice has two distinct symmetry
enriched U(1) QSL ground states in the corresponding quantum spin ice regime. These two U(1)
QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has
been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry
properties of the DO doublets, we predict the peculiar physical properties of the octupolar U(1)
QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We predict the
Anderson-Higgs’ transition from the octupolar U(1) QSL driven by the external magnetic fields. We
explain the experimental relevance with the QSL candidate material Ce2Sn2O7 and other dipole-
octupole doublet systems.

Introduction.—The interplay between symmetry and
topology is the frontier subject in modern condensed
matter physics [1–3]. At the single particle level, the non-
trivial realization of time reversal symmetry in electron
band structure has led to the great discovery of topo-
logical insulator [4, 5]. For the intrinsic topological order
such as Z2 toric code and chiral Abelian topological order,
a given symmetry of the system could enrich the topolog-
ical order into distinct phases that cannot be connected
without passing a phase transition [6–9]. The experi-
mentally relevant symmetry enriched topological order,
however, is extremely rare. In this work, we explore one
physical realization of symmetry enriched U(1) topologi-

cal order via dipole-octupole doublets on the pyrochlore
lattice and predict the experimental consequences of dis-
tinct symmetry enrichment.

Dipole-octupole (DO) doublet is a special Kramers’
doublet in the D3d crystal field environment [10, 11]. Due
to the peculiar forms of the wavefunction, both states
of the DO doublet transform as the one-dimensional ir-
reducible representations (�+

5 or �+
6 ) of the D3d point

group [10]. It was realized that the DO doublets on the
pyrochlore lattice could support two distinct U(1) quan-
tum spin liquid (QSL) ground states [10]. These distinct
U(1) QSLs are the symmetry enriched U(1) topological
orders [12] and are enriched by the symmetries of the
pyrochlore lattice.

The Ce3+ local moment in Ce2Sn2O7 is such a DO
doublet on the pyrochlore lattice, although it was not
noticed before. As we show in Fig. 1, the strong atomic
spin-orbit coupling (SOC) of the 4f1 electron in the Ce3+

ion first entangles the electron spin (S = 1/2) with the
orbital angular momentum (L = 3) into a J = 5/2 total
moment. The six-fold degeneracy of the J = 5/2 to-
tal moment is further splitted into three Kramers’ dou-
blets by the D3d crystal field. Since the ground state
doublet wavefunctions are combinations of Jz = ±3/2

FIG. 1. The electron configuration and the D3d crystal elec-
tric field (CEF) splitting of the Ce3+ ion in Ce2Sn2O7. The
CEF ground state wavefunctions are combinations of J

z =
±3/2 states [13], thus the CEF ground state is a DO doublet.
� is the CEF gap and was fitted to be � = 50± 5meV [13].

states [13], this doublet is precisely the DO doublet that
we defined. Since the crystal field gap is much larger than
the interaction energy scale of the local moments and the
temperature scale in the experiments, the low tempera-
ture magnetic property of Ce2Sn2O7 is governed by the
ground state doublets. No magnetic order was detected
down to 0.02K [13], making Ce2Sn2O7 the first Ce-based
QSL candidate in the pyrochlore family.
Motivated by the experiments on Ce2Sn2O7 and more

generally by the experimental consequences of the dis-
tinct symmetry enriched U(1) QSL for the DO doublets,
in this Letter, we explore the peculiar properties of the
DO doublets in external magnetic fields. In the octupolar
U(1) QSL of the octupolar quantum spin ice regime for
the DO doublets, we find that the external magnetic field
directly couples to the spinons and modifies the spinon
dispersions. This e↵ect allows us to directly control the
spinon excitations with the magnetic fields. The lower
excitation edge of the spinon continuum in the dynamic
spin structure factors can thus be modified by the mag-
netic fields, which gives a sharp prediction for the inelas-
tic neutron scattering experiments. When the magnetic
field exceeds the critical value and closes the spinon gap,
the spinons are condensed, driving the system through an
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.
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Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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the classical ground state is the all-in–all-out FeF3 structure
[34,35]. The introduction of strong quantum effects may
melt the classical order to produce a type of spin liquid,
rather as in other unfrustrated quantum antiferromagnets. In
this Letter, we report on Ce2Sn2O7, a pyrochlore magnet
based on Ce3þ (4f1, 2F5=2). The local moments have h111i
Ising anisotropy, and we find that although antiferromag-
netic spin correlations develop below approximately 1 K,
there is no sign of magnetic order down to 0.02 K. The
magnetic moment is small, suggesting that the magnetic
dipolar couplings are much smaller than magnetic
exchange interactions. This makes Ce2Sn2O7 an excellent
model material to look for novel exchange-induced QSLs
on the pyrochlore lattice.
The low-temperature magnetic properties of Ce3þ pyro-

chlores have been little studied, probably because of the
difficulty to stabilize the magnetic Ce3þ oxidation state in
preference to the nonmagnetic Ce4þ (4f0). In Ce2Sn2O7, a
compound previously investigated for its oxygen storage
capabilities [36], the trivalent rare-earth can be readily
stabilized by taking advantage of a solid state oxydo-
reductive reaction during which Sn0 is oxidized to Sn4þ

while reducingCe4þ to the requiredCe3þ. Our sampleswere
produced using this method. Their oxygen stoichiometry,
obtained from the thermogravimetric analysis procedure,
reported in Ref. [36], is 7.00" 0.01. The absence of
excess oxygen indicates that all cerium cations are in their
trivalent oxidation state and that diffraction data can be
fitted assuming a stoichiometric formula unit. The Rietveld
refinement of a neutron powder diffraction pattern is shown
in Fig. 1 and gives the lattice parameter 10.6453(3) Å
at 1.5 K (space group: Fd3̄m). The value of the atomic
coordinate x for the oxygen atomOð48fÞ is 0.3315(3), in the
range of the typical values forA2B2O7 compounds [37]. The
Ce—Oð48fÞ bond length is 2.600" 0.003 Å, close to the
sum of the ionic radii (2.68 Å), while the Ce—O0ð8bÞ bond
(pointing along the local h111i direction) has a length of
2.305" 0.003 Å, which is markedly shorter than 2.68 Å,

as usually observed in rare-earth pyrochlores. Attempts to
refine antisite cation disorder (0.5" 2.5%) and oxygen
Frenkel disorder (0.36" 0.16%), which can induce stuffing
effects and disordered exchange interactions, respectively,
did not provide evidence for structural defects.
Magnetization (M) data weremeasured in the temperature

(T) range from 1.8 to 370 K in an applied magnetic field (H)
of 1000 Oe using a Quantum Design MPMS-XL super-
conducting quantum interference device (SQUID) magne-
tometer. Additional magnetization, and ac-susceptibility,
measurements were made as a function of temperature
and field, from T ¼ 0.07 to 4.2 K and from H ¼ 0 to
8 × 104 Oe, using SQUID magnetometers equipped with a
miniature dilution refrigerator developed at the Institut Néel-
CNRS Grenoble. The heat capacity (Cp) of a pelletized
sample was measured down to 0.3 K using a Quantum
Design physical properties measurement system (PPMS).
Muon spin relaxation (μSR) measurements were performed
at the LTF spectrometer of the Swiss Muon Source, in the
range from T ¼ 0.02 to 0.8 K. Muons were longitudinally
polarized and spectra were recorded in zero field with earth-
field compensation or in applied fields parallel to the beam.
The magnetization divided by the applied field M=H,

which is equal to susceptibility χ in the linear field regime,
is shown as a function of the temperature T over the full
temperature range in Fig. 2(a). The susceptibility increases
continuously with decreasing temperature, and there is no
evidence of any ordering transition [inset of Fig. 2(a)]. At
high temperature, T > 130 K, the inverse susceptibility
χ−1 [shown in Fig. 2(b)] is almost linear, and a fit to the
Curie-Weiss law yields a magnetic moment μ ¼
2.75" 0.20 μB=Ce, in reasonable agreement with the
expected free ion value of 2.54 μB=Ce, and
θCW ¼ −250" 10 K. This is an extremely large value for
such a rare-earth material, where magnetic interactions are
expected to be in the kelvin range. The large value of θCW can
be attributed to crystal field effects, as shown by the strong
curvature of χ−1ðTÞ below 100 K, indicating a change in the
population of crystal field levels of the Ce3þ ion. At moderate
temperatures, 1 K < T < 10 K, a linear behavior is
observed, and the Curie-Weiss fit to this part of χ−1ðTÞ
[see inset of Fig. 2(b)] gives a magnetic moment of
μ ¼ 1.18" 0.02 μB=Ce, which corresponds to the moment
of the ground state doublet, and θCW ¼ −0.25" 0.08 K.
Figure 2(c) shows that the effectivemagneticmoment fμeff ¼
½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
g approaches the free ion

value at 370 K, and it falls to an approximate plateau of
1.18μB in the range from T ¼ 1 to 10K. At low temperature,
T < 1 K, the effective moment drops.
The magnetic susceptibility was used to estimate the

crystal field scheme. In the LS coupling scheme, a crystal
electric fieldwith theD3d symmetry of theCe3þ site splits the
2F5=2 free ion ground state into three Kramers doublets.
However, the ground state multiplet 2F5=2 alone does not
allowus to reproduce our experimental data. Instead,we used
matrix elements of the crystal field Hamiltonian which are

FIG. 1 (color online). Rietveld refinement of neutron
powder diffraction data (HRPT instrument at PSI) collected at
1.5 K using an incident wavelength of 1.49 Å. Fitted isotropic
displacement parameters: BCe ¼ 0.87ð4Þ Å2; BSn ¼ 0.79ð3ÞÅ2;
BOð48fÞ ¼ 1.08ð2ÞÅ2; BO0ð8bÞ¼0.87ð5ÞÅ2. Conventional Rietveld
factors (%): RP ¼ 4.10; RWP ¼ 5.19; RBragg ¼ 5.52; RF ¼ 4.25.
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This doublet is  
dipole-octupole doublet ! 
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�Ĕ÷ vs �Ĕ! ¤ÿ

range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.

QUANTUM EXCITATIONS IN QUANTUM SPIN ICE PHYS. REV. X 1, 021002 (2011)

021002-3

spin wave in Yb2Ti2O7 
L Savary, et al, PRX 2011

spinon continuum in Cs2CuCl4 
Masanori, etc NatPhys 2009

Neutron scattering

• In a quantum spin liquid, the elementary 
spin excitations are fractional, S=1/2 spinons

• Most of the information is in the 
continuum!
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Connection to pyrochlore ice spin liquid?
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XXZ limit: U(1) QSL of spin ice regime

Spinon deconfinement

Consequence 2: monopoles and defects
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XYZ model is the generic model that describes the interaction  
between DO doublets. 
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets [23] Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets [22] Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [31].

background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [31]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the
U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar

U(1) QSL.
In the U(1) QSL, the spinon excitation has two

branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. (7),
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [31].
The INS measures the dynamic spin structure factor

h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a rare example
that one can control the spinon excitations in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [34–41], which makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was argued
in Ref. 13 that an antiferromagnetic ⇥CW cannot support
a QSL in the spin ice regime. This conclusion is certainly
true for the usual Kramers’ doublet, but is not the case
for the DO doublets. For the DO doublets, what ⇥CW

measures is J
z

, not J̃
z

nor J̃
x

[31]. What determines the
phase diagram of HXYZ are J̃

µ

’s, not the sign or value of
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How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not ? 

The idea to use a little knob that could simply 
lead to some clear experimental consequence,  
very much like the isotope effect of BCS superconductors. 

Here we apply external magnetic field, and expect 
a field-driven Higgs transition to magnetic ordering 
as the field only couples to the matter field (spinons).

Field-driven Higgs transition 
for octupolar U(1) QSL

2
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X

hiji

J̃
x

⌧̃x
i

⌧̃x
j

+ J̃
y

⌧̃y
i

⌧̃y
j

+ J̃
z

⌧̃z
i

⌧̃z
j

, (1)

where ⌧̃x and ⌧̃z (J̃
x

and J̃
z

) are related to ⌧x and ⌧z

(J
x

and J
z

) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃

y

⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃
µ

⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (2)

where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is

Hsim =
X

hiji

J
y

⌧y
i

⌧y
j

� J±(⌧
+
i

⌧�
j

+ h.c.)

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (3)

where we define ⌧±
i

= ⌧z
i

± i⌧x
i

and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]

Hring = Jring
X
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X
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where ⌧̃x and ⌧̃z (J̃
x

and J̃
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) are related to ⌧x and ⌧z

(J
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and J
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) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃
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⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z

J̃
µ

⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
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where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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where we define ⌧±
i

= ⌧z
i

± i⌧x
i

and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.
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µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
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on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃
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is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
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We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
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is an
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where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating
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where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z
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i is non-zero even in the
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
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With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
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= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

J
y

Q2
r

2
�

X

r

X

µ 6=⌫

J±�
†
r+⌘reµ

�r+⌘re⌫
s�⌘r
r,r+⌘reµ

⇥ s+⌘r
r,r+⌘re⌫

�
X

hrr0i

h

2
(n̂ · ẑ

i

)(�†
r�r0s

+
rr0 + h.c.). (7)
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

Lower excitation edge

4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is J

z

, not J̃
z

nor J̃
x

[29]. The sign or
value of J

z

is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of J

z

. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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Our doublet can potentially be realized for any Kramers spin moment with J>1/2.

Two well-known systems:

• Pyrochlores A2B2O7,

e.g. ,
Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc
Dy2Ti2O7,
Cd2Os2O7, etc
Ce2Sn2O7,

• Spinels AB2X4, B=lanthanide?
e.g.  CdEr2Se4

NATURE PHYSICS DOI: 10.1038/NPHYS2591
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.
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Conclusion

•  We point out a new doublet dubbed “dipole-octupole” doublet that is  
 realized in the spin liquid material Ce2Sn2O7. 

•  This doublet supports distinct symmetry enriched U(1) spin liquids.  

•  We predict the experimental signatures of distinct symmetry enrichments. 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Quantum fluctuation can lead to U(1) QSL

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
Sz

i

�
�ijS

+
j + �⇥ijS

�
j

⇥
+ i� j

⌅

H±± = J±±
⇤

⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a quantum spin ice U(1) quantum spin liquid !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….

flip 6 spins on the hexagon
or

Ring exchange

quantum  
tunneling
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Outline of Part 2

•   Our Prediction for experiments 

Yao-Dong Li  
(Fudan->US)

Yao-Dong Li, GC, arXiv: 1703.01876

•   Some background of the triangular spin liquid candidate YbMgGaO4

•   Roadmap and our small little idea
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is the first strong spin-orbit coupled QSL with odd number of electrons and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. I think it is spinon Fermi surface U(1) QSL. 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We understand the microscopic Hamiltonian and the physical mechanism.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4
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Figure 4: Constant energy scans along the symmetry directions and constant Q scans at the high-symmetry points. a,b, Constant

energy scans along the (1/2-K/2, K, 0) and (1, K, 0) directions. The solid lines are guides to the eye. c, Constant Q scans at M, K, and �

points with the final energy fixed at E f = 3, 3.5 and 4 meV. The sharp upturn of the scattering below ⇠ 0.1 meV is due to contamination from

incoherent elastic scattering at E = 0 meV (dashed line). Error bars, 1 s.d.

Advantage for neutron scattering
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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Near T = 0, but not-very-low energy excitation
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FIG. 4. Energy-dependent curves of the dynamic spin struc-
ture factor at (a) � and (b) �0 (see Fig. 1d). Right at �,
there is a narrow Zeeman peak for nonzero fields whose po-
sition shifts with the field. Away from �, there is a broad
continuum corresponding to the spinon particle-hole excita-
tions. Note that the very low-energy part of spectral weight is
underestimated in the mean-field theory due to the neglecting
of the gauge fluctation.

low energies. For example, the Yukawa coupling between
the fermionic spinons and the gapless U(1) gauge pho-
ton would give rise a self-energy correction to the spinon
Green’s function and thus enhance the low-energy density
of states16,17. Therefore, the inelastic neutron scattering
process that excites the spinon particle-hole pair, would
have an enhanced spectral weight at low energies. This
property is not captured in the spinon mean-field the-
ory. We thus expect the very low energy spectral weights
in Figs. 2,4 and also in Fig. 5 to be enhanced when the
gauge flucutation is included. Moreover, the slight en-
hancement of the overall bandwidth of the spinon contin-
uum in the field is probably a mean-field artifact as well
because the bandwidth should be set by the exchange
interaction of the system.

V. THE RPA CORRECTION FROM THE
ANISOTROPIC INTERACTION

As we have proposed in Ref. 8, the anisotropic spin
exchange terms J±± and J

z± from the strong SOC in
Eq. (3) is likely to play an important role in stabiliz-
ing the QSL ground state. The SOC is further sug-
gested to be responsible for the weak spectral peak at
the M point9–11. Here we consider the e↵ect of the
anisotropic spin interaction on the dynamic spin struc-
ture factors following a phenomenological approach in-
troduced in Refs. 11 and 22. Starting from the free-
spinon theory HMFh and the corresponding susceptibil-
ity �0(q,!), we treat the anisotropic interaction H 0

spin as
perturbations. The resulting magnetic susceptibility is
calculated in the random phase approximation (RPA)22,

�RPA(q,!) = [1� �0(q,!)J (q)]�1�0(q,!), (9)

FIG. 5. Dynamic spin structure factors for the interacting
spinon theory with external magnetic field along z-direction
up to 0.6B, where the interaction is given by H 0

Spin.

where J (q) is the exchange matrix from H 0
spin,

J (q) =
0

BB@

2 (uq � vq) J±± �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 2 (vq � uq) J±± (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (10)

with uq = cos(q · a1), vq = 1
2 [cos(q · a2) + cos(q · a3)],

and wq = 1
2 [cos(q · a2)� cos(q · a3)].

The RPA corrected dynamic spin structure factor
is related �RPA(q,!) by the equation SRPA(q,!) =
� 1

⇡

Im[�RPA(q,!)]+�. The renormalized dynamic spin
structure factor SRPA(q,!) is shown in the Fig. 5, where
we choose the parameters to be J

z±/t1 = 0.2, J±±/t1 =
0.35. From the results we conclude that the anisotropic
exchange terms merely redistribute the spectral weight
within the Brillouin zone and leave the qualitative fea-
tures in the vicinity of the � point mentioned in previous
sections una↵ected.
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Two major questions

1. Whether the continuum represents the fractionalized  
    spinon excitation? Probably most important !  
   
          (discussed in our new work arXiv:1703.01876) 

2.   What is the physical origin of the QSL physics ?



A roadmap

1. Detect fractionalized excitations, i.e. spinons  
    a) detect the fractionalization.  
    b) detect the emergent fermion statistics.   

2. Detect the emergent U(1) gauge field ? 

3.   Detect the spinon-gauge coupling (i.e. Lorentz coupling) ?



Our idea: explore the weak field regime

Detecting Spin Fractionalization in a Spinon Fermi Surface Spin Liquid:
Prediction and Application for YbMgGaO4

Yao-Dong Li1 and Gang Chen1,2⇤
1
State Key Laboratory of Surface Physics, Department of Physics,

Center for Field Theory & Particle Physics, Fudan University, Shanghai, 200433, P.R.China and

2
Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, P.R.China

(Dated: March 7, 2017)

Continuing the recent proposal of the spinon Fermi surface U(1) spin liquid state for YbMgGaO4 in
Yao-Dong Li, et al, arXiv:1612.03447 and Yao Shen, et al, Nature 2016, we explore the experimental
consequences of the external magnetic fields on this exotic state. Specifically, we focus on the
weak field regime where the spin liquid state is preserved and the fractionalized spinon excitations
remain to be a good description of the magnetic excitations. From the spin-1/2 nature of the
spinon excitation, we predict the unique features of spinon continuum when the magnetic field is
applied to the system. Due to the small energy scale of the rare-earth magnets, our proposal for
the spectral weight shifts in the magnetic fields can be immediately tested by inelastic neutron
scattering experiments. Several other experimental aspects about the spinon Fermi surface and
spinon excitations are discussed and proposed. Our work provides a new way to examine the
fractionalized spinon excitation and the candidate spin liquid states in the rare-earth magnets like
YbMgGaO4.

I. INTRODUCTION

A quantum spin liquid (QSL) is an exotic quantum
phase of matter that carries long-range quantum en-
tanglements and is often characterized by the emergent
gauge structure and the fractionalized spin excitation1–3.
The experimental search of QSLs has lasted for forty
years since the original proposal by Anderson in 19734,5.
Many QSL candidate materials have been proposed, but
the confirmation of QSLs has not been achieved in any
of these materials. Recently, a rare-earth triangular lat-
tice antiferromagnet YbMgGaO4, that was first discov-
ered in the powder form6, is proposed as the first QSL
candidate in the strong spin-orbit-coupled Mott insulator
with odd electron fillings7–11. This proposal is compat-
ible with the more fundamental view based on the time
reversal symmetry and quantum entanglements7–9,11,12.
Due to the unprecedented experimental advantage such
as the availability of large high-quality single-crystal sam-
ples7, YbMgGaO4 may stand out as another important
QSL candidate for which a variety of experimental tech-
niques can be implemented and the theoretical proposal
and ideas may be directly tested.

The Yb local moments in YbMgGaO4 remain disor-
dered down to the lowest measured temperature at which
the magnetic entropy is almost exhausted6,9,13,14. The
low-temperature heat capacity has a sub-linear temper-
ature dependence6,14,15 that is close to the C

v

/ T 2/3

behavior for the spinon Fermi surface U(1) QSL16–18.
More substantially, the dynamic spin structure, that is
measured by the inelastic neutron scattering on single-
crystal samples9,14, shows a reasonable agreement with
the theoretical prediction for the spinon Fermi surface
state9,11,16–18.

There are two major questions concerning the candi-
date QSL state in YbMgGaO4. The first and probably
the most crucial one is whether the excitation continuum

from the inelastic neutron scattering is truly a spinon
continuum and represents the spin quantum number frac-
tionalization. The second question is the microscopic
mechanism for the QSL behavior of YbMgGaO4. It was
suggested that the anisotropic interaction of the local
moments, due to the spin-orbit entanglement, could en-
hance the quantum fluctuation and destabilize the mag-
netically ordered phases7,8,10. This observation was first
proposed as one possible mechanism for the QSL behav-
ior in YbMgGaO4

7,8, and explained in details in Refs. 8
and 10. Both questions have been partially addressed
by the mean-field theory analysis9 and the later pro-
jective symmetry analysis 9,11 that identify the spinon
Fermi surface U(1) QSL as the candidate ground state
for YbMgGaO4. Clearly, this exotic state provides a con-
sistent explanation for both thermodynamic and spectro-
scopic behaviors of YbMgGaO4

9.

Ideally, it would be nice to directly solve our micro-
scopic spin model and see if one can obtain any QSL
ground state in the phase diagram, then both questions
may be completely resolved. Due to the complication of
the model, this is di�cult even numerically8,11. In this
work, instead of directly tackling the anisotropic spin
model8,10,19, we work on the spinon mean-field Hamil-
tonian9,11 and address the first question about how to
detect or confirm the very existence of the fractionalized
spinon excitations in YbMgGaO4. We propose a sim-
ple experimental scheme to test the spin quantum num-
ber fractionalization and confirm the spinon excitation.
We suggest to apply a weak external magnetic field and
study the spectral weight shifts of the dynamic spin struc-
ture factor. The splitting of the degenerate spinon bands
by the magnetic field is directly revealed by the spinon
particle-hole continuum that is detected by the dynamic
spin structure factor. We show that the persistance of
the spinon continuum, the spectral weight shifts and the
spectral crossing around the � point, the existence of the

Yao-Dong Li, GC, arXiv: 1703.01876
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Weak field regime vs strong field regime

1. Very strong field simply polarizes the spin and kills QSL

2. Weak field acts a perturbation to the QSL: the factionalized spinons  
    remain to be a valid description of the magnetic excitation.  
      
                                     So what will happen? 



2

upper and lower excitation edges under the weak mag-
netic field represent unique properties of the spinon ex-
citation for the spinon Fermi surface state, and thus pro-
vide a sharp experimental prediction for the identification
of the spinon excitation with respect to the spinon Fermi
surface.

The remaining part of the paper is organized as follows.
In Sec. II, we explain our view on the magnetic excitation
continuum and the weak spectral weight in the inelastic
neutron scattering results on YbMgGaO4 and motivate
our approach in this paper. In Sec. III, we justify the
mean-field Hamiltonian in the magnetic field. In Sec. IV,
we obtain the dynamic spin structure factor from the free
spinon theory in the magnetic field and explain the spec-
tral weight shifts. In Sec. V, we repeat the calculation in
Sec. IV with a RPA calculation that includes the spinon
interactions. Finally in Sec. VI, we conclude with a dis-
cussion about various future experimental direction for
the spinon Fermi surface state.

II. THE SPINON FERMI SURFACE STATE

We start with the fermionic parton construction for
the spin operator with S

i

= 1
2f

†
i↵

�
↵�

f
i�

, where f†
i↵

(f
i↵

)
creates (annihilates) one spinon with spin ↵(=", #) at the
site i and � = (�x,�y,�z) is a vector of Pauli matrices.
This construction is further supplemented by a Hilbert
space constraint

P
↵

f†
i↵

f
i↵

= 1. At the mean-field level,
the following spinon Hamiltonian,

HMF = �t1
X

hiji,↵

f†
i↵

f
j↵

� t2
X

hhijii,↵

f†
i↵

f
j↵

�µ
X

i,↵

f†
i↵

f
i↵

(1)

was proposed for YbMgGaO4 and gives a large spinon
Fermi surface9,11. Here the chemical potential µ is in-
troduced to impose the Hilbert space constraint. It was
found that the spinon particle-hole excitation of this sim-
ple state provides a consistent magnetic excitation con-
tinuum with the inelastic neutron scattering experiments.
Moreover, the anisotropic spin interaction, that is in-
cluded into the the spinon mean-field theory by a ran-
dom phase approximation (RPA), gives a weak spectral
peak at the M points, which is also consistent with the
experimental observation.

The spinon continuum is much more important than
the weak spectral peak. The spectral peak at certain
momenta merely represents some collective mode of the
spinons that is enhanced by the residual and short-range
interaction between the fermionic spinons, and is quite
common for example in the Fermi liquids of electrons as
an analogy. Nevertheless, the spectral peak does provide
hints about the form of the microscopic interactions. In
contrast, the spinon continuum is a consequence of the
spin quantum number fractionalization that reveals the
defining nature of QSLs.

FIG. 1. (Color online.) (a) The Yb triangular lattice with
a1,a2,a3 bonds. (b) The spinon band structure for� = 0.6B
and t2/t1 = 0.2 (this value is optimized for the variational en-
ergy; see main text). (c) A schematic illustration of the spinon
band structure and the particle-hole excitation for the zero
momentum transfer. (d) The Brillouin zone of the triangular
lattice, with high-symmetry points and the basis vectors (in
r.l.u. coordinates) highlighted.

Since we think the spinon continuum is more impor-
tant and the spinon continuum is already obtained by
the free-spinon theory of HMF, our approach will mostly
rely on the free-spinon mean-field theory and focus more
on the spinon continuum rather than the weak spectral
peak. The (short-range) anisotropic spin interaction will
be included into the free-spinon theory in the later parts
of the paper. The coupling to the gapless U(1) gauge
photon is not included throught this paper. This spin-
gauge coupling has an important e↵ect on the low-energy
properties of the system16,17.

III. COUPLING TO THE MAGNETIC FIELD

Unlike the electron, the fermionic spinon is a charge
neutral object and does not couple to the external mag-
netic field via the Lorentz coupling. Here, we point out
that the prior theory on the organic spin liquid ma-
terial20 -(ET)2Cu2(CN)3 has actually invoked the in-
teresting Lorentz coupling of the spinons to the exter-
nal magnetic field indirectly through the internal U(1)
gauge flux21. This is because the the organic material
-(ET)2Cu2(CN)3 is in the weak Mott regime where the
charge gap is small and the four-spin ring exchange in-
teraction can be significant18. It is the four-spin ring
exchange that connects and transfers the external mag-
netic flux to the internal emergent U(1) gauge flux21.
In contrast, the 4f electrons of the Yb ions are in the
strong Mott regime and is very localized. As we have ex-
plained, the e↵ective spin S

i

arises from the strong spin-
orbit coupling (SOC) and crystal electric field splitting,

Strong Mott regime: only Zeeman coupling 3

and the four-spin ring exchange is strongly suppressed
due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
field of the spinons in the organic spin liquid does not ap-
ply to YbMgGaO4. Although the strong magnetic field
fully polarizes the Yb local moments along the field di-
rection and thus destabilizes the spin liquid state, in the
weak field regime, the field does not change the spin liq-
uid ground state and the spinon remains to be a valid
description of the magnetic excitation. From the above
argument, if YbMgGaO4 ground state is a spinon Fermi
surface QSL, the appropriate spinon mean-field Hamilto-
nian for YbMgGaO4 in a weak external magnetic field
should be

HMFh = �t1
X
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2
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f
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, (2)

where only Zeeman coupling is needed, and g
z

is the
Landé factors for the field normal to the triangular plane,
respectively. The mean-field Hamiltonian in Eq. (2) will
be the basis of the analysis below.

IV. SPECTRAL WEIGHT SHIFTS FROM THE
FREE-SPINON THEORY

For each magnetic field, the spinon hopping and the
chemical potential in Eq. (2) need to be re-determined
by optimizing the variational energy of the microscopic
spin Hamiltonian HSpin-h that is

HSpin-h =
X
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Here �
ij

’s are the bond-dependent phase variables that
arises from the spin-orbit coupling of the Yb 4f elec-
trons7,8,10,11, and �

ij

= 1, ei2⇡/3, e�i2⇡/3 for ij along the
a1, a2, a3 bond, respectively. Throughout the paper, we
set J± = 0.915J

zz

. The z-direction magnetic field shifts
the chemical potential for the spin-" and spin-# spinons
up and down such that the spinon excitations are given
by

⇠"(k) = ✏(k)� µ" ⌘ ✏(k)� (µ +
g
z

µBhz

2
), (4)

⇠#(k) = ✏(k)� µ# ⌘ ✏(k)� (µ � g
z

µBhz

2
), (5)

where ✏(k) is the dispersion that is obtained from the
first line of Eq. (2). In Fig. 1, we plot the mean-field

FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-

No magnetic field With magnetic field
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upper and lower excitation edges under the weak mag-
netic field represent unique properties of the spinon ex-
citation for the spinon Fermi surface state, and thus pro-
vide a sharp experimental prediction for the identification
of the spinon excitation with respect to the spinon Fermi
surface.

The remaining part of the paper is organized as follows.
In Sec. II, we explain our view on the magnetic excitation
continuum and the weak spectral weight in the inelastic
neutron scattering results on YbMgGaO4 and motivate
our approach in this paper. In Sec. III, we justify the
mean-field Hamiltonian in the magnetic field. In Sec. IV,
we obtain the dynamic spin structure factor from the free
spinon theory in the magnetic field and explain the spec-
tral weight shifts. In Sec. V, we repeat the calculation in
Sec. IV with a RPA calculation that includes the spinon
interactions. Finally in Sec. VI, we conclude with a dis-
cussion about various future experimental direction for
the spinon Fermi surface state.
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was proposed for YbMgGaO4 and gives a large spinon
Fermi surface9,11. Here the chemical potential µ is in-
troduced to impose the Hilbert space constraint. It was
found that the spinon particle-hole excitation of this sim-
ple state provides a consistent magnetic excitation con-
tinuum with the inelastic neutron scattering experiments.
Moreover, the anisotropic spin interaction, that is in-
cluded into the the spinon mean-field theory by a ran-
dom phase approximation (RPA), gives a weak spectral
peak at the M points, which is also consistent with the
experimental observation.

The spinon continuum is much more important than
the weak spectral peak. The spectral peak at certain
momenta merely represents some collective mode of the
spinons that is enhanced by the residual and short-range
interaction between the fermionic spinons, and is quite
common for example in the Fermi liquids of electrons as
an analogy. Nevertheless, the spectral peak does provide
hints about the form of the microscopic interactions. In
contrast, the spinon continuum is a consequence of the
spin quantum number fractionalization that reveals the
defining nature of QSLs.

FIG. 1. (Color online.) (a) The Yb triangular lattice with
a1,a2,a3 bonds. (b) The spinon band structure for� = 0.6B
and t2/t1 = 0.2 (this value is optimized for the variational en-
ergy; see main text). (c) A schematic illustration of the spinon
band structure and the particle-hole excitation for the zero
momentum transfer. (d) The Brillouin zone of the triangular
lattice, with high-symmetry points and the basis vectors (in
r.l.u. coordinates) highlighted.

Since we think the spinon continuum is more impor-
tant and the spinon continuum is already obtained by
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rely on the free-spinon mean-field theory and focus more
on the spinon continuum rather than the weak spectral
peak. The (short-range) anisotropic spin interaction will
be included into the free-spinon theory in the later parts
of the paper. The coupling to the gapless U(1) gauge
photon is not included throught this paper. This spin-
gauge coupling has an important e↵ect on the low-energy
properties of the system16,17.
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gauge flux21. This is because the the organic material
-(ET)2Cu2(CN)3 is in the weak Mott regime where the
charge gap is small and the four-spin ring exchange in-
teraction can be significant18. It is the four-spin ring
exchange that connects and transfers the external mag-
netic flux to the internal emergent U(1) gauge flux21.
In contrast, the 4f electrons of the Yb ions are in the
strong Mott regime and is very localized. As we have ex-
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terial20 -(ET)2Cu2(CN)3 has actually invoked the in-
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gauge flux21. This is because the the organic material
-(ET)2Cu2(CN)3 is in the weak Mott regime where the
charge gap is small and the four-spin ring exchange in-
teraction can be significant18. It is the four-spin ring
exchange that connects and transfers the external mag-
netic flux to the internal emergent U(1) gauge flux21.
In contrast, the 4f electrons of the Yb ions are in the
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and the four-spin ring exchange is strongly suppressed
due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
field of the spinons in the organic spin liquid does not ap-
ply to YbMgGaO4. Although the strong magnetic field
fully polarizes the Yb local moments along the field di-
rection and thus destabilizes the spin liquid state, in the
weak field regime, the field does not change the spin liq-
uid ground state and the spinon remains to be a valid
description of the magnetic excitation. From the above
argument, if YbMgGaO4 ground state is a spinon Fermi
surface QSL, the appropriate spinon mean-field Hamilto-
nian for YbMgGaO4 in a weak external magnetic field
should be
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where only Zeeman coupling is needed, and g
z

is the
Landé factors for the field normal to the triangular plane,
respectively. The mean-field Hamiltonian in Eq. (2) will
be the basis of the analysis below.

IV. SPECTRAL WEIGHT SHIFTS FROM THE
FREE-SPINON THEORY

For each magnetic field, the spinon hopping and the
chemical potential in Eq. (2) need to be re-determined
by optimizing the variational energy of the microscopic
spin Hamiltonian HSpin-h that is
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Here �
ij

’s are the bond-dependent phase variables that
arises from the spin-orbit coupling of the Yb 4f elec-
trons7,8,10,11, and �

ij

= 1, ei2⇡/3, e�i2⇡/3 for ij along the
a1, a2, a3 bond, respectively. Throughout the paper, we
set J± = 0.915J

zz

. The z-direction magnetic field shifts
the chemical potential for the spin-" and spin-# spinons
up and down such that the spinon excitations are given
by
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), (4)
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where ✏(k) is the dispersion that is obtained from the
first line of Eq. (2). In Fig. 1, we plot the mean-field

FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-
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remains gapless.
In the inelastic neutron scattering measurement, the
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Dynamic spin structure factor

We predict:  
1. The system remains gapless and spinon continuum persists  
2. spectral weight shifts  
3. the spectral crossing at Gamma point  
4. the presence of lower and upper excitation edges

Very different from magnon in the field !! 
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Summary

1. We propose the weak field regime to detect the behavior 
of fractionalization.   

2. Such a regime is quite feasible in current laboratory 
settings. 

3. Testable predictions have been made.  
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