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Ordered double perovskites
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FCC ordered double perovskites A2BB'O6
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Compound B� config. crystal structure �CW µeff(µB) magnetic transition frustration parameter f Ref
Ba2YMoO6 Mo5+(4d1) cubic �91K 1.34 PM down to 2K f � 45 [38]
Ba2YMoO6 Mo5+(4d1) cubic �160K 1.40 PM down to 2K f � 80 [36]
Ba2YMoO6 Mo5+(4d1) cubic �219K 1.72 PM down to 2K f � 100 [37]
La2LiMoO6 Mo5+ (4d1) monoclinic -45K 1.42 PM to 2K f � 20 [37]
Sr2MgReO6 Re6+(5d1) tetragonal �426K 1.72 spin glass, TG ⇥ 50K f � 8 [39]
Sr2CaReO6 Re6+(5d1) monoclinic �443K 1.659 spin glass, TG ⇥ 14K f � 30 [40]
Ba2CaReO6 Re6+(5d1) cubic to tetragonal (at T ⇥ 120K) �38.8K 0.744 AFM Tc = 15.4K f ⇥ 2 [41]
Ba2LiOsO6 Os7+(5d1) cubic �40.48K 0.733 AFM Tc ⇥ 8K f � 5 [42]
Ba2NaOsO6 Os7+(5d1) cubic �32.45K 0.677 FM Tc ⇥ 8K f � 4 [42]
Ba2NaOsO6 Os7+(5d1) cubic ⇥ �10K ⇥ 0.6 FM Tc = 6.8K f � 4 [14]

TABLE II. A list of double perovskites. Note the discrepance in Curie temperature and µeff may originate from the experimental fitting of data
at different temperature range.

2. La2LiMoO6

La2LiMoO6 is monoclinic, the deviation from cubic sym-
metry arising primarily from rotations of the octahedra. The
local coordination of the Mo sites is nearly perfectly octahe-
dral with a weak tetragonal compression. The nature of crystal
field effects, if significant, is unclear at present. Magnetically,
the susceptibility shows, like Ba2YMoO6, two apparent Curie
regimes, separated by a kink at approximately 150K. How-
ever, opposite to that material, La2LiMoO6 shows a smaller
effective moment at low temperature compared to high tem-
perature. In addition, the high temperature Curie-Weiss tem-
perature is �CW ⇥ �45K, significantly smaller than the kink
temperature. Irreversibility distinguishing the behavior of the
ZFC/FC susceptibility appears below 25K.

The appearance of two Curie regimes again suggests either
fixed or spontaneous magnetic anisotropy setting in around
150K. However, the reduction of the effective moment below
the kink in ��1 is puzzling. We did not find this behavior in
the powder susceptibility within our model, with or without
anisotropy modeled by D. As remarked above, however, the
actual nature of the crystal field anisotropy in La2LiMoO6 is
unclear. If it is significant and different in form from the D
term, this might explain the behavior. Single crystal studies
would be helpful in elucidating the situation.

3. Sr2CaReO6 and Sr2MgReO6

Sr2CaReO6 and Sr2MgReO6 have distorted perovskite
structures, with monoclinic and tetragonal symmetry,
respectively.39,40 Experimentally, the materials are notable
for their very high antiferromagnetic Curie-Weiss temper-
ature, ��CW � 400K. Susceptibility and specific heat
measurements show anomalies suggestive of freezing and/or
short-range ordering at 14K and 50K, for Sr2CaReO6 and
Sr2MgReO6, respectively. Two possible interpretations of this
behavior are: (1) the Curie-Weiss temperature is dominated by
strong exchange, but fluctuations largely suppress ordering, or
(2) the Curie-Weiss temperature is due largely to single-ion
effects, and the true exchange scale is comparable to the ob-

served anomalies in � and cv .
In the former scenario, the key question is why these two

materials show so much larger exchange than do the other
compounds in this family. From the point of view of this
work, attributing the Curie-Weiss temperature to exchange
alone would imply J is actually comparable to the SOC, so
that the projection to j = 3/2 may even be suspect. The
Curie-Weiss temperatures are sufficiently large that one may
suspect that the 5d electrons are not so well localized, and the
system is close to a Mott transition. It would be interesting to
measure their optical properties to address this possibility.

The latter explanation seems possible, as both materi-
als show significant deviations from the cubic structure:
Sr2CaReO6 is monoclinic, while Sr2MgReO6 is tetragonal.
The actual distortions of the octahedra are rather small in both
cases, the Re-O distance varying by only about 0.02Å at room
temperature. However, there are significant rotations and tilts
of the octahedra, and crystal field splittings of the j = 3/2
quadruplet are certainly allowed. Examination of the Re-O
bond lengths suggests easy-axis anisotropy. From Eq. (128),
we see that in principle a negative Curie-Weiss temperature
could be attributed to D. However, from the present model we
cannot obtain such a large value, which in these two materials
is comparable or larger than the fitting temperature. Neverthe-
less, we may imagine that some combination of exchange and
single-ion anisotropy may conspire to produce the observed
behavior.

If we assume a large easy-axis anisotropy, we would then
expect, based on the the analysis in Sec. III A 1, to have an
AFM ground state. The anomalies might be related to this
ordering. Experimentally, spin freezing and irreversibility is
observed, but without clear signs of long-range ordering. The
experimentalists caution that, due to the small magnetic mo-
ment of the Re6+ ions, a small ordered component could not
be ruled out in either material.39,40 Indeed, in the AFM state, a
very small moment is expected, due to the primacy of octopo-
lar order.

While this is promising, we note that it is likely that sev-
eral effects not in our model play a role. First, the struc-
ture of the materials is not a simple compression of the cu-
bic structure, and so the crystal fields might have a signifi-
cantly different form from the simple D term. This is espe-

Interplay between geometrical frustration and strong SOC

One electron per site: Chen, Pereira and Balents,PRB 2010
Erickson, et al PRL 2007 
M. A. de Vries, et al PRL (2010). 
T. Aharen, et al PRB (2010). 
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moments rather than the dipole moment are dominant, (2)
an unusual non-collinear ferromagnet (denoted FM110) with
a doubled unit cell and magnetization along the [110] axis,
(3) a (biaxial) “spin nematic” phase with quadrupolar order
but unbroken time reversal symmetry and, more speculatively,
(4) a possible quantum spin liquid (QSL) phase. Phases (1),
(2), and (4) are low temperature phases and persist as ground
states, while the spin nematic, phase (3), occurs in a broad
intermediate temperature range below the paramagnetic state
but above any magnetic ordering temperature.

AFM

FM110

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

0.8
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FIG. 1. (Color online) Mean field T = 0 phase diagram for the
model Hamiltonian in Eq. (27). AFM denotes the “antiferromag-
netic” ground state given by Eq. (39) and Eq. (40), FM110 de-
notes the ferromagnetic ground state with an easy axis oriented along
[110], given by Eq. (51). The FM100 state, which is ferromagnetic
with easy axis along [100] appears in the narrow band between the
two phase phase boundaries. In the figure, J = 1.

States with magnetic multipole order are more often ob-
served in f-electron systems where crystal field effects are less
important than SOC.11 As a consequence, the atomic wave-
functions are total angular momentum eigenstates, in which
the spin and orbital degrees of freedom are highly entangled.
This leads to highly non-Heisenberg exchange between the lo-
cal moments, which is described by interaction of higher mag-
netic multipole operators. Such interactions may drive multi-
polar order, as suggested for instance in URu2Si2.12 Recently
this has been suggested to also occur in d electron systems
with unquenched orbital degeneracy and sufficient SOC.13 We
find a similar mechanism at work in the AFM phase.

A ferromagnetic state is not in itself unusual, though such
is relatively uncommon in insulators. However, cubic ferro-
magnets with an easy axis oriented along the [110] direction
is quite uncommon. This can be understood from the Lan-
dau theory for a ferromagnet: the usual fourth order cubic
anisotropy term favors either [100] or [111] orientation, de-
pending upon its sign, but never [110]. To obtain a [110] easy
axis, one requires sixth order or higher terms to be substantial,
making this rare indeed. Remarkably, such [110] anisotropy
has been observed in experiments on Ba2NaOsO6.14

Both the above states, when heated above their magnetic
ordering temperatures, allow on symmetry grounds for an in-
termediate phase which is time-reversal symmetric but with

quadrupolar order – the spin nematic. Applying the mean field
theory at T > 0, we indeed find such a phase in a broad range
of parameter space. While spin nematic states have been sug-
gested previously in NiGa2S4

15–19, it has not been established
in that material. The mechanism for quadrupolar order here is
much more transparent and robust than in that case.

The above three phases, while somewhat unconventional,
may be obtained within a mean-field analysis. A QSL state,
however, cannot be described by any mean field theory, and
is considerably more exotic. The search for a QSL, which is
a state in which quantum fluctuations prevent spins from or-
dering even at zero temperature, is a long-standing problem
in fundamental physics.20 Since the possibility of a QSL was
suggested by Anderson in the early 1970s,21 this has been an
active area for theory and experiment. Despite the current ma-
turity of the theory for QSL,22 the experimental confirmation
of the existence of such an exotic phase is still elusive. Very
commonly geometrical frustration is thought to be a driving
mechanism for QSL formation, and consequently most re-
search (both theoretically and experimentally) has been de-
voted to systems of this type, such as triangular,23 kagome,24

hyperkagome3,25,26 and pyrochlore lattices.27

Here we suggest a different route, in which quantum fluctu-
ations are enhanced primarily by strong SOC, rather than geo-
metrical frustration. In fact, the magnetic ions in ordered dou-
ble perovskites reside on a face centered cubic (fcc) sublattice,
which can be viewed as edge-sharing tetrahedra, and is some-
what geometrically frustrated. Without strong SOC, however,
this frustration is weak, and indeed the classical Heisenberg
antiferromagnet on the fcc lattice is known to magnetically or-
der into a state with the ordering wavevector 2�(001).28 The
tendency of the simple fcc antiferromagnet to order may be
partially attributed to its large coordination number (z = 12),
which leads to mean-field like behavior. By contrast, strong
SOC induces effective exchange interactions very different
from Heisenberg type, with strong directional dependence that
may make a QSL more favorable. To make this suggestion
more concrete, we propose a natural wavefunction for a QSL
in our model, and discuss the physical properties of such a
state.

We now outline the main results of the paper, and how they
are presented in the following sections. In Sec. II, we show
that strong SOC leads to an effective j = 3/2 local moment
on each B’ site. We write down a model Hamiltonian which
includes three interactions: nearest neighbor (NN) antiferro-
magnetic (AFM) exchange, J , NN ferromagnetic (FM) ex-
change, J �, and electric quadrupolar interaction, V . These in-
teractions are all projected down to the effective j = 3/2 man-
ifold, which induces many terms beyond the usual quadratic
exchange. Indeed, because of the four-dimensional basis of
spin-3/2 states, the resulting Hamiltonian can be thought of as
an anisotropic � matrix model.29 We then discuss the symme-
try properties of the projected Hamiltonian. Surprisingly, we
find that, in the limit of vanishing FM exchange, the Hamilto-
nian has a “hidden” global SU(2) symmetry despite its com-
plicated appearance.

In Sec. III, we consider the mean field ground states of the
model, characterized by local (single-site) order parameters.

Predictions for 1 electron case: J=3/2
H � Ji · Jj + J2

i J
2
j + J3

i J
3
j + JiJ

3
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i Jj

Jz =
3

2
Jz = �3

2
Jz = �1

2
Jz =

1

2

Enhanced quantum fluctuation!

Chen, et al, PRB 2010

Possible QSL
Might be relevant for 

Ba2YMoO6
J is AFM exchange, J’ is FM exchange, V is electric quadrupolar interaction

J’/J

V/JGang Chen’s theory group 

Gang Chen’s theory group



2

moments rather than the dipole moment are dominant, (2)
an unusual non-collinear ferromagnet (denoted FM110) with
a doubled unit cell and magnetization along the [110] axis,
(3) a (biaxial) “spin nematic” phase with quadrupolar order
but unbroken time reversal symmetry and, more speculatively,
(4) a possible quantum spin liquid (QSL) phase. Phases (1),
(2), and (4) are low temperature phases and persist as ground
states, while the spin nematic, phase (3), occurs in a broad
intermediate temperature range below the paramagnetic state
but above any magnetic ordering temperature.

AFM

FM110

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

J�

V

FIG. 1. (Color online) Mean field T = 0 phase diagram for the
model Hamiltonian in Eq. (27). AFM denotes the “antiferromag-
netic” ground state given by Eq. (39) and Eq. (40), FM110 de-
notes the ferromagnetic ground state with an easy axis oriented along
[110], given by Eq. (51). The FM100 state, which is ferromagnetic
with easy axis along [100] appears in the narrow band between the
two phase phase boundaries. In the figure, J = 1.

States with magnetic multipole order are more often ob-
served in f-electron systems where crystal field effects are less
important than SOC.11 As a consequence, the atomic wave-
functions are total angular momentum eigenstates, in which
the spin and orbital degrees of freedom are highly entangled.
This leads to highly non-Heisenberg exchange between the lo-
cal moments, which is described by interaction of higher mag-
netic multipole operators. Such interactions may drive multi-
polar order, as suggested for instance in URu2Si2.12 Recently
this has been suggested to also occur in d electron systems
with unquenched orbital degeneracy and sufficient SOC.13 We
find a similar mechanism at work in the AFM phase.

A ferromagnetic state is not in itself unusual, though such
is relatively uncommon in insulators. However, cubic ferro-
magnets with an easy axis oriented along the [110] direction
is quite uncommon. This can be understood from the Lan-
dau theory for a ferromagnet: the usual fourth order cubic
anisotropy term favors either [100] or [111] orientation, de-
pending upon its sign, but never [110]. To obtain a [110] easy
axis, one requires sixth order or higher terms to be substantial,
making this rare indeed. Remarkably, such [110] anisotropy
has been observed in experiments on Ba2NaOsO6.14

Both the above states, when heated above their magnetic
ordering temperatures, allow on symmetry grounds for an in-
termediate phase which is time-reversal symmetric but with

quadrupolar order – the spin nematic. Applying the mean field
theory at T > 0, we indeed find such a phase in a broad range
of parameter space. While spin nematic states have been sug-
gested previously in NiGa2S4

15–19, it has not been established
in that material. The mechanism for quadrupolar order here is
much more transparent and robust than in that case.

The above three phases, while somewhat unconventional,
may be obtained within a mean-field analysis. A QSL state,
however, cannot be described by any mean field theory, and
is considerably more exotic. The search for a QSL, which is
a state in which quantum fluctuations prevent spins from or-
dering even at zero temperature, is a long-standing problem
in fundamental physics.20 Since the possibility of a QSL was
suggested by Anderson in the early 1970s,21 this has been an
active area for theory and experiment. Despite the current ma-
turity of the theory for QSL,22 the experimental confirmation
of the existence of such an exotic phase is still elusive. Very
commonly geometrical frustration is thought to be a driving
mechanism for QSL formation, and consequently most re-
search (both theoretically and experimentally) has been de-
voted to systems of this type, such as triangular,23 kagome,24

hyperkagome3,25,26 and pyrochlore lattices.27

Here we suggest a different route, in which quantum fluctu-
ations are enhanced primarily by strong SOC, rather than geo-
metrical frustration. In fact, the magnetic ions in ordered dou-
ble perovskites reside on a face centered cubic (fcc) sublattice,
which can be viewed as edge-sharing tetrahedra, and is some-
what geometrically frustrated. Without strong SOC, however,
this frustration is weak, and indeed the classical Heisenberg
antiferromagnet on the fcc lattice is known to magnetically or-
der into a state with the ordering wavevector 2�(001).28 The
tendency of the simple fcc antiferromagnet to order may be
partially attributed to its large coordination number (z = 12),
which leads to mean-field like behavior. By contrast, strong
SOC induces effective exchange interactions very different
from Heisenberg type, with strong directional dependence that
may make a QSL more favorable. To make this suggestion
more concrete, we propose a natural wavefunction for a QSL
in our model, and discuss the physical properties of such a
state.

We now outline the main results of the paper, and how they
are presented in the following sections. In Sec. II, we show
that strong SOC leads to an effective j = 3/2 local moment
on each B’ site. We write down a model Hamiltonian which
includes three interactions: nearest neighbor (NN) antiferro-
magnetic (AFM) exchange, J , NN ferromagnetic (FM) ex-
change, J �, and electric quadrupolar interaction, V . These in-
teractions are all projected down to the effective j = 3/2 man-
ifold, which induces many terms beyond the usual quadratic
exchange. Indeed, because of the four-dimensional basis of
spin-3/2 states, the resulting Hamiltonian can be thought of as
an anisotropic � matrix model.29 We then discuss the symme-
try properties of the projected Hamiltonian. Surprisingly, we
find that, in the limit of vanishing FM exchange, the Hamilto-
nian has a “hidden” global SU(2) symmetry despite its com-
plicated appearance.

In Sec. III, we consider the mean field ground states of the
model, characterized by local (single-site) order parameters.

Predictions for 1 electron case: J=3/2

Possible QSL

H � Ji · Jj + J2
i J

2
j + J3

i J
3
j + JiJ

3
j + J3

i Jj

Jz =
3

2
Jz = �3

2
Jz = �1

2
Jz =

1

2

Enhanced quantum fluctuation!
Magnetic  

multipole order: 
Octupole, Quadrupole

Chen, et al, PRB 2010 
               Carlo, et al,  ArXiv 1105.3457 

Aharen, et al, PRB 2010 
               M. A. de Vries, et al PRL (2010) 
                Erickson, et al PRL 2007

hJµ
i J

�
i J

⇥
i i, hJµ

i J
�
i i

FM state is observed in 
Ba2NaOsO6

Might be relevant for 
Ba2YMoO6

J’/J

V/J

J is AFM exchange, J’ is FM exchange, V is electric quadrupolar interaction

Gang Chen’s theory group 

Gang Chen’s theory group

non-heisenberg like hamiltonian;

biquadratic, bicubic, magnetic quadruopole, 
octupole moment

enhanced quantum fluctuation;

linear spin wave theory



2 electron case: J=2
                       in Ba2CaOsO6, La2LiReO6, Ba2YReO6  Re5+, Os6+

4

to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy

orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J

 

⇥ij⇤

�
Si,xy · Sj,xy � 1

4
ni,xynj,xy

⇥
, (13)

where  ij⌦ represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1 � (lz)2], (14)
nxy = 1 � (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)

x

y

O

O

B

B�

B�

dxy

dxz

pz
px

xy

z

FIG. 1: (Color online) Upper graph: The NN AFM exchange path
(B’-O-O-B’); lower graph: The NN FM exchange path with inter-
mediate orthogonal p orbitals at O sites. Figure up to modification

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-
thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. ??. In the XY plane, this ferro-
magnetic exchange is written as

HXY
ex-2 = �J �

 

⇥ij⇤

[Si,xy · (Sj,yz + Sj,xz)

�3
4

ni,xy(nj,yz + nj,xz) +  i ⇧ j⌦
⌅

, (17)

where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⌅ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i ⇧ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (18)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

↵
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
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from the virtual transfer of electrons through different sites.
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HXY
ex-1 = J

⇧

⇥ij⇤

�
Si,xy · Sj,xy �

1

4
ni,xynj,xy

⇥
, (13)

where ⌥ij� represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
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Sxy = S[1� (lz)2], (14)
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Throughout this paper, we use the subindices (i, xy) to de-
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YZ planes can be readily generated by a cubic permutation.
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tive Up can be significantly screened and the ratio J �/J may
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moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
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two electrons residing in neighboring sites in an XY plane,
we obtain the quadrupole-quadrupole interaction
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in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,
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in which, Õ ⌅ P 3
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O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interations in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and

octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian H̃ in Eq. (27), we need to have some under-
standing about its symmetry properties. We start from the NN
AFM exchange interaction H̃ex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

 
i ji is not conserved, [H̃ex-1,J ] ⌃= 0. Nevertheless,

H̃ex-1 surprisingly has a “hidden” SU(2) symmetry. The three
generators of this global continuous symmetry are defined as
follows,
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with µ = x, y, z. One can readily check that these generators
commute with H̃ex-1,

[Gµ, H̃ex-1] = 0, (29)

and satisfy the SU(2) algebra,

[Gµ, G⇤ ] = i�µ⇤�G
� . (30)

In addition, the Casimir operator G2 also commutes with
H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,
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in which the empty matrix entries are zero and we have ex-
pressed these generators as the direct sum of two Pauli matri-
ces, one (�14) for the subspace of jzi = ±3/2 states and the
other (�23) for the subspace of jzi = ±1/2 states. One in-
tuitive way to think about these SU(2) generators is that they
transform the spin components in the jzi = ±3/2 subspace to-
gether with jzi = ±1/2 subspace. This is a global symmetry
of H̃ex-1.
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teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,
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. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interations in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and

octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian
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i ji is not conserved, [H̃ex-1,J ] ⌃= 0. Nevertheless,
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with µ = x, y, z. One can readily check that these generators
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in which the empty matrix entries are zero and we have ex-
pressed these generators as the direct sum of two Pauli matri-
ces, one (�14) for the subspace of jzi = ±3/2 states and the
other (�23) for the subspace of jzi = ±1/2 states. One in-
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to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy

orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J

 

⇥ij⇤

�
Si,xy · Sj,xy � 1

4
ni,xynj,xy

⇥
, (13)

where  ij⌦ represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1 � (lz)2], (14)
nxy = 1 � (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)
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FIG. 1: (Color online) Upper graph: The NN AFM exchange path
(B’-O-O-B’); lower graph: The NN FM exchange path with inter-
mediate orthogonal p orbitals at O sites. Figure up to modification

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-
thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. ??. In the XY plane, this ferro-
magnetic exchange is written as

HXY
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⌅ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy
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12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (18)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

↵
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
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The minimal Hamiltonian we write down contains all three
interactions,

H = Hex-1 +Hex-2 +Hquad . (20)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,
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in which, Õ ⇤ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation.
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B. Exchange interactions and electric quadrupolar interaction

In the last subsection, we discussed the effect of strong
spin-orbit interaction in determining the local degrees of free-
dom and pointed out that every operator must be projected
into the j = 3/2 quadruplets. In this subsection, we are going
to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy
orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J
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where ⌥ij� represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1� (lz)2], (14)
nxy = 1� (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)
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FIG. 1. (Color online) Left graph: The NN AFM exchange path (B�-
O-O-B�); right graph: The NN FM exchange path with intermediate
orthogonal p orbitals at O sites.

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-

thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. 1. In the XY plane, this ferro-
magnetic exchange is written as

HXY
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy
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Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

 
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =
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The minimal Hamiltonian we write down contains all three
interactions,

H = Hex-1 +Hex-2 +Hquad . (20)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
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Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

 
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

⇧

⇥ij⇤

⇤
�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

⌅
+ const. (19)

The minimal Hamiltonian we write down contains all three
interactions,

H = Hex-1 +Hex-2 +Hquad . (20)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
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tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9
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2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
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4
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in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

S̃x
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4
jxi � 1

3
jzi j

x
i j

z
i (23)

S̃y
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4
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3
jzi j
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i j

z
i (24)
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jzi j

z
i j

z
i (25)

ñi,xy =
3

4
� 1

3
(jzi )

2, (26)

in which, Õ ⌅ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interations in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and

octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian H̃ in Eq. (27), we need to have some under-
standing about its symmetry properties. We start from the NN
AFM exchange interaction H̃ex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

 
i ji is not conserved, [H̃ex-1,J ] ⌃= 0. Nevertheless,

H̃ex-1 surprisingly has a “hidden” SU(2) symmetry. The three
generators of this global continuous symmetry are defined as
follows,

Gµ =
⌦

i

Gµ
i =
⌦

i

�
7

6
jµi � 2

3
(jµi )

3

⇥
, (28)

with µ = x, y, z. One can readily check that these generators
commute with H̃ex-1,

[Gµ, H̃ex-1] = 0, (29)

and satisfy the SU(2) algebra,

[Gµ, G⇤ ] = i�µ⇤�G
� . (30)

In addition, the Casimir operator G2 also commutes with
H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,

Gx
i = �1

2

⇤

⌥⇧

1
1

1
1

⌅

�⌃ =
1

2
(�⇤x)14 ⇤ (�⇤x)23 (31)

Gy
i =

1

2

⇤

⌥⇧

�i
i

�i
i

⌅

�⌃ =
1

2
(⇤y)14 ⇤ (�⇤y)23 (32)

Gz
i =

1

2

⇤

⌥⇧

�1
1

�1
1

⌅

�⌃ =
1

2
(�⇤z)14 ⇤ (⇤z)23, (33)

in which the empty matrix entries are zero and we have ex-
pressed these generators as the direct sum of two Pauli matri-
ces, one (�14) for the subspace of jzi = ±3/2 states and the
other (�23) for the subspace of jzi = ±1/2 states. One in-
tuitive way to think about these SU(2) generators is that they
transform the spin components in the jzi = ±3/2 subspace to-
gether with jzi = ±1/2 subspace. This is a global symmetry
of H̃ex-1.

5

two electrons residing in neighboring sites in an XY plane,
we obtain the quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i ⇧ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (20)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

⌦
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

⌦

⇥ij⇤�XY

�
�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

⇥
, (21)

in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

S̃x
i,xy =

1

4
jxi � 1

3
jzi j

x
i j

z
i (23)

S̃y
i,xy =

1

4
jyi � 1

3
jzi j

y
i j

z
i (24)

S̃z
i,xy =

3

4
jzi � 1

3
jzi j

z
i j

z
i (25)

ñi,xy =
3

4
� 1

3
(jzi )

2, (26)

in which, Õ ⌅ P 3
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             and               denote the electron spin residing on xy orbital and orbital 
occupation number for single electron xy orbital at site i, respectively.
S
i,xy

n
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the NN AFM exchange is written as

HXY
ex-1 = J

⌃

⇤ij⌅⇥XY

Si,xy · Sj,xy � 1

4
ni,xynj,xy , (9)

where the sum is over nearest neighbor sites in the XY planes,
and the correponding terms for YZ and XZ planes can be ob-
tained by the obvious cubic permutation. One should note that
the operators Si,xy and ni,xy denote the electron spin residing
on xy orbital and orbital occupation number for single elec-
tron xy orbital at site i, respectively. In terms of the double-
electron operator which acting on the orbitals in Eq. (3), we
have

ni,xy = ni,X + ni,Y = (lzi )
2 (10)

Si,xy =
Si

2
(ni,X + ni,Y ) =

Si

2
(lzi )

2 . (11)

Here ni,X (or ni,Y ) denotes the occupation number for |X 
(or |Y  ) of the two electron orbital states at site i, and Si is the
total spin for two electrons. The physical meaning of Eq. (11)
is obvious. Only when state |X or |Y  is occupied by the two
electrons can the single electron occupation number on orbital
xy be nonvanishing.

Throughout this paper, we use the subindices (i, xy) to de-
note the site and single electron orbitals, subindex X to de-
note the double electron orbitals, superindex (µ = x, y, z) to
denote the spin component, and capital letters (XY,XZ,YZ) to
denote the planes. With these definitions, we note the dou-
ble occupancy condition at each site, which defines the Mott
insulating phase, becomes,

ni,xy + ni,xz + ni,yz = 2 , (12)

in terms of the double-electron operator, the above equation is
expressed as

ni,X + ni,Y + ni,Z = 1 . (13)

Moreover, from Eq. (11), orbitally-resolveed spins satisfy

Si,xy + Si,xz + Si,yz = Si . (14)

The second interaction is the NN FM exchange interaction.
Using the results from Ref. 0 the relations in Eq. (11), one can
immediately write down the interaction. For two site i, j in
the XY plane, this FM exhange is given as

HXY
ex-2,ij = �J �⇤Si,xy · (Sj,yz + Sj,xz) + �i ⇧ j 

⌅

+
3J �

2
ni,xynj,xy

= �J �

4

⇤
Si · Sj(l

z
i )

2
�
(lxj )

2 + (lyj )
2
⇥
+ �i ⇧ j 

⌅

+
3J �

4
(lzi )

2(lzj )
2 . (15)

The third interaction is electric quadrupolar interaction.
Like the AFM and FM exchange, one can also using results

from previous work to write down this interaction. In XY
plane, we obtain the electric quadrupolar interaction as

HXY
quad,ij = �4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

= �4V

3

�
(lyi )

2 � (lxi )
2
⇥�
(lyj )

2 � (lxj )
2
⇥

+
9V

4
(lzi )

2(lzj )
2 (16)

The minimal Hamiltonian for the cubic system contains all
three of these interactions in addition to the onsite SOI,

H = Hex-1 +Hex-2 +Hquad +Hso . (17)

Since we are interested in the limit of strong SOI, we have
to project the minimal Hamiltonian H onto the five j = 2
states at every site. As an illustraction, we write down the
projection for Si,xy and ni,xy ,

S̃x
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (18)

S̃y
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (19)

S̃z
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (20)

ñi,xy =
1

3
+

1

6
(jzi )

2, (21)

in which, Õ = P2OP2. After the projection, the minimal
Hamiltonian that we will study in this work is

H̃ = H̃ex-1 + H̃ex-2 + H̃quad. (22)

III. MEAN-FIELD GROUND STATES

In this section, we study the zero temperature phase dia-
gram of the Hamiltonian in Eq. (22). As we did in Ref. 0, we
consider the ground state of this Hamiltonian in the presence
of strong easy-plane or easy-axis anisotropy. The strong easy-
plane anisotropy (on XY plane) is a trivial limit and is mod-
eled by

⇧
i D(jzi )

2 with a positive D. When D is quite large
(compared to exchange coupling and electric quadrupolar in-
teraction), the spin state on every site is pinned to |jz = 0 ,
which is a trivial uniform state with ordering wavevector
p = 0. The strong easy-axis anisotropy (along z direction)
is less trivial and is modeled by the same Hamiltonian but
with a negative D. Large |D| favors either |jz = 2 or
|jz = �2 to be occupied. After Projecting the Hamilto-
nian in Eq. (22) to this two states, the electric quadrupolar
interaction is quenched, and one can readily find that, when
J � ⌅ 5J/38 the ground state is a ferromagnetic state with
an ordering wavevector p = 0, and when J � ⇤ 5J/38 the
ground state is an antiferromagnetic state with an ordering
wavevector p = 2⇥(100) or 2⇥(010). One may postulate
from these anisotropic case that, the ground state for the actual
cubic Hamiltonian either have a uniform state state (p = 0) or

Projection to J=2

Experiments: Aharen, et al PRB 81,064436, (2010) 
                   Yamamura, et al JSSC 179 (2006) 605–612

Frustration comes from 
anisotropic nature of orbital 
orientation.
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to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy

orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J

 

⇥ij⇤

�
Si,xy · Sj,xy � 1

4
ni,xynj,xy

⇥
, (13)

where  ij⌦ represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1 � (lz)2], (14)
nxy = 1 � (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)

x
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B�

dxy
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z

FIG. 1: (Color online) Upper graph: The NN AFM exchange path
(B’-O-O-B’); lower graph: The NN FM exchange path with inter-
mediate orthogonal p orbitals at O sites. Figure up to modification

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-
thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. ??. In the XY plane, this ferro-
magnetic exchange is written as

HXY
ex-2 = �J �

 

⇥ij⇤

[Si,xy · (Sj,yz + Sj,xz)

�3
4

ni,xy(nj,yz + nj,xz) +  i ⇧ j⌦
⌅

, (17)

where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⌅ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
quad,ij = V ni,xynj,xy

�V

2
[ni,xy(nj,yz + ni,xz) + (i ⇧ j)]

�13V

12
(ni,yznj,yz + ni,xznj,xz)

+
19V

12
(ni,yznj,xz + ni,xznj,yz). (18)

Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
the fcc lattice, we have V = 9

↵
2Q2/a5. In general, the main

contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
Using the single-occupancy constraint in Eq. (16) and sum-
ming over sites, the quadrupole-quadrupole interaction sim-
plifies to

HXY
quad =

 

⇥ij⇤

⇤
�4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

⌅
+ const. (19)

The minimal Hamiltonian we write down contains all three
interactions,

H = Hex-1 +Hex-2 +Hquad . (20)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,

⇧
������⌥

������⌃

S̃x
i,xy = jx

i
4 � jz

i jx
i jz

i
3

S̃y
i,xy = jy

i
4 � jz

i jy
i jz

i

3

S̃z
i,xy = 3jz

i
4 � jz

i jz
i jz

i
3
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, (21)

in which, Õ ⇤ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation.

AFM and FM exchange pathExchange interaction
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B. Exchange interactions and electric quadrupolar interaction

In the last subsection, we discussed the effect of strong
spin-orbit interaction in determining the local degrees of free-
dom and pointed out that every operator must be projected
into the j = 3/2 quadruplets. In this subsection, we are going
to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy
orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is

HXY
ex-1 = J

⇧
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4
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where ⌥ij� represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1� (lz)2], (14)
nxy = 1� (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)
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FIG. 1. (Color online) Left graph: The NN AFM exchange path (B�-
O-O-B�); right graph: The NN FM exchange path with intermediate
orthogonal p orbitals at O sites.

The second interaction is the nearest-neighbor ferromag-
netic exchange interaction. This interaction is due to the or-

thogonal orbitals at the intermediate oxygen sites in the ex-
change path as shown in Fig. 1. In the XY plane, this ferro-
magnetic exchange is written as

HXY
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
Coulomb interaction at the oxygen site, respectively. If the
polarizability of the heavy ions on B� sites is large, the effec-
tive Up can be significantly screened and the ratio J �/J may
be fairly large.

The third interaction is the electric quadrupole-quadrupole
interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
molecular orbitals. Calculating the direct electrostatic energy
between all possible orbital configurations for two electrons
residing in neighboring sites in an XY plane, we write the
quadrupole-quadrupole interaction

HXY
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Here V > 0 is defined as the Coulomb repulsion between two
nearest-neighbor xy orbitals on XY planes. If Q is the magni-
tude of the electric quadrupole and a is the lattice constant of
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contribution to Q comes from the charge at the oxygen sites,
hence the larger the hybridization, the larger the value of Q.
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In the last subsection, we discussed the effect of strong
spin-orbit interaction in determining the local degrees of free-
dom and pointed out that every operator must be projected
into the j = 3/2 quadruplets. In this subsection, we are going
to introduce the interactions for the local moments and write
down the projected expression of the interactions.

The first interaction to write down is the nearest-neighbor
antiferromagnetic exchange interaction. The exchange comes
from the virtual transfer of electrons through different sites.
For example, in XY planes, only electrons residing on dxy
orbitals can virtually hop to different sites via px and py or-
bitals of the intermediate oxygen sites. The exchange path
and relevant orbitals are depicted in Fig. 1. Alternatively, one
can interpret this process as kinetic exchange between molec-
ular Dxy orbitals. As a consequence, the antiferromagnetic
exchange interaction (for XY planes) is
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where ⌥ij� represents nearest neighbor sites in an XY plane,
and the operators Si,xy and ni,xy denote the spin residing on
xy orbital and orbital occupation number at site i, respec-
tively. In terms of spin and orbital angular momentum op-
erators acting on site i,

Sxy = S[1� (lz)2], (14)
nxy = 1� (lz)2, (15)

Throughout this paper, we use the subindices (i, xy) to de-
note the site and orbitals, superindex (µ = x, y, z) to denote
the spin component, and capital letters (XY,XZ,YZ) to denote
the planes. The same type of exchange interaction in XZ and
YZ planes can be readily generated by a cubic permutation.
Recall that in the Mott insulator phase we have the single oc-
cupancy condition at each site

ni,xy + ni,xz + ni,yz = 1. (16)
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where the xy orbital only interacts with yz and xz orbitals
at neighboring sites. Microscopically, J �/J ⇤ O(JH/Up)
where JH and Up are the Hund’s coupling and Hubbard
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tive Up can be significantly screened and the ratio J �/J may
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interaction. The 4d or 5d electron carries electric quadrupole
moments, and the interaction between these moments may
not be negligible because of the long spatial extension of the
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two electrons residing in neighboring sites in an XY plane,
we obtain the quadrupole-quadrupole interaction
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in which we have ignored an unimportant constant.
The minimal Hamiltonian for the cubic system contains all

three of these exchange interactions in addition to the on-site
SOC,

H = Hex-1 +Hex-2 +Hquad +Hso . (22)

Since we are interested in the limit of strong spin-orbit in-
teraction, we need to project H onto the j = 3/2 quadruplets
at every site. As an example, we write down the projection for
Si,xy and ni,xy ,
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in which, Õ ⌅ P 3
2
O P 3

2
. Spin and occupation number op-

erators for other orbitals can be readily generated by a cubic
permutation. After the projection, the minimal Hamiltonian
reduces, up to a constant, to

H̃ = H̃ex-1 + H̃ex-2 + H̃quad . (27)

As one may notice, the projected Hamiltonian contains 4-
spin and 6-spin interations in addition to the usual quadratic
2-spin interactions if it is expressed in terms of the effective
spin moment ji. One can view these multiple spin terms as
the interaction between magnetic multipoles (quadrupole and

octupole) at different sites. Such multipolar Hamiltonians are
much less familiar than the usual quadratic exchange forms,
and some caution should be used. In particular, experience
with similar models shows that such interactions can magnify
quantum effects, for instance leading to the appearance of a
quadrupolar phase in the biquadratic case16. Hence, the naı̈ve
classical approximation – replacing j’s by classical vectors –
is inadvisable, and we will proceed differently below.

C. Symmetry properties of the Hamiltonian

Before we move on to discuss the ground state of the
Hamiltonian H̃ in Eq. (27), we need to have some under-
standing about its symmetry properties. We start from the NN
AFM exchange interaction H̃ex-1. The latter has an apparent
cubic space group symmetry. The total angular momentum
J =

 
i ji is not conserved, [H̃ex-1,J ] ⌃= 0. Nevertheless,

H̃ex-1 surprisingly has a “hidden” SU(2) symmetry. The three
generators of this global continuous symmetry are defined as
follows,
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with µ = x, y, z. One can readily check that these generators
commute with H̃ex-1,

[Gµ, H̃ex-1] = 0, (29)

and satisfy the SU(2) algebra,

[Gµ, G⇤ ] = i�µ⇤�G
� . (30)

In addition, the Casimir operator G2 also commutes with
H̃ex-1. The physical meaning of these generators is easy to
see if one expresses Gx,y,z in matrix form. For a single site,
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in which the empty matrix entries are zero and we have ex-
pressed these generators as the direct sum of two Pauli matri-
ces, one (�14) for the subspace of jzi = ±3/2 states and the
other (�23) for the subspace of jzi = ±1/2 states. One in-
tuitive way to think about these SU(2) generators is that they
transform the spin components in the jzi = ±3/2 subspace to-
gether with jzi = ±1/2 subspace. This is a global symmetry
of H̃ex-1.
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S
i,xy

n
i,xy

2

the NN AFM exchange is written as

HXY
ex-1 = J

⌃

⇤ij⌅⇥XY

Si,xy · Sj,xy � 1

4
ni,xynj,xy , (9)

where the sum is over nearest neighbor sites in the XY planes,
and the correponding terms for YZ and XZ planes can be ob-
tained by the obvious cubic permutation. One should note that
the operators Si,xy and ni,xy denote the electron spin residing
on xy orbital and orbital occupation number for single elec-
tron xy orbital at site i, respectively. In terms of the double-
electron operator which acting on the orbitals in Eq. (3), we
have

ni,xy = ni,X + ni,Y = (lzi )
2 (10)

Si,xy =
Si

2
(ni,X + ni,Y ) =

Si

2
(lzi )

2 . (11)

Here ni,X (or ni,Y ) denotes the occupation number for |X 
(or |Y  ) of the two electron orbital states at site i, and Si is the
total spin for two electrons. The physical meaning of Eq. (11)
is obvious. Only when state |X or |Y  is occupied by the two
electrons can the single electron occupation number on orbital
xy be nonvanishing.

Throughout this paper, we use the subindices (i, xy) to de-
note the site and single electron orbitals, subindex X to de-
note the double electron orbitals, superindex (µ = x, y, z) to
denote the spin component, and capital letters (XY,XZ,YZ) to
denote the planes. With these definitions, we note the dou-
ble occupancy condition at each site, which defines the Mott
insulating phase, becomes,

ni,xy + ni,xz + ni,yz = 2 , (12)

in terms of the double-electron operator, the above equation is
expressed as

ni,X + ni,Y + ni,Z = 1 . (13)

Moreover, from Eq. (11), orbitally-resolveed spins satisfy

Si,xy + Si,xz + Si,yz = Si . (14)

The second interaction is the NN FM exchange interaction.
Using the results from Ref. 0 the relations in Eq. (11), one can
immediately write down the interaction. For two site i, j in
the XY plane, this FM exhange is given as

HXY
ex-2,ij = �J �⇤Si,xy · (Sj,yz + Sj,xz) + �i ⇧ j 

⌅

+
3J �

2
ni,xynj,xy

= �J �

4

⇤
Si · Sj(l

z
i )

2
�
(lxj )

2 + (lyj )
2
⇥
+ �i ⇧ j 

⌅

+
3J �

4
(lzi )

2(lzj )
2 . (15)

The third interaction is electric quadrupolar interaction.
Like the AFM and FM exchange, one can also using results

from previous work to write down this interaction. In XY
plane, we obtain the electric quadrupolar interaction as

HXY
quad,ij = �4V

3
(ni,xz � ni,yz)(nj,xz � nj,yz)

+
9V

4
ni,xynj,xy

= �4V

3

�
(lyi )

2 � (lxi )
2
⇥�
(lyj )

2 � (lxj )
2
⇥

+
9V

4
(lzi )

2(lzj )
2 (16)

The minimal Hamiltonian for the cubic system contains all
three of these interactions in addition to the onsite SOI,

H = Hex-1 +Hex-2 +Hquad +Hso . (17)

Since we are interested in the limit of strong SOI, we have
to project the minimal Hamiltonian H onto the five j = 2
states at every site. As an illustraction, we write down the
projection for Si,xy and ni,xy ,

S̃x
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (18)

S̃y
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (19)

S̃z
i,xy = � 1

12
jxi +

1

12
(jxi )

3, (20)

ñi,xy =
1

3
+

1

6
(jzi )

2, (21)

in which, Õ = P2OP2. After the projection, the minimal
Hamiltonian that we will study in this work is

H̃ = H̃ex-1 + H̃ex-2 + H̃quad. (22)

III. MEAN-FIELD GROUND STATES

In this section, we study the zero temperature phase dia-
gram of the Hamiltonian in Eq. (22). As we did in Ref. 0, we
consider the ground state of this Hamiltonian in the presence
of strong easy-plane or easy-axis anisotropy. The strong easy-
plane anisotropy (on XY plane) is a trivial limit and is mod-
eled by

⇧
i D(jzi )

2 with a positive D. When D is quite large
(compared to exchange coupling and electric quadrupolar in-
teraction), the spin state on every site is pinned to |jz = 0 ,
which is a trivial uniform state with ordering wavevector
p = 0. The strong easy-axis anisotropy (along z direction)
is less trivial and is modeled by the same Hamiltonian but
with a negative D. Large |D| favors either |jz = 2 or
|jz = �2 to be occupied. After Projecting the Hamilto-
nian in Eq. (22) to this two states, the electric quadrupolar
interaction is quenched, and one can readily find that, when
J � ⌅ 5J/38 the ground state is a ferromagnetic state with
an ordering wavevector p = 0, and when J � ⇤ 5J/38 the
ground state is an antiferromagnetic state with an ordering
wavevector p = 2⇥(100) or 2⇥(010). One may postulate
from these anisotropic case that, the ground state for the actual
cubic Hamiltonian either have a uniform state state (p = 0) or

Projection to J=2

Intrinsic Frustration (not due to geometry!)
e.g. SU(N) Heisenberg model and Chiral spin liquid on 

square lattice and spin ladders (see my poster)

Experiments: Aharen, et al PRB 81,064436, (2010) 
                   Yamamura, et al JSSC 179 (2006) 605–612
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2-sublattice state(P=2Pi[001]): 
AFM100, FM110, 
Quadrupole phase 

Four-sublattice AFM state:    

Ground state phase diagram: J=2
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state. To be a bit more thorough, we also investigate more
general mean field ground states by allowing more sublattices.
We find that, in certain region of the phase diagram, the four-
sublattice state has a lower energy than the two-sublattice sub-
lattice. In fact, as we will discuss in the next section, the two-
sublattice ground state becomes unstable to quantum fluctu-
ation in these regions of phase diagram. Therefore, we as-
sume a general four-sublattice mean field ground state and the
resulting variational mean field phase diagram is depicted in
Fig. 1. In the following, we are going to discuss the properties
of these ground states.

AFM100
Quadrupole

FM110

FM111

�

�

�

0.0 0.5 1.0 1.5 2.0V0.0

0.2

0.4

0.6

0.8

1.0
J'

FIG. 1. (Color online) Ground state phase diagram. “�” phase is a
four-sublattice AFM phase; “⇤” phase is an intermediate ferromag-
netic phase between FM110 and FM111 phase. J = 1 in the phase
diagram.

1. Antiferromagnetic (AFM100) state

Write down its wave function

2. Uniform ferromagnetic (FM111) state

With large J �/J and small V/J , the ferromagnetic ex-
change favors a uniform fully-polarized ground state with the
polarization along [111] or other equivalent lattice directions.

3. Two-sublattice ferromagnetic (FM110) state

With large J �/J and V/J , we have the same type of
“FM110” state that was proposed in Ref. 0. Some argument
from old paper.

4. Intermediate ferromagnetic (“⇤”) state

intermediate phase between FM111 and FM110 state.
Compromise between the spin-spin exchange and orbital-
orbital interaction.

5. Two-sublattice spin nematic (Quadrupole) state

With small J �/J and large V/J , we have a spin nematic
ground state, whose nature is quite similar to the spin nematic
ground state proposed for spin S = 1 in NiGa2S4. The ground
state is time-reversal invariant. Write down the ground state.

6. Four-sublattice antiferromagnetic (“4”) state

This is a quite interesting state. with figures, the notion of
“typical state”

the orbital sector still has two-sublattice structure, which is
consistent with the results in Sec. III A.

7. Transitions

IV. MULTIPOLAR ORDERS AND T > 0 BEHAVIOR

A. Order parameters

B. Cubic system: phases

C. Cubic system: phase diagram and transitions

D. Magnetic susceptibility

V. BEYOND MEAN-FIELD: FLAVOR WAVES AND
NON-MAGNETIC GROUND STATES

A. flavor waves

VI. DISCUSSION

In this paper, we have introduced and analyzed a model
to describe localized electrons in a 4d1 or 5d1 configuration
on an fcc lattice, in which strong spin-orbit coupling and
the t2g orbital degeneracy combine to produce an effective
j = 3/2 description. The model contains three interactions
– nearest neighbor antiferromagnetic and ferromagnetic ex-
change, and electric quadrupolar interactions – and in addi-
tion may include the effect of structural anisotropy. We obtain
the (Weiss) mean-field phase diagram, which includes 3 main
phases, which all have a two-sublattice Q = 2�(001) struc-
ture. In all the phases, large multipolar order parameters in
addition to the usual magnetic dipolar order are present. Most
remarkably, we find a broad regime of time-reversal invariant
but quadrupolar ordered phase at intermediate temperatures.
A spin-wave analysis indicates that quantum fluctuations are
strong when nearest-neighbor antiferromagnetic exchange is
dominant, and in this case, we suggest possible quantum spin
liquid and valence bond solid phases.

“⇤”phase
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Two B-site ordered double perovskites, La2LiReO6 and Ba2YReO6, with S=1 were investigated as geo-
metrically frustrated antiferromagnets, using x-ray and neutron diffraction, superconducting quantum interfer-
ence device magnetometry, heat capacity, muon spin relaxation !!SR", and 89Y magic-angle spinning !MAS"
NMR. La2LiReO6 has a monoclinic structure !P21 /n" with cell parameters at room temperature; a
=5.58262!22" Å, b=5.67582!20" Å, c=7.88586!27" Å, and "=90.240!4"°. A zero-field cooled/field cooled
!ZFC/FC" divergence at 50 K was observed in the susceptibility. The ZFC susceptibility is zero below #5 K
for polycrystalline samples, suggesting a cooperative singlet ground state but weak moments are induced by
cooling in very small fields #1 mT. No evidence of long-range ordering is evident in heat capacity, neutron-
diffraction, or !SR data. The ZF spin dynamics from !SR are anomalous and can be fitted to a stretched
exponential rather than the Kubo-Toyabe form expected for random frozen spins but the muon spins are
decoupled in longitudinal fields !LF", consistent with spin freezing of the fraction of spins relaxing within the
muon time scale. The internal fields sensed by the muons are anomalously small, consistent with an electronic
spin-singlet state. Ba2YReO6 is found to be cubic !Fm3m" with cell parameter a=8.36278!2" Å at 300 K with
no change in symmetry at 3.8 K, at variance with the Jahn-Teller theorem for a t2g

2 configuration for Re5+. 89Y
MAS NMR shows a single peak indicating that Y/Re site disorder is at most 0.5%. The susceptibility shows
two broad peaks around 50 and 25 K but no evidence for long-range order from heat capacity, neutron
diffraction, or !SR. The ZF !SR result shows a two-component ground state with both slow and fast relax-
ations and decoupling results in a 1 kG LF, indicating spin freezing. These results are in sharp contrast to the
long-range AF order found in the S=3 /2 isostructural materials, La2LiRuO6 and Ba2YRuO6, indicating that the
reduction to S=1 plays a major role in ground state determination.
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I. INTRODUCTION

Geometrically frustrated antiferromagnetic materials have
attracted considerable interest over the past few years, moti-
vated by their tendency to form rather exotic magnetic
ground states such as the spin glass, spin liquid, or spin ice
states instead of long-range order in apparent defiance of the
third law of thermodynamics.1 Among the four “canonical”
geometrically frustrated lattices: triangular planar, kagome,
pyrochlore, and face-centered cubic !fcc", the latter has re-
ceived the least attention. In real materials the fcc magnetic
lattice is conveniently realized in the B-site ordered double
perovskites, A2BB!O6. Here a magnetic ion resides on the
B! site, while B and A are nonmagnetic. Both the B and B!
sites constitute interpenetrating face-centered cubic sublat-
tices, Fig. 1, which, if the exchange constraint between near-
est B! neighbors is antiferromagnetic, the basic criteria for
geometric frustration are satisfied. The conditions for B-B!
site ordering have been presented in the form of a phase
diagram.2

A very important feature of B-site ordered double perovs-
kites is the versatility of this structure type to chemical sub-

stitution. The large A-site ions are generally from Group II or
III and the B and B! ions from the transition series 3d-5d and
4f or small Group I, II, or III ions. The crystal symmetry can
be tuned via the familiar tolerance factor, t, which for double
perovskites can be written

FIG. 1. !Left" Cubic !Fm3m" structure of the B-site ordered
double perovskite A2BB!O6. Dark gray octahedra represent B!O6
and light gray octahedra represent BO6. The small spheres represent
the A ions. !Center" The monoclinic !P21 /n" structure with the
same shading scheme. !Right" The face-centered cubic lattice of B!
sites which is geometrically frustrated.
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These variational states are found to be stable by linear flavor wave theory.

structures which are not obtained in the simulations.
This underlines that the magnetic structures observed in
the simulations are the result of an entropic selection by
thermal fluctuations !which are absent in the mean-field
treatment".
The structures found in the Monte Carlo simulations

are q=0 structures: the magnetic elementary cell is identical
to the crystallographic one !one tetrahedron". This justifies
the following mean-field approximation which assumes
a wave vector q=0 and will give the corresponding magnetic
structures which minimize the energy. The following
mean-field approach thus neglects any thermal fluctuation
!T=0" and consists of minimizing the energy of one tetrahe-
dron with respect to the spins coordinates !the eight
angles defining the directions of the four spins of one tetra-
hedron".
Doing so, one finds that there is a continuous degeneracy

of states which minimize the energy of one tetrahedron.
These states can be classified in two sets. The first
one is made of the coplanar states obtained in the Monte
Carlo simulations and have a continuous global degree
of freedom which is a global rotation in the plane !rotation
around z in Fig. 6". The second set of lowest-energy states
contains noncoplanar states which can be described starting
from a coplanar structure. Starting from the coplanar struc-
ture of Fig. 6, one can parametrize the noncoplanar states as
follows:

S1 =#cos ! cos$" −
#

4 % ,
cos ! sin$" −

#

4 % ,
sin!!" ,

&
S2 =#cos ! cos$− " +

#

4 % ,
cos ! sin$− " +

#

4 % ,
− sin!!" ,

&

S3 =#cos ! cos$− " −
3#

4 % ,
cos ! sin$− " −

3#

4 % ,
− sin!!" ,

&
S4 =#cos ! cos$" +

3#

4 % ,
cos ! sin$" +

3#

4 % ,
sin!!" ,

&
where the spins are labeled as in Fig. 2 and where " and !
are not independent,

! = arctan!'2 sin "" . !2"

As soon as Eq. !2" is true, the corresponding state is one
of the degenerate ground states. The state represented in Fig.
6 corresponds to !="=0. In Eq. !2", ! is restricted to
(−# /4 ,# /4); however, starting from a state equivalent to the
one of Fig. 6 but where the spins are coplanar in the !zx" or
!yz" plane, one can write down the same kind of parametri-
zation of lowest-energy states. Note that the degeneracy due
to the free choice of one of the two angles (! or " in Eq. !2")
corresponds to a global degree of freedom for the pyrochlore
lattice, so that the macroscopic degeneracy of the pyrochlore
antiferromagnet without DMI’s is lifted and thus a phase
transition due to DMI’s is expected already on a mean-field
level.
The conclusion of the mean-field treatment is thus that

the coplanar state represented in Fig. 6 is a ground state as
well as the equivalent coplanar states in the !zx" and !yz"
planes, and these three states can be obtained one from
another by distorting continuously the magnetic structure
while staying at the minimum of the energy. However, the
intermediate states are not coplanar. The structure !in phase
space" of the lowest-energy states is sketched in Fig. 7.
As we shall see, the planar and noncoplanar states are not
equivalent as soon as temperature is not zero: they all mini-
mize the energy but the thermal fluctuations will favour the
planar states.
Finally, the magnetic structures for the direct and indirect

cases are very different. There is, however, no reason for
them to be related on a frustrated !nonbipartite" lattice. For
instance, the magnetic structures for J$0 and J%0 are very
different on the pyrochlore lattice, the ferromagnetic system
being magnetically ordered, whereas the antiferromagnetic
has a spin-liquid ground state.

3. Order by disorder

This discrepancy between the two approaches !mean field
and Monte Carlo" is interpreted as an entropic effect: the
mean-field approach neglects the thermal fluctuations and
identifies the ground states with the minima of the energy.
However, the fluctuations around the different minima are
not equivalent. Some of them are entropically favorable, and

FIG. 6. Ground state in the case of indirect DMI’s. The ground
state for the whole pyrochlore lattice is a q=0 structure so that only
one tetrahedron is represented. Similar structures in the zx and yz
planes are degenerate. Other noncoplanar states have the same en-
ergy but do not participate in the low-temperature properties !order
by disorder; see text".
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state. To be a bit more thorough, we also investigate more
general mean field ground states by allowing more sublattices.
We find that, in certain region of the phase diagram, the four-
sublattice state has a lower energy than the two-sublattice sub-
lattice. In fact, as we will discuss in the next section, the two-
sublattice ground state becomes unstable to quantum fluctu-
ation in these regions of phase diagram. Therefore, we as-
sume a general four-sublattice mean field ground state and the
resulting variational mean field phase diagram is depicted in
Fig. 1. In the following, we are going to discuss the properties
of these ground states.

AFM100
Quadrupole

FM110

FM111

�

�
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FIG. 1. (Color online) Ground state phase diagram. “�” phase is a
four-sublattice AFM phase; “⇤” phase is an intermediate ferromag-
netic phase between FM110 and FM111 phase. J = 1 in the phase
diagram.

1. Antiferromagnetic (AFM100) state

Write down its wave function

2. Uniform ferromagnetic (FM111) state

With large J �/J and small V/J , the ferromagnetic ex-
change favors a uniform fully-polarized ground state with the
polarization along [111] or other equivalent lattice directions.

3. Two-sublattice ferromagnetic (FM110) state

With large J �/J and V/J , we have the same type of
“FM110” state that was proposed in Ref. 0. Some argument
from old paper.

4. Intermediate ferromagnetic (“⇤”) state

intermediate phase between FM111 and FM110 state.
Compromise between the spin-spin exchange and orbital-
orbital interaction.

5. Two-sublattice spin nematic (Quadrupole) state

With small J �/J and large V/J , we have a spin nematic
ground state, whose nature is quite similar to the spin nematic
ground state proposed for spin S = 1 in NiGa2S4. The ground
state is time-reversal invariant. Write down the ground state.

6. Four-sublattice antiferromagnetic (“4”) state

This is a quite interesting state. with figures, the notion of
“typical state”

the orbital sector still has two-sublattice structure, which is
consistent with the results in Sec. III A.

7. Transitions

IV. MULTIPOLAR ORDERS AND T > 0 BEHAVIOR

A. Order parameters

B. Cubic system: phases

C. Cubic system: phase diagram and transitions

D. Magnetic susceptibility

V. BEYOND MEAN-FIELD: FLAVOR WAVES AND
NON-MAGNETIC GROUND STATES

A. flavor waves

VI. DISCUSSION

In this paper, we have introduced and analyzed a model
to describe localized electrons in a 4d1 or 5d1 configuration
on an fcc lattice, in which strong spin-orbit coupling and
the t2g orbital degeneracy combine to produce an effective
j = 3/2 description. The model contains three interactions
– nearest neighbor antiferromagnetic and ferromagnetic ex-
change, and electric quadrupolar interactions – and in addi-
tion may include the effect of structural anisotropy. We obtain
the (Weiss) mean-field phase diagram, which includes 3 main
phases, which all have a two-sublattice Q = 2�(001) struc-
ture. In all the phases, large multipolar order parameters in
addition to the usual magnetic dipolar order are present. Most
remarkably, we find a broad regime of time-reversal invariant
but quadrupolar ordered phase at intermediate temperatures.
A spin-wave analysis indicates that quantum fluctuations are
strong when nearest-neighbor antiferromagnetic exchange is
dominant, and in this case, we suggest possible quantum spin
liquid and valence bond solid phases.

“⇤”phase

e.g. the wavefunction of A/B sublattice of the Quadrupole phase is
|A⇥ = 1

2
|jz = 2⇥+ 1⇤

2
|jz = 0⇥+ 1

2
|jz = �2⇥

|B⇥ = 1

2
|jz = 2⇥ � 1⇤

2
|jz = 0⇥+ 1

2
|jz = �2⇥

Preserve time reversal symmetry, no magnetic dipolar 
order but a spin nematic order!

Magnetic multipole order: dipole, 
quadrupole, octupole!
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Two B-site ordered double perovskites, La2LiReO6 and Ba2YReO6, with S=1 were investigated as geo-
metrically frustrated antiferromagnets, using x-ray and neutron diffraction, superconducting quantum interfer-
ence device magnetometry, heat capacity, muon spin relaxation !!SR", and 89Y magic-angle spinning !MAS"
NMR. La2LiReO6 has a monoclinic structure !P21 /n" with cell parameters at room temperature; a
=5.58262!22" Å, b=5.67582!20" Å, c=7.88586!27" Å, and "=90.240!4"°. A zero-field cooled/field cooled
!ZFC/FC" divergence at 50 K was observed in the susceptibility. The ZFC susceptibility is zero below #5 K
for polycrystalline samples, suggesting a cooperative singlet ground state but weak moments are induced by
cooling in very small fields #1 mT. No evidence of long-range ordering is evident in heat capacity, neutron-
diffraction, or !SR data. The ZF spin dynamics from !SR are anomalous and can be fitted to a stretched
exponential rather than the Kubo-Toyabe form expected for random frozen spins but the muon spins are
decoupled in longitudinal fields !LF", consistent with spin freezing of the fraction of spins relaxing within the
muon time scale. The internal fields sensed by the muons are anomalously small, consistent with an electronic
spin-singlet state. Ba2YReO6 is found to be cubic !Fm3m" with cell parameter a=8.36278!2" Å at 300 K with
no change in symmetry at 3.8 K, at variance with the Jahn-Teller theorem for a t2g

2 configuration for Re5+. 89Y
MAS NMR shows a single peak indicating that Y/Re site disorder is at most 0.5%. The susceptibility shows
two broad peaks around 50 and 25 K but no evidence for long-range order from heat capacity, neutron
diffraction, or !SR. The ZF !SR result shows a two-component ground state with both slow and fast relax-
ations and decoupling results in a 1 kG LF, indicating spin freezing. These results are in sharp contrast to the
long-range AF order found in the S=3 /2 isostructural materials, La2LiRuO6 and Ba2YRuO6, indicating that the
reduction to S=1 plays a major role in ground state determination.
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I. INTRODUCTION

Geometrically frustrated antiferromagnetic materials have
attracted considerable interest over the past few years, moti-
vated by their tendency to form rather exotic magnetic
ground states such as the spin glass, spin liquid, or spin ice
states instead of long-range order in apparent defiance of the
third law of thermodynamics.1 Among the four “canonical”
geometrically frustrated lattices: triangular planar, kagome,
pyrochlore, and face-centered cubic !fcc", the latter has re-
ceived the least attention. In real materials the fcc magnetic
lattice is conveniently realized in the B-site ordered double
perovskites, A2BB!O6. Here a magnetic ion resides on the
B! site, while B and A are nonmagnetic. Both the B and B!
sites constitute interpenetrating face-centered cubic sublat-
tices, Fig. 1, which, if the exchange constraint between near-
est B! neighbors is antiferromagnetic, the basic criteria for
geometric frustration are satisfied. The conditions for B-B!
site ordering have been presented in the form of a phase
diagram.2

A very important feature of B-site ordered double perovs-
kites is the versatility of this structure type to chemical sub-

stitution. The large A-site ions are generally from Group II or
III and the B and B! ions from the transition series 3d-5d and
4f or small Group I, II, or III ions. The crystal symmetry can
be tuned via the familiar tolerance factor, t, which for double
perovskites can be written

FIG. 1. !Left" Cubic !Fm3m" structure of the B-site ordered
double perovskite A2BB!O6. Dark gray octahedra represent B!O6
and light gray octahedra represent BO6. The small spheres represent
the A ions. !Center" The monoclinic !P21 /n" structure with the
same shading scheme. !Right" The face-centered cubic lattice of B!
sites which is geometrically frustrated.
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structures which are not obtained in the simulations.
This underlines that the magnetic structures observed in
the simulations are the result of an entropic selection by
thermal fluctuations !which are absent in the mean-field
treatment".
The structures found in the Monte Carlo simulations

are q=0 structures: the magnetic elementary cell is identical
to the crystallographic one !one tetrahedron". This justifies
the following mean-field approximation which assumes
a wave vector q=0 and will give the corresponding magnetic
structures which minimize the energy. The following
mean-field approach thus neglects any thermal fluctuation
!T=0" and consists of minimizing the energy of one tetrahe-
dron with respect to the spins coordinates !the eight
angles defining the directions of the four spins of one tetra-
hedron".
Doing so, one finds that there is a continuous degeneracy

of states which minimize the energy of one tetrahedron.
These states can be classified in two sets. The first
one is made of the coplanar states obtained in the Monte
Carlo simulations and have a continuous global degree
of freedom which is a global rotation in the plane !rotation
around z in Fig. 6". The second set of lowest-energy states
contains noncoplanar states which can be described starting
from a coplanar structure. Starting from the coplanar struc-
ture of Fig. 6, one can parametrize the noncoplanar states as
follows:

S1 =#cos ! cos$" −
#

4 % ,
cos ! sin$" −

#

4 % ,
sin!!" ,

&
S2 =#cos ! cos$− " +

#

4 % ,
cos ! sin$− " +

#

4 % ,
− sin!!" ,

&

S3 =#cos ! cos$− " −
3#

4 % ,
cos ! sin$− " −

3#

4 % ,
− sin!!" ,

&
S4 =#cos ! cos$" +

3#

4 % ,
cos ! sin$" +

3#

4 % ,
sin!!" ,

&
where the spins are labeled as in Fig. 2 and where " and !
are not independent,

! = arctan!'2 sin "" . !2"

As soon as Eq. !2" is true, the corresponding state is one
of the degenerate ground states. The state represented in Fig.
6 corresponds to !="=0. In Eq. !2", ! is restricted to
(−# /4 ,# /4); however, starting from a state equivalent to the
one of Fig. 6 but where the spins are coplanar in the !zx" or
!yz" plane, one can write down the same kind of parametri-
zation of lowest-energy states. Note that the degeneracy due
to the free choice of one of the two angles (! or " in Eq. !2")
corresponds to a global degree of freedom for the pyrochlore
lattice, so that the macroscopic degeneracy of the pyrochlore
antiferromagnet without DMI’s is lifted and thus a phase
transition due to DMI’s is expected already on a mean-field
level.
The conclusion of the mean-field treatment is thus that

the coplanar state represented in Fig. 6 is a ground state as
well as the equivalent coplanar states in the !zx" and !yz"
planes, and these three states can be obtained one from
another by distorting continuously the magnetic structure
while staying at the minimum of the energy. However, the
intermediate states are not coplanar. The structure !in phase
space" of the lowest-energy states is sketched in Fig. 7.
As we shall see, the planar and noncoplanar states are not
equivalent as soon as temperature is not zero: they all mini-
mize the energy but the thermal fluctuations will favour the
planar states.
Finally, the magnetic structures for the direct and indirect

cases are very different. There is, however, no reason for
them to be related on a frustrated !nonbipartite" lattice. For
instance, the magnetic structures for J$0 and J%0 are very
different on the pyrochlore lattice, the ferromagnetic system
being magnetically ordered, whereas the antiferromagnetic
has a spin-liquid ground state.

3. Order by disorder

This discrepancy between the two approaches !mean field
and Monte Carlo" is interpreted as an entropic effect: the
mean-field approach neglects the thermal fluctuations and
identifies the ground states with the minima of the energy.
However, the fluctuations around the different minima are
not equivalent. Some of them are entropically favorable, and

FIG. 6. Ground state in the case of indirect DMI’s. The ground
state for the whole pyrochlore lattice is a q=0 structure so that only
one tetrahedron is represented. Similar structures in the zx and yz
planes are degenerate. Other noncoplanar states have the same en-
ergy but do not participate in the low-temperature properties !order
by disorder; see text".

ORDERING IN THE PYROCHLORE ANTIFERROMAGNET… PHYSICAL REVIEW B 71, 094420 !2005"

094420-5

�
Gang Chen’s theory group 

Gang Chen’s theory group



Uniform state: FM111 

2-sublattice state(P=2Pi[001]): 
AFM100, FM110, 
Quadrupole phase 

Four-sublattice AFM state:    

Ground state phase diagram: J=2

4

state. To be a bit more thorough, we also investigate more
general mean field ground states by allowing more sublattices.
We find that, in certain region of the phase diagram, the four-
sublattice state has a lower energy than the two-sublattice sub-
lattice. In fact, as we will discuss in the next section, the two-
sublattice ground state becomes unstable to quantum fluctu-
ation in these regions of phase diagram. Therefore, we as-
sume a general four-sublattice mean field ground state and the
resulting variational mean field phase diagram is depicted in
Fig. 1. In the following, we are going to discuss the properties
of these ground states.

AFM100
Quadrupole

FM110

FM111

�

�

�

0.0 0.5 1.0 1.5 2.0V0.0

0.2

0.4

0.6

0.8

1.0
J'

FIG. 1. (Color online) Ground state phase diagram. “�” phase is a
four-sublattice AFM phase; “⇤” phase is an intermediate ferromag-
netic phase between FM110 and FM111 phase. J = 1 in the phase
diagram.

1. Antiferromagnetic (AFM100) state

Write down its wave function

2. Uniform ferromagnetic (FM111) state

With large J �/J and small V/J , the ferromagnetic ex-
change favors a uniform fully-polarized ground state with the
polarization along [111] or other equivalent lattice directions.

3. Two-sublattice ferromagnetic (FM110) state

With large J �/J and V/J , we have the same type of
“FM110” state that was proposed in Ref. 0. Some argument
from old paper.

4. Intermediate ferromagnetic (“⇤”) state

intermediate phase between FM111 and FM110 state.
Compromise between the spin-spin exchange and orbital-
orbital interaction.

5. Two-sublattice spin nematic (Quadrupole) state

With small J �/J and large V/J , we have a spin nematic
ground state, whose nature is quite similar to the spin nematic
ground state proposed for spin S = 1 in NiGa2S4. The ground
state is time-reversal invariant. Write down the ground state.

6. Four-sublattice antiferromagnetic (“4”) state

This is a quite interesting state. with figures, the notion of
“typical state”

the orbital sector still has two-sublattice structure, which is
consistent with the results in Sec. III A.

7. Transitions

IV. MULTIPOLAR ORDERS AND T > 0 BEHAVIOR

A. Order parameters

B. Cubic system: phases

C. Cubic system: phase diagram and transitions

D. Magnetic susceptibility

V. BEYOND MEAN-FIELD: FLAVOR WAVES AND
NON-MAGNETIC GROUND STATES

A. flavor waves

VI. DISCUSSION

In this paper, we have introduced and analyzed a model
to describe localized electrons in a 4d1 or 5d1 configuration
on an fcc lattice, in which strong spin-orbit coupling and
the t2g orbital degeneracy combine to produce an effective
j = 3/2 description. The model contains three interactions
– nearest neighbor antiferromagnetic and ferromagnetic ex-
change, and electric quadrupolar interactions – and in addi-
tion may include the effect of structural anisotropy. We obtain
the (Weiss) mean-field phase diagram, which includes 3 main
phases, which all have a two-sublattice Q = 2�(001) struc-
ture. In all the phases, large multipolar order parameters in
addition to the usual magnetic dipolar order are present. Most
remarkably, we find a broad regime of time-reversal invariant
but quadrupolar ordered phase at intermediate temperatures.
A spin-wave analysis indicates that quantum fluctuations are
strong when nearest-neighbor antiferromagnetic exchange is
dominant, and in this case, we suggest possible quantum spin
liquid and valence bond solid phases.

“⇤”phase

e.g. the wavefunction of A/B sublattices of the Quadrupole phase is
|A⇥ = 1

2
|jz = 2⇥+ 1⇤

2
|jz = 0⇥+ 1

2
|jz = �2⇥

|B⇥ = 1

2
|jz = 2⇥ � 1⇤

2
|jz = 0⇥+ 1

2
|jz = �2⇥

Preserve time reversal symmetry, no magnetic dipolar 
order but a spin nematic order!

Magnetic multipole order: dipole, 
quadrupole, octupole!
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Two B-site ordered double perovskites, La2LiReO6 and Ba2YReO6, with S=1 were investigated as geo-
metrically frustrated antiferromagnets, using x-ray and neutron diffraction, superconducting quantum interfer-
ence device magnetometry, heat capacity, muon spin relaxation !!SR", and 89Y magic-angle spinning !MAS"
NMR. La2LiReO6 has a monoclinic structure !P21 /n" with cell parameters at room temperature; a
=5.58262!22" Å, b=5.67582!20" Å, c=7.88586!27" Å, and "=90.240!4"°. A zero-field cooled/field cooled
!ZFC/FC" divergence at 50 K was observed in the susceptibility. The ZFC susceptibility is zero below #5 K
for polycrystalline samples, suggesting a cooperative singlet ground state but weak moments are induced by
cooling in very small fields #1 mT. No evidence of long-range ordering is evident in heat capacity, neutron-
diffraction, or !SR data. The ZF spin dynamics from !SR are anomalous and can be fitted to a stretched
exponential rather than the Kubo-Toyabe form expected for random frozen spins but the muon spins are
decoupled in longitudinal fields !LF", consistent with spin freezing of the fraction of spins relaxing within the
muon time scale. The internal fields sensed by the muons are anomalously small, consistent with an electronic
spin-singlet state. Ba2YReO6 is found to be cubic !Fm3m" with cell parameter a=8.36278!2" Å at 300 K with
no change in symmetry at 3.8 K, at variance with the Jahn-Teller theorem for a t2g

2 configuration for Re5+. 89Y
MAS NMR shows a single peak indicating that Y/Re site disorder is at most 0.5%. The susceptibility shows
two broad peaks around 50 and 25 K but no evidence for long-range order from heat capacity, neutron
diffraction, or !SR. The ZF !SR result shows a two-component ground state with both slow and fast relax-
ations and decoupling results in a 1 kG LF, indicating spin freezing. These results are in sharp contrast to the
long-range AF order found in the S=3 /2 isostructural materials, La2LiRuO6 and Ba2YRuO6, indicating that the
reduction to S=1 plays a major role in ground state determination.

DOI: 10.1103/PhysRevB.81.064436 PACS number!s": 75.50.Lk, 75.50.Ee, 76.60.#k, 61.05.F#

I. INTRODUCTION

Geometrically frustrated antiferromagnetic materials have
attracted considerable interest over the past few years, moti-
vated by their tendency to form rather exotic magnetic
ground states such as the spin glass, spin liquid, or spin ice
states instead of long-range order in apparent defiance of the
third law of thermodynamics.1 Among the four “canonical”
geometrically frustrated lattices: triangular planar, kagome,
pyrochlore, and face-centered cubic !fcc", the latter has re-
ceived the least attention. In real materials the fcc magnetic
lattice is conveniently realized in the B-site ordered double
perovskites, A2BB!O6. Here a magnetic ion resides on the
B! site, while B and A are nonmagnetic. Both the B and B!
sites constitute interpenetrating face-centered cubic sublat-
tices, Fig. 1, which, if the exchange constraint between near-
est B! neighbors is antiferromagnetic, the basic criteria for
geometric frustration are satisfied. The conditions for B-B!
site ordering have been presented in the form of a phase
diagram.2

A very important feature of B-site ordered double perovs-
kites is the versatility of this structure type to chemical sub-

stitution. The large A-site ions are generally from Group II or
III and the B and B! ions from the transition series 3d-5d and
4f or small Group I, II, or III ions. The crystal symmetry can
be tuned via the familiar tolerance factor, t, which for double
perovskites can be written

FIG. 1. !Left" Cubic !Fm3m" structure of the B-site ordered
double perovskite A2BB!O6. Dark gray octahedra represent B!O6
and light gray octahedra represent BO6. The small spheres represent
the A ions. !Center" The monoclinic !P21 /n" structure with the
same shading scheme. !Right" The face-centered cubic lattice of B!
sites which is geometrically frustrated.

PHYSICAL REVIEW B 81, 064436 !2010"

1098-0121/2010/81!6"/064436!9" ©2010 The American Physical Society064436-1

structures which are not obtained in the simulations.
This underlines that the magnetic structures observed in
the simulations are the result of an entropic selection by
thermal fluctuations !which are absent in the mean-field
treatment".
The structures found in the Monte Carlo simulations

are q=0 structures: the magnetic elementary cell is identical
to the crystallographic one !one tetrahedron". This justifies
the following mean-field approximation which assumes
a wave vector q=0 and will give the corresponding magnetic
structures which minimize the energy. The following
mean-field approach thus neglects any thermal fluctuation
!T=0" and consists of minimizing the energy of one tetrahe-
dron with respect to the spins coordinates !the eight
angles defining the directions of the four spins of one tetra-
hedron".
Doing so, one finds that there is a continuous degeneracy

of states which minimize the energy of one tetrahedron.
These states can be classified in two sets. The first
one is made of the coplanar states obtained in the Monte
Carlo simulations and have a continuous global degree
of freedom which is a global rotation in the plane !rotation
around z in Fig. 6". The second set of lowest-energy states
contains noncoplanar states which can be described starting
from a coplanar structure. Starting from the coplanar struc-
ture of Fig. 6, one can parametrize the noncoplanar states as
follows:

S1 =#cos ! cos$" −
#

4 % ,
cos ! sin$" −

#

4 % ,
sin!!" ,

&
S2 =#cos ! cos$− " +

#

4 % ,
cos ! sin$− " +

#

4 % ,
− sin!!" ,

&

S3 =#cos ! cos$− " −
3#

4 % ,
cos ! sin$− " −

3#

4 % ,
− sin!!" ,

&
S4 =#cos ! cos$" +

3#

4 % ,
cos ! sin$" +

3#

4 % ,
sin!!" ,

&
where the spins are labeled as in Fig. 2 and where " and !
are not independent,

! = arctan!'2 sin "" . !2"

As soon as Eq. !2" is true, the corresponding state is one
of the degenerate ground states. The state represented in Fig.
6 corresponds to !="=0. In Eq. !2", ! is restricted to
(−# /4 ,# /4); however, starting from a state equivalent to the
one of Fig. 6 but where the spins are coplanar in the !zx" or
!yz" plane, one can write down the same kind of parametri-
zation of lowest-energy states. Note that the degeneracy due
to the free choice of one of the two angles (! or " in Eq. !2")
corresponds to a global degree of freedom for the pyrochlore
lattice, so that the macroscopic degeneracy of the pyrochlore
antiferromagnet without DMI’s is lifted and thus a phase
transition due to DMI’s is expected already on a mean-field
level.
The conclusion of the mean-field treatment is thus that

the coplanar state represented in Fig. 6 is a ground state as
well as the equivalent coplanar states in the !zx" and !yz"
planes, and these three states can be obtained one from
another by distorting continuously the magnetic structure
while staying at the minimum of the energy. However, the
intermediate states are not coplanar. The structure !in phase
space" of the lowest-energy states is sketched in Fig. 7.
As we shall see, the planar and noncoplanar states are not
equivalent as soon as temperature is not zero: they all mini-
mize the energy but the thermal fluctuations will favour the
planar states.
Finally, the magnetic structures for the direct and indirect

cases are very different. There is, however, no reason for
them to be related on a frustrated !nonbipartite" lattice. For
instance, the magnetic structures for J$0 and J%0 are very
different on the pyrochlore lattice, the ferromagnetic system
being magnetically ordered, whereas the antiferromagnetic
has a spin-liquid ground state.

3. Order by disorder

This discrepancy between the two approaches !mean field
and Monte Carlo" is interpreted as an entropic effect: the
mean-field approach neglects the thermal fluctuations and
identifies the ground states with the minima of the energy.
However, the fluctuations around the different minima are
not equivalent. Some of them are entropically favorable, and

FIG. 6. Ground state in the case of indirect DMI’s. The ground
state for the whole pyrochlore lattice is a q=0 structure so that only
one tetrahedron is represented. Similar structures in the zx and yz
planes are degenerate. Other noncoplanar states have the same en-
ergy but do not participate in the low-temperature properties !order
by disorder; see text".
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Finite temperature phases
Numerical calculation from MFT suggests that there exists a spin-nematic 
phase (which preserves time reversal symmetry) in the intermediate-
temperature for some region of the phase diagram. 10

I
a
b

c

II
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b
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c

III
a

b

c
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FIG. 3. (Color online) Finite temperature phase diagram. Region
I (white) corresponds to a thermal transition from/to paramagnetic
phase at Tm(p = 2�(001)), region II (blue) corresponds to a ther-
mal transition from/to paramagnetic phase at TQ(p = 2�(001)),
region III (red) corresponds to a thermal transition from/to paramag-
netic phase at Tm(p = 0). Dashed curves are phase boundaries of
the ground state phases taken from Fig. 1. “a, b, c, d” label the low
temperature phases of each region. J = 1 in the phase diagram.

A. Region I

In region I, the system has a direct transition from the high
temperature paramagnetic phase to low temperature magneti-
cally ordered phases specified by the dashed curves in Fig. 3.
At mean field level, the transitions to FM110 phase in region
Ia and AFM100 phase in region Ic are found to be first order
and the transitions to four-sublattice phase “�” in region Ib
is continuous (see Fig. 4). A first order transition is usually
believed to be caused by the presence of a mixed third-order
terms which couple the dipolar and quadrupolar orders in the
Landau free energy.26,27 Integrating out the quadrupolar order
parameter may lead to a negative quartic term in the effective
Landau free energy for the primary dipolar order parameter.
Such a negative quartic term supports a first order transition,
while a positive quartic term may support a continuous tran-
sition. A complete and detailed analysis of the Landau theory
is beyond the scope of this work.

B. Region II

In region II, there is a broad p = 2�(001) quadrupolar
phase in the intermediate temperature. Unlike the spin ne-
matic state in the ground state phase diagram, this intermedi-
ate temperature quadrupolar phase is actually a biaxial spin
nematic state in which the quadrupole moment �Qµ⇥

i ⇥ has
three distinct eigenvalues. At mean field level, the transition
from PM phase to quadrupolar phase is continuous (see Fig. 5
and Fig. 6). Beyond mean field theory, this transition is be-
lieved to be in a three dimension O(3) universality class.10

As mentioned previously, the low temperature phases
(FM110 in region IIa, four-sublattice phase “�” in region
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(c) J ⇥ = V = 0.1J in Ic.

FIG. 4. (Color online) Order parameters plotted for three subregions
of region I: (a) Sqaure (red) (⇥Qx2�y2

A � Qx2�y2

B ⇤)/2, ball (blue)
⇥Q3z2

A + Q3z2

B ⇤/2, diamond (yellow) |⇥jA + jB⇤|/2, and triangle
(green) |⇥jA � jB⇤|/2. (b) Sqaure (red)

P
i=A,B,C,D⇥Q

3z2

i ⇤, ball (blue)
P

i=A,B,C,D⇥Q
x2�y2

i ⇤, diamond (yellow) |⇥jxA � jxB + jxC � jxD⇤|/4,
and triangle (blue) |⇥jyA � jyB � jyC + jyD⇤|/4. (c) Sqaure (red)
⇥Qx2�y2

A +Qx2�y2

B ⇤/2, ball (blue) ⇥Q3z2

A +Q3z2

B ⇤/2, and diamond
(yellow) |⇥jA � jB⇤|/2.

IIc) can be regarded as furtherly breaking the time reversal
symmetry on top of the quadrupolar phase at the intermedi-
ate temperature. This transition is found to be continuous at
mean field level. The symmetry breaking associated with this
transition can be described by several Ising order parameters
(uniform and stagger magnetization). This transition is be-
lieved to be continuous beyond mean field.10

The transition from quadrupolar phase to AFM100 in re-
gion IId is found to be strongly first order at the level of mean

10 subregions in total!  
Region II (light blue): spin nematic 
phase at intermediate temperatures

Chen and Balents, (in 
preparation)
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(a) J 0 = 0.8J, V = 0.1J in IIIa
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(b) J 0 = 0.8J, V = 0.22J in IIIb
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(c) J = 0.8J, V = 0.5J in IIIc

FIG. 7. (Color online) Order parameters plotted in three subre-
gions of region III: (a) uniform magnetization |⇥ji⇤| (b) square (red)
⇥Q3z2

A +Q3z2

B ⇤/2, ball (blue) ⇥Qx2�y2

A �Qx2�y2

B ⇤/2, diamond (yel-
low) |⇥jA � jB⇤/2|, upper triangle (green) |⇥j?A + j?B ⇤/2|, and down
triangle (blue) |⇥jzA+jzB⇤/2|. (c) square (red) ⇥Qx2�y2

A �Qx2�y2

B ⇤/2,
ball (blue) ⇥Q3z2

A +Q3z2

B ⇤/2, diamond (yellow) |⇥jA � jB⇤/2|, upper
triangle (green) |⇥j?A +j?B ⇤/2|, and down triangle (blue) |⇥jzA+jzB⇤/2|
.

Since the spin nematic phase at intermediate temperature has
a tetragonal symmetry, we obtain two different susceptibili-
ties parallel to the wavevector p = 2�(001) (⇥zz) and normal
to it (⇥xx = ⇥yy). At even lower temperatures, the system
develops the magnetic order of each low-temperature phase
corresonding to the subregion in region II.
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FIG. 8. (Color online) Inverse magnetic susceptibility of different
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Experiments

Although the Os6+ ion has more spins (S ¼ 1) than the
Re6+ ion (S ¼ 1=2), the magnetization for Ba2CaOsO6 is
smaller than that for Ba2CaReO6. This suppression of the
magnetization implies that there exists the stronger
antiferromagnetic interaction in Ba2CaOsO6. In addition,
as will be described later, specific heat measurements show
an anomaly at the temperature at which the maximum is
observed in the magnetic susceptibility vs. temperature

curve, which indicates that this anomaly is due to the long
range magnetic ordering. For these reasons, we conclude
that the magnetic transition observed for Ba2CaOsO6 at
51K is the antiferromagnetic transition. The divergence
between ZFC and FC magnetic susceptibilities and the
existence of small magnetic hysteresis loop at 5K indicate
that there is a very weak ferromagnetic component in this
antiferromagnetic interaction.

ARTICLE IN PRESS

Fig. 4. Crystal structures of Ba2CaMO6. Solid and dotted lines show the
cubic cell and the tetragonal cell, respectively.

Fig. 5. Temperature dependences of lattice parameters and cell volumes of
primitive perovskite-type structures for Ba2CaMO6 (see the text).

Fig. 6. Temperature dependences of the reciprocal magnetic susceptibil-
ities for (a) Ba2CaReO6 and (b) Ba2CaOsO6. The insets display the
detailed susceptibilities in the vicinity of magnetic transition temperatures.

Fig. 7. Magnetic field dependence of the magnetization for Ba2CaMO6

(M ¼ Re and Os) measured at 5K.
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the Debye model:

Cp ¼ 9RðyD=TÞ3
Z yD=T

0

x4ex

ðex $ 1Þ2
dx. (4)

The yD of Ba2CaWO6 was scaled by a single constant
such that the value is consistent with that of Ba2CaReO6 at
50K. The specific heat calculated from Eq. (4) with the
scaled yD is used as the Clat of Ba2CaReO6.
The magnetic entropy change Smag associated with the

magnetic transition is calculated by integrating:

Smag ¼
Z T

0

Cmag

T
dT , (5)

and Smag ¼ 5:22 JK$1 mol$1 is obtained (Fig. 9). This
value is a little smaller than R ln 2–5.76 JK$1mol$1, where
R is a molar gas constant. One reason for this is that the
geometric frustration arising from the face-centered ar-
rangement of the magnetic ions reduces the magnetic
entropy change. It is reported that the magnetic properties
for Sr2MgReO6 and Sr2CaReO6 characterized by the spin-
glass behavior are due to the frustration, and that magnetic
entropy changes are 0.167 JK$1mol$1 for Sr2CaReO6 and
3.73 JK$1mol$1 for Sr2CaReO6 [21,22]. These values are
also smaller than the theoretical entropy change of
5.76 JK$1mol$1.
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Fig. 9. Detailed specific heat (open triangle) and magnetic entropy (filled
triangle) for Ba2CaReO6. A dotted line shows the lattice specific heat (see
text). A dashed line shows the magnetic entropy change expected for
S ¼ 1=2.

Fig. 8. Temperature dependences of the specific heat for Ba2CaMO6

(M ¼ W, Re and Os). The insets of (a) and (b) show the differentials of the
specific heat against temperature for Ba2CaWO6 between 200 and 240K
and for Ba2CaReO6 between 120 and 170K, respectively. Solid lines are
guides for the eye. Arrows show the temperatures at which specific heat
anomalies are observed.
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remove moisture and surface contamination!, 10% excess of
Li2CO3 "J.T. Baker Chemical Co., 99.1%!, Re "Alfa Aesar,
99.997%!, and ReO3 "Rhenium Alloys Inc.! was ground and
heated in an Ar flow in two stages, first to 923 K at 100° /h
and held for 6 h, then fired at 1173 K for 10 h. For
Ba2YReO6, a stoichiometric mixture of starting reagents,
BaCO3 "J.T. Baker Chemical Co.!, Y2O3 "Alfa Aesar, 99.9%,
preheated!, Re "Alfa Aesar, 99.997%!, and ReO3 "Rhenium
Alloys Inc.! was ground and heated in an Ar flow again in
two stages, first at 1143 K for 6 h and then at 1573 K for 24
h. A second firing at 1573 K for 24 h was required for
completion of the reaction. The obtained powders were black
and the sample purity was tested by x-ray diffraction using a
Gunier-Hägg camera with Cu K!1 radiation.

Magnetic-susceptibility measurements were performed
with applied fields of 10, 100, and 5000 Oe at McMaster
University using a Quantum Design MPMS SQUID magne-
tometer. Zero-field cooling "ZFC! and field cooling "FC! data
were collected in the temperature range of 2 to 300 K. A
hysteresis measurement for La2LiReO6 was performed at 5
K with an applied field range between -5.5 T and 5.5 T.

Heat-capacity measurements were carried out at McMas-
ter using an Oxford Maglab and at Florida State University/

NHMFL using a Quantum Design PPMS system in the tem-
perature range of 2 to 70 K. Lattice match compounds,
La2LiIrO6 and Ba2YTaO6 "Refs. 7 and 8! were prepared ac-
cording to literature methods and measured to estimate the
lattice heat-capacity contribution for La2LiReO6 and
Ba2YReO6.

Neutron-diffraction measurements were performed on the
C2 diffractometer at the Canadian Neutron Beam Centre op-
erated by the National Research Council of Canada at the
Chalk River laboratories of Atomic Energy of Canada. The
data were collected at room temperature and 2.8 K with neu-
tron wavelengths of 2.7319 and 1.3305 Å for La2LiReO6
and at 4, 10, 20, 40, and 300 K with neutron wavelengths of
2.36927 and 1.3286 Å for Ba2YReO6. The crystal structures
of both compounds were refined using FULLPROF "Ref. 9! or
GSAS.10

Local spin dynamics were investigated using ZF and lon-
gitudinal field "LF! "SR at TRIUMF, Vancouver, Canada.
The measurement temperatures were 2 K and 10 K–60 K in
10 K increments in ZF "SR and 2 K with applied fields of
100 and 500 G in LF "SR for La2LiReO6. For Ba2YReO6,
the measurement temperatures were at 2, 5, 15, 25, 35, 40,

TABLE II. Selected bond distances "Å! and angles "° ! for
La2LiReO6 at 298 and 2.8 K.

Bond length "Å! 2.8 K 298 K

Li-O1 2.149"6! 2.143"5!
Li-O2 2.122"6! 2.137"5!
Li-O3 2.097"6! 2.110"5!
Re-O1 1.964"6! 1.959"5!
Re-O2 1.978"6! 1.957"6!
Re-O3 1.937"6! 1.946"5!

Bond angles "deg! 2.8 K 298 K

Li-O1-Re 151.1"4! 152.1"4!
Li-O2-Re 152.7"4! 152.9"4!
Li-O3-Re 152.7"4! 152.82"29!
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FIG. 3. Inverse susceptibility for La2LiReO6 showing the Curie-
Weiss fit.

FIG. 4. "Color online! Temperature dependence of the suscepti-
bility of La2LiReO6 at an applied field of 0.5 T. The inset shows the
result of subtracting the weak Curie tail and evidence for a mag-
netic singlet ground state.
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42.5, 50, 55, and 100 K in ZF !SR and 2 K with an applied
field of 1 kG in LF !SR. 89Y MAS solid-state NMR was
performed on Ba2YReO6 in the Department of Chemistry at
the University of Manitoba. The spectrum was collected on a
3.2 mm double-resonance Varian-Chemagnetics MAS probe
using a Bloch-decay pulse sequence on a Varian InovaUNITY

600 !14.1 T" spectrometer operating at a Larmor frequency,
"L of 29.36 MHz. The sample !black crushed powder" was
packed into a 3.2 mm !o.d." ZrO2 rotor with a fill volume of
22 !L and spun at 22.000#0.015 kHz. The spectrum is the
result of 785 408 coadded transients, acquired with a 45° tip
angle !"rf=45 kHz" and a recycle delay of 400 ms. The
sample temperature was maintained at 303 K, and the chemi-
cal shift was referenced with respect to external 2 M
Y!NO3"3 at 0.0 ppm.11

III. RESULT AND DISCUSSION

A. La2LiReO6

1. Crystal structure

The obtained powder was confirmed to be single phase by
x-ray diffraction. The crystal structure of this compound is

shown in Fig. 1. This compound was first reported to have an
orthorhombic structure with cell parameters a=5.577 !Å",
b=5.663 !Å", and c=7.876 !Å" from x-ray powder
diffraction.5 On the contrary, two related compounds
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FIG. 6. The heat capacity of La2LiReO6 and the lattice match
sample, La2LiIrO6. The inset shows the magnetic component and a
very broad maximum between 40–50 K.

FIG. 7. A low-angle neutron-diffraction difference plot 2.8–
297.5 K showing the absence of magnetic Bragg peaks. The arrows
show the location of expected reflections for a type I fcc structure as
found for La2LiRuO6 !Ref. 4".
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FIG. 9. !Color online" !a" Temperature dependence of the relax-
ation rate and the exponent, &, extracted from the fit to a stretched
exponential function for the data of Fig. 8. !b" Application of a 500
Oe LF !upper curve" for La2LiReO6 showing decoupling of both
components at 1.7 K.
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were fitted, shown as the solid line, with a stretched expo-
nential, A!t"=A0

! exp#−!!t""$, where A is an amplitude and !
is a relaxation rate. The temperature dependence of the ex-
tracted relaxation rate is shown in Fig. 9!a" along with the

behavior of the exponent, ". The rate is roughly constant
until %50 K !the ZFC/FC divergence temperature" and then
increases gradually, reaching a saturation value only below
%20 K consistent with some level of spin freezing. The "
value remains constant at %2 down to 50 K, consistent with
paramagnetic relaxation, then decreases sharply, indicating
that electron spins are involved. In contrast to other Re-based
double perovskites with S=1 /2 such as Sr2CaReO6 or
Sr2MgReO6,15,16 the relaxation data do not exhibit the classic
Kubo-Toyabe line shape often found for frozen spin ground-
state materials in which essentially all of the spins freeze.
Instead, the observed stretched exponential decay is typical
of dilute spin systems, which is curious as the concentration
of magnetic Re5+ ions is nominally high in this material.
Application of a 500 Oe LF, Fig. 9!b", decouples the muons
at 2 K, indicating that the electron spins, which couple to the
muons, are static at this temperature. The very slow relax-
ation of the muons in La2LiReO6 indicates coupling to very
weak electronic fields, which is consistent with the singlet
ground-state behavior seen in the bulk susceptibility, if it is
postulated that most of the Re spins are involved in the sin-
glet state, leaving only a remnant fraction to couple with the
muon spins. It is worth noting that the weak local fields
cannot be due to some type of symmetry cancellation in this
system as the muon will be hydrogen bonded to the O atoms

FIG. 10. !a" Neutron-diffraction pattern and the refinement for
Ba2YReO6 at 4 K. !b" High-angle, high-resolution !#d /d%2
$10−3" neutron-diffraction data at 4 K and !c" 300 K showing no
distortion from cubic symmetry.

FIG. 11. 89Y MAS NMR of Ba2YReO6 acquired at 22 kHz. The
center of gravity chemical shift is −2320!15" ppm with a width of
90 ppm. The apparent peak at %−1820 ppm is an experimental
artifact from the transmitter.
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FIG. 12. !Color online" The magnetic susceptibility of
Ba2YReO6. A Curie-Weiss fit of the inverse susceptibility data,
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Ba2CaOsO6 
Single AFM phase transition

corresponds to phases in region I

which are in sites of very low crystallographic symmetry.

B. Ba2YReO6

1. Crystal structure

This compound was previously studied by Sasaki et al.6

and reported to be monoclinic, P21 /n by the refinement of a
powder x-ray diffraction data collected at room temperature.
Examination of the results from this study revealed that the
monoclinic cell constants were metrically cubic to within
experimental error. Thus, the neutron-diffraction data ob-
tained here were refined in Fm3m. The results, given in Fig.
10!a" and Tables III and IV, show that the choice of Fm3m is
correct. As seen in Fig. 10!b", there is no detectable distor-
tion from cubic symmetry at 300 or 3.5 K within the reso-
lution of the neutron data which is !d /d#2"10−3 for the
2# range covered in the figure. This result is of considerable
interest as Re5+, 5d2 has the t2g

2 configuration in cubic sym-
metry and is thus subject to the Jahn-Teller theorem and
some distortion would be expected.

In addition to the crystal structure, Y/Re ordering is an
issue to be addressed since the charge difference of 2 and the
ionic radii difference between Y3+ and Re5+ ions places this
material near the border of the phase diagram of Anderson et
al.2 for B-site ordering in double perovskites. Thus, a 89Y
MAS NMR measurement was carried out to investigate the
level of Y/Re ordering. Previously, the same technique dis-
closed a 1% site mixing between Y and Ru in isostructural
Ba2YRuO6.4 As shown in Fig. 11, a single peak is observed
at −2320 ppm with a peak width $full width at half maxi-
mum !FWHM=2.55 kHz"% comparable to that in
Ba2YRuO6.4 No additional signals could be detected over a
6000 ppm range. It may be noted that the peak position is
midway between the “normal” 89Y chemical shielding range
and the approximately −5800 ppm positions observed for
the S=3 /2 Ba2YRuO6, evidence that interaction with the un-
paired electron spins dominates the nuclear shielding prop-
erties. From these results it can be concluded that there is no
convincing evidence for Y/Re site disorder in Ba2YReO6.
Using the arguments of Refs. 4 and 17 an upper limit of
Y/Re disorder is generously estimated to be 0.5%.

2. Magnetic properties

The magnetic susceptibility for Ba2YReO6 is displayed in
Fig. 12. It shows two broad maxima at 50 and 25 K, which is
consistent with the data previously reported by Sasaki et al.6

although their results do not show the 25 K anomaly so
clearly. The ZFC/FC curves show a slight divergence around
125 K. The inverse susceptibility was fitted with the Curie-
Weiss law yielding a Weiss temperature, #=−616!7" K and
an effective magnetic moment, $eff=1.93$B. This reduced
effective moment compared to its spin only value !2.83$B"
may be due to orbital contributions. The reported Weiss tem-
perature !#=−723 K" of Sasaki et al. is somewhat larger
than that seen here, which could result from a different
choice of the temperature region for the fitting. The frustra-
tion index derived here is f #15.
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FIG. 13. !Color online" Heat capacity of Ba2YReO6 and
Ba2YTaO6. The insets show: !top" the magnetic component plotted
as C!MAG" /T vs T. !Bottom" Fisher’s heat capacity, d!%T" /dT vs T
!Ref. 18".
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FIG. 14. The difference neutron-diffraction pattern, 3.5–300 K
for Ba2YReO6, showing the absence of detectable magnetic Bragg
peaks.

FIG. 15. !Color online" ZF-$SR relaxation data at selected tem-
peratures for Ba2YReO6. The fitted lines are to a sum of two expo-
nential decay functions, see text.
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La2LiReO6 and Ba2YReO6 
Seem to suggest two thermal transitions: two Curie regime!

Experiments: Aharen, et al PRB 81,064436, (2010) 
                   Yamamura, et al JSSC 179 (2006) 605–612
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Summary

We study a geometrically frustrated magnetic system 
with strong SOC

We find various zero temperature ground states and 
finite temperature phases in ordered double 
perovskites

Single crystal samples and NMR+Neutron are required 
to identify these phases.
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