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We construct a tight-binding model realizing one pair of Weyl nodes and three distinct Weyl semimetals. In
the type-I (type-II) Weyl semimetal, both nodes belong to type-I (type-II) Weyl nodes. In addition, there exists a
third type, previously undiscovered and dubbed “hybrid Weyl semimetal”, in which one Weyl node is of type I
while the other is of type II. For the hybrid Weyl semimetal, we further demonstrate the bulk Fermi surfaces and
the topologically protected surface states, analyze the unique Landau-level structure and quantum oscillation,
and discuss the conditions for possible material realization.
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Introduction. Since the theoretical and experimental discov-
ery of topological insulator [1,2], the study of topological states
of matter has become one of the major topics in condensed-
matter physics. Apart from the triumphs of systems with full
energy gaps, the concept and discovery of Weyl semimetals
(WSMs) have stimulated intensive activities in understanding
the band topology for gapless systems [3–18]. A WSM, in
the original setting, has linear conic band crossings at the
Fermi energy [5]. These band crossing points, i.e., the “Weyl
nodes”, behave like sources and sinks of the Berry curvature in
the momentum space and are topologically protected. Based
on the bulk-boundary correspondence, the surface state of a
WSM takes the form of Fermi arc that connects a pair of Weyl
points with opposite chiralities [5].

A type of structured Weyl node, dubbed type II, was recently
discovered in WTe2 [14] and a spin-orbit-coupled superfluid
[15]. In the original WSM, referred as type I, the Fermi surface
is composed of discrete Weyl points with emergent Lorentz
invariance. In type-II WSMs, the conic spectrum is tilted near
the nodes, and the emergent Lorentz invariance is broken.
These Lorentz-invariance-violating type-II Weyl nodes appear
at the contact points of the electron and hole pockets in type-II
WSMs. In all the previous works on type-I or type-II WSMs,
the two Weyl nodes in a pair with opposite chiralities are
of the same type [14,19]. One may wonder whether it is
possible to have a WSM such that one Weyl node belongs
to type I whereas its chiral partner belongs to type II (see
Fig. 1). In this Rapid Communication, we analyze the band
topology of a concrete lattice model and demonstrate that the
proposed WSM phase with mixed types of Weyl nodes can
be realized in the concrete model. We dub this special type
of WSM “hybrid WSM”. Remarkably, it is possible to have a
single isolated Weyl fermion in the excitation spectrum of this
hybrid WSM rather than several pairs of Weyl fermions in the
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conventional case. We explicitly show that the band structure
contains two Weyl nodes, whose types can be tuned separately
and independently. Therefore, our model provides a simple
platform to manipulate the energy-momentum positions, the
types of Weyl nodes, and the transitions among different
types of WSMs. We further explore the unique Landau-level
structure and quantum oscillation of the hybrid WSM. Based
on our results, we propose that the hybrid WSM may be found
in magnetically ordered noncentrosymmetric materials.

We start from the classification of the type-I and type-II
Weyl nodes following Refs. [14] and [15]. Due to the linear
band touching, the original pair of Weyl nodes with opposite
chiralities has an emergent Lorentz invariance at low energies,
and the gapless elementary excitation near the nodes are often
called “Weyl fermions”. The Lorentz invariance, however, is
broken by the lattice regularization that necessarily connects
the two Weyl nodes at high energy [20]. Significantly, this leads
to the intactness of anomalous Hall effect but the breakdown
of chiral magnetic effect. More seriously, the violation of
Lorentz invariance in condensed-matter systems allows the
tilting of Weyl nodes, as described in the following general

type-II
node type-I

node

E

k

FIG. 1. A schematic band structure of a hybrid WSM with a pair
of Weyl nodes. The left (right) node is a type-II (type-I) Weyl node.
Generically, the energies of these two Weyl nodes cannot be identical
when both time-reversal and inversion symmetries are absent.
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k · p Hamiltonian near a Weyl node:

hWeyl(k) =
∑

ij

kivijσj +
∑

i

kiui, (1)

where i,j = x,y,z. Interestingly, the sign of v̄ − 1, with v̄i =∑
j v−1

ij uj , defines the type of Weyl node:

v̄ < 1 ⇒ type I, (2)

v̄ > 1 ⇒ type II. (3)

For type-I nodes, the tilting is not too strong, and only energy
anisotropy in momentum develops near the node. For type-II
nodes, the tilting is sufficiently strong such that the Weyl node
develops a structure [15], i.e., a “bouquet” of two spheres in
mathematics, as depicted in Fig. 1. Physically, this implies
that electron and hole Fermi pockets touch at the Weyl node.
As shown in Ref. [15], an isolated “bouquet” enjoys the
same first Chern number of the original Weyl node, while
the electron or hole pocket is characterized by a zeroth Chern
number, i.e., the difference in hole-band number across the
Fermi sphere. In general, a Weyl node is characterized by
its chirality and its type. The chirality cannot be changed by
any local perturbation due to its topological protection by the
unaltered Chern number. The type, however, can be modified
by local disturbance through a topological transition in the
zeroth Chern numbers, which twists the electron (hole) band
down (up) near the Weyl node, as depicted in Fig. 1. In order
to separately manipulate the types of the two Weyl nodes
with opposite chiralities, any symmetry, e.g., inversion or
antiunitary particle-hole symmetry, that relates the two nodes
must then be broken. This is suggestive of the fundamental
existence of a pair of hybrid Weyl nodes with opposite
chiralities: one in type I and the other in type II.

We here propose a two-band tight-binding model of fermion
hopping on a simple cubic lattice. At low energy this minimal
model captures the essential physics of one pair of Weyl
nodes with opposite chiralities. In real crystalline solids, it
may represent a lattice regularization for a WSM or a Weyl
superconductor; in cold atom systems, it may directly describe
a Weyl superfluid or an artificial optical lattice with Weyl
nodes. Nevertheless, such a Hamiltonian may be written as

H =
∑

j

[−tx c†jσx cj+x̂ − ty c†jσx cj+ŷ − tzc†jσx cj+ẑ

− it ′y c†jσy cj+ŷ − it ′zc†jσzcj+ẑ + H.c.] + mc†jσx cj . (4)

Here c† = (c†↑,c
†
↓) are the creation operators of fermions with

spin ↑ and ↓, in which the Pauli matrices σ act on; t and t ′ are
the hopping energies and m is the on-site energy, which are all
spin dependent; x̂,ŷ,ẑ are the three first neighbor vectors on
the cubic lattice. In momentum space, the Hamiltonian Eq. (4)
reads

h(k) = (m − 2tx cos kx − 2ty cos ky − 2tz cos kz)σx

+ 2t ′y sin kyσy + 2t ′z sin kzσz. (5)

One can easily demonstrate that there exists one pair of
Weyl nodes at q± = (±k0,0,0) in the bulk Brillouin zone, and
that the Fermi velocities are v± = (±2tx sin k0,2t ′y,2t ′z) at the

FIG. 2. The WSM diagram in t1-t2 plane with φ1 = π,φ2 = π/2.
In the light (dark) blue region, type-I (type-II) WSM is realized. In
the remaining part of the diagram, hybrid WSM is obtained. See the
main text for the detailed discussion.

nodes, where cos k0 = (m/2 − ty − tz)/tx . One can also check
that in this model both time-reversal and inversion symmetries
are broken, as

T h(k)T −1 ̸= h(−k), (6)

Ph(k)P−1 ̸= h(−k), (7)

where T = σyK , P = I2×2, K is the complex conjugation,
and I2×2 is an identity matrix. Such broken symmetries
allow the presence of Weyl nodes, but their energies are not
necessarily the same. However, there are emergent inversion-
like and antiunitary particle-hole symmetries in the model,
i.e., σxh(k)σx = h(−k) and σzh(k)σz = −h∗(−k). The former
dictates the two nodes to appear at the same energy.

FIG. 3. The band structure along kx direction and the surface
states of different WSMs with representative parameters: (a) t1 =
0.5,t2 = 0, type-I WSM. (b) t1 = 0.5,t2 = 0.5, hybrid WSM. (c) t1 =
0.5,t2 = 1, type-II WSM. The hole pocket (in orange) and the electron
pocket (in light blue) near the type-II node are indicated. (d) Surface
Fermi arcs of a finite slab along the (001) direction for the hybrid
WSM in (b). Two Weyl nodes (at the blue dots) are projected to
(±π/2,0) in the surface Brillouin zone (kx-ky plane). The orange
(blue) area is the projected hole (electron) pocket. The orange (blue)
arc is localized on the top (bottom) surface and connects the hole
pocket with the type-I node. The lattice constant is set to unity.
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nodes, where cos k0 = (m/2 − ty − tz)/tx . One can also check
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are broken, as

T h(k)T −1 ̸= h(−k), (6)

Ph(k)P−1 ̸= h(−k), (7)

where T = σyK , P = I2×2, K is the complex conjugation,
and I2×2 is an identity matrix. Such broken symmetries
allow the presence of Weyl nodes, but their energies are not
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i.e., σxh(k)σx = h(−k) and σzh(k)σz = −h∗(−k). The former
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FIG. 3. The band structure along kx direction and the surface
states of different WSMs with representative parameters: (a) t1 =
0.5,t2 = 0, type-I WSM. (b) t1 = 0.5,t2 = 0.5, hybrid WSM. (c) t1 =
0.5,t2 = 1, type-II WSM. The hole pocket (in orange) and the electron
pocket (in light blue) near the type-II node are indicated. (d) Surface
Fermi arcs of a finite slab along the (001) direction for the hybrid
WSM in (b). Two Weyl nodes (at the blue dots) are projected to
(±π/2,0) in the surface Brillouin zone (kx-ky plane). The orange
(blue) area is the projected hole (electron) pocket. The orange (blue)
arc is localized on the top (bottom) surface and connects the hole
pocket with the type-I node. The lattice constant is set to unity.
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Extended Data Figure 5 | Calculation of the zero-flux Hamiltonian.  
a, Spinon dispersion ωk of the zero-flux Hamiltonian. The grey plane 
marks the Fermi level at ω =  0; its intersection with the band gives the 
Fermi surface. The light orange hexagon represents the projection of the 
first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
along high-symmetry directions. A reciprocal lattice unit (r.l.u.) is used 

here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
indicated momenta (marked by arrows in b). e, Measured constant-Q 
scans at the indicated momenta. The dashed line is the incoherent elastic 
line for Ef =  4 meV.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Particle-hole continuum of the spinon Fermi surface 
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Due to the Dirac band touchings at the Fermi level, the
low-energy dynamic spin structure factor, which measures the
spinon particle-hole continuum, is concentrated at a few dis-
crete momenta that correspond to the intra-Dirac-cone and the
inter-Dirac-cone scatterings [36]. Clearly, this is inconsistent
with the recent INS result that observes a broad continuum
covering a rather large portion of the Brillouin zone [36,37].

For the U1B states, the spinons experience a π background
flux in each unit cell. The direct consequence of the π
background flux is that the U1B states support an enhanced
periodicity of the dynamic spin structure in the Brillouin zone
[47,55,56]. Such an enhanced periodicity is absent in the INS
result [36,37]. In particular, unlike what one would expect for
an enhanced periodicity, the spectral intensity at the " point is
drastically different from the one at the M point in the existing
experiments [36,37].

The above analysis leads to the conclusion that the
U1A00 state is the most promising candidate U (1) QSL for
YbMgGaO4, and this conclusion is independent of any micro-
scopic model. The spinon mean-field Hamiltonian, allowed by
the U1A00 PSG, is remarkably simple and is given as1

H U1A00
MF = −t1

∑

⟨r r ′⟩,α
f †

rαfrα − t2
∑

⟨⟨r r ′⟩⟩,α
f †

rαfrα, (24)

where the spinon hopping is isotropic for the first and second
neighbors. This mean-field state only has a single band that
is half-filled, so it has a large spinon Fermi surface. From
H U1A00

MF , we construct the mean-field ground state by filling
the spinon Fermi sea,

∣∣$U1A00
MF

〉
=

∏

ϵk<ϵF

f
†
k↑f

†
k↓ |0⟩, (25)

where ϵk is the spinon dispersion and ϵF is the spinon Fermi
energy. The mean-field variational energy is

Evar =
〈
$U1A00

MF

∣∣Hspin

∣∣$U1A00
MF

〉
, (26)

where

Hspin =
∑

⟨r r ′⟩
JzzS

z
rS

z
r ′ + J±(S+

r S−
r ′ + S−

r S+
r ′ )

+ J±±(γr r ′S
+
r S+

r ′ + γ ∗
r r ′S

−
r S−

r ′ )

− i

2
Jz±

[
(γ ∗

r r ′S
+
r − γr r ′S

−
r )Sz

r ′

+ Sz
r (γ ∗

r r ′S
+
r ′ − γr r ′S

−
r ′ )

]
(27)

is the microscopic spin model that was introduced in
Refs. [34,35], and γr r ′ is a bond-dependent phase factor
due to the spin-orbit-entangled nature of the Yb moments
[35] (see Appendix B). The anisotropic nature of the spin
interaction has been clearly supported by the recent polarized
neutron scattering measurement [57]. For the specific choice
with J± = 0.915Jzz, we find the minimum variational energy
Evar = −0.39Jzz and it occurs at t2 = 0.2t1 (see Appendix D).
Here, the expectation values of the J±± and Jz± interactions
simply vanish, and this is an artifact of the free spinon
mean-field theory with the isotropic hoppings in Eq. (24). We

1In Ref. [36], only the nearest-neighbor spinon hopping is included.

FIG. 3. (a) S(q,ω) along the high-symmetry momentum lines
from H U1A00

MF with t2 = 0.2t1. The spinon bandwidth B = 9.6t1. (b)
The RPA corrected SRPA(q,ω) along the high-symmetry momen-
tum lines. We have set the parameters in the spin model to be
J±/Jzz = 0.915, J±±/Jzz = 0.35, and Jz±/Jzz = 0.2. The ratio Jzz/t1
is obtained from Refs. [34,36] and fixed to be 1.0 for concreteness.

establish here that the U1A00 state is a spinon Fermi surface
U (1) QSL.

VI. SPECTROSCOPIC PROPERTIES

For the U1A00 state, the dynamic spin structure essentially
detects the spinon particle-hole excitation across the Fermi
surface. The information about the Fermi surface is encoded
in the profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon mean-
field theory (see Appendix D) [see Fig. 3(a)]. Qualitatively
similar to the mean-field theory with only first-neighbor
spinon hoppings, the improved free-spinon mean-field theory
of H U1A00

MF captures the crucial features of the INS results
[36,37]. The spinon particle-hole continuum covers a large
portion of the Brillouin zone, and it vanishes beyond the spinon
bandwidth. More importantly, the “V-shape” upper excitation
edge near the " point in Fig. 3(a) was clearly observed in the
experiments [36,37], and the slope of the “V shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, H U1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry that
is brought by the J±± and Jz± interactions. To incorporate the
J±± and Jz± interactions, we follow the phenomenological
RPA treatment for the “t-J ” model in the context of cuprate
superconductors [58], and we consider

H = H U1A00
MF + H ′

spin, (28)

where H ′
spin are the J±± and Jz± interactions (see Appendix D).

While the free spinon results from H U1A00
MF already capture

the main features of the neutron scattering data [36,37], the
anisotropic spin interaction H ′

spin, included by RPA, merely
redistributes the spectral weight in the momentum space. We
find in Fig. 3(b) that the low-energy spectral weight at M is
slightly enhanced, a feature observed in Refs. [36,37]. From
our choice of parameters, it is plausible that this peak results
from the proximity to a phase with a stripelike magnetic order
[35,36,39] (see Appendix D).

VII. DISCUSSION

We have demonstrated that the spinon Fermi surface
U (1) QSL gives a consistent explanation of the INS result
in YbMgGaO4. Moreover, the anisotropic spin interaction
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation (see Appendix A).

coupling is present. In Sec. V, we explain the relationship
between the spinon band structure and the projective symmetry
group of the spinon mean-field states. In Sec. VI, we focus on
the U1A00 state and study the spectroscopic properties of
this state. Finally in Sec. VII, we discuss the experimental
relevance and remark on the thermal transport result and
the competing scenarios and proposals. The details of the
calculation are presented in the Appendixes.

II. SPACE-GROUP SYMMETRY

It was pointed out that intralayer symmetries involve two
translations, T1 and T2, one twofold rotation, C2, one threefold
rotation, C3, and one spatial inversion, I [see Fig. 1(a)]
[35,39]. Here we use a different complete set of elementary
transformations for the space-group symmetries that involve
two translations, T1 and T2, one twofold rotation, C2, and one
more operation, S6 [see the definition in Fig. 1(b)]. We can
now confirm I = S3

6 , C3 = S2
6 with the definition S6 ≡ C−1

3 I .
The multiplication rules of this symmetry group are given as

T −1
1 T2T1T

−1
2 = T −1

1 T −1
2 T1T2 = 1, (1)

C−1
2 T1C2T

−1
2 = C−1

2 T2C2T
−1

1 = 1, (2)

S−1
6 T1S6T2 = S−1

6 T2S6T
−1

2 T −1
1 = 1, (3)

(C2)2 = (S6)6 = (S6C2)2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [34,36–38],
we further supplement the symmetry group with the time
reversal T such that O−1T OT = 1 and T 2 = 1, where O
is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U (1) QSL that we propose for YbMgGaO4,
we introduce the fermionic spinon operator frα(α = ↑, ↓) that
carries spin-1/2, and we express the Yb local moment as

Sr = 1
2

∑

α,β

f †
rασ αβfrβ , (5)

where σ = (σ x,σ y,σ z) is a vector of Pauli matrices. We further
impose a constraint

∑
α f

†
rαfrα = 1 on each site to project

back to the physical Hilbert space of the spins. The choice of
fermionic spinons allows a local SU (2) gauge freedom [47].

As a direct consequence of the spin-orbital entanglement,
the spinon mean-field Hamiltonian for the U (1) QSL should
generically involve both spin-preserving and spin-flipping
hoppings, and it has the following form:

HMF = −
∑

(r r ′)

∑

αβ

[ tr r ′,αβf †
rαfr ′β + H.c. ], (6)

where tr r ′,αβ is the spin-dependent hopping. The choice of
the mean-field ansatz in Eq. (6) breaks the local SU (2) gauge
freedom down to U (1). Here, to get a more compact form
for Eq. (6), we follow Ref. [48] and introduce the extended
Nambu spinor representation for the spinons such that $r =
(fr↑,f

†
r↓,fr↓, − f

†
r↑)T and

HMF = −1
2

∑

(r,r ′)

[$†
rur r ′$r ′ + H.c.], (7)

where ur r ′ is a hopping matrix that is related to tr r ′,αβ . With
the extended Nambu spinor, the spin operator Sr and the
generator Gr for the SU (2) gauge transformation are given
by [47,49–52]

Sr = 1
4$†

r (σ ⊗ I2×2)$r , (8)

Gr = 1
4$†

r (I2×2 ⊗ σ )$r , (9)

where I2×2 is a 2 × 2 identity matrix. Under the symmetry
operation O, $r transforms as

$r → UOGO
O(r)$O(r) = GO

O(r)UO$O(r), (10)

where GO
O(r) is the local gauge transformation that corresponds

to the symmetry operation O, and we add a spin rotation UO

because the spin components are transformed when O involves
a rotation. In Eq. (10), the gauge transformation and the spin
rotation are commutative [53] simply because [Sµ

r ,Gν
r ] = 0.

Moreover, from Eq. (9), the gauge transformation GO
r is block

diagonal with GO
r = I2×2 ⊗ WO

r , where WO
r is a 2 × 2 matrix

(see Appendix B).

IV. PROJECTIVE SYMMETRY GROUP CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the lattice
symmetries are realized projectively and form the projective
symmetry group (PSG). To respect the lattice symmetry
transformation O, the mean-field ansatz should satisfy

ur r ′ = GO†
O(r)U

†
OuO(r)O(r ′)UOGO

O(r ′). (11)

The ansatz itself is invariant under the so-called invariant gauge
group (IGG) with ur r ′ = G1†

r ur r ′G1
r ′ . The IGG can be regarded

as a set of gauge transformations that correspond to the identity
transformation. For an U (1) QSL, IGG = U (1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the PSG:

UO1
GO1

r UO2
GO2

O2O3O4(r)UO3
GO3

O3O4(r)UO4
GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)G
O3
O3O4(r)G

O4
O4(r) (12)

∈ IGG, (13)
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation (see Appendix A).

coupling is present. In Sec. V, we explain the relationship
between the spinon band structure and the projective symmetry
group of the spinon mean-field states. In Sec. VI, we focus on
the U1A00 state and study the spectroscopic properties of
this state. Finally in Sec. VII, we discuss the experimental
relevance and remark on the thermal transport result and
the competing scenarios and proposals. The details of the
calculation are presented in the Appendixes.
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rotation, C3, and one spatial inversion, I [see Fig. 1(a)]
[35,39]. Here we use a different complete set of elementary
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we further supplement the symmetry group with the time
reversal T such that O−1T OT = 1 and T 2 = 1, where O
is a lattice symmetry operation.
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To describe the U (1) QSL that we propose for YbMgGaO4,
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∑
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rαfrα = 1 on each site to project

back to the physical Hilbert space of the spins. The choice of
fermionic spinons allows a local SU (2) gauge freedom [47].

As a direct consequence of the spin-orbital entanglement,
the spinon mean-field Hamiltonian for the U (1) QSL should
generically involve both spin-preserving and spin-flipping
hoppings, and it has the following form:

HMF = −
∑

(r r ′)
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[ tr r ′,αβf †
rαfr ′β + H.c. ], (6)

where tr r ′,αβ is the spin-dependent hopping. The choice of
the mean-field ansatz in Eq. (6) breaks the local SU (2) gauge
freedom down to U (1). Here, to get a more compact form
for Eq. (6), we follow Ref. [48] and introduce the extended
Nambu spinor representation for the spinons such that $r =
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where ur r ′ is a hopping matrix that is related to tr r ′,αβ . With
the extended Nambu spinor, the spin operator Sr and the
generator Gr for the SU (2) gauge transformation are given
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O(r)UO$O(r), (10)

where GO
O(r) is the local gauge transformation that corresponds
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because the spin components are transformed when O involves
a rotation. In Eq. (10), the gauge transformation and the spin
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Moreover, from Eq. (9), the gauge transformation GO
r is block

diagonal with GO
r = I2×2 ⊗ WO

r , where WO
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For the spinon mean-field Hamiltonian in Eq. (6), the lattice
symmetries are realized projectively and form the projective
symmetry group (PSG). To respect the lattice symmetry
transformation O, the mean-field ansatz should satisfy

ur r ′ = GO†
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The ansatz itself is invariant under the so-called invariant gauge
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r ′ . The IGG can be regarded

as a set of gauge transformations that correspond to the identity
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✤ Topological Weyl magnons 
   in ordered antiferromagnet

points in the local xy plane, and the angular variable y captures
the U(1) degeneracy. This is the same form of degeneracy found
for the S¼ 1/2 pyrochlore Er2Ti2O7 in ref. 19, where it was noted
that the degeneracy is accidental, that is, not protected by any
symmetry, and hence will be lifted by quantum fluctuations. The
same holds for the breathing pyrochlore, as we show now using
linear spin-wave theory. We introduce the Holstein–Primakoff
bosons to express the spin operators as Si " m̂i¼S# awi ai,
Si " ẑi¼ 2Sð Þ1=2ðaiþ awi Þ=2, and Si " m̂i'ẑið Þ¼ 2Sð Þ1=2ðai#awi Þ= 2ið Þ.
Keeping terms in the spin Hamiltonian H up to the quadratic
order in the Holstein–Primakoff bosons, one can readily write
down the spin-wave Hamiltonian as

Hsw ¼
P

k

P
m;n

Amn kð Þayk;mak;nþBmn kð Þa# k;mak;n

h

þ B(mn # kð Þayk;may# k;n

i
þEcl;

ð3Þ

where Ecl is the classical ground state energy, and Amn, Bmn satisfy
Amn kð Þ¼A(nm kð Þ, Bmn kð Þ¼Bnm # kð Þ and depend on the angular
variable y. Although the classical energy Ecl is independent of y
due to the U(1) degeneracy, the quantum zero point energy DE of
the spin-wave modes depends on y, and is given by
DE¼

P
k

P
m

1
2 om kð Þ#Amm kð Þ
! "

, where om(k) is the excitation
energy of the m-th spin-wave mode at momentum k and is
determined for every classical spin ground state. The minimum of
DE occurs at y¼p/6þ np/3 (np/3) with n 2 Z in regions I and II
(region III). The discrete minima and the corresponding
magnetic orders are equivalent under space group symmetry
operations. The U(1) degeneracy of the classical ground states is
thus broken by quantum fluctuations. This is the well-known
phenomenon known as quantum order by disorder19–22. The
resulting optimal state is a non-collinear one in which each spin
points along its local [112] ([1!10]) lattice direction in regions I
and II (region III), see Fig. 2.

To obtain the phase diagram in Fig. 1, we have implemented
the semiclassical approach and included the quantum fluctuation
within linear spin-wave theory. This treatment may under-
estimate the quantum fluctuation in the parameter regimes when
JcJ0, D or J0cJ, D. In the latter regimes, one may first consider
the tetrahedron with the strongest coupling and treat other
couplings as perturbations. The ground state in these regimes is
likely to be non-magnetic and will be addressed in the future
work. For the purpose of the current work, we will focus on the
ordered ground states in Figs 1 and 2.

Magnon Weyl nodes and surface states. Regions I and II have
the same magnetically ordered structure with the same order
parameter and belong to the same phase. Although the ground
states are characterized by the same order parameter, the
magnetic excitations of the two regions are topologically distinct.
The magnetic excitation in region I has Weyl band touchings,
while the region II does not. To further clarify this, we choose
y¼p/2 and thus fix the magnetic order to orient along the ŷ
directions of the local coordinate systems. Using linear spin-wave
theory, we obtain the magnetic excitation spectrum with respect
to this magnetic state for regions I and II. In Fig. 3a, we depict a
representative excitation spectrum along the high-symmetry lines
in the Brillouin zone for region I.

Two qualitative features are clear in the magnon spectrum of
Fig. 3a. First, we observe a gapless mode at the G point. This
pseudo-Goldstone mode is an artifact of the linear spin-wave
approximation, and a small gap is expected to be generated by
anharmonic effects19. Secondly, the spectrum in Fig. 3a has a
linear band touching at a point along the line between G and X. In
fact, as we show in Fig. 3b, there are in total four such linear band
touchings. The bands separate linearly in all directions away from
these touchings, which are thus Weyl nodes in the magnon
spectrum. Just like Weyl nodes of non-degenerate electron
bands8, the magnon Weyl points are sources and sinks of Berry
curvature and are characterized by a discrete chirality taking
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Figure 2 | Quantum zero point energy and the magnetic order. We have chosen the representative parameters in regions I and III with D¼0.2J,
J0¼0.6J in (a) and D¼0.05J, J0¼0.6J in (c), respectively. (b) The magnetic order in regions I and II with y¼ p/2 and the spins pointing along the local ŷ.
(d) The magnetic order in region III with y¼0 and the spins pointing along the local x̂.
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values ±1. Unlike in an electronic Weyl semimetal, where one
can tune the Fermi energy to the Weyl nodes by varying the
electron density, the magnon Weyl nodes must necessarily appear
at finite energies because of the bosonic nature of magnons.

Due to the bulk-edge correspondence, we expect magnon
arc states bound to any surface which possesses non-trivial
projections of the bulk Weyl points. This is indeed observed in
Fig. 4. The chiral magnon arcs appear at non-zero energy and
connect the bulk magnon Weyl nodes with opposite chiralities, as
expected.

Once the magnon Weyl nodes emerge in the magnon
spectrum, they are topologically robust and exist over a finite
regime in the parameter space. We find that the magnon Weyl
nodes exist in region I. As the couplings are varied so that the
boundary with region II is approached, the magnon Weyl nodes
move together and annihilate in pairs when the boundary is
reached. In region II, there is no such (Weyl) band crossing,
qualitatively distinguishing region II from region I.

Manipulating Weyl nodes by external magnetic fields. When
we apply an external magnetic field to the system, the spin only
couples to the field via a Zeeman coupling. This is quite different
from the case of electronic systems, in which a magnetic field also
has an orbital effect, which leads to cyclotron motion of electrons
and a transformation from ordinary bands into Landau ones.
In the latter case, the meaning of quasi-momentum is irrevocably
changed by an applied field, and one cannot follow the Weyl
point evolution with field. By contrast, since magnons are neutral,
there is no orbital effect, and quasi-momentum and the Weyl
points themselves remain well-defined even for strong fields.
Therefore, a magnetic field can be used to manipulate the Weyl
nodes. To demonstrate this explicitly, we focus on one specific
classical order in region I and apply a magnetic field along the
global z direction. The magnetic field perturbs the classical

ground state and indirectly changes the spin-wave Hamiltonian.
As we show in Fig. 5, the Weyl nodes are shifted gradually and
finally annihilated when the magnetic field is increased.

Discussion
We have explicitly shown the presence of Weyl nodes in a simple
and physically relevant model for the breathing pyrochlore lattice
antiferromagnet. Weyl points may also be present in other
pyrochlores for which the exchange is more complicated. The
spin-wave spectra of the highly anisotropic spin-1/2 pyrochlores
Yb2Ti2O7 and Er2Ti2O7 have been extensively studied19,23.
Re-examined here in the light of topology, we see that they are
present already in the spin-wave spectra of Yb2Ti2O7 and
Er2Ti2O7 in the external magnetic fields. Thus we think that
Weyl points can be present in many magnetic materials of current
interest.

Beyond these specific examples, we may ask what are the
conditions necessary to find Weyl points in the magnon
spectrum? In electronic systems, these points are symmetry
prevented, meaning that if both inversion P and time-reversal
symmetry T are present, Weyl points cannot occur. This is
because in that case, a two-fold Kramers’ degeneracy of bands
occurs, and any crossing must involve two and not four bands.
For magnons, there is never a Kramer’s degeneracy. This is
because magnons are integer spin excitations (even when the spin
is not a good quantum number they are superpositions of integer
spin excitations), which do not obey Kramer’s theorem because
T 2¼ þ 1 in this case. Moreover, in general the magnetic order
which underlies magnons already breaks time-reversal symmetry.
This suggests that Weyl points may be generically allowed.
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Figure 3 | The representative spin-wave spectrum and the Weyl nodes of
region I. (a) The spin-wave spectrum along high-symmetry momentum
lines with a linear band touching that is marked with a (red) dashed circle.
(b) Four Weyl nodes are located at (±k0, 0, 0), (0, ±k0, 0) with
k0¼ 1.072p in the xy plane of the Brillouin zone. The (red) circle has an
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Weyl magnon

It is commonly thought that the spin ordering pattern of a
magnetic insulator uniquely specifies the state of the system1,
and indeed the ground state of such materials is usually

well-described by a simple product state of little fundamental
interest. However, in view of recent developments in the study of
topological properties of periodic media2,3, it is possible that
even such a product-like ground state can support topologically
non-trivial excited state band structure. Topological properties of
bands have been studied previously for electrons in solids
governed by Schrödinger’s equations2,3, for photons in dielectric
superlattices governed by Maxwell’s equations4,5, for phonons
governed by Newton’s equations4, and even for fractionalized
spinon excitation in spin liquids6,7. Here we apply these ideas to
magnons governed by the equations for spin waves in an ordered
antiferromagnet. We consider a concrete magnetic system,
namely, the Cr-based breathing pyrochlore, and explicitly
demonstrate that it supports Weyl magnon excitations with a
linear band touching in the spin-wave spectrum of the magnetic
ordered phase. The Weyl magnon is analogous to a Weyl
fermion8–11 in electronic systems, but has bosonic rather than
fermionic statistics, similar to Weyl points in photonic systems5.
In contrast to the other three categories of systems, the band
structure of magnons in antiferromagnets is highly tunable in situ
by application of readily available magnetic fields, which is a
consequence of the spontaneous symmetry breaking of the
antiferromagnet ground state and the relatively low-energy scale
for magnetic interactions in most solids. Thus one can envision
moving, creating and annihilating Weyl points in the laboratory
in a single experiment.

To explore Weyl magnons, we focus on a concrete and physical
model system, the breathing pyrochlore antiferromagnet. This is a
generalization of the common pyrochlore structure, which
consists of a network of corner sharing tetrahedra, with magnetic
ions at the corners. In the breathing pyrochlore, alternate
tetrahedra are uniformly expanded and contracted in size12–16.
As a result, the structure lacks an inversion center, and in
general up-pointing and down-pointing tetrahedral units are
inequivalent. We consider below a spin model for the breathing
pyrochlore, which generalizes and includes the uniform limit, and
displays Weyl points even in the uniform case. We obtain the full
phase diagram of this spin model and the magnetic excitations
in different phases. The experimental consequences of Weyl
magnons and the general conditions for their occurrence in spin
systems are predicted and discussed.

Results
Spin model. We consider Cr3þ ions in the breathing pyrochlore
lattice. There are several compounds with this structure,
including LiGaCr4O8 and LiInCr4O8, which have been recently
studied13,14. In this 3d3 electron configuration the orbital angular
momentum is fully quenched and the local moment is
well-described by the isotropic Heisenberg exchange and a total
spin S¼ 3/2 according to Hund’s rules. The minimal spin model
is given as

H ¼ J
X

ijh i2u

Si # Sjþ J 0
X

ijh i2d

Si # SjþD
X

i

Si # ẑið Þ2; ð1Þ

Since spin-orbit coupling is weak, the interaction between the
local moments is primarily where we have supplemented the
Heisenberg model with a local spin anisotropy17, which is
generically allowed by the D3d point group symmetry at the Cr
site. The anisotropic direction ẑi is the local [111] direction that
points into the center of each tetrahedron and is specified for each
sublattice (Methods). Here J and J0 are the exchange couplings
between the nearest-neighbour spins on the up-pointing and

down-pointing tetrahedra (Fig. 1), respectively. The large and
negative Curie–Weiss temperatures of the Cr-based breathing
pyrochlores indicate the strong atomic force microscopy
interactions, hence we take J40, J040. Because the up-pointing
and down-pointing tetrahedra have different sizes, one thus
expects JaJ0. In this work, however, we will study this model in a
general parameter setting. The atomic force microscopy exchange
interactions favour zero total spin on each up-pointing
(down-pointing) tetrahedron, that is,

P
i2u Si¼0 ð

P
i2d Si¼0Þ.

As for the regular pyrochlore lattice18, the classical ground state
of the exchange part of the Hamiltonian is extensively degenerate.

Ground states and quantum order by disorder. We first
consider easy-axis spin anisotropy with Do0. This favours the
spin to be aligned with its local [111] axis. It turns out that this
condition can be satisfied while simultaneously optimizing the
exchange interaction. This gives a unique classical ground state
(up to a 2-fold degeneracy from the time-reversal operation) that
has an all-in all-out magnetic order. The magnetic excitation of
this ordered state is fully gapped and the energy gap (D) is simply
set by the easy-axis spin anisotropy with D¼ 3|D| (Methods).

With the easy-plane anisotropy, D40, the spin prefers to
orient in the xy plane of the local coordinate system at each
sublattice. This requirement can also be satisfied while simulta-
neously optimizing the exchange. Moreover, there exists an
accidental U(1) degeneracy of the classical ground state that we
parametrize as

Scl
i & Sm̂i ¼ S cos y x̂iþ sin y ŷi

! "
; ð2Þ

where x̂i (ŷi) is the unit vector along the local x (y) axis in the
local coordinate system at site i (Methods), the unit vector m̂i
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Figure 1 | The breathing pyrochlore and the phase diagram.
(a) The breathing pyrochlore. The letter u(d) refers to the up-pointing
(down-pointing) tetrahedra and J(J0) indicates the nearest-neighbour
exchange couplings on the up-pointing (down-pointing) tetrahedra. (b) The
phase diagram. Regions I and II have the same magnetic order and belong
to the same phase, but the magnetic excitations of the two regions are
topologically distinct. Region III has a different magnetic order. The details
of the phase diagram are discussed in the main text.
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of this generic model, we find large parameter regions that
support ground states with continuous degeneracies. Due to
the spin-orbit entanglement, the generic model does not have
any continuous symmetry. The continuous degeneracy is thus
accidental and not related to any microscopic symmetry of
the model. We expect that the quantum fluctuations should
break the accidental degeneracy and favor magnetic ordered
states. This mechanism is known as order by quantum disorder
(ObQD) [36,46–48]. Because of the continuous degeneracy,
the fluctuations within the degenerate mean-field ground-
state manifold are very soft. Quantum fluctuations in a
systematic 1/S expansion would lead to a small gap and
a pseudo-Goldstone mode for large S, leading to a regime
of temperatures with an additional magnetic contribution to
the specific heat, Cmag ∼ T 3. The impact of large quantum
fluctuations for S = 1/2 may further enhance the ObQD gap;
there is no controlled theory in this regime. In addition to
the pseudo-Goldstone mode, the Weyl magnon mode [49] is
found in the magnetic excitation for certain magnetic order. In
contrast to the low-energy pseudo-Goldstone mode, the Weyl
magnon mode appears at finite energies due to the bosonic
nature of the spin-wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of this
model in Sec. III. Competition between different interactions,
together with the geometrical frustration, leads to a very rich
phase diagram. Specifically, among different phases, we focus
on the regions with a continuous U (1) or O(3) degeneracy in
Sec. IV. The degeneracy at the mean-field level is lifted when
the quantum fluctuation is included, and various magnetic
orders are favored in these regions. We demonstrate the ObQD
explicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Finally, we
conclude with a discussion in Sec. V.

II. THE GENERALIZED KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides [40],
Ba2LnSbO6 (Ln = rare earth), where the Ba ions are located
at the A sites of the perovskite-type oxides ABO3, and the Ln
and Sb ions are regularly ordered at the B sites. Specifically,
the Ln and Sb ions are ordered in the rock-salt-type structure,
with space group Fm3̄m. Each of the two kinds of ions forms
a separate fcc lattice. The magnetic behavior depends on the
Ln3+ ions ([Xe]4f n, [Xe]: electronic xenon core), where the
SOCs are typically quite large. We study the Kramers’ doublet
that is formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.

Under the Fm3̄m space-group symmetry, the pseudospin,
S, that acts on the Kramers’ doublet of the rare-earth ion,
transforms as a pseudovector. Both the pseudospin position
and the pseudospin orientation are transformed. The most
general exchange interaction between the local moments on
the nearest-neighbor sites, allowed by the lattice symmetry, is
a generalized Kitaev-Heisenberg model with

H =
∑

⟨ij⟩γ±

[
J Si · Sj + KS

γ
i S

γ
j ± F

(
Sα

i S
β
j + S

β
i Sα

j

)]
, (1)
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z+z−
x+

x−

x

y

z

FIG. 1. The bond-dependent interactions in the fcc lattice. We
have marked the six distinct bond types γ± (γ = x,y,z), that have
the specific forms of bond-dependent interactions in Eq. (1). The
inset is the global coordinate system that defines the pseudospin
components.

where the bond index γ± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest-neighbor
interaction is sufficient to describe the magnetic properties of
the rare-earth moments in this system as the 4f electrons
are very localized spatially. Besides the ordinary isotropic
Heisenberg exchange interaction, we have the well-known
Kitaev exchange interaction as well as the symmetric pseu-
dodipole interaction that depends on the bond orientation. In
Eq. (1), the antisymmetric Dzyaloshinskii-Moriya interaction
is prohibited by the inversion symmetry of the system [50].
The component γ (=x,y,z) specifies the three distinct types
of Ising coupling in the Kitaev exchange (K term), and
{α,β,γ } is a cyclic permutation of {x,y,z}, which contributes
to the symmetric pseudodipole interaction (F term). The bond-
dependent pseudospin interaction is a direct consequence of
the spin-orbit entanglement and widely occurs in many strong
spin-orbit-coupled materials [1,21,26,27,38].

This generalized Kitaev-Heisenberg model was obtained
previously by one of the authors and his collaborators in
the context of the iridium-based double perovskites La2BIrO6
(B = Mg,Zn) [51,52]. In the previous works, the mean-field
phase diagram in the antiferromagnetic Heisenberg regime was
obtained with classical mean-field theory and classical Monte
Carlo [51], and the spin-wave spectrum was compared to the
experiments in the regime with a dominant Kitaev interaction
and a sizable second-neighbor ferromagnetic interaction be-
tween the iridium local moments [52]. Here, our motivation
and purpose in this paper are different. We are inspired by
the magnetic properties of the rare-earth double perovskites
that host 4f electrons. As we have explained in Sec. I, the
exchange interaction of 4f local moments is short-ranged, and
we only keep the nearest-neighbor interactions. This clearly
differs from iridates. For iridates, there are five electrons (or
one hole) in the triply degenerate t2g orbitals for the magnetic
ion Ir4+ in the cubic crystal field environment. The atomic
spin-orbit coupling is active on the t2g orbitals and entangles
the atomic spin with the orbitals. The simplicity of the
spin-orbit-entangled wave function and the Ir-O-Ir exchange
path allows the determination of the exchange interaction from
a microscopic perspective [13,21]. The Heisenberg part of the
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of this generic model, we find large parameter regions that
support ground states with continuous degeneracies. Due to
the spin-orbit entanglement, the generic model does not have
any continuous symmetry. The continuous degeneracy is thus
accidental and not related to any microscopic symmetry of
the model. We expect that the quantum fluctuations should
break the accidental degeneracy and favor magnetic ordered
states. This mechanism is known as order by quantum disorder
(ObQD) [36,46–48]. Because of the continuous degeneracy,
the fluctuations within the degenerate mean-field ground-
state manifold are very soft. Quantum fluctuations in a
systematic 1/S expansion would lead to a small gap and
a pseudo-Goldstone mode for large S, leading to a regime
of temperatures with an additional magnetic contribution to
the specific heat, Cmag ∼ T 3. The impact of large quantum
fluctuations for S = 1/2 may further enhance the ObQD gap;
there is no controlled theory in this regime. In addition to
the pseudo-Goldstone mode, the Weyl magnon mode [49] is
found in the magnetic excitation for certain magnetic order. In
contrast to the low-energy pseudo-Goldstone mode, the Weyl
magnon mode appears at finite energies due to the bosonic
nature of the spin-wave excitation.

This paper is organized as follows. In Sec. II, we derive
the generalized Kitaev-Heisenberg model. We present a
systematic analysis of the mean-field phase diagram of this
model in Sec. III. Competition between different interactions,
together with the geometrical frustration, leads to a very rich
phase diagram. Specifically, among different phases, we focus
on the regions with a continuous U (1) or O(3) degeneracy in
Sec. IV. The degeneracy at the mean-field level is lifted when
the quantum fluctuation is included, and various magnetic
orders are favored in these regions. We demonstrate the ObQD
explicitly. We further show the magnetic excitations of the
resultant ordered phases are characterized by the pseudo-
Goldstone mode with a nearly gapless dispersion. Finally, we
conclude with a discussion in Sec. V.

II. THE GENERALIZED KITAEV-HEISENBERG MODEL

We focus on a series of double perovskite-type oxides [40],
Ba2LnSbO6 (Ln = rare earth), where the Ba ions are located
at the A sites of the perovskite-type oxides ABO3, and the Ln
and Sb ions are regularly ordered at the B sites. Specifically,
the Ln and Sb ions are ordered in the rock-salt-type structure,
with space group Fm3̄m. Each of the two kinds of ions forms
a separate fcc lattice. The magnetic behavior depends on the
Ln3+ ions ([Xe]4f n, [Xe]: electronic xenon core), where the
SOCs are typically quite large. We study the Kramers’ doublet
that is formed by the 4f electrons of the Ln3+ ion with an odd
n when the crystal electric field enters.

Under the Fm3̄m space-group symmetry, the pseudospin,
S, that acts on the Kramers’ doublet of the rare-earth ion,
transforms as a pseudovector. Both the pseudospin position
and the pseudospin orientation are transformed. The most
general exchange interaction between the local moments on
the nearest-neighbor sites, allowed by the lattice symmetry, is
a generalized Kitaev-Heisenberg model with

H =
∑

⟨ij⟩γ±

[
J Si · Sj + KS

γ
i S

γ
j ± F

(
Sα

i S
β
j + S

β
i Sα

j

)]
, (1)
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FIG. 1. The bond-dependent interactions in the fcc lattice. We
have marked the six distinct bond types γ± (γ = x,y,z), that have
the specific forms of bond-dependent interactions in Eq. (1). The
inset is the global coordinate system that defines the pseudospin
components.

where the bond index γ± refers to the specific interaction
that depends on the orientation of the bond in the plane
and the pseudospin components are defined in the global
coordinate system (see Fig. 1). We expect the nearest-neighbor
interaction is sufficient to describe the magnetic properties of
the rare-earth moments in this system as the 4f electrons
are very localized spatially. Besides the ordinary isotropic
Heisenberg exchange interaction, we have the well-known
Kitaev exchange interaction as well as the symmetric pseu-
dodipole interaction that depends on the bond orientation. In
Eq. (1), the antisymmetric Dzyaloshinskii-Moriya interaction
is prohibited by the inversion symmetry of the system [50].
The component γ (=x,y,z) specifies the three distinct types
of Ising coupling in the Kitaev exchange (K term), and
{α,β,γ } is a cyclic permutation of {x,y,z}, which contributes
to the symmetric pseudodipole interaction (F term). The bond-
dependent pseudospin interaction is a direct consequence of
the spin-orbit entanglement and widely occurs in many strong
spin-orbit-coupled materials [1,21,26,27,38].

This generalized Kitaev-Heisenberg model was obtained
previously by one of the authors and his collaborators in
the context of the iridium-based double perovskites La2BIrO6
(B = Mg,Zn) [51,52]. In the previous works, the mean-field
phase diagram in the antiferromagnetic Heisenberg regime was
obtained with classical mean-field theory and classical Monte
Carlo [51], and the spin-wave spectrum was compared to the
experiments in the regime with a dominant Kitaev interaction
and a sizable second-neighbor ferromagnetic interaction be-
tween the iridium local moments [52]. Here, our motivation
and purpose in this paper are different. We are inspired by
the magnetic properties of the rare-earth double perovskites
that host 4f electrons. As we have explained in Sec. I, the
exchange interaction of 4f local moments is short-ranged, and
we only keep the nearest-neighbor interactions. This clearly
differs from iridates. For iridates, there are five electrons (or
one hole) in the triply degenerate t2g orbitals for the magnetic
ion Ir4+ in the cubic crystal field environment. The atomic
spin-orbit coupling is active on the t2g orbitals and entangles
the atomic spin with the orbitals. The simplicity of the
spin-orbit-entangled wave function and the Ir-O-Ir exchange
path allows the determination of the exchange interaction from
a microscopic perspective [13,21]. The Heisenberg part of the
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the induced
magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0,0,0), and we choose the local moments
to order in the local ẑ direction. In (a), a large magnetic field near the vertical axis drives the spinon condensation at kc = π (1,1,1), and the
resulting order is depicted in the figure. This order smoothly connects to the order on the horizontal axis. The cases in (b) and (c) are similar,
except that in (b) the field on the vertical axis drives the condensation at kc = 2π (0,0,1), while in (c) kc = π (1,1,0) near the vertical axis. We
set the diamond lattice constant to unity.

an Anderson-Higgs’ transition and inducing the long-range
magnetic orders.

Generic model for DO doublets on the pyrochlore
lattice. Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as HDO =∑

⟨ij⟩[Jxτ
x
i τ x

j + Jyτ
y
i τ

y
j + Jzτ

z
i τ z

j + Jxz(τ
x
i τ z

j + τ z
i τ x

j )] [10].
Here the interaction is uniform on every bond despite the fact
that the DO doublet involves a significant contribution from
the orbital part due to the strong SOC [15–20], and the DO
doublet is modeled by an effective pseudospin-1/2 moment
τ . Both τ x and τ z transform as the dipole moments under the
space group symmetry, while the τ y component behaves as
an octupole moment [10]. It is this important difference that
leads to some of the unique properties of its U(1) QSL ground
states.

Due to the spatial uniformity of the generic model, we can
transform the model HDO into the XYZ model with

HXYZ =
∑

⟨ij⟩
J̃x τ̃

x
i τ̃ x

j + J̃y τ̃
y
i τ̃

y
j + J̃zτ̃

z
i τ̃ z

j , (1)

where τ̃ x and τ̃ z (J̃x and J̃z) are related to τ x and τ z (Jx and
Jz) by a rotation around the y direction in the pseudospin
space, and τ̃ y ≡ τ y,J̃y ≡ Jy . When one of the couplings,
J̃µ, is dominant and antiferromagnetic, the corresponding
pseudospin component, τ̃µ, is regarded as the Ising component
of the model, and the ground state is a U(1) QSL in the
corresponding quantum spin ice regime. The dipolar U(1) QSL
is realized when the Ising component is the dipole moment τ̃ x

or τ̃ z, while the octupolar U(1) QSL is realized when the
Ising component is the octupole moment τ̃ y . In the compact
U(1) quantum electrodynamics description of the low energy
properties of the U(1) QSL [21,22], the Ising component is
identified as the emergent electric field [21]. Therefore, the
emergent electric field transforms very differently under the
lattice symmetry in dipolar and octupolar U(1) QSLs, making
these two U(1) QSLs symmetry enriched U(1) topological
order on the pyrochlore lattice [10].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions. Since the dipolar U(1) QSL has been discussed
many times in literature [10,23–31], we here focus on the
octupolar U(1) QSL of the octupolar quantum spin ice regime

where J̃y is dominant and antiferromagnetic. The octupolar
U(1) QSL is a new phase that is unique to the DO doublet
and cannot be found in any other doublets on the pyrochlore
lattice.

We consider the coupling of the DO doublet to the
external magnetic field. Remarkably, because τ̃ y is an octupole
moment, it does not couple to the magnetic field even though
it is time reversally odd. Only the dipolar component τ z

couples linearly to the external magnetic field. The resulting
model is

H =
∑

⟨ij⟩

∑

µ=x,y,z

J̃µτ̃
µ
i τ̃

µ
j −

∑

i

h (n̂ · ẑi) τ z
i , (2)

where n̂ is the direction of the magnetic field and ẑi is the z
direction of the local coordinate basis at the lattice site i [32].
This generic model describes all magnetic properties of the
DO doublets on the pyrochlore lattice.

As the generic model contains four parameters, it necessar-
ily brings some unnecessary complication into the problem.
To capture the essential physics, we here consider a simplified
version of the generic model in Eq. (2). The simplified model
is

Hsim =
∑

⟨ij⟩
Jyτ

y
i τ

y
j − J±(τ+

i τ−
j + H.c.) −

∑

i

h (n̂ · ẑi) τ z
i ,

(3)

where we define τ±
i = τ z

i ± iτ x
i and n̂ is the direction of the

external magnetic field. In the Ising limit with J± = 0 and
h = 0, the antiferromagnetic Jy favors the τ y components to
be in the ice manifold and requires a “two-plus two-minus”
ice constraint for the τ y configuration on each tetrahedron.
This octupolar ice manifold is extensively degenerate. With a
small and finite J± or h, the system can then tunnel quantum
mechanically within the octupolar ice manifold and form an
octupolar U(1) QSL. In this perturbative limit, the degenerate
perturbation theory yields an effective ring exchange model
with [32]

Hring = Jring

∑

!
[τ+

i τ−
j τ+

k τ−
l τ+

m τ−
n + H.c.], (4)

where “i,j,k,l,m,n” are six sites on the perimeter of the
elementary hexagon of the pyrochlore lattice, and the ring
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exchange Jring < 0 for J± > 0 and for either sign of h. Hring
does not involve defect tetrahedra that violate the ice constraint
and thus only describes the quantum fluctuation and dynamics
within the ice manifold. It is well known that the low energy
properties of Hring are described by the compact U(1) quantum
electrodynamics [21] of the U(1) QSL with gapless gauge
photon, and the spin-flip operator τ±

i is identified as the gauge
string within the ice manifold. We expect the simplified model
Hsim captures the generic properties of the octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from the
octupolar U(1) QSL phase and study its instability. For this
purpose, we include the spinon excitations (that are out of the
ice manifold) into the formulation. The perturbative analysis
and Hring, that focus on the ice manifold, do not capture the
spinons. We here implement a parton-gauge construction for
the octupolar U(1) QSL and formulate Hsim into a lattice gauge
theory with the spinons. Like many other parton construction,
we replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. [23,24] and
express the pseudospin operators as

τ+
i = "†

r"r′s
+
rr′ , τ

y
i = s

y
rr′ , (5)

where rr′ is the link that connects two neighboring tetrahedral
centers at r and r′, and the pyrochlore site i is shared by the
two tetrahedra. The centers of the tetrahedra form a diamond
lattice, and r (r′) belongs to the I (II) diamond sublattice. Here
srr′ is a spin-1/2 variable that corresponds to the emergent
gauge field, and "

†
r ("r) creates (annihilates) one spinon at

the diamond site r. The spinons carry the emergent electric
charge, and "

†
r and "r are raising and lowering operators of

the emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ηr

∑
µ τ

y
r,r+ηreµ

is imposed,
where ηr = 1 (−1) for the I (II) sublattice and the eµ’s are the
first neighbor vectors of the diamond lattice. Here Qr measures
the electric charge at r and satisfies

["r,Qr] = "r, ["†
r,Qr] = −"†

r. (6)

The U(1) QSL of quantum spin ice is an example of
the string-net condensed phases [34]. In the U(1) QSL, τ±

i

creates the shortest open (gauge) string whose ends are spinon
particles. In the spin ice context, τ±

i creates two defect
tetrahedra that violate the “two-plus two-minus” ice constraint.
The parton-gauge construction captures this essential property,
and the model becomes

Hsim =
∑

r

JyQ
2
r

2
−

∑

r

∑

µ ̸=ν

J±"
†
r+ηreµ

"r+ηreν
s
−ηr
r,r+ηreµ

× s
+ηr
r,r+ηreν

−
∑

⟨rr′⟩

h

2
(n̂ · ẑi)("†

r"r′s
+
rr′ + H.c.). (7)

With the constraint, Eq. (7) is an exact reformulation of the
simplified model in Eq. (3). It describes the bosonic spinons
hopping on the diamond lattice. The spinons are minimally
coupled with the emergent U(1) gauge field. Remarkably, the
external magnetic field directly couples to the spinons and
does not couple to the emergent electric field. This is sharply
distinct from the dipolar U(1) QSL where the magnetic field
would also directly couple with the emergent electric field.

FIG. 3. Lower excitation edges of the spinon continuum in the
dynamic spin structure factor under (a) zero magnetic field, and field
along (b) [111], (c) [001], and (d) [110] directions. In the figure, we
set J± = 0.1 Jy . The inset of (a) is the Brillouin zone [33].

Inside the U(1) QSL, the spinons are fully gapped. The
external magnetic field allows the spinon to tunnel between the
neighbor tetrahedra that are located along the field direction.
As we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength, the
spinon gap is closed and the spinons are condensed with
⟨"r⟩ ̸= 0. Via the Anderson-Higgs’ mechanism, the U(1)
gauge field becomes massive and gapped. Note that this differs
from the Coulomb ferromagnet where the gauge field remains
gapless and deconfined [23]. The resulting proximate state
develops a long-range magnetic order. Therefore, this is an
Anderson-Higgs’ transition driven by the external magnetic
fields. This is a generic property of the octupolar U(1) QSL
and is not a specific property of the simplified model. This is
an example that an external probe drives an Anderson-Higgs’
transition in a physical system.

To solve the reformulated model in Eq. (7), we adopt the
gauge mean-field approximation [10,23–25]. In this approxi-
mation, we decouple the model into the spinon sector and the
gauge sector. Since Hring favors a zero background gauge flux
on each elementary hexagon of the diamond lattice, we solve
for the mean-field ground state within this sector [32]. The
magnetic dipolar order is obtained by evaluating

〈
τ z
i

〉
= 1

2 [⟨τ+
i ⟩ + ⟨τ−

i ⟩] (8)

= 1
2 [⟨"†

r"r′ ⟩⟨s+
rr′ ⟩ + H.c.], (9)

where ⟨· · · ⟩ is taken with respect to the ground state. Because
of the Zeeman coupling, ⟨τ z

i ⟩ is nonzero even in the U(1)
QSL phase where the spinons are not condensed. In the
proximate ordered state, the spinon condensate gives an
additional contribution that is the induced magnetic order. For
all three directions of the external magnetic field, even though
the spinons are condensed at finite momenta, the proximate
magnetic order preserves the translation symmetry.

The full phase diagrams and the field-induced proximate
magnetic orders are depicted in Fig. 2. The magnetic field
is found to be least effective in destructing the U(1) QSL
for the field along the [110] direction. This is because the
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSL phases are the induced
magnetic ordered phase via the spinon condensation. For h = 0, the spinons are condensed at kc = (0,0,0), and we choose the local moments
to order in the local ẑ direction. In (a), a large magnetic field near the vertical axis drives the spinon condensation at kc = π (1,1,1), and the
resulting order is depicted in the figure. This order smoothly connects to the order on the horizontal axis. The cases in (b) and (c) are similar,
except that in (b) the field on the vertical axis drives the condensation at kc = 2π (0,0,1), while in (c) kc = π (1,1,0) near the vertical axis. We
set the diamond lattice constant to unity.

an Anderson-Higgs’ transition and inducing the long-range
magnetic orders.

Generic model for DO doublets on the pyrochlore
lattice. Because of the peculiar symmetry properties of the
DO doublets, the most generic model that describes the
nearest-neighbor interaction between them is given as HDO =∑

⟨ij⟩[Jxτ
x
i τ x

j + Jyτ
y
i τ

y
j + Jzτ

z
i τ z

j + Jxz(τ
x
i τ z

j + τ z
i τ x

j )] [10].
Here the interaction is uniform on every bond despite the fact
that the DO doublet involves a significant contribution from
the orbital part due to the strong SOC [15–20], and the DO
doublet is modeled by an effective pseudospin-1/2 moment
τ . Both τ x and τ z transform as the dipole moments under the
space group symmetry, while the τ y component behaves as
an octupole moment [10]. It is this important difference that
leads to some of the unique properties of its U(1) QSL ground
states.

Due to the spatial uniformity of the generic model, we can
transform the model HDO into the XYZ model with

HXYZ =
∑

⟨ij⟩
J̃x τ̃

x
i τ̃ x

j + J̃y τ̃
y
i τ̃

y
j + J̃zτ̃

z
i τ̃ z

j , (1)

where τ̃ x and τ̃ z (J̃x and J̃z) are related to τ x and τ z (Jx and
Jz) by a rotation around the y direction in the pseudospin
space, and τ̃ y ≡ τ y,J̃y ≡ Jy . When one of the couplings,
J̃µ, is dominant and antiferromagnetic, the corresponding
pseudospin component, τ̃µ, is regarded as the Ising component
of the model, and the ground state is a U(1) QSL in the
corresponding quantum spin ice regime. The dipolar U(1) QSL
is realized when the Ising component is the dipole moment τ̃ x

or τ̃ z, while the octupolar U(1) QSL is realized when the
Ising component is the octupole moment τ̃ y . In the compact
U(1) quantum electrodynamics description of the low energy
properties of the U(1) QSL [21,22], the Ising component is
identified as the emergent electric field [21]. Therefore, the
emergent electric field transforms very differently under the
lattice symmetry in dipolar and octupolar U(1) QSLs, making
these two U(1) QSLs symmetry enriched U(1) topological
order on the pyrochlore lattice [10].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions. Since the dipolar U(1) QSL has been discussed
many times in literature [10,23–31], we here focus on the
octupolar U(1) QSL of the octupolar quantum spin ice regime

where J̃y is dominant and antiferromagnetic. The octupolar
U(1) QSL is a new phase that is unique to the DO doublet
and cannot be found in any other doublets on the pyrochlore
lattice.

We consider the coupling of the DO doublet to the
external magnetic field. Remarkably, because τ̃ y is an octupole
moment, it does not couple to the magnetic field even though
it is time reversally odd. Only the dipolar component τ z

couples linearly to the external magnetic field. The resulting
model is

H =
∑

⟨ij⟩

∑

µ=x,y,z

J̃µτ̃
µ
i τ̃

µ
j −

∑

i

h (n̂ · ẑi) τ z
i , (2)

where n̂ is the direction of the magnetic field and ẑi is the z
direction of the local coordinate basis at the lattice site i [32].
This generic model describes all magnetic properties of the
DO doublets on the pyrochlore lattice.

As the generic model contains four parameters, it necessar-
ily brings some unnecessary complication into the problem.
To capture the essential physics, we here consider a simplified
version of the generic model in Eq. (2). The simplified model
is

Hsim =
∑

⟨ij⟩
Jyτ

y
i τ

y
j − J±(τ+

i τ−
j + H.c.) −

∑

i

h (n̂ · ẑi) τ z
i ,

(3)

where we define τ±
i = τ z

i ± iτ x
i and n̂ is the direction of the

external magnetic field. In the Ising limit with J± = 0 and
h = 0, the antiferromagnetic Jy favors the τ y components to
be in the ice manifold and requires a “two-plus two-minus”
ice constraint for the τ y configuration on each tetrahedron.
This octupolar ice manifold is extensively degenerate. With a
small and finite J± or h, the system can then tunnel quantum
mechanically within the octupolar ice manifold and form an
octupolar U(1) QSL. In this perturbative limit, the degenerate
perturbation theory yields an effective ring exchange model
with [32]

Hring = Jring

∑

!
[τ+

i τ−
j τ+

k τ−
l τ+

m τ−
n + H.c.], (4)

where “i,j,k,l,m,n” are six sites on the perimeter of the
elementary hexagon of the pyrochlore lattice, and the ring
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FIG. 1. (a) Diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin is located in the middle of the
link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond) lattice. The colored dots correspond to the
tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the dual diamond lattice traps a “π” background dual U (1) flux that
is experienced by the “monopole” hopping. I and II refer to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux
trapped in the (dashed) parallelogram is identical to the flux in the (colored) buckled hexagon.

the dual diamond lattice with [13]

2π⟨curl α⟩ = πηr ≡ π (mod 2π ). (11)

To see the effect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole,” T m

µ , that translates the “monopole” by a ba-
sis lattice vector aµ of the dual diamond lattice, where
µ = 1,2,3, and a1 = 1

2 (011),a2 = 1
2 (101),a3 = 1

2 (110). We
use the cubic coordinate system and set the lattice constant
to unity throughout the paper. As the “magnetic monopole”
hops successively through the parallelogram defined by
T m

µ T m
ν (T m

µ )−1(T m
ν )−1 with µ ̸= ν, the “monopole” experi-

ences an identical Aharonov-Bohm flux as the background
flux trapped in the hexagon plaquette of the dual diamond
lattice (see Fig. 1). This is because of the lattice geometry of
the diamond lattice. Thus, we have the following algebraic
relation:

T m
µ T m

ν

(
T m

µ

)−1(
T m

ν

)−1 = eiπ = −1. (12)

This algebraic relation means the lattice translation symme-
try is realized projectively for the “magnetic monopoles.”
The translation symmetry fractionalization for the “magnetic
monopole” is intimately connected to the spectral periodicity
of the “monopole continuum” [55,56,60].

To demonstrate the enhanced spectral periodicity of the
“monopole” continuum, we introduce a 2-“monopole” scat-
tering state |A⟩ ≡ |qA; zA⟩, where qA is the total crystal
momentum of this state and zA represents the remaining
quantum number that specifies the state [55]. The translation
symmetry fractionalization acts on the individual “monopole”
such that

Tµ|A⟩ ≡ T m
µ (1)T m

µ (2)|A⟩, (13)

where Tµ is the translation operator for the system, and 1 and
2 refer to the two “monopoles” of this state. By translating one
“monopole” by the basis lattice vector aµ, we obtain another

three 2-“monopole” scattering states,

|B⟩ = T m
1 (1)|A⟩, (14)

|C⟩ = T m
2 (1)|A⟩, (15)

|D⟩ = T m
3 (1)|A⟩. (16)

We are ready to compare the translation eigenvalues of these
four states by making use of Eq. (12) and obtain the following
relations for the crystal momentum of the these states:

qB = qA + 2π (100), (17)

qC = qA + 2π (010), (18)

qD = qA + 2π (001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spectral
periodicity such that

Lm(q) = Lm(q + 2π (100)),

= Lm(q + 2π (010)),

= Lm(q + 2π (001)), (20)

where Lm(q) is the lower excitation edge of the “monopole”
continuum for a given momentum q because there is a finite
energy cost to excite two “monopoles.” This enhanced spectral
periodicity also appears in the upper excitation edges of the
“monopole” continuum. There is no symmetry breaking nor
any static magnetic order in the system, but the spectral
periodicity is enhanced. The spectrum is invariant if one
translates the spectrum by 2π (100), 2π (010), or 2π (001). This
is very different from the conventional case where the spectral
periodicity is given by the reciprocal lattice vectors, 2π (1̄11),
2π (11̄1), and 2π (111̄), for the fcc Bravais lattice. Therefore,
the spectral periodicity enhancement with a fold Brillouin zone
is a strong indication of the fractionalization in the system.
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FIG. 1. (a) Diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin is located in the middle of the
link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond) lattice. The colored dots correspond to the
tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the dual diamond lattice traps a “π” background dual U (1) flux that
is experienced by the “monopole” hopping. I and II refer to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux
trapped in the (dashed) parallelogram is identical to the flux in the (colored) buckled hexagon.

the dual diamond lattice with [13]

2π⟨curl α⟩ = πηr ≡ π (mod 2π ). (11)

To see the effect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole,” T m

µ , that translates the “monopole” by a ba-
sis lattice vector aµ of the dual diamond lattice, where
µ = 1,2,3, and a1 = 1

2 (011),a2 = 1
2 (101),a3 = 1

2 (110). We
use the cubic coordinate system and set the lattice constant
to unity throughout the paper. As the “magnetic monopole”
hops successively through the parallelogram defined by
T m

µ T m
ν (T m

µ )−1(T m
ν )−1 with µ ̸= ν, the “monopole” experi-

ences an identical Aharonov-Bohm flux as the background
flux trapped in the hexagon plaquette of the dual diamond
lattice (see Fig. 1). This is because of the lattice geometry of
the diamond lattice. Thus, we have the following algebraic
relation:

T m
µ T m

ν

(
T m

µ

)−1(
T m

ν

)−1 = eiπ = −1. (12)

This algebraic relation means the lattice translation symme-
try is realized projectively for the “magnetic monopoles.”
The translation symmetry fractionalization for the “magnetic
monopole” is intimately connected to the spectral periodicity
of the “monopole continuum” [55,56,60].

To demonstrate the enhanced spectral periodicity of the
“monopole” continuum, we introduce a 2-“monopole” scat-
tering state |A⟩ ≡ |qA; zA⟩, where qA is the total crystal
momentum of this state and zA represents the remaining
quantum number that specifies the state [55]. The translation
symmetry fractionalization acts on the individual “monopole”
such that

Tµ|A⟩ ≡ T m
µ (1)T m

µ (2)|A⟩, (13)

where Tµ is the translation operator for the system, and 1 and
2 refer to the two “monopoles” of this state. By translating one
“monopole” by the basis lattice vector aµ, we obtain another

three 2-“monopole” scattering states,

|B⟩ = T m
1 (1)|A⟩, (14)

|C⟩ = T m
2 (1)|A⟩, (15)

|D⟩ = T m
3 (1)|A⟩. (16)

We are ready to compare the translation eigenvalues of these
four states by making use of Eq. (12) and obtain the following
relations for the crystal momentum of the these states:

qB = qA + 2π (100), (17)

qC = qA + 2π (010), (18)

qD = qA + 2π (001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spectral
periodicity such that

Lm(q) = Lm(q + 2π (100)),

= Lm(q + 2π (010)),

= Lm(q + 2π (001)), (20)

where Lm(q) is the lower excitation edge of the “monopole”
continuum for a given momentum q because there is a finite
energy cost to excite two “monopoles.” This enhanced spectral
periodicity also appears in the upper excitation edges of the
“monopole” continuum. There is no symmetry breaking nor
any static magnetic order in the system, but the spectral
periodicity is enhanced. The spectrum is invariant if one
translates the spectrum by 2π (100), 2π (010), or 2π (001). This
is very different from the conventional case where the spectral
periodicity is given by the reciprocal lattice vectors, 2π (1̄11),
2π (11̄1), and 2π (111̄), for the fcc Bravais lattice. Therefore,
the spectral periodicity enhancement with a fold Brillouin zone
is a strong indication of the fractionalization in the system.
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Motivated by the recent developments on cluster Mott insulating materials such as the cluster magnet
LiZn2Mo3O8, we consider the strong plaquette charge ordered regime of the extended Hubbard model on a
breathing kagome lattice and reveal the properties of the cluster Mottness. The plaquette charge order arises from
the intersite charge interaction and the collective motion of three localized electrons on the hexagon plaquettes.
This model leads naturally to a reduction of the local moments by 2/3, as observed in LiZn2Mo3O8. Furthermore,
at low temperatures, each hexagon plaquette contains an extra orbital-like degree of freedom in addition to
the remaining spin 1/2. We explore the consequence of this emergent orbital degree of freedom. We point out
the interaction between the local moments is naturally described by a Kugel-Khomskii spin-orbital model. We
develop a parton approach and suggest a spin-liquid ground state with spinon Fermi surfaces for this model. We
further predict an emergent orbital order when the system is under a strong magnetic field. Various experimental
consequences for LiZn2Mo3O8 are discussed, including an argument that the charge ordering must be short ranged
if the charge per Mo is slightly off stoichiometric.

DOI: 10.1103/PhysRevB.97.035124

I. INTRODUCTION

Spin, charge, and orbital are three basic degrees of freedom
of condensed matter systems, and their mutual interaction,
interplay, and entanglement cover the major topics of modern
condensed matter physics [1–4]. In conventional Mott insula-
tors, electron charge localization creates local spin moments
at the lattice sites, and the orbital degree of freedom becomes
active when the local crystal symmetry allows the degeneracy
of atomic orbitals [3]. Recently, the cluster Mott insulator has
emerged as a new type of Mott insulator in which the electrons
are localized inside the cluster [5–13]. As a result, the keen
interplay between the charge and the spin degrees of freedom
in cluster Mott insulators (CMIs) is often quite different from a
conventional Mott insulator [5–8]. In particular, it was shown
that the two-dimensional CMIs of the kagome system [6,8]
with an extended Hubbard model at 1/6 electron filling may de-
velop a plaquette charge order [14–18] on hexagon plaquettes
(see Fig. 1). This plaquette charge order immediately impacts
the spin degree of freedom and modulates the spin properties
by reconstructing the spin state within each plaquette. Such a
charge-driven spin-state reconstruction is one crucial property
of the CMIs in this system [6].

Well-known examples of cluster magnets include
LiZn2Mo3O8, Li2InMo3O8 [19], and ScZnMo3O8 [20],
where the Mo electrons are in the CMIs with the Mo
electrons localized in the smaller triangular clusters of the
distorted kagome lattice (see Fig. 1) [21–25]. The distortion

*gangchen.physics@gmail.com

is such that the up and down triangles have different bond
lengths and the lattice is often referred to as the breathing
kagome. Interestingly, the material LiZn2Mo3O8 experiences
two Curie regimes with distinct Curie-Weiss temperatures
and Curie constants [22,23] in which the low-temperature
Curie constant is 1/3 of the high-temperature one and the
low-temperature Curie-Weiss temperature is much smaller
than the high-temperature one. Moreover, the system remains
magnetically disordered down to the lowest measured
temperature, and inelastic neutron scattering does observe

FIG. 1. The breathing kagome lattice with plaquette charge order.
The solid (dashed) lines represent the up (down) triangles. The
plaquette charge order hosts three electrons that are resonating on
hexagons with circles marked, and a1,a2 are two lattice vectors that
connect neighboring resonating hexagons. R labels the resonating
hexagon, and 1–6 label the six vertices.
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a continuum of excitations [21]. This is consistent with the
proposal of a spin-liquid ground state in this material. Partly
inspired by the experiments in LiZn2Mo3O8, we here explore
the strong plaquette charge ordered regime of the CMI on
the breathing kagome system where the electron charges are
localized on resonating hexagon plaquettes (see Fig. 1). In
addition to the on-site repulsion, a large intersite repulsion is
assumed which forbids the occupation of neighboring sites.
This leads to plaquette charge ordering and the expansion of
the unit cell, formed by a triangular lattice of hexagons marked
by the circles in Fig 1. The low-lying degree of freedom is
the collective resonant rotation of the three occupied sites on
each hexagon (see Fig. 2). To put this model in the context
of the earlier model by Flint and Lee [26], there the intersite
repulsion is assumed to be weak and each up triangle is
occupied by one electron, and no correlation is assumed
around the hexagons. The up triangles form a triangular
lattice and a lattice distortion is postulated which creates a
honeycomb lattice of up triangles, with the spin at the center
of the honeycomb relatively isolated and responsible for the
local moments at low temperatures. Note that both for this
model and the current model, a tripling of the unit cell is
assumed. This has been searched for by x-ray scattering but
so far no new diffraction peaks have been observed. This issue
will be discussed in the Discussion section, where we point
out that if the system is slightly off stoichiometric, domain
walls will form between the ordered states. Due to a special
feature of domain walls forming a honeycomb lattice [27], it
can be shown that long-range order is always destroyed, i.e.,
the system can only have short-range order. This may help
explain the absence of new diffraction spots, and both models
may remain viable. We also point out that the Flint-Lee model
addressed only the freeze-out of 2/3 of the spins at low
temperatures, and the ultimate fate of the local moments that
remained was not discussed. In the current model, we address
both the freeze-out and the true ground state of this system
and argue that due to an emergent orbital degree of freedom,
a spin-liquid state may form as the true ground state.

We also compare the current paper with a previous work
on a similar model [6] which treats the weak plaquette order
regime. The current treatment of the CMI is analogous to the
strong Mott regime of a conventional Mott insulator, while the
previous weak plaquette charge ordered regime [6] is similar to
the weak Mott regime (i.e., close to the Mott transition) where
the charge fluctuation may destabilize the spin order and lead to
a spin liquid [28,29]. We find that in the strong charge ordered
regime, the charge-spin interaction appears in a much more
straightforward and transparent manner. We explain the local
moment reconstruction in the presence of a strong plaquette
charge order on the hexagon, giving rise to a net spin-1/2
local moment on the hexagon. We point out that there exists
an emergent orbital-like degree of freedom. These emergent
orbitals are twofold degenerate and protected by the symmetry
of the hexagon plaquette. The natural model that describes
the interaction between the effective spin and the emergent
orbital on the hexagon plaquette is the Kugel-Khomskii ex-
change model [30]. As a comparison with conventional Mott
insulators, the Kugel-Khomskii model is used to describe the
exchange interaction between the local moments when an
orbital degeneracy exists for the atomic orbitals [30].

For the Kugel-Khomskii model, we design a fermionic par-
ton approach to represent the effective spin and the emergent
orbital degrees of freedom, and propose a spinon Fermi-surface
spin-liquid ground state. We point out that the emergent orbital
generically creates nondegenerate spinon bands and allows
interband particle-hole excitations. Specifically, the interband
particle-hole excitations would manifest as a finite-energy
spinon continuum at the ! point in inelastic neutron scattering
and optical measurements. Polarizing the spin degrees of
freedom by applying strong magnetic fields, we obtain a simple
120◦ compass model for the emergent orbital interaction. We
further predict that the system selects a specific orbital order
via order by quantum disorder and supports a nearly gapless
pseudo-Goldstone mode. These results establish a different
perspective on the Mottness of the CMI.

The paper is organized as follows. In Sec. II, we introduce
the extended Hubbard model and explain the plaquette charge
order. In Sec. III, we explain the local moment structure
of the resonating hexagon in the strong plaquette charge
ordered regime and point out the fundamental existence
of the emergent orbital degree of freedom. In Sec. IV, we
derive the Kugel-Khomskii model that describes the exchange
interaction between the spin and the orbital on the triangular
lattice formed by the resonating hexagons. In Sec. V, we
design a parton construction and suggest the features of
the spinon continuum for the proposed spinon Fermi-surface
ground state. In Sec. VI, we explain the emergent orbital order,
quantum order by disorder effect of the compass model for the
orbitals, and the orbital excitation when the spin is polarized
by an external magnetic field. In Sec. VII, we discuss the
relevance of this model to LiZn2Mo3O8 and explore various
experimental consequences. We end with a broad view on the
cluster Mott insulating materials.

II. THE MICROSCOPIC MODEL AND THE PLAQUETTE
CHARGE ORDER

We start with the extended Hubbard model on the breathing
kagome lattice (see Fig. 1),

H = −
∑

⟨ij⟩∈u

(t1c
†
iσ cjσ + H.c.) −

∑

⟨ij⟩∈d

(t2c
†
iσ cjσ + H.c.)

+
∑

⟨ij⟩∈u

V1ninj +
∑

⟨ij⟩∈d

V2ninj +
∑

i

Uni↑ni↓, (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin σ

(= ↑,↓) at the lattice site i, ni (≡ni↑ + ni↓) is the electron
occupation number, and “u” and “d” refer to the up and
down triangles that are of different sizes, respectively. Here,
t1 and V1 (t2 and V2) are the electron hopping and repulsion
on neighboring sites of the up (down) triangles, respectively.
The electron filling is 1/6, i.e., one electron per unit cell
on the breathing kagome lattice. This model was suggested
to capture the physics of Mo-based cluster magnets such as
LiZn2Mo3O8 in which the Mo atoms form a breathing kagome
lattice [6,19,20].

The Hubbard U interaction for our system merely removes
the electron double occupancy on the lattice site, but it
cannot localize the electrons on the lattice sites. The electrons
can move on the lattice without encountering any double
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moment, this state is dubbed a ferro-dipolar (FDz) state, where
the subindex z refers to the direction of the dipole moment.
With a ferromagnetic dipole moment, this state can be readily
confirmed in a magnetization measurement.

The reduced model in Eq. (4) has an interesting permutation
structure. Using the result on the Iz surface, we can generate
the ground states on the Iy surface with Jy = −1 and the Ix

surface with Jx = −1. As the FDy order of the Iy surface
shares the same symmetry as the FDz order of the Iz surface,
we do not give a repeated discussion here. Although the
permutation trick to relate different regimes seems simple, the
physics on the Ix surface is rather special and unconventional,
and it is this distinction that we clarify below. Clearly, as
⟨T x⟩ is uniform and nonzero on the Ix surface, time-reversal
symmetry is explicitly broken and the ground state is a
ferromagnetic state with a pure FO order. As we compute
within the mean-field theory in the Supplemental Material and
show in Fig. 1, however, the magnetic susceptibility does not
show any divergent behavior. This is very different from what
we would naively expect for a usual ferromagnetic state. The
order parameter ⟨T x⟩ is an octupole moment and does not
couple linearly to the external magnetic field. Therefore, it is
hidden in the usual magnetization measurement [7,8,49].

Despite its invisibility in the usual thermodynamic mea-
surements, one could instead search for the evidence of
the octupolar order by other experimental probes. Since the
octupolar order explicitly breaks time-reversal symmetry,
polar Kerr effect could be used to detect the time-reversal
symmetry breaking [50]. Moreover, inside the FO phase, the
dipole moment τ z flips the octupole moment and creates
octupolar-wave excitations. As τ z directly couples to the
neutron spin, the octupolar-wave excitation can be directly
detected by an inelastic neutron scattering experiment. Using
the Holstein-Primakoff boson transformation [47], we obtain
the octupolar-wave dispersion,

ωk =
[
Jy

∑

i

cos [k · ai] − 3Jx

]1/2

×
[
Jz

∑

i

cos [k · ai] − 3Jx

]1/2

, (5)

where the summation is over the three nearest-
neighboring vectors a1 = (1,0), a2 = (−1/2,

√
3/2), and a3 =

(−1/2,−
√

3/2). One should observe a well-defined octupolar
wave excitation below the FO transition despite the ab-
sence of ordering in the magnetization measurement. This
mode is generically gapped because of the low symmetry
of the model. We depict the octupolar wave excitation in
Fig. 1(d).

Hidden antiferro-octupolar orders. Here we consider the
parameter regimes where the dominant interaction is antifer-
romagnetic. We focus on the Ox surface where the octupolar
exchange coupling Jx is antiferromagnetic and dominant. For
the Oy and the Oz surfaces, one can apply the permutation
on the Ox surface and generate the phase diagrams and the
relevant phases. In the absence of the exchange couplings
Jy and Jz, the Ising exchange interaction Jx is highly
frustrated on the triangular lattice. Any state that satisfies the
“2-plus 1-minus” or “2-minus 1-plus” condition for the T x

configuration on every triangle is the ground state. Therefore,
the ground state is extensively degenerate.

In the XXZ limit of the model with Jy = Jz, the weak
Jy and Jz exchanges allow the system to tunnel quantum
mechanically within the degenerate ground state manifold and
lift the degeneracy via an order by quantum disorder effect
[51–54]. It is well established that the system develops a
supersolid order in a large parameter regime of the XXZ
limit [51–54]. With a supersolid order, the system sponta-
neously breaks the U(1) symmetry with ⟨T y,z⟩ ̸= 0 and the
translation symmetry with ⟨T x⟩ ̸= 0. Moreover, the system has
a three-sublattice magnetic structure in the supersolid phase.

To obtain the phase diagram away from the XXZ limit, we
implement a self-consistent mean-field theory by assuming a
three-sublattice structure for the mean-field ansatz [47]. Via
the mean-field decoupling, we have

HMF = 3
∑

r∈A

∑

µ

[
Jµ(mµ

B + m
µ
C) T µ

r

]

+ 3
∑

r∈B

∑

µ

[
Jµ(mµ

C + m
µ
A) T µ

r

]

+ 3
∑

r∈C

∑

µ

[
Jµ(mµ

A + m
µ
B) T µ

r

]

−h
∑

r

[
cos θ T z

r + sin θ T y
r

]
, (6)

where m
µ
$ = ⟨T µ

r ⟩ is determined self-consistently for r ∈ $-th
sublattice with $ = A,B,C. Such a mean-field theory captures
both the uniform state and the three-sublattice state. The mean-
field phase diagram is depicted in Fig. 2. The FDy and the
FDz phases are the previously mentioned ferro-dipolar orders
with a uniform ⟨T y⟩ ̸= 0 and ⟨T z⟩ ̸= 0, respectively. There is
no octupolar order here. It is the considerable ferro-dipolar
interaction in these regions that competes with the antiferro-
octupolar interaction and completely suppresses any octupolar
order.

FIG. 2. The phase diagram on the Ox surface (Jx = 1). Solid
(dashed) lines indicate first (continuous) order phase transitions.
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the DO doublet is protected by time-reversal symmetry that
switches the two states. This special doublet has been found
in various neodymium (Nd) pyrochlores [34–40], dysprosium
(Dy) pyrochlore [41], osmium (Os) pyrochlore [42,43], erbium
(Er) and ytterbium (Yb) spinels [44,45], and Ce2Sn2O7 [46].
We expect the DO doublet should occur in some of the rare-
earth triangular materials, especially since these rare-earth ions
experience the same D3d crystal field environment.

Generic pseudospin model on a triangular lattice. Here
we explain the interaction between the DO doublets on a
triangular lattice. Due to the twofold degeneracy of the DO
doublet, we introduce the pseudospin operators, τµ, that act
on this DO doublet, τ+ = |"+⟩⟨"−|, τ− = |"−⟩⟨"+|, τ z =
1
2 |"+⟩⟨"+| − 1

2 |"−⟩⟨"−|, where τ± ≡ τ x ± iτ y . To obtain
the exchange interaction, we start with the symmetry properties
of the pseudospins under the space group symmetry.

For all three families of rare-earth triangular lattice mate-
rials [9,24–32], the space group is either R3̄m or P 63/mmc.
All rare-earth ions in these materials have a layered triangular
structure, and the interlayer separation is much larger than the
intralayer lattice constant in most materials. Therefore, it is
sufficient to just keep the interaction within the triangular layer
and ignore the interlayer couplings for most materials, though
the interlayer couplings in certain materials in the R2O2CO3
family may be important. Here we restrict ourselves to the
intralayer interaction. As far as the space group symmetry is
concerned, we only need to retain the symmetry generators
that operate within each triangular layer. It turns out that,
for a single triangular layer, both R3̄m and P 63/mmc space
groups give a threefold rotation around the z axis, C3, a
twofold rotation about the diagonal direction of the oblique
coordinate system, C2, a site inversion symmetry I , and two
lattice translations, Tx and Ty . The symmetry operation on τ

µ
r

is given as [47]

C3 : τ x
r → τ x

C3(r), τ y
r → τ

y
C3(r), τ z

r → τ z
C3(r),

C2 : τ x
r → τ x

C2(r), τ y
r → −τ

y
C2(r), τ z

r → −τ z
C2(r),

I : τ x
r → τ x

I (r), τ y
r → τ

y
I (r), τ z

r → τ z
I (r),

Tx : τ x
r → τ x

Tx (r), τ y
r → τ

y
Tx (r), τ z

r → τ z
Tx (r),

Ty : τ x
r → τ x

Ty (r), τ y
r → τ

y
Ty (r), τ z

r → τ z
Ty (r). (2)

Since the 4f electron wave function is very localized, we
only need to keep the nearest-neighbor interactions. The
most general nearest-neighbor model, allowed by the above
symmetries, is given as

H0 =
∑

⟨rr′⟩

[
Jx τ x

r τ x
r′ + Jy τ y

r τ
y
r′ + Jz τ z

r τ z
r′

+ Jyz

(
τ y

r τ z
r′ + τ z

r τ
y
r′

)]
. (3)

Here we give a few comments on this model. Firstly, the
pseudospin interaction is anisotropic in the pseudospin space
because of the spin-orbit entanglement in the DO doublet.
What is surprising is that the interaction is spatially uniform
and is identical for every bond orientation. This is unusual since
the orbitals have orientations. This remarkable spatial property
comes from the peculiar symmetry property of the DO doublet
in Eq. (2). Secondly, there exists a cross coupling between τ y

and τ z because τ y and τ z transform identically and behave like
the magnetic dipole moments under the space group. Thirdly,
there is no cross coupling between τ x and τ y or τ z because
τ x transforms as an octupole moment under the space group.
This holds even for further neighbor interactions [48]. The Jx

interaction is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g factor when it couples to
an external magnetic field. After including the Zeeman term,
we have the full Hamiltonian H = H0 − h

∑
r τ z

r . Due to the
spatial uniformity of the interaction, we are able to implement a
rotation by an angle θ around the x direction in the pseudospin
space and eliminate the cross coupling between τ y and τ z. The
reduced model is given as

H =
∑

⟨rr′⟩

[
Jx T x

r T x
r′ + Jy T y

r T
y

r′ + Jz T z
r T z

r′ ]

−h
∑

r

[
cosθ T z

r + sin θ T y
r

]
, (4)

where T x = τ x, T y = τ z sin θ + τ y cos θ, T z = τ z cos θ −
τ y sin θ , and Jx,Jy,Jz are defined in the Supplemental Mate-
rial [47]. Note both T y and T z behave like dipole moments.
Like the XYZ model on the pyrochlore lattice [19,20], this
model does not have a sign problem for quantum Monte Carlo
simulation in a large parameter regime, and this is valid on any
other lattices such as the three-dimensional fcc lattice where
DO doublets could exist [7].

Hidden ferro-octupolar orders. We now explain the hidden
multipolar orders of the model in Eq. (4). We start with
the parameter regime on the Iz surface with Jz = −1 [see
Fig. 1(a)]. This regime simply gives a conventional ferromag-
netic ground state with a uniform ⟨T z⟩. Since T z is a dipole

FIG. 1. (a) The six surfaces of the cuboid in the parameter space.
The parameters Jµ are found in the Hamiltonian of Eq. (4). Iµ

(Oµ) refers to the inner (outer) surface with Jµ = −1 (Jµ = 1).
We have marked the Ix and Ox surfaces. (b) The magnetization of
the ferro-dipolar (FD) state on the Iz surface with (Jx,Jy,Jz) =
(−0.5,−0.2,−1) and θ = π/3. The FD transition is at Td = 1.5|Jz|.
(c) Inverse magnetic susceptibility χ zz of the ferro-octupolar (FO)
state on the Ix surface with (Jx,Jy,Jz) = (−1,−0.2,−0.5) and
θ = π/3. The FO transition is at To = 1.5|Jx |. (d) Octupolar-wave
excitation with the same parameters in (c).
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✤ Quantum criticality from 
    spin-orbit entanglement  
    for 3d antiferromagnets 

2

further splitting within the t
2g

manifold and include this
specific physics for NiRh

2

O
4

later. Because the t
2g

levels
are partially filled, the atomic SOC is active at the linear
order. As the fully-filled e

g

manifold can be neglected,
the local physics for the 3d8 configuration is analogous
to the one for the 4d4/5d4 configurations of Ru4+ or Ir5+

that was discussed in Refs. 17 and 18, where the lat-
ter [18] proposed an excitonic magnetism. For the t

2g

manifold in Fig. 1, the local Hund’s coupling first favors
a total spin S = 1 local moment, and the remaining or-
bital occupation still has a three-fold degeneracy. The to-
tal orbital angular momentum remains unquenched and
can be treated as an e↵ective orbital angular momentum
L with L = 1 in the reduced Hilbert space of the three
orbital occupations. The atomic SOC is then written as

H
soc

= +�
X

i

L
i

· S
i

, (1)

where the sign of SOC is opposite to the case for two
electrons in the t

2g

manifold. The SOC here acts on the
total spin and total orbital angular momentum of the
four electrons and di↵ers from the SOC at the single-
electron level. The SOC entangles the spin and orbitals
and leads to a total moment J in the single-ion limit.
The single-ion ground state is a SOS with J = 0, and the
excited ones are J = 1 triplets and J = 2 quintuplets (see
Fig. 1).

Besides the atomic SOC, the spins and orbitals on
neighboring sites interact with each other through su-
perexchange. Due to the orbital degeneracy, the
exchange interaction should be of Kugel-Khomskii
form [19]. The superexchange path for both first-
neighbor and second-neighbor in NiRh

2

O
4

is given by
Ni-O-Rh-O-Ni and involves five atoms. Thus, the explicit
derivation of superexchange is complicated and is not
quantitatively reliable. Our purpose is not to be quanti-
tatively precise, but is to capture the generic physics of
the competition between the spin-orbital entanglement
and the tendency to magnetic ordering for the Ni-based
magnets and the systems alike. Thus, we consider a sim-
plified superexchange model with only spin interactions.
The exchange model is given as

H
ex

=
X

hiji

J
1

S
i

· S
j

+
X

hhijii

J
2

S
i

· S
j

, (2)

where J
1

(J
2

) is the first (second) neighbor coupling.
This simplified model captures the ordering tendency,
but is not supposed to capture the possibility of an (ex-
otic) quantum spin-orbital liquid with fractionalized ex-
citations [20].

Phase diagram and quantum criticality.—Here we
study the full Hamiltonian that contains both SOC and
superexchange with,

H = H
soc

+ H
ex

. (3)
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ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>

Spin-Orbital Singlet
<latexit sha1_base64="ws8bL2Sj4yqfo0FQhLt0DWuhBLM=">AAACLnicbVA9SwNBEJ3z2/gVtdRiUQQbw50Waifa2KloVEhC2NtM4pK9vWN3TozHFf4aW+38J2IhWvonBDeJhRofDDzem2FmXpgoacn3X7yh4ZHRsfGJycLU9MzsXHF+4dzGqRFYFrGKzWXILSqpsUySFF4mBnkUKrwI2wdd/+IajZWxPqNOgrWIt7RsSsHJSfXiUpXwhrLTROqNIxNK4oqdSt1SSHm9uOqX/B7YIAm+yere8tPJOwAc14uf1UYs0gg1CcWtrQR+QrWMG5JCYV6ophYTLtq8hRVHNY/Q1rLeEzlbc0qDNWPjShPrqT8nMh5Z24lC1xlxurJ/va74n1dJqblTy6ROUkIt+ouaqWIUs24irCENClIdR7gw0t3KxBU3XJDL7dcWku3bfEDZ2GokKqa84PIK/qYzSMqbpd1ScOJy24c+JmAJVmAdAtiGPTiEYyiDgDu4hwd49B69Z+/Ve+u3DnnfM4vwC97HF5wKrGg=</latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="YWxoAsxl8/nwcqM0DM5exMmXz0Q=">AAACLnicbVA9SwNBEN3zM8avqKXNYhBsEu60ULugjZ0RjQrJEfY2k2TJ3t6xOyfG4wp/ja35NWIhtv4JwU28Qo0PBh7vzTAzL4ilMOi6r87M7Nz8wmJhqbi8srq2XtrYvDZRojk0eCQjfRswA1IoaKBACbexBhYGEm6CwenYv7kDbUSkrnAYgx+ynhJdwRlaqV3abiHcY3oZC1U514FAJumlUD0JmLVLZbfqTkCniZeTMslRb5c+W52IJyEo5JIZ0/TcGP2UaRRcQlZsJQZixgesB01LFQvB+OnkiYzuWqVDu5G2pZBO1J8TKQuNGYaB7QwZ9s1fbyz+5zUT7B75qVBxgqD496JuIilGdJwI7QgNHOXQEsa1sLdS3meacbS5/dqCYvCQTSmVg04sI8yKNi/vbzrTpLFfPa56F265dpIHVyDbZIfsEY8ckho5I3XSIJw8kifyTEbOyHlx3pz379YZJ5/ZIr/gfHwBLL6qIw==</latexit>
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<latexit sha1_base64="UJHSLLvTYAodR6tjDxuJFtZd89M=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxbCjB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGx/m2MguLS8sr2dXc2vrG5lZ+e+dBx6li3GWxjFXVo5pLEXEXBUpeTRSnoSd5xetcD/3KI1daxNE9dhPeCGkrEoFgFI10Rwhp5gtO0RnBnidkQgqXn7mLZwAoN/M/dT9macgjZJJqXSNOgo0eVSiY5P1cPdU8oaxDW7xmaERDrhu90al9+8Aovh3EylSE9kj9O9Gjodbd0DOdIcW2nvWG4n9eLcXgrNETUZIij9h4UZBKG2N7+LftC8UZyq4hlClhbrVZmyrK0KQztQVF56k/pxyd+ImMsZ8zeZHZdOaJe1w8L5Jbp1C6gjGysAf7cAgETqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV7XqC/</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="xreXvjskO1TjVUyk2LTLOIfoDbU=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLVg3orevFY0dhCG8pms2mXbjZhdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2Fmnp8IrsFxvq3Syura+kZ5s7K1vbO7V90/eNJxqihzaSxi1faJZoJL5gIHwdqJYiTyBWv5w9uJ33pmSvNYPsIoYV5E+pKHnBIw0gPGuFetOXVnCnuZ4ILUUIFmr/rTDWKaRkwCFUTrDnYS8DKigFPB8ko31SwhdEj6rGOoJBHTXjY9NbdPjBLYYaxMSbCn6t+JjERajyLfdEYEBnrRm4j/eZ0Uwisv4zJJgUk6WxSmwobYnvxtB1wxCmJkCKGKm1ttOiCKUDDpzG0BPnzJl5SziyARMeQVkxdeTGeZuOf16zq+d2qNmyK4MjpCx+gUYXSJGugONZGLKOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX8B1nvI=</latexit>

001
<latexit sha1_base64="N4q9cEIXu3jnjcFPasP7yoRNctk=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxTCrB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGQr6tzMLi0vJKdjW3tr6xuZXf3nnQcaoYd1ksY1X1qOZSRNxFgZJXE8Vp6Ele8TrXQ7/yyJUWcXSP3YQ3QtqKRCAYRSPdEeI08wVSJCPY88SZkMLlZ+7iGQDKzfxP3Y9ZGvIImaRa1xySYKNHFQomeT9XTzVPKOvQFq8ZGtGQ60ZvdGrfPjCKbwexMhWhPVL/TvRoqHU39ExnSLGtZ72h+J9XSzE4a/RElKTIIzZeFKTSxtge/m37QnGGsmsIZUqYW23WpooyNOlMbUHReerPKUcnfiJj7OdMXs5sOvPEPS6eF51bUihdwRhZ2IN9OAQHTqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV3/6C9</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="GUwPCpyyS4iLxCBepd7E17tol9w=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLoQb0VvXisaGyhDWWz2bRLN7thdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2FmXpBwpsFxvq3Syura+kZ5s7K1vbO7V90/eNIyVYR6RHKp2gHWlDNBPWDAaTtRFMcBp61geDvxW89UaSbFI4wS6se4L1jECAYjPTiO26vWnLozhb1M3ILUUIFmr/rTDSVJYyqAcKx1x3US8DOsgBFO80o31TTBZIj7tGOowDHVfjY9NbdPjBLakVSmBNhT9e9EhmOtR3FgOmMMA73oTcT/vE4K0ZWfMZGkQAWZLYpSboO0J3/bIVOUAB8Zgoli5labDLDCBEw6c1uADV/yJeXsIky4hLxi8nIX01km3nn9uu7eO7XGTRFcGR2hY3SKXHSJGugONZGHCOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX70WnvA=</latexit>111⇤

<latexit sha1_base64="plODLCAYVSJ0NIXkIMo6PxJr0j8=">AAACFnicbVDLSgNBEOz1GddX1KOXxSCIYNjVg3oQg148RnBNIFnD7GSSDJl9MNMrxGXBP/BqvsaT5OrVjxGcPA4msaChqOqmu8uPBVdo29/GwuLS8spqbs1c39jc2s7v7D6qKJGUuTQSkaz6RDHBQ+YiR8GqsWQk8AWr+N3boV95ZlLxKHzAXsy8gLRD3uKUoJZcx3Gejhv5gl20R7DmiTMhheuBefUKAOVG/qfejGgSsBCpIErVHDtGLyUSORUsM+uJYjGhXdJmNU1DEjDlpaNjM+tQK02rFUldIVoj9e9ESgKleoGvOwOCHTXrDcX/vFqCrQsv5WGcIAvpeFErERZG1vBzq8kloyh6mhAqub7Voh0iCUWdz9QW5N2XbE45OWvGIsLM1Hk5s+nME/e0eFl07u1C6QbGyME+HMAROHAOJbiDMrhAgcMbvEPf6BsfxqcxGLcuGJOZPZiC8fULq4ehWw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="p8/rFgNpldqH+Nagk+TVsgWSWXk=">AAACFnicbVBNS8NAEN34WetX1aOXxSKIYMnqQb0VvXisYGyhjWWz2bRLNx/sToQa8hu82l/jSbx69ccIbtscbOuDgcd7M8zM8xIpNNj2t7W0vLK6tl7aKG9ube/sVvb2H3WcKsYdFstYtTyquRQRd0CA5K1EcRp6kje9we3Ybz5zpUUcPcAw4W5Ie5EIBKNgJIcQ8nTarVTtmj0BXiSkIFVUoNGt/HT8mKUhj4BJqnWb2Am4GVUgmOR5uZNqnlA2oD3eNjSiIdduNjk2x8dG8XEQK1MR4In6dyKjodbD0DOdIYW+nvfG4n9eO4Xgys1ElKTAIzZdFKQSQ4zHn2NfKM5ADg2hTAlzK2Z9qigDk8/MFhCDl3xBObvwExlDXjZ5kfl0FolzXruukXu7Wr8pgiuhQ3SEThBBl6iO7lADOYghgV7RGxpZI+vd+rA+p61LVjFzgGZgff0C8J6fjg==</latexit>N
ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>

Spin-Orbital Singlet
<latexit sha1_base64="ws8bL2Sj4yqfo0FQhLt0DWuhBLM=">AAACLnicbVA9SwNBEJ3z2/gVtdRiUQQbw50Waifa2KloVEhC2NtM4pK9vWN3TozHFf4aW+38J2IhWvonBDeJhRofDDzem2FmXpgoacn3X7yh4ZHRsfGJycLU9MzsXHF+4dzGqRFYFrGKzWXILSqpsUySFF4mBnkUKrwI2wdd/+IajZWxPqNOgrWIt7RsSsHJSfXiUpXwhrLTROqNIxNK4oqdSt1SSHm9uOqX/B7YIAm+yere8tPJOwAc14uf1UYs0gg1CcWtrQR+QrWMG5JCYV6ophYTLtq8hRVHNY/Q1rLeEzlbc0qDNWPjShPrqT8nMh5Z24lC1xlxurJ/va74n1dJqblTy6ROUkIt+ouaqWIUs24irCENClIdR7gw0t3KxBU3XJDL7dcWku3bfEDZ2GokKqa84PIK/qYzSMqbpd1ScOJy24c+JmAJVmAdAtiGPTiEYyiDgDu4hwd49B69Z+/Ve+u3DnnfM4vwC97HF5wKrGg=</latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="cFt4Fu8OXg+/GphyTPDXNCOYID0="></latexit><latexit sha1_base64="YWxoAsxl8/nwcqM0DM5exMmXz0Q=">AAACLnicbVA9SwNBEN3zM8avqKXNYhBsEu60ULugjZ0RjQrJEfY2k2TJ3t6xOyfG4wp/ja35NWIhtv4JwU28Qo0PBh7vzTAzL4ilMOi6r87M7Nz8wmJhqbi8srq2XtrYvDZRojk0eCQjfRswA1IoaKBACbexBhYGEm6CwenYv7kDbUSkrnAYgx+ynhJdwRlaqV3abiHcY3oZC1U514FAJumlUD0JmLVLZbfqTkCniZeTMslRb5c+W52IJyEo5JIZ0/TcGP2UaRRcQlZsJQZixgesB01LFQvB+OnkiYzuWqVDu5G2pZBO1J8TKQuNGYaB7QwZ9s1fbyz+5zUT7B75qVBxgqD496JuIilGdJwI7QgNHOXQEsa1sLdS3meacbS5/dqCYvCQTSmVg04sI8yKNi/vbzrTpLFfPa56F265dpIHVyDbZIfsEY8ckho5I3XSIJw8kifyTEbOyHlx3pz379YZJ5/ZIr/gfHwBLL6qIw==</latexit>
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<latexit sha1_base64="UJHSLLvTYAodR6tjDxuJFtZd89M=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxbCjB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGx/m2MguLS8sr2dXc2vrG5lZ+e+dBx6li3GWxjFXVo5pLEXEXBUpeTRSnoSd5xetcD/3KI1daxNE9dhPeCGkrEoFgFI10Rwhp5gtO0RnBnidkQgqXn7mLZwAoN/M/dT9macgjZJJqXSNOgo0eVSiY5P1cPdU8oaxDW7xmaERDrhu90al9+8Aovh3EylSE9kj9O9Gjodbd0DOdIcW2nvWG4n9eLcXgrNETUZIij9h4UZBKG2N7+LftC8UZyq4hlClhbrVZmyrK0KQztQVF56k/pxyd+ImMsZ8zeZHZdOaJe1w8L5Jbp1C6gjGysAf7cAgETqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV7XqC/</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="vaNyRW+tWdv6qEPCoE6ry6BDiSQ=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvbtlvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGp9aIz</latexit><latexit sha1_base64="xreXvjskO1TjVUyk2LTLOIfoDbU=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLVg3orevFY0dhCG8pms2mXbjZhdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2Fmnp8IrsFxvq3Syura+kZ5s7K1vbO7V90/eNJxqihzaSxi1faJZoJL5gIHwdqJYiTyBWv5w9uJ33pmSvNYPsIoYV5E+pKHnBIw0gPGuFetOXVnCnuZ4ILUUIFmr/rTDWKaRkwCFUTrDnYS8DKigFPB8ko31SwhdEj6rGOoJBHTXjY9NbdPjBLYYaxMSbCn6t+JjERajyLfdEYEBnrRm4j/eZ0Uwisv4zJJgUk6WxSmwobYnvxtB1wxCmJkCKGKm1ttOiCKUDDpzG0BPnzJl5SziyARMeQVkxdeTGeZuOf16zq+d2qNmyK4MjpCx+gUYXSJGugONZGLKOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX8B1nvI=</latexit>

001
<latexit sha1_base64="N4q9cEIXu3jnjcFPasP7yoRNctk=">AAACFHicbVDLSgNBEOyNrxhfUY9eFoPgxTCrB/UgBr14jOiaQBLC7OxsMmT2wUyvEEPAH/BqvsaTiDfvfozg5HEwiQUNRVU33V1eIoVGQr6tzMLi0vJKdjW3tr6xuZXf3nnQcaoYd1ksY1X1qOZSRNxFgZJXE8Vp6Ele8TrXQ7/yyJUWcXSP3YQ3QtqKRCAYRSPdEeI08wVSJCPY88SZkMLlZ+7iGQDKzfxP3Y9ZGvIImaRa1xySYKNHFQomeT9XTzVPKOvQFq8ZGtGQ60ZvdGrfPjCKbwexMhWhPVL/TvRoqHU39ExnSLGtZ72h+J9XSzE4a/RElKTIIzZeFKTSxtge/m37QnGGsmsIZUqYW23WpooyNOlMbUHReerPKUcnfiJj7OdMXs5sOvPEPS6eF51bUihdwRhZ2IN9OAQHTqEEN1AGFxi04AVeYWANrDfr3foYt2asycwuTMH6+gV3/6C9</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="eKZQmqEJdtHfyy5J53J2UnL0Zm0=">AAACFHicbVDLSsNAFJ34rPFVdelmsAhuLIku1IVYdOOyorGFNpTJZNIOnTyYuRFqyCe4tR/gd7gScedW/BjB6WNhWw9cOJxzL/fe4yWCK7Csb2NufmFxabmwYq6urW9sFre271WcSsocGotY1j2imOARc4CDYPVEMhJ6gtW87tXArz0wqXgc3UEvYW5I2hEPOCWgpVvLslvFklW2hsCzxB6T0sWHeZ68fJnVVvGn6cc0DVkEVBClGraVgJsRCZwKlpvNVLGE0C5ps4amEQmZcrPhqTne14qPg1jqigAP1b8TGQmV6oWe7gwJdNS0NxD/8xopBKduxqMkBRbR0aIgFRhiPPgb+1wyCqKnCaGS61sx7RBJKOh0JrYA7z7mM8rhsZ+IGHJT52VPpzNLnKPyWdm+sUqVSzRCAe2iPXSAbHSCKugaVZGDKGqjJ/SM+kbfeDXejPdR65wxntlBEzA+fwGmlqIx</latexit><latexit sha1_base64="GUwPCpyyS4iLxCBepd7E17tol9w=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLoQb0VvXisaGyhDWWz2bRLN7thdyLUkJ/g1f4aT+LVuz9GcNvmYFsfDDzem2FmXpBwpsFxvq3Syura+kZ5s7K1vbO7V90/eNIyVYR6RHKp2gHWlDNBPWDAaTtRFMcBp61geDvxW89UaSbFI4wS6se4L1jECAYjPTiO26vWnLozhb1M3ILUUIFmr/rTDSVJYyqAcKx1x3US8DOsgBFO80o31TTBZIj7tGOowDHVfjY9NbdPjBLakVSmBNhT9e9EhmOtR3FgOmMMA73oTcT/vE4K0ZWfMZGkQAWZLYpSboO0J3/bIVOUAB8Zgoli5labDLDCBEw6c1uADV/yJeXsIky4hLxi8nIX01km3nn9uu7eO7XGTRFcGR2hY3SKXHSJGugONZGHCOqjV/SGxtbYerc+rM9Za8kqZg7RHKyvX70WnvA=</latexit>111⇤

<latexit sha1_base64="plODLCAYVSJ0NIXkIMo6PxJr0j8=">AAACFnicbVDLSgNBEOz1GddX1KOXxSCIYNjVg3oQg148RnBNIFnD7GSSDJl9MNMrxGXBP/BqvsaT5OrVjxGcPA4msaChqOqmu8uPBVdo29/GwuLS8spqbs1c39jc2s7v7D6qKJGUuTQSkaz6RDHBQ+YiR8GqsWQk8AWr+N3boV95ZlLxKHzAXsy8gLRD3uKUoJZcx3Gejhv5gl20R7DmiTMhheuBefUKAOVG/qfejGgSsBCpIErVHDtGLyUSORUsM+uJYjGhXdJmNU1DEjDlpaNjM+tQK02rFUldIVoj9e9ESgKleoGvOwOCHTXrDcX/vFqCrQsv5WGcIAvpeFErERZG1vBzq8kloyh6mhAqub7Voh0iCUWdz9QW5N2XbE45OWvGIsLM1Hk5s+nME/e0eFl07u1C6QbGyME+HMAROHAOJbiDMrhAgcMbvEPf6BsfxqcxGLcuGJOZPZiC8fULq4ehWw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="n3V7zJJsIRfRYEmdIHEowIx4vEU=">AAACFnicbVBNS8NAEN3Urxq/qh69BIsggiXRg3oQi148VjC20May2WzbpZts2J0INeQ3eLVnf4gn6dWb+GMEtx8H2/pg4PHeDDPz/JgzBbb9beQWFpeWV/Kr5tr6xuZWYXvnQYlEEuoSwYWs+VhRziLqAgNOa7GkOPQ5rfrdm6FffaJSMRHdQy+mXojbEWsxgkFLruM4j0fNQtEu2SNY88SZkOLVwLyM377MSrPw0wgESUIaAeFYqbpjx+ClWAIjnGZmI1E0xqSL27SuaYRDqrx0dGxmHWglsFpC6orAGql/J1IcKtULfd0ZYuioWW8o/ufVE2ideymL4gRoRMaLWgm3QFjDz62ASUqA9zTBRDJ9q0U6WGICOp+pLcC6z9mccnwaxFxAZuq8nNl05ol7UrooOXd2sXyNxsijPbSPDpGDzlAZ3aIKchFBDL2gV9Q3+sa78WEMxq05YzKzi6ZgfP4C2h6izw==</latexit><latexit sha1_base64="p8/rFgNpldqH+Nagk+TVsgWSWXk=">AAACFnicbVBNS8NAEN34WetX1aOXxSKIYMnqQb0VvXisYGyhjWWz2bRLNx/sToQa8hu82l/jSbx69ccIbtscbOuDgcd7M8zM8xIpNNj2t7W0vLK6tl7aKG9ube/sVvb2H3WcKsYdFstYtTyquRQRd0CA5K1EcRp6kje9we3Ybz5zpUUcPcAw4W5Ie5EIBKNgJIcQ8nTarVTtmj0BXiSkIFVUoNGt/HT8mKUhj4BJqnWb2Am4GVUgmOR5uZNqnlA2oD3eNjSiIdduNjk2x8dG8XEQK1MR4In6dyKjodbD0DOdIYW+nvfG4n9eO4Xgys1ElKTAIzZdFKQSQ4zHn2NfKM5ADg2hTAlzK2Z9qigDk8/MFhCDl3xBObvwExlDXjZ5kfl0FolzXruukXu7Wr8pgiuhQ3SEThBBl6iO7lADOYghgV7RGxpZI+vd+rA+p61LVjFzgGZgff0C8J6fjg==</latexit>N
ée

l
<latexit sha1_base64="0uiCLFNL6nszwztWcQZ/bgEUou0=">AAACHnicbVDLSgNBEOz1GeMr6tHLYhC9GHZVUE8KXjyJglEhWcLspJMMmX040yvGZb9DvCWf4Rd4Eq/6MYKTxIMmFjQUVd1UU34shSbH+bQmJqemZ2Zzc/n5hcWl5cLK6rWOEsWxzCMZqVufaZQixDIJkngbK2SBL/HGb5/2/Zt7VFpE4RV1YvQC1gxFQ3BGRvKqhA+Unle3EGVWKxSdkjOAPU7cH1I8fnl+7gLARa3wVa1HPAkwJC6Z1hXXiclLmSLBJWb5aqIxZrzNmlgxNGQBai8dPJ3Zm0ap241ImQnJHqi/L1IWaN0JfLMZMGrpUa8v/udVEmoceqkI44Qw5MOgRiJtiux+A3ZdKOQkO4YwroT51eYtphgn09OfFBLtx2xM2dmrxzKiLG/6ckfbGSfl3dJRyb10iif7MEQO1mEDtsGFAziBM7iAMnC4gyfoQs/qWa/Wm/U+XJ2wfm7W4A+sj28s/Kaf</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="z6wdVVLPjiuFSvYz6WfpTmsS0iM=">AAACHnicbVDLSgNBEJyNrxhfUY9eFoPoxbCrgnoy4MWTRDAmkCxhdtJJhsw+nOkV47LfIXoyn+EXeBKv+jGCs4kHk1jQUFR1U025oeAKLevLyMzMzs0vZBdzS8srq2v59Y0bFUSSQYUFIpA1lyoQ3IcKchRQCyVQzxVQdXvnqV+9A6l44F9jPwTHox2ftzmjqCWngXCP8WVjF0AkzXzBKlpDmNPE/iWFs9enFM/lZv670QpY5IGPTFCl6rYVohNTiZwJSHKNSEFIWY92oK6pTz1QTjx8OjF3tNIy24HU46M5VP9exNRTqu+5etOj2FWTXir+59UjbJ84MffDCMFno6B2JEwMzLQBs8UlMBR9TSiTXP9qsi6VlKHuaSwFee8hmVL2D1uhCDDJ6b7syXamSeWgeFq0r6xC6YiMkCVbZJvsEZsckxK5IGVSIYzckkfyQgbGwHgz3o2P0WrG+L3ZJGMwPn8A1IuoZA==</latexit><latexit sha1_base64="m/aI3qn/Xur5imz7yyvVMOE5fy4=">AAACHnicbVDLSsNAFJ34rPVVdekmWEQ3lkQFdVdw40oqWFtoQplMb9qhk4czN2IN+Q639mtciVv9GMFpm4VtPXDhcM69nMvxYsEVWta3sbC4tLyyWlgrrm9sbm2XdnYfVJRIBnUWiUg2PapA8BDqyFFAM5ZAA09Aw+tfj/zGE0jFo/AeBzG4Ae2G3OeMopZcB+EZ01vnCEBk7VLZqlhjmPPEzkmZ5Ki1Sz9OJ2JJACEyQZVq2VaMbkolciYgKzqJgpiyPu1CS9OQBqDcdPx0Zh5qpWP6kdQTojlW/16kNFBqEHh6M6DYU7PeSPzPayXoX7opD+MEIWSTID8RJkbmqAGzwyUwFANNKJNc/2qyHpWUoe5pKgV5/yWbU07OOrGIMCvqvuzZduZJ/bRyVbHvrHL1PC+uQPbJATkmNrkgVXJDaqROGHkkr+SNDI2h8W58GJ+T1QUjv9kjUzC+fgHzK6PV</latexit>
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FIG. 2. (Color online.) The phase diagram of the full model
in Eq. (3). It summarizes the competition between the SOC
and the superexchange and captures the frustration of the
exchange. Please refer to the main text about the magnetic
orders.

Once our full model is written, the physics is almost
transparent. Besides the competition between SOC and
superexchange, the exchange frustration would further
complicate our phase diagram. To establish the phase di-
agram, one approach is to start from the (non-magnetic)
SOS and study its magnetic instability to an ordered
state by condensing the excitonic excitation [18]. The
other approach is to start from the ordered state and
tracing the fate of magnetic order parameters as we in-
crease the strength of the SOC. When the magnetic or-
der disappears, the system enters the SOS phase. Both
approaches are quantum and adopted here. Via a Weiss-
type mean-field decoupling, our Hamiltonian becomes

H
MFT

= H
soc

+
X

hiji

J
1

S
i

· hS
j

i +
X

hhijii

J
2

S
i

· hS
j

i, (4)

where hS
j

i is taken as a mean-field order parameter.
To choose a mean-field ansatz for the order parameter,
we start from the limiting case with a vanishing SOC
such that this limit has been well-understood. Here
we consider the antiferromagnetic couplings J

1

> 0 and
J

2

> 0. It was shown that [20–22], for J
2

/J
1

< 1/8, a
Neél state with an order wavevector q = 0 is obtained;
for J

2

/J
1

> 1/8, the ground state has a spin-spiral config-
uration, and the wavevectors of degenerate spirals form
a surface [20] in momentum space and satisfy
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When J

2

/J
1

is increased from 1/8, this “spiral surface”
emerges and surrounds q = 0, showing a nearly spheri-
cal geometry. It then touches the boundary of the Bril-
louin zone at J

2

/J
1

= 1/4 and develops “holes” on the
boundary of the Brillouin zone, as J

2

/J
1

is further in-
creased. Finally, the spiral surface shrinks to lines cor-
responding to the degenerate ground state manifold of
two decoupled face centered cubic lattices in the limit
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Quantum paramagnet and frustrated quantum criticality in a spin-one
diamond lattice antiferromagnet
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Motivated by the proposal of a topological quantum paramagnet in the diamond lattice antiferromagnet
NiRh2O4, we propose a minimal model to describe the magnetic interaction and properties of the diamond
material with spin-one local moments. Our model includes the first- and second-neighbor Heisenberg interactions
as well as a local single-ion spin anisotropy that is allowed by the spin-one nature of the local moment and the
tetragonal symmetry of the system. We point out that there exists a quantum phase transition from a trivial quantum
paramagnet when single-ion spin anisotropy is dominant to the magnetic ordered states when the exchange is
dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum paramagnetic state
supports extensively degenerate band minima in the spectra. As the system approaches the transition, extensively
degenerate bosonic modes become critical at the criticality, giving rise to unusual magnetic properties. Our phase
diagram and experimental predictions for different phases provide a guideline for the identification of the ground
state for NiRh2O4. Although our results are fundamentally different from the proposal for topological quantum
paramagnets, they represent interesting possibilities for spin-one diamond lattice antiferromagnets.
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Introduction. The recent theoretical proposal of symmetry
protected topological (SPT) ordered states has sparked wide
interest in the theoretical community [1–25]. The well-known
topological insulator, which was proposed and discovered
earlier, is a noninteracting fermion SPT protected by time
reversal symmetry [26,27]. In contrast, SPTs in bosonic
systems must be stabilized by the interactions [11]. The spin
degrees of freedom with exchange interactions seem to be a
natural candidate for realizing boson SPTs [10]. In fact, the
Haldane spin-one chain is a one-dimensional (1D) boson SPT
and is protected by SO(3) spin rotational symmetry [1,2,28].
The realization of boson SPTs in high dimensions is still
missing. It was suggested that a spin-one diamond lattice
antiferromagnet with frustrated spin interactions may host
a topological quantum paramagnet that is a spin analog of
topological insulators and is protected by time reversal sym-
metry [29]. Quite recently, a diamond lattice antiferromagnet
NiRh2O4 with Ni2+ spin-one local moments was proposed to
fit into the early suggestion [30].

NiRh2O4 is a tetragonal spinel and experiences a structural
phase transition from cubic to tetragonal at T = 380 K
[30,32,33]. As we show in Fig. 1, the magnetic ion Ni2+

has a 3d8 electron configuration, forming a spin S = 1 local
moment and occupying the tetrahedral diamond lattice site.
No signature of magnetic order was observed down to 0.1
K in the magnetic susceptibility and specific heat measure-
ments. Although this might fulfill the basic requirement for
the absence of magnetic order in a topological quantum
paramagnet, an alternative state that is distinct from topo-
logical quantum paramagnets may also provide a consistent
experimental prediction with the current experiments. In this
Rapid Communication, we propose a minimal spin model

*gangchen.physics@gmail.com

for a spin-one diamond lattice with tetragonal distortion and
study the full phase diagram and phase transition of our
model. We do not find the presence of a topological quantum
paramagnet in our phase diagram. Instead, due to strong spin
frustration, the ordered state in our phase diagram can be easily
destabilized and converted into a trivial quantum paramagnet
by moderate single-ion spin anisotropy. We predict that this
seemingly trivial quantum paramagnetic state in a large
parameter regime supports a gapped magnetic excitation that
develops extensively degenerate band minima in the spectrum.
As the quantum paramagnet approaches the phase transition
to a proximate ordered state, the extensively degenerate low-
energy modes become gapless and are responsible for unusual
magnetic properties, such as a linear-T heat capacity at low
temperatures in the vicinity of the transition. In the proximate

FIG. 1. A diamond lattice with J1 and J2 interactions. Due to
the tetragonal symmetry of the lattice, the a and b directions are
not equivalent to the c direction. The Ni2+ ion is in a tetrahedral
environment, so the eg orbitals are lower in energy than the t2g levels.
Tetragonal distortion further splits the two eg orbitals and the three t2g

orbitals, but the degeneracy of the xz and yz orbitals remains intact
under tetragonal distortion. To avoid the orbital degree of freedom,
we here place the xz and yz orbitals above the xy orbitals [31].
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Emergent quantum criticality from spin-orbital entanglement in d8 Mott insulators:

the case of a diamond lattice antiferromagnet
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Motivated by the recent activities on the Ni-based diamond lattice antiferromagnet NiRh2O4,
we theoretically explore on a general ground the unique spin and orbital physics for the Ni2+ ions
with a 3d8 electron configuration in the tetrahedral crystal field environment and on a diamond
lattice Mott insulator. The superexchange interaction between the local moments usually favors
magnetic orders. Due to the particular electron configuration of the Ni2+ ion with a partially filled
upper t2g level and a fully filled lower eg level, the atomic spin-orbit coupling becomes active at the
linear order and would favor a spin-orbital-entangled singlet with quenched local moments in the
single-ion limit. Thus, the spin-orbital entanglement competes with the superexchange and could
drive the system to a quantum critical point that separates spin-orbital singlet and magnetic orders.
We further explore the e↵ects of magnetic field and uniaxial pressure. The non-trivial response to
the magnetic field is intimately tied to the underlying spin-orbital structure of the local moments.
We discuss the future experiments such as doping and pressure, and point out the correspondence
between electron configurations (d8, d9, · · · ) under tetrahedral crystal fields and the ones (d4, d5, · · · )
under octahedral crystal fields.

Introduction.—The spin-orbit coupling (SOC) is a rel-
ativistic e↵ect and plays an important role in our un-
derstanding of the quantum properties of materials with
heavy elements. Contrary to this conventional belief
that explains the recent SOC activities in 4d/5d tran-
sition metal compounds [1], SOC occasionally becomes
important in 3d transition metal materials, especially in
Mott insulators with orbital degeneracies [2]. It is well-
known that, for Mott insulators with spin-only moments,
the atomic SOC enters via high order perturbations of
the Hubbard model and generates the single-ion spin
anisotropy and the Dzyaloshinskii-Moriya interaction [2].
Except certain circumstances, these extra spin anisotropy
and interactions can often be regarded as small pertur-
bations to the (Heisenberg) exchange part of the inter-
actions. When the system has an orbital degeneracy,
however, the atomic SOC should be considered at the
first place and would reconstruct local spin and orbital.
The diamond lattice antiferromagnet FeSc

2

S
4

[3–12] and
various vanadates [2, 13–15] provide physical realizations
of such physics, where the former has an e

g

orbital de-
generacy while the latter has a t

2g

degeneracy.

In this Letter, we study a diamond lattice antifer-
romagnet where the Ni2+ ions are magnetic. We are
partly motivated by the diamond lattice antiferromag-
net NiRh

2

O
4

[16], and explore on a general ground the
consequence of the atomic SOC for Ni2+. We point out
that there exists a keen competition between the atomic
SOC at the single-ion level and the inter-site superex-
change for the 3d transition metal ion like Ni2+. The
spin-orbital singlet (SOS) would give way to the magnet-
ically ordered state through a quantum phase transition
when the superexchange dominates over the atomic SOC.

We further show the e↵ect of the external magnetic field
and the uniaxial pressure on the quantum criticality. The
non-trivial structure of the phase diagram such as the re-
entrant transition under the field directly reveals the un-
derlying spin-orbital structure of the local moments. Al-
though our motivation originates partly from NiRh

2

O
4

,
the physics that we reveal here can well extended to other
magnets with similar crystal field schemes and orbital
configurations. We go beyond the specific case of the
Ni2+ ions, establish the correspondence between di↵er-
ent electron configurations, and suggest the applicability
to many other materials.

The model.—We start with the microscopics of the
Ni2+ ion. In NiRh

2

O
4

, Ni2+ is under the tetrahedral
crystal field. Thus, t

2g

levels are higher in energy than
e
g

levels. As we show in Fig. 1, the lower e
g

levels are
completely filled, and the t

2g

levels are partially filled
with four electrons. For our purpose, we first ignore the

e
g
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<latexit sha1_base64="ynCtWd9BEVY+4uwusKF79aBHVTY=">AAACGXicbVDLSgNBEOz1GeMr6tHLYhC8GHZVUE8GguIxgjGBZAmzk9lkyOyDmV4hLvsT3oI5+BtePYlXT36M4ORxMIkFDUVVN91dbiS4Qsv6NhYWl5ZXVjNr2fWNza3t3M7ugwpjSVmFhiKUNZcoJnjAKshRsFokGfFdwaputzT0q49MKh4G99iLmOOTdsA9TglqqdZQXlK6vkmbubxVsEYw54k9Ifmrt37/FQDKzdxPoxXS2GcBUkGUqttWhE5CJHIqWJptxIpFhHZJm9U1DYjPlJOM7k3NQ620TC+UugI0R+rfiYT4SvV8V3f6BDtq1huK/3n1GL0LJ+FBFCML6HiRFwsTQ3P4vNniklEUPU0IlVzfatIOkYSijmhqC/LuUzqnHJ+2IhFimtV52bPpzJPKSeGyYN9Z+eIZjJGBfTiAI7DhHIpwC2WoAAUBz/ACA2NgvBsfxue4dcGYzOzBFIyvX8SQpEg=</latexit><latexit sha1_base64="owvUNo9jr7PfZi30NZIOK7Svpjk=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQT1ZKIrHCsYW2lA22027dPPB7kSoIX/Cm9o/4tWTePXkjxHctD3Y1gcDj/dmmJnnRoIrMM1vI7ewuLS8kl8trK1vbG4Vt3fuVRhLymwailA2XKKY4AGzgYNgjUgy4ruC1d1+NfPrD0wqHgZ3MIiY45NuwD1OCWip0VJeUr26TtvFklk2R8DzxJqQ0uXbc4aXWrv40+qENPZZAFQQpZqWGYGTEAmcCpYWWrFiEaF90mVNTQPiM+Uko3tTfKCVDvZCqSsAPFL/TiTEV2rgu7rTJ9BTs14m/uc1Y/DOnYQHUQwsoONFXiwwhDh7Hne4ZBTEQBNCJde3YtojklDQEU1tAd5/TOeUo5NOJEJICzovazadeWIfly/K1q1ZqpyiMfJoD+2jQ2ShM1RBN6iGbESRQE/oFQ2NofFufBif49acMZnZRVMwvn4BbC6mDQ==</latexit><latexit sha1_base64="owvUNo9jr7PfZi30NZIOK7Svpjk=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQT1ZKIrHCsYW2lA22027dPPB7kSoIX/Cm9o/4tWTePXkjxHctD3Y1gcDj/dmmJnnRoIrMM1vI7ewuLS8kl8trK1vbG4Vt3fuVRhLymwailA2XKKY4AGzgYNgjUgy4ruC1d1+NfPrD0wqHgZ3MIiY45NuwD1OCWip0VJeUr26TtvFklk2R8DzxJqQ0uXbc4aXWrv40+qENPZZAFQQpZqWGYGTEAmcCpYWWrFiEaF90mVNTQPiM+Uko3tTfKCVDvZCqSsAPFL/TiTEV2rgu7rTJ9BTs14m/uc1Y/DOnYQHUQwsoONFXiwwhDh7Hne4ZBTEQBNCJde3YtojklDQEU1tAd5/TOeUo5NOJEJICzovazadeWIfly/K1q1ZqpyiMfJoD+2jQ2ShM1RBN6iGbESRQE/oFQ2NofFufBif49acMZnZRVMwvn4BbC6mDQ==</latexit><latexit sha1_base64="GJnuOe9AuOnbCFwPixBiUWtZR+U=">AAACGXicbVBNS8NAEN3Ur1q/qh69LBbBiyVRQb0ViuKxgrGFNpTNdtMu3WTD7kSoIX/Cq/01nsSrJ3+M4LbNwbY+GHi8N8PMPD8WXINtf1uFldW19Y3iZmlre2d3r7x/8KRloihzqRRStXyimeARc4GDYK1YMRL6gjX9YX3iN5+Z0lxGjzCKmReSfsQDTgkYqdXRQVq/vcu65YpdtafAy8TJSQXlaHTLP52epEnIIqCCaN127Bi8lCjgVLCs1Ek0iwkdkj5rGxqRkGkvnd6b4ROj9HAglakI8FT9O5GSUOtR6JvOkMBAL3oT8T+vnUBw7aU8ihNgEZ0tChKBQeLJ87jHFaMgRoYQqri5FdMBUYSCiWhuC/DhS7aknF30YiEhK5m8nMV0lol7Xr2pOg92pXaZB1dER+gYnSIHXaEaukcN5CKKBHpFb2hsja1368P6nLUWrHzmEM3B+voFis6hfg==</latexit>

2�
<latexit sha1_base64="MdFR3UMtqkqMMeaHQjzZmQWeIWo=">AAACG3icbVDLSsNAFL3xWeur6tJNsAhuLIkK6sqCG5cVrC22QSaTiQ6dTMLMjVBD/sJNFxZ/w70rcevCjxGcPhbWemDgcM653DvHTwTX6Dhf1szs3PzCYmGpuLyyurZe2ti81nGqKKvTWMSq6RPNBJesjhwFayaKkcgXrOF3zgd+44EpzWN5hd2EeRG5kzzklKCRbrKDtjDhgOS3pbJTcYawp4k7JuWz117vBQBqt6XvdhDTNGISqSBat1wnQS8jCjkVLC+2U80SQjvkjrUMlSRi2suGF+f2rlECO4yVeRLtofp7IiOR1t3IN8mI4L3+6w3E/7xWiuGJl3GZpMgkHS0KU2FjbA++bwdcMYqiawihiptbbXpPFKFoSprYgrzzmE8p+4dBImLMi6Yv928706R+UDmtuJdOuXoEIxRgG3ZgD1w4hipcQA3qQEHCEzxD3+pbb9a79TGKzljjmS2YgPX5A6FupUg=</latexit><latexit sha1_base64="8u9sv1CZjdXqWSaSnZx4DqF4GFY=">AAACG3icbVBNS8NAFNz4WetX1aOXYBG8WJIqqCcLXjxWMLbYhrLZbNqlm03YfRFqyL/womD/h3dP4tWDP0Zw0/ZgWwcWhpl5vLfjxZwpsKxvY2FxaXlltbBWXN/Y3Nou7ezeqSiRhDok4pFselhRzgR1gAGnzVhSHHqcNrz+Ve43HqhULBK3MIipG+KuYAEjGLR0n1bbXId9nHVKZatijWDOE3tCypdvzzle6p3ST9uPSBJSAYRjpVq2FYObYgmMcJoV24miMSZ93KUtTQUOqXLT0cWZeagV3wwiqZ8Ac6T+nUhxqNQg9HQyxNBTs14u/ue1EgjO3ZSJOAEqyHhRkHATIjP/vukzSQnwgSaYSKZvNUkPS0xAlzS1BVj/MZtTjk/8mEeQFXVf9mw788SpVi4q9o1Vrp2iMQpoHx2gI2SjM1RD16iOHESQQE/oFQ2NofFufBif4+iCMZnZQ1Mwvn4BSQynDQ==</latexit><latexit sha1_base64="8u9sv1CZjdXqWSaSnZx4DqF4GFY=">AAACG3icbVBNS8NAFNz4WetX1aOXYBG8WJIqqCcLXjxWMLbYhrLZbNqlm03YfRFqyL/womD/h3dP4tWDP0Zw0/ZgWwcWhpl5vLfjxZwpsKxvY2FxaXlltbBWXN/Y3Nou7ezeqSiRhDok4pFselhRzgR1gAGnzVhSHHqcNrz+Ve43HqhULBK3MIipG+KuYAEjGLR0n1bbXId9nHVKZatijWDOE3tCypdvzzle6p3ST9uPSBJSAYRjpVq2FYObYgmMcJoV24miMSZ93KUtTQUOqXLT0cWZeagV3wwiqZ8Ac6T+nUhxqNQg9HQyxNBTs14u/ue1EgjO3ZSJOAEqyHhRkHATIjP/vukzSQnwgSaYSKZvNUkPS0xAlzS1BVj/MZtTjk/8mEeQFXVf9mw788SpVi4q9o1Vrp2iMQpoHx2gI2SjM1RD16iOHESQQE/oFQ2NofFufBif4+iCMZnZQ1Mwvn4BSQynDQ==</latexit><latexit sha1_base64="2saRJcSUGTVAb6Vl4LZHDXknpDo=">AAACG3icbVBNS8NAFNz4WetX1aOXxSJ4sSRVUG8FLx4rGFtsQ9lsNu3SzSbsvgg15F94tb/Gk3j14I8R3LY52NaBhWFmHu/t+IngGmz721pZXVvf2Cxtlbd3dvf2KweHjzpOFWUujUWs2j7RTHDJXOAgWDtRjES+YC1/eDvxW89MaR7LBxglzItIX/KQUwJGesrqXWHCAcl7lapds6fAy8QpSBUVaPYqP90gpmnEJFBBtO44dgJeRhRwKlhe7qaaJYQOSZ91DJUkYtrLphfn+NQoAQ5jZZ4EPFX/TmQk0noU+SYZERjoRW8i/ud1UgivvYzLJAUm6WxRmAoMMZ58HwdcMQpiZAihiptbMR0QRSiYkua2AB++5EvK+UWQiBjysunLWWxnmbj12k3NuberjcuiuBI6RifoDDnoCjXQHWoiF1Ek0St6Q2NrbL1bH9bnLLpiFTNHaA7W1y9nrKJ+</latexit>

�
<latexit sha1_base64="xIJXYUv5KZeWjZ2ITppeWQ0nkLI=">AAACGnicbVC7SgNBFL3rM8ZX1NJmMQg2hl0V1MqAjWUE10SSJczOTpIhsw9m7gpx2a+wChjwN6ytxNbGjxGcPAqTeGDgcM653DvHiwVXaFnfxsLi0vLKam4tv76xubVd2Nm9V1EiKXNoJCJZ84higofMQY6C1WLJSOAJVvW610O/+sik4lF4h72YuQFph7zFKUEtPaQNobM+yZqFolWyRjDniT0hxau3fv8VACrNwk/Dj2gSsBCpIErVbStGNyUSORUsyzcSxWJCu6TN6pqGJGDKTUcHZ+ahVnyzFUn9QjRH6t+JlARK9QJPJwOCHTXrDcX/vHqCrQs35WGcIAvpeFErESZG5vD3ps8loyh6mhAqub7VpB0iCUXd0dQW5N2nbE45PvVjEWGW133Zs+3ME+ekdFmyb61i+QzGyME+HMAR2HAOZbiBCjhAIYBneIGBMTDejQ/jcxxdMCYzezAF4+sXJkmlDA==</latexit><latexit sha1_base64="ctVlUGGWQmXSN6rG4DW3nGZRanQ=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwY0lUUFcW3LisYGylDWUymbRDJw9mboQa8hWuFPshrl2JWzd+jOCk7cK2Hhg4nHMu985xY8EVmOa3UVhYXFpeKa6W1tY3NrfK2zt3KkokZTaNRCSbLlFM8JDZwEGwZiwZCVzBGm7/KvcbD0wqHoW3MIiZE5BuyH1OCWjpPm0LnfVI1ilXzKo5Ap4n1oRULt+ec7zUO+WfthfRJGAhUEGUallmDE5KJHAqWFZqJ4rFhPZJl7U0DUnAlJOODs7wgVY87EdSvxDwSP07kZJAqUHg6mRAoKdmvVz8z2sl4J87KQ/jBFhIx4v8RGCIcP577HHJKIiBJoRKrm/FtEckoaA7mtoCvP+YzSlHJ14sIshKui9rtp15Yh9XL6rWjVmpnaIximgP7aNDZKEzVEPXqI5sRFGAntArGhpD4934MD7H0YIxmdlFUzC+fgHN2KbR</latexit><latexit sha1_base64="ctVlUGGWQmXSN6rG4DW3nGZRanQ=">AAACGnicbVDLSsNAFJ3UV62vqks3g0VwY0lUUFcW3LisYGylDWUymbRDJw9mboQa8hWuFPshrl2JWzd+jOCk7cK2Hhg4nHMu985xY8EVmOa3UVhYXFpeKa6W1tY3NrfK2zt3KkokZTaNRCSbLlFM8JDZwEGwZiwZCVzBGm7/KvcbD0wqHoW3MIiZE5BuyH1OCWjpPm0LnfVI1ilXzKo5Ap4n1oRULt+ec7zUO+WfthfRJGAhUEGUallmDE5KJHAqWFZqJ4rFhPZJl7U0DUnAlJOODs7wgVY87EdSvxDwSP07kZJAqUHg6mRAoKdmvVz8z2sl4J87KQ/jBFhIx4v8RGCIcP577HHJKIiBJoRKrm/FtEckoaA7mtoCvP+YzSlHJ14sIshKui9rtp15Yh9XL6rWjVmpnaIximgP7aNDZKEzVEPXqI5sRFGAntArGhpD4934MD7H0YIxmdlFUzC+fgHN2KbR</latexit><latexit sha1_base64="4jO/I4604ifDeZCe+VwazrHe+Mk=">AAACGnicbVBNS8NAFNzUr1q/qh69LBbBiyVRQb0VvHisYGylDWWz2bRLN5uw+yLUkF/h1f4aT+LViz9GcNvmYFsHFoaZeby34yeCa7Dtb6u0srq2vlHerGxt7+zuVfcPHnWcKspcGotYtX2imeCSucBBsHaiGIl8wVr+8Hbit56Z0jyWDzBKmBeRvuQhpwSM9JR1hckGJO9Va3bdngIvE6cgNVSg2av+dIOYphGTQAXRuuPYCXgZUcCpYHmlm2qWEDokfdYxVJKIaS+bHpzjE6MEOIyVeRLwVP07kZFI61Hkm2REYKAXvYn4n9dJIbz2Mi6TFJiks0VhKjDEePJ7HHDFKIiRIYQqbm7FdEAUoWA6mtsCfPiSLylnF0EiYsgrpi9nsZ1l4p7Xb+rOvV1rXBbFldEROkanyEFXqIHuUBO5iKIIvaI3NLbG1rv1YX3OoiWrmDlEc7C+fgHseKJC</latexit>

J = 2
<latexit sha1_base64="apEq37/5BsZJyzzzTT7uS9XwhNs=">AAACFHicbVA9SwNBEJ2LXzF+RS1tDoNgY7iLhVqIARuximhMIAlhb7OXLNm7PXbnhOTIT7A1f8TWSmztLf0hgpuPwiQ+GHi8N8PMPC8SXKPjfFmppeWV1bX0emZjc2t7J7u796hlrCgrUymkqnpEM8FDVkaOglUjxUjgCVbxutcjv/LElOYyfMBexBoBaYfc55Sgke5vLwvNbM7JO2PYi8SdktzVa/+7CAClZvan3pI0DliIVBCta64TYSMhCjkVbJCpx5pFhHZJm9UMDUnAdCMZnzqwj4zSsn2pTIVoj9W/EwkJtO4FnukMCHb0vDcS//NqMfrnjYSHUYwspJNFfixslPbob7vFFaMoeoYQqri51aYdoghFk87MFuTd/mBBOTltRULiIGPycufTWSTlQv4i7945uaIDE6ThAA7hGFw4gyLcQAnKQKENz/ACQ2tovVnv1sekNWVNZ/ZhBtbnL9pioZQ=</latexit><latexit sha1_base64="rOKshGc9vBlUHSuFAVgg07lsK9o=">AAACFHicbVC7SgNBFJ31GeMrPjqbxSDYGHZjoRZiwEKxiuiaQLKE2dlJMmR2Z5m5KyTLfoKt+QsrWyuxtbf0QwQnj8IkHrhwOOde7r3HizhTYFlfxtz8wuLScmYlu7q2vrGZ29p+UCKWhDpEcCGrHlaUs5A6wIDTaiQpDjxOK17ncuBXHqlUTIT30I2oG+BWyJqMYNDS3c15sZHLWwVrCHOW2GOSv3jtfV+97CblRu6n7gsSBzQEwrFSNduKwE2wBEY4TbP1WNEIkw5u0ZqmIQ6ocpPhqal5oBXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl6NiPuIA0q/Oyp9OZJU6xcFawb618yUIjZNAe2keHyEYnqISuURk5iKAWekLPqG/0jTfj3fgYtc4Z45kdNAHj8xfAwaLY</latexit><latexit sha1_base64="rOKshGc9vBlUHSuFAVgg07lsK9o=">AAACFHicbVC7SgNBFJ31GeMrPjqbxSDYGHZjoRZiwEKxiuiaQLKE2dlJMmR2Z5m5KyTLfoKt+QsrWyuxtbf0QwQnj8IkHrhwOOde7r3HizhTYFlfxtz8wuLScmYlu7q2vrGZ29p+UCKWhDpEcCGrHlaUs5A6wIDTaiQpDjxOK17ncuBXHqlUTIT30I2oG+BWyJqMYNDS3c15sZHLWwVrCHOW2GOSv3jtfV+97CblRu6n7gsSBzQEwrFSNduKwE2wBEY4TbP1WNEIkw5u0ZqmIQ6ocpPhqal5oBXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl6NiPuIA0q/Oyp9OZJU6xcFawb618yUIjZNAe2keHyEYnqISuURk5iKAWekLPqG/0jTfj3fgYtc4Z45kdNAHj8xfAwaLY</latexit><latexit sha1_base64="LRevCJvfxipkzkgZqqbcKvwFLl8=">AAACFHicbVBNS8NAEN3Ur1q/qh69BIvgxZLUg3oQCl7EU0VrC20om82mXbrZDbsToYb8BK/213gSr979MYLbNgfb+mDg8d4MM/P8mDMNjvNtFVZW19Y3ipulre2d3b3y/sGTlokitEkkl6rtY005E7QJDDhtx4riyOe05Q9vJn7rmSrNpHiEUUy9CPcFCxnBYKSHu+tar1xxqs4U9jJxc1JBORq98k83kCSJqADCsdYd14nBS7ECRjjNSt1E0xiTIe7TjqECR1R76fTUzD4xSmCHUpkSYE/VvxMpjrQeRb7pjDAM9KI3Ef/zOgmEl17KRJwAFWS2KEy4DdKe/G0HTFECfGQIJoqZW20ywAoTMOnMbQE2fMmWlLPzIOYSspLJy11MZ5k0a9WrqnvvVOpOHlwRHaFjdIpcdIHq6BY1UBMR1Eev6A2NrbH1bn1Yn7PWgpXPHKI5WF+/+x2fBg==</latexit>

J = 1
<latexit sha1_base64="UE/mFTA3He9R3cMarK98RjW5ZeU=">AAACFHicbVA9SwNBEJ3zM8avqKXNYRBsDHdaqIUYsBGriJ4JJEfY29tLlux9sDsnJOF+gq35I7ZWYmtv6Q8R3HwUJvHBwOO9GWbmeYngCi3ry1hYXFpeWc2t5dc3Nre2Czu7jypOJWUOjUUsax5RTPCIOchRsFoiGQk9wape53roV5+YVDyOHrCbMDckrYgHnBLU0v3tpd0sFK2SNYI5T+wJKV699r7LAFBpFn4afkzTkEVIBVGqblsJun0ikVPBsnwjVSwhtENarK5pREKm3P7o1Mw81IpvBrHUFaE5Uv9O9EmoVDf0dGdIsK1mvaH4n1dPMTh3+zxKUmQRHS8KUmFibA7/Nn0uGUXR1YRQyfWtJm0TSSjqdKa2IO/0sjnl+NRPRIxZXudlz6YzT5yT0kXJvrOKZQvGyME+HMAR2HAGZbiBCjhAoQXP8AIDY2C8Ge/Gx7h1wZjM7MEUjM9f2LShkw==</latexit><latexit sha1_base64="18v1LIbiGOtgtHgL83Nh1O6C4zY=">AAACFHicbVC7SgNBFJ2Nrxhf8dHZLAbBxrCrhVqIAQvFKqJrAskSZmcnyZDZnWXmrpAs+wm25i+sbK3E1t7SDxGcPAqTeODC4Zx7ufceL+JMgWV9GZm5+YXFpexybmV1bX0jv7n1oEQsCXWI4EJWPawoZyF1gAGn1UhSHHicVrzO5cCvPFKpmAjvoRtRN8CtkDUZwaClu5tzu5EvWEVrCHOW2GNSuHjtfV+97CTlRv6n7gsSBzQEwrFSNduKwE2wBEY4TXP1WNEIkw5u0ZqmIQ6ocpPhqam5rxXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl8NiPuIA0p/Oyp9OZJc5R8axo31qFkoVGyKJdtIcOkI1OUAldozJyEEEt9ISeUd/oG2/Gu/Exas0Y45ltNAHj8xe/E6LX</latexit><latexit sha1_base64="18v1LIbiGOtgtHgL83Nh1O6C4zY=">AAACFHicbVC7SgNBFJ2Nrxhf8dHZLAbBxrCrhVqIAQvFKqJrAskSZmcnyZDZnWXmrpAs+wm25i+sbK3E1t7SDxGcPAqTeODC4Zx7ufceL+JMgWV9GZm5+YXFpexybmV1bX0jv7n1oEQsCXWI4EJWPawoZyF1gAGn1UhSHHicVrzO5cCvPFKpmAjvoRtRN8CtkDUZwaClu5tzu5EvWEVrCHOW2GNSuHjtfV+97CTlRv6n7gsSBzQEwrFSNduKwE2wBEY4TXP1WNEIkw5u0ZqmIQ6ocpPhqam5rxXfbAqpKwRzqP6dSHCgVDfwdGeAoa2mvYH4n1eLoXnqJiyMYqAhGS1qxtwEYQ7+Nn0mKQHe1QQTyfStJmljiQnodCa2AOv00hnl8NiPuIA0p/Oyp9OZJc5R8axo31qFkoVGyKJdtIcOkI1OUAldozJyEEEt9ISeUd/oG2/Gu/Exas0Y45ltNAHj8xe/E6LX</latexit><latexit sha1_base64="Tgozh/miZ9efGHthpjs0cBcA2QY=">AAACFHicbVBNS8NAEN34WetX1aOXxSJ4sSR6UA9CwYt4qmhsoQ1ls9m0SzebsDsRashP8Gp/jSfx6t0fI7htc7CtDwYe780wM89PBNdg29/W0vLK6tp6aaO8ubW9s1vZ23/Scaooc2ksYtXyiWaCS+YCB8FaiWIk8gVr+oObsd98ZkrzWD7CMGFeRHqSh5wSMNLD3bXTrVTtmj0BXiROQaqoQKNb+ekEMU0jJoEKonXbsRPwMqKAU8HycifVLCF0QHqsbagkEdNeNjk1x8dGCXAYK1MS8ET9O5GRSOth5JvOiEBfz3tj8T+vnUJ46WVcJikwSaeLwlRgiPH4bxxwxSiIoSGEKm5uxbRPFKFg0pnZAnzwki8op+dBImLIyyYvZz6dReKe1a5qzr1drdtFcCV0iI7QCXLQBaqjW9RALqKoh17RGxpZI+vd+rA+p61LVjFzgGZgff0C+W+fBQ==</latexit>

J = 0
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FIG. 1. The electron configuration of Ni2+ under the tetrahe-
dral crystal field. When the atomic spin-orbit coupling (SOC)
is introduced, the electron states in the upper t2g levels are
further split into the spin-orbital-entangled J states. “CEF”
refers to crystal electric field splitting.
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7

=  ??? 

Luttinger semimetal Ordered spin ice

Gang Chen’s theory group 

Gang Chen’s theory group
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Spin-orbit-coupled correlated matter

4

U/t ⌧ 1, a metallic or semi-conducting state at small U may be converted to a semi-metal or to a

TI. What happens when both SOC and correlations are present? Several arguments suggest that

� and U tend to cooperate rather than compete, in generating insulating states. Including SOC

first, we have already remarked upon the splitting of degeneracies and the consequent generation

of multiple narrow bands from relatively mixed ones. The narrow bands generated by SOC are

more susceptible to Mott localization by U , which implies that the horizontal boundary in Figure 1

shifts downward with increasing �. If we include correlations first, the U tends to localize electrons,

diminishing their kinetic energy. Consequently the on-site SOC �, which is insensitive to or even

reduced by delocalization, is relatively enhanced. Indeed, in the strong Mott regime U/t � 1,

one should compare � with the spin exchange coupling J / t2/U , rather than t. As a result, the

vertical boundary shifts to the left for large U/t. We see that there is an intermediate regime in

which insulating states are obtained only from the combined influence of SOC and correlations –

these may be considered spin-orbit assisted Mott insulators. Here we are using the term “Mott

insulator” to denote any state which is insulating by virtue of electron-electron interactions. In

Sec. IV, we will remark briefly on a somewhat philosophical debate as to what should “properly”

be called a Mott insulator.

Terminology aside, an increasing number of experimental systems have appeared in recent

years in this interesting correlated SOC regime. Most prolific are a collection of iridates, weakly

conducting or insulating oxides containing iridium, primarily in the Ir4+ oxidation state. This

FIG. 1. Sketch of a generic phase diagram for electronic materials, in terms of the interaction strength
U/t and SOC �/t. The materials in this review reside on the right half of the figure.

W Witczak, Gang Chen, YB Kim, L Balents, 
Annual Review of Condensed Matter Physics, 2014 
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Cuprates



Ir, Os, Ta, …,4d/5d,… ,4f electrons,…

Iridates, osmates, rheniumates…, 4d/5d materials 
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Pyrochlore iridates

R2Ir2O7 K Matsuhira, M Wakeshima, Y Hinatsu, S. Takagi 
JPSJ, 2011

Pr2Ir2O7 remains metallic and disordered.



Correlation physics in spin-orbit (topological) matter

D Pesin, L Balents, Nature Phys 2010, Topological Mott insulator  
                                                       (or 3D U(1) quantum spin liquid)

3

u
n
it
s)

gy
(a
rb
.
u

Γ X W L Γ K XE
n
er

FIG. 3: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin-orbit coupling, �/t!1. Only the
relevant four doubly degenerate bands are shown. A band gap between the filled lower two bands and empty upper two bands
is clearly seen.

orbital angular momentum operator is equal to minus the usual spin-one angular momentum operator L [16]. Thus we
may e↵ectively consider the pseudo-total angular momentum J = L+S, which commutes with the SOI. The multiplet
structure for the usual ` = 1 states is inverted, and the t2g

manifold splits into a j = 1/2 doublet with energy �, and
a j = 3/2 quadruplet with energy ��/2. We will work in the local diagonal basis of the j eigenstates, and introduce a
single label ↵ such that ↵ = 1, 2 and ↵ = 3 . . . 6 denote the doublet and quadruplet, respectively, with orbital energy
"

↵

= � for the doublet and "
↵

= ��/2 for the quadruplet. The specific form of the wave functions of these states are
given in the Supplementary Information.

We assume that hopping between nearest neighbor Ir ions is accomplished via the oxygen atoms nearest to a given
pair, Fig. 2(b). In reality, this is not necessarily the case [17]. However, our assumption minimizes the number of
free parameters, and is resilient to perturbations that are not too strong. The model with oxygen-mediated hopping
is preferable as it contains a single parameter determining the hopping strength: the hopping integral between Ir t2g

states and O p-orbitals (V
pd⇡

in the terminology of Ref. [18]). Integrating out the oxygens, and taking the simplest
on-site Coulomb interaction involving the total charge only, we arrive at the Hubbard Hamiltonian,

H =
X

Ri↵

("
↵

� µ)d†
Ri↵

d
Ri↵

+ t
X

hRi,R

0
i

0i
↵↵

0

T ii

0

↵↵

0d†
Ri↵

d
R

0
i

0
↵

0 +
U

2

X

Ri

 
X

↵

d†
Ri↵

d
Ri↵

� n
d

!2

, (1)

where R and i label the sites of the Bravais lattice and the tetrahedral basis, and n
d

= 5 is the number of 5d-electrons
on each Ir4+ ion. The strength of the hopping is parameterized by a single energy scale t / V 2

pd⇡

/�, where � is the
energy di↵erence between the Ir d and O p states. The procedure to obtain the dimensionless hopping matrices T ii

0

↵↵

0 ,
arising from the Ir-O-Ir hopping path, taking into account the rotation between the local cubic axes of each Ir ion, is
given in the Supplementary Information.

Band structure: The Hamiltonian (1) contains two dimensionless parameters: �/t and U/t, which define the phase
diagram in Fig. 1. It is instructive to consider first various simple limits. For U = 0, we have a free electron model,
which is of course exactly soluble. Due to inversion symmetry, one obtains in general 12 doubly degenerate bands.
For small �/t, these overlap at the Fermi energy and one obtains a metal. For large �/t, the upper 4 bands originating
from the j = 1/2 doublet become well-separated from the lower 8 bands. Because there are four holes per unit cell,
the upper 4 bands are half-filled in total. On inspection, we see (Fig. 3) that they exhibit a band gap, indicating the
formation of a band insulator at large �.

As shown by Fu and Kane [19], one can determine the band topology of an insulator with inversion symmetry either
from the parity of the Hamiltonian eigenstates at time-reversal invariant momenta, or from the number of Dirac points
on the surface of the insulator. Applying the first criterion (see Supplementary Information), we find that the large
�/t state is a pure “strong” TBI of the spinons (the weak Z2 invariants vanish, consistent with cubic symmetry). We
also calculated the surface state spectrum (Fig. 4), which shows the required odd number of intersections with the
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it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
e2

12h
|%|
v

. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge
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frozen at Tf. The observed T-independent behavior sug-
gests that only a partial fraction of spins freezes, while the
majority remain liquid.

The h111i Ising-like anisotropy of the 4f moments is
confirmed by the field dependence of the magnetization
M!B" along #100$, #110$, and #111$ at 70 mK (Fig. 3). The
4f ground-state-doublet contribution (thick curves) is esti-
mated by subtracting the sum of the Van Vleck and Pauli
paramagnetic contributions, which is estimated from !0B
(Fig. 3). At 13 T, M tends to saturate and approaches a
Brillouin function (thin curves) for noninteracting, local
h111i Ising spins with gJJz % 2:69, consistent with the
CEF analysis [11]. This slow saturation at the field scale,
B& ' kBjT&j=!gJ"BJz" ( 11 T, confirms an AF coupling
with an energy scale of jT&j % 20 K. At low fields, M
becomes isotropic (Fig. 3), as expected for h111i Ising
spins on a pyrochlore lattice [17]. Below 0.3 T, M changes
displaying a nearly constant derivative dM=dB (inset of
Fig. 3). This departure from a Brillouin function also
suggests liquidlike short-range correlations.

When such h111i Ising spins on a pyrochlore lattice
interact only through a nearest-neighbor AF coupling J,
mean-field theory predicts an ‘‘all-in and all-out’’ type of
LRO to appear at T ( J [18]. This indicates that in
Pr2Ir2O7, effects beyond the mean-field theory of nearest-
neighbor AF interaction, such as quantum fluctuations and
longer-range couplings, are crucial to suppress the LRO
down to T ) jT&j. Observed indications of such effects are
(1) the Kondo coupling between the 4f moments and the
5d-conduction electrons, and (2) the RKKY long-range
interactions between the 4f moments.

Although rare, the Kondo effect in Pr-based compounds
[19,20] and low carrier systems [14] has been reported. The
first evidence of Kondo effect in Pr2Ir2O7 is the lnT de-
pendence of the resistivity [Fig. 4(a)]. For such a depen-
dence in a stoichiometric high-quality metal, two mecha-
nisms can be considered: (i) CEF effect and (ii) Kondo

effect. Since the gap to the first excited level is (160 K,
the lnT dependence below 50 K cannot be due to a CEF
effect. Thus, the observed lnT dependence is likely due to
the Kondo effect, and in fact, over a decade in T between
3 K and 35 K, #!T" can be fit to the Hamann’s expression
(solid line) with TK % 25 K [21]. Interestingly, TK is close
to jT&j, and suggests that it is not the single-ion screening,
but the intersite screening that leads to the Kondo effect, as
discussed for low carrier-density and AF correlated Kondo
lattices [14,22]. In addition, the field dependence of the
resistivity is consistent with the Kondo effect [13]; the
negative magnetoresistance is proportional to M2 for all
axes under fields up to 2 T<B& [inset of Fig. 4(a)].

Second, the Kondo effect is also seen in the low T
decrease of the effective Curie constant C!T" ' T!!T";
see Fig. 4(b). The rapid decrease in C!T" below 10 K
suggests that the moment size diminishes owing to
Kondo screening. Correspondingly, !*1!T" follows the
CW law over a decade in T from 1.5 to 16 K [solid line
in the inset of Fig. 4(b)], yielding a slightly smaller effec-
tive moment 2:69"B, and a reduced Weiss temperature,
j$Wj % 1:7 K, in comparison with the high T values
(3:06"B, 20 K). These results and the crossover to lnT de-
pendence below j$Wj indicate partial screening of 4f mo-
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Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single
crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of jT!j "
20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial
spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges
and leads to a partial screening of the moments below jT!j. Our results indicate that the underscreened
moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.
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Geometrically frustrated magnets have attracted great
interest because of the possible emergence of novel mag-
netic phases at low temperatures resulting from the sup-
pression of conventional order. Among them, the three-
dimensional pyrochlore lattice of corner sharing tetrahedra
has been studied extensively [1]. It is predicted theoreti-
cally that Heisenberg spins on a pyrochlore lattice with
nearest-neighbor antiferromagnetic (AF) coupling form a
spin-liquid state at T " 0 K [2]. However, only a few
compounds are believed to display a spin-liquid phase,
such as the insulator Tb2Ti2O7 [3].

In metallic systems, the frustration inherent to the pyro-
chlore lattice might also lead to new types of electronic
behavior. One remarkable possibility is the predominance
of the Kondo effect, and concomitant heavy-fermion be-
havior, in nearly localized d- and f-electron systems where
the Kondo temperature is generally too small to overcome
magnetic order without the frustration. Prominent ex-
amples are the heavy-fermion behavior in LiV2O4 and
Y#Sc$Mn2 with itinerant d-electron spins on a pyrochlore
lattice [4,5].

Connecting the two exotic states of frustrated magnets,
insulating spin-liquid and itinerant heavy fermions, there is
another exciting yet unprecedented possibility of metallic
spin liquid [6,7]. Ground states in f-electron based Kondo
lattices are generally classified into Fermi liquid and mag-
netic regimes as the result of the competition between the
Kondo effect and RKKY interactions. If the lattice has
geometrical frustration and the transition temperature is
depressed, the underscreened moments may stay disor-
dered even in the magnetic regime, and form a metallic
spin liquid on the geometrically frustrated Kondo lattice.
(See the inset of Fig. 1.)

There has been a number of reports on metallic systems
among the A2B2O7 pyrochlore oxides possessing localized
moments [1]. Yet, none is known to remain magnetically

disordered down to the lowest temperatures except for the
newly developed pyrochlore iridates [8]. In particular, the
AF correlated Pr 4f moments of Pr2Ir2O7 remain para-
magnetic down to at least 0.3 K in the metallic state due to
the Ir 5d-conduction bands [8]. This places Pr2Ir2O7 as a
candidate for a geometrically frustrated Kondo lattice.

Here we report on strongly frustrated magnetism in
single crystals of Pr2Ir2O7. We find that the h111i Ising-
like Pr3% moments have an AF RKKY interaction energy
scale jT!j " 20 K. However, the dc magnetization down to
70 mK does not exhibit any trace of long-range order
(LRO), except for an indication of partial freezing at
120 mK. Instead, the Kondo effect emerges below jT!j
and leads to a partial screening of the 4f moments, re-
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FIG. 1 (color online). Zero-field resistivity !#T$ (left axis), and
the inverse of susceptibility #"& "0$&1#T$ (right axis) measured
under a field of 100 mT along '100(, '110(, and '111(. The solid
line represents a fit to the Curie-Weiss law, while the broken line
indicates #"CEF & "vv$&1 based on the crystal electric field
analysis. Inset: the schematic phase diagram for geometrically
frustrated Kondo lattices.
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Figure 2. Magnetic and crystal structure, and field dependence of the magnetization and
Hall conductivity of Pr2Ir2O7 along the [111] field direction [2]. (a) The pyrochlore lattice is
alternating stacking of kagome and triangular layers along the [111] direction. Under zero field,
the Pr moments most likely form the “2-in, 2-out” configuration as denoted by three red arrows
and one blue arrow in each tetrahedron. Application of the field B along the [111] direction
flips the blue moments and stabilizes the “3-in, 1-out” (1-in, 3-out) configuration formed by four
red arrows. (b) Field dependence of the magnetization M at 0.06 and 0.5 K (left axis) and its
derivative dM/dB at 0.06 K (right axis). (c) Field dependence of the Hall conductivity σH at
0.06 K. Dashed line represents the metamagnetic transition field Bc ∼ 2.3 T. Inset: Low field
(b) M and (c) σH at fixed temperatures. During the measurements, the field was continuously
swept with the rate of 1Oe/s at temperatures T ≤ 0.5 K, while it was fixed at each measurement
field point at T ≥ 0.7 K. The arrows indicate up and down field sweep sequences. (d) Field
dependence of the magnetization M(B) for fields along the [100], [110], and [111] directions at
0.1 K. Inset: Hysteresis in the magnetization M(B) at the metamagnetic transition for fields
along the [111] direction at 0.03 K.
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Theory is very elegant. How about reality? Any materials?
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Some Pr2Ir2O7  sample does order magnetically
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FIG. 2. (color online) Temperature dependence of elastic neu-
tron scattering intensity of Pr2+xIr2−xO7−δ at the position of
the qm = (100) reflection. The intensity measured at T = 2 K
was subtracted as a background. Curve: Ising mean-field the-
ory fit to the data, which yields a transition temperature of
TM = 0.93(1) K. Inset: sketch of the 2-in/2-out magnetic
structure.

Refinement of the magnetic structure using the
propagation vector qm was carried out on the high-
temperature-subtracted T = 0.5 K data collected on
SPINS. Assuming an Ising anisotropy in the [111] di-
rection for Pr3+ moments, as is well established for
Pr2Ir2O7 [5], the best refinement was obtained using an
ordered spin-ice 2-in/2-out structure for moments on a
unit tetrahedron (inset of Fig. 2), yielding an on-site mo-
ment µneu = 1.7(1)µB per Pr3+ ion [32]. The ordered
spin-ice structure is predicted for long-range ordering of
Heisenberg spins on the pyrochlore lattice due to dipole-
dipole interactions [33], although in Pr2Ir2O7 the Ising
nature of the Pr3+ moments and the strong dependence
of the ordering on stoichiometry suggest RKKY interac-
tions also play an important role.
To better understand the spatial and temporal coher-

ence of magnetism below the critical temperature TM , we
now turn to high-resolution magnetic neutron scattering.
The momentum dependence of the high-temperature-
subtracted scattering data [Fig. 3(a)] reveals four mag-
netic Bragg peaks, indexed by (100), (110), (102) and
(112), that appear sharp in both momentum and energy.
A fit to the 0.3 K data integrated over |E| < 0.03 meV
[Fig. 3(b)] yields a Gaussian momentum resolution of
FWHM 0.023(1) Å−1 at the (111) nuclear Bragg peak.
Using a phenomenological expression for the momentum
dependence of the momentum resolution, we fit the data
to a set of Gaussian-convoluted Lorentzian profiles. This
yields the intrinsic half-width-half-maximum (HWHM)
widths κ for each magnetic Bragg peak in Fig. 3(b). From
this analysis we obtain a lower bound ξmin = 1/κmax ≈
170 Å for the spatial correlation length.
The energy dependence of the two lowest-angle mag-

netic Bragg peaks, measured with λ = 9.04 Å, is com-
pared to that of the resolution-limited nuclear Bragg
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FIG. 3. (color online) Elastic and quasielastic neutron scat-
tering intensity of Pr2+xIr2−xO7−δ measured at 0.3 K on
CNCS, T = 1.7 K data subtracted. See text for defini-
tions. (a) Scattering intensity as a function of momentum
and energy, λ = 7.26 Å. (b) Momentum dependence of the
energy-integrated (|E| < 0.03 meV) intensity at T = 0.3 K.
Curve: fit to set of Voigt profiles plus a polynomial back-
ground. (c) Energy dependence at three Bragg positions,
λ = 9.04 Å. Solid curves: fits to Voigt profiles. Dashed
curves: associated Lorentzian broadening.

peak (111) in Fig. 3(c). A fit of the (100) and (110)
magnetic Bragg peaks to a quasielastic Lorentzian pro-
file convoluted with a fixed Gaussian energy resolution
(FWHM γ = 17(1) µeV) yields intrinsic HWHM widths
Γ = 0.9(2) µeV and 0.5(2) µeV, respectively. From this
analysis we obtain an upper bound of ≈ 1 µeV on any
intrinsic broadening, indicating that the observed order
is static on a time scale that exceeds !/Γ ≈ 0.7 ns.
Overall our elastic and quasielastic neutron results re-

veal that our Pr2+xIr2−xO7−δ sample experiences a tran-
sition at TM = 0.93(1) K from a paramagnetic state
to long-range spin-ice order characterized by spatial and
temporal correlations that span at least 170 Å and 0.7 ns,
respectively.

D. Muon spin relaxation

The present µSR studies of Pr2Ir2O7, like those re-
ported previously [9, 12], were carried out using the di-
lution refrigerator at the M15 muon beam channel at

3

Scanning electron microscopy coupled with energy dis-
persive x-ray analysis was used to determine the compo-
sition, yielding x = 0.4(3). Despite the large error, due
to the polycrystalline form of the samples and the impu-
rity phases, these results are consistent with excess Pr.
Furthermore, the lattice constants of all polycrystalline
samples investigated are larger than those of single crys-
tals, which appear to grow with integer stoichiometry.
This increase is also consistent with excess Pr, because
the ionic radius of Pr3+ is greater than that of Ir4+. Thus
the stoichiometry of polycrystalline samples appears to
be Pr2.4Ir1.6O7−δ.

B. Specific heat

a. Experiment. For the specific heat measurement
polycrystalline Pr2+xIr2−xO7−δ and silver powder for
thermal contact were thoroughly mixed with approxi-
mately 1:1 mass ratio and pressed into a solid pellet.
The heat capacity of this sample was measured over the
temperature range 50 mK–4 K by the adiabatic relax-
ation method, using a Quantum Design Physical Prop-
erty Measurement System with the Dilution Refrigera-
tor option. The heat capacity of Pr2+xIr2−xO7−δ was
then obtained by subtracting the known silver contri-
bution [30]. The temperature dependence of the specific
heat Cp of Pr2+xIr2−xO7−δ in zero field is shown in Fig. 1.
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FIG. 1. (color online) Temperature dependence of the specific
heat of Pr2+xIr2−xO7−δ in zero field. Filled circles: experi-
mental total specific heat. Dashed curve: calculated specific
heat due to a reduced nuclear Schottky anomaly (see text).
Open circles: specific heat after subtracting the nuclear Schot-
tky anomaly from the total specific heat.

b. Analysis. The resulting Cp(T ) shows a sharp
peak at TM ≈ 0.8 K, with a characteristic λ shape indi-
cating a bulk phase transition. We associate this tran-
sition with the ordering of the Pr3+ moments. At lower
temperatures another peak in the specific heat is ob-
served, which is attributed to a 141Pr nuclear Schottky

anomaly associated with the hyperfine field Bhf due to
ordered Pr3+ ionic moments. Assuming Bhf is static,
the peak position TS = 0.1 K and amplitude Cp(TS) =
4.6 J/K mole Pr of the Schottky anomaly determine, re-
spectively, an ordered Pr3+ moment µS = 1.7(1)µB/Pr
ion on a fraction f = 0.65(1) of the Pr sites. This mo-
ment value is the same as found from elastic neutron
scattering (Sec. II C): µS = µneu = µPr. Such agreement
is difficult to understand if a fraction 1 − f of the Pr3+

ions are not ordered, since then the neutron scattering
intensity would be correspondingly decreased. The re-
duction of the Schottky anomaly amplitude but not the
ordered moment is discussed further in Sec. III A.

C. Elastic neutron scattering

a. Experiment. Powder elastic and inelastic neu-
tron scattering data were taken from the same
Pr2+xIr2−xO7−δ powder sample on the SPINS Triple
Axis Spectrometer at the NIST Center for Neutron Re-
search (NCNR) and on the Cold Neutron Chopper Spec-
trometer (CNCS) at Oak Ridge National Laboratory
(ORNL) [31]. In both experiments the powder sample
was enclosed in an aluminum can and cooled in 3He
cryostats to base temperatures of ∼0.3 K (ORNL) and
∼0.5 K (NCNR). The can was sealed under 4He atmo-
sphere at room temperature to provide thermal contact
for the powder. The can had an annular insert in or-
der to minimize the effects of the strong neutron ab-
sorption in Ir. On SPINS, measurements were taken
with a neutron wavelength of λ = 4.04 Å (Ei = Ef =
5 meV), with a cooled Be filter in the incoming beam
and 80′ collimation before and after the sample. On
CNCS, measurements were taken with two neutron wave-
lengths, λ = 7.26 Å (Ei = 1.55 meV) and λ = 9.04 Å
(Ei = 1.00 meV). The corresponding full-width-half-
maximum (FWHM) energy resolutions at the elastic line
were γ = 0.024(2) meV and γ = 0.017(1) meV for
λ = 7.26 Å with λ = 9.04 Å, respectively. The data
were normalized to absolute units using the intensity of
the (111) nuclear Bragg peak.
b. Analysis. The momentum dependence of the

elastic intensity was measured on SPINS over the tem-
perature range 0.5–2 K. The lattice constant of the cubic
space group was refined at 2 K to obtain a = 10.672(1) Å.
Extra Bragg peaks were observed below ∼0.9 K, and are
attributed to the ordering of the Pr3+ moments. Their
positions can be indexed using a magnetic propagation
wave vector qm = (100) in reciprocal lattice units of the
Fd3m space group. The temperature dependence of the
first peak, for which Q = |qm|, is shown in Fig. 2. The
order parameter increases continuously below TM , sug-
gesting a second-order phase transition. The data are,
however, also consistent with a heterogeneous distribu-
tion of first-order phase transitions. An Ising mean-field
theory provides an acceptable fit to the data (solid curve
in Fig. 2) with an ordering temperature TM = 0.93(1) K.
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Unstable Spin-Ice Order in the Stuffed Metallic Pyrochlore Pr2+xIr2−xO7−δ
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Specific heat, elastic neutron scattering, and muon spin rotation (µSR) experiments have been
carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr2+xIr2−xO7−δ. Elastic neutron
scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at TM = 0.93 K,
with an ordered moment of 1.7(1)µB/Pr ion at low temperatures. Approximate lower bounds on
the correlation length and correlation time in the ordered state are 170 Å and 0.7 ns, respectively.
µSR experiments yield an upper bound 2.6(7) mT on the local field B4f

loc at the muon site, which
is nearly two orders of magnitude smaller than the expected dipolar field for long-range spin-ice
ordering of 1.7µB moments (120–270 mT, depending on muon site). This shortfall is due in part
to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by
the µ+-induced lattice distortion. For this to be the only effect, however, ∼160 Pr moments out
to a distance of ∼14 Å must be suppressed. An alternative scenario, which is consistent with the
observed reduced nuclear hyperfine Schottky anomaly in the specific heat, invokes slow correlated
Pr-moment fluctuations in the ordered state that average B4f

loc on the µSR time scale (∼10−7 s),
but are static on the time scale of the elastic neutron scattering experiments (∼10−9 s). In this
picture the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds,
which should be observable in a neutron spin echo experiment.

PACS numbers: 75.10.Jm, 75.25.-j, 75.40.Gb, 76.75.+i

I. INTRODUCTION

Geometrically frustrated systems, including pyrochlore
oxides, have been extensively studied because of possi-
ble novel phenomena arising from suppression of con-
ventional order. The series of rare-earth iridate py-
rochlores R2Ir2O7 [1] shows a nonmetal-metal transi-
tion with increasing rare-earth ionic radius [2]. The
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versity, Stanford, CA 94305, USA.

‡ Present address: School of Physics, Georgia Institute of Technol-
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compounds with R = Yb, Ho, Dy, Tb, Gd, and Y
are nonmetallic, and those with R = Eu, Sm, and
Nd have metal-insulator transitions to antiferromagnetic
ground states [3]. Only Pr2Ir2O7, with the largest rare-
earth ionic radius among the known pyrochlore iridates,
remains metallic down to low temperatures (at least
50 mK). Novel ground states such as spin ices and spin
liquids have been proposed in the insulating pyrochlore
magnets [4].
In the metallic pyrochlore Pr2Ir2O7 the Pr3+ (J = 4)

crystalline electric field (CEF) ground state is a non-
Kramers doublet that is well isolated from higher CEF
levels and consists of almost pure |±4⟩ states with a
magnetic moment of ∼3.0µB [5]. The anisotropic field
dependence of the magnetization indicates the Pr3+ 4f
moments have Ising-like anisotropy along the ⟨111⟩ easy
directions. The dc susceptibility above 100 K yields an
antiferromagnetic Weiss temperature T ∗ = −20 K that
has been attributed to RKKY interactions between Pr3+

actually “Melko-Hertog-Gingras" spin state 
(obtained numerically for a different and classical system)
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“Magnetic monopole” condensation of the pyrochlore ice U(1) quantum spin liquid:
Application to Pr2Ir2O7 and Yb2Ti2O7
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Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phenomena
are intertwined with strong spin-orbit coupling, substantial electron correlation, and geometrical frustration.
Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7, we study the proximate
Ising orders and the quantum phase transition out of quantum spin ice U(1) quantum spin liquid (QSL). We apply
the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the “magnetic
monopoles” in the U(1) QSL. The monopole condensation naturally and necessarily leads to the Ising orders
that generically break the lattice translation symmetry. We demonstrate that the antiferromagnetic Ising order
with the ordering wave vector Q = 2π (001) is proximate to the U(1) QSL while the ferromagnetic Ising state
with Q = (000) is not proximate to the U(1) QSL. This implies that if there exists a direct transition from the
U(1) QSL to the ferromagnetic Ising order, the transition must be strongly first order. We apply the monopole
condensation to explain the magnetic orders and the transitions in Pr2Ir2O7 and Yb2Ti2O7.

DOI: 10.1103/PhysRevB.94.205107

I. INTRODUCTION

Pyrochlore iridates (R2Ir2O7) [1,2] have stimulated a wide
interest in recent years, and many interesting results, including
topological Mott insulator [3], quadratic band touching [4],
Weyl semimetal [5–8], non-Fermi liquid [9], and so on,
have been proposed. Among these materials, Pr2Ir2O7 is of
particular interest. In Pr2Ir2O7, the Ir system remains metallic
at low temperatures [10]. More intriguingly, no magnetic
order was found except a partial spin freezing of the Pr local
moments due to disorder at very low temperatures in the
early experiments [10–12]. A recent experiment on different
Pr2Ir2O7 samples, however, discovered an antiferromagnetic
long-range Ising order for the Pr moments [13]. While most
theoretical works on pyrochlore iridates focused on the Ir
pyrochlores and explored the interplay between the electron
correlation and the strong spin-orbit coupling of the Ir 5d
electrons [3,14], very few works considered the influence and
the physics of the local moments from the rare-earth sites
that also form a pyrochlore lattice [7,15–17]. In this paper,
we address the local moment physics in Pr2Ir2O7 and propose
that the disordered state of the Pr moments is in the quantum
spin ice (QSI) U(1) quantum spin liquid state. We explore
the proximate Ising order and the confinement transition of
the QSI U(1) quantum spin liquid (QSL) for the Pr local
moments.

The QSI U(1) QSL is an exotic quantum phase of matter and
is described by emergent compact quantum electrodynamics
or, equivalently, by the compact U(1) lattice gauge theory
(LGT) with a gapless U(1) gauge photon and deconfined
spinon excitations [18–20]. Recently, several rare-earth py-
rochlores with 4f electron local moments and systems
alike are proposed as candidates for the QSI U(1) QSLs
[21–31]. In these systems, the predominant antiferromagnetic

*Corresponding author: gangchen.physics@gmail.com

exchange interaction between the Ising components of the
local moments favors an extensively degenerate “2-in–2-out”
spin ice manifold on the pyrochlore lattice [19,21,32–36]. The
transverse spin interaction allows the system to tunnel quantum
mechanically within the ice manifold, giving rise to a U(1)
QSL ground state [35–40].

Like Pr2Ir2O7, the experimental results on the QSI U(1)
QSL candidate materials depend sensitively on the stoichiom-
etry and the sample preparation [21]. In particular, for the
pyrochlore ice system Yb2Ti2O7, while some samples remain
disordered down to the lowest temperature and the neutron
scattering shows a diffusive scattering [22], others develop a
ferromagnetic order [24,41–43]. This suggests that both the Yb
moments in Yb2Ti2O7 and the Pr moments in Pr2Ir2O7 could
be located near a phase transition between a disordered state
[which we propose to be a QSI U(1) QSL] and the magnetic
orders.

FIG. 1. The monopole condensation transition from the QSI U(1)
QSL to the proximate antiferromagnetic Ising order. The dashed
(solid) line represents a thermal crossover (transition). “g” is a tuning
parameter that corresponds to the mass of “magnetic monopole” (see
the discussion in the main text). The inset Ising order has an ordering
wave vector Q = 2π (001). The Pr moment of Pr2Ir2O7 is likely to be
close to this quantum critical point (QCP).

2469-9950/2016/94(20)/205107(14) 205107-1 ©2016 American Physical Society

Gang Chen, PRB 94, 205107 (2016)

Microscopics: different samples have different Fermi energy, induces  
different RKKY interaction between Pr local moments.

The Pr subsystem is proximate to a quantum phase transition  
from pyrochlore ice U(1) QSL to Ising magnetic order.

there may be some jump in logic



2. Microscopics of Pr2Ir2O7:  
    conduction elections and local moments

Let’s focus on the ordered side/sample.



What is the impact of Pr magnetism  
on Ir conduction electrons in the ordered regime? 
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7

T Kondo, etc, 2015 C Broholm, etc, 2015
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Microscopics: Ir conduction electron + Pr local moments
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on the Ir electron structure from the Pr Ising magnetic
order, so the quantum dynamics of the Pr local moment
is irrelevant for this purpose. In Sec. III of the paper,
we would simply regard the Ising magnetic order that
is observed in Pr2Ir2O7 as a given condition, and this
exchange Hamiltonian is not invoked until in Sec. IV
where the external Zeeman coupling competes with the
exchange and modifies the Pr magnetic order.

The extended interaction for the Pr local moments in
Pr2Ir2O7 is expected because the RKKY interaction that
is mediated by the Ir conduction electrons is not short-
ranged. This is quite di↵erent from the usual rare-earth
magnets where the exchange interaction is often short-
ranged and most of time restricted to the nearest neigh-
bors. The long-range or extended RKKY interaction is
the reason that we point out the Ir conduction drives the
quantum phase transition of the Pr moments.

Due to the Ising nature of the moment in the ap-
proximate exchange model, the ground state is anti-
ferromagnetically ordered with an ordering wavevector
Q = 2⇡(001) for J3z > 0. Clearly, the approximate
model captures the observed magnetic order in Pr2Ir2O7.

C. Pr-Ir coupling

Precisely because of the non-Kramers doublet nature
of the Pr local moment, it was pointed out in Ref. ?
based on the symmetry analysis that, the ⌧z component
couples to the spin density of the Ir conduction electron
while the transverse component would couple to the elec-
tron density. The transverse component may also couple
to the spin current that is even under time reversal. The
general expression for the f -d exchange between the Pr
local moment and the Ir spin density has been obtained in
the previous work. The coupling between the transverse
component ⌧x,y and the Ir electron density was worked
out in Ref. ? . Again, since it is the Ising component ⌧z

of the Pr local moment that develops the magnetic order
in Pr2Ir2O7, the leading order e↵ect on the Ir conduc-
tion electron originates from the coupling between the Ir
spin density and the Pr Ising component. Therefore, we
consider the following f -d exchange between the Pr Ising
moment and the Ir spin density,
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where v
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is a vector that defines the coupling between
the Ir spin density and the Pr local moments. For each
Ir ion, there are six Pr ions nearby, and these six Pr ions
form a hexagon with the Ir ion in the hexagon center
(see Fig. 1). Under the nearest-neighbor Kondo-like cou-
pling assumption, the standard symmetry analysis gives
for example
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D. Zeeman coupling

Finally, we introduce the Zeeman coupling. Because
only the ⌧z is odd under time reversal, we have the Zee-
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where n̂ is the direction of the external magnetic field.
The ẑ
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direction is defined locally for each sublattice of
the Pr subsystem.

E. Energy scales

Clearly, the largest energy scale in the model is the
bandwidth and interaction of the Ir conduction interac-
tion. The second largest energy scale is the f -d exchange
coupling. The lowest ones would be the exchange cou-
pling between the Pr moments and the Zeeman coupling.
Since the Zeeman coupling can be tuned experimentally,
the magnetic state of the Pr local moments can thus be
manipulated by the external magnetic field.
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bandwidth and interaction of the Ir conduction interac-
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coupling. The lowest ones would be the exchange cou-
pling between the Pr moments and the Zeeman coupling.
Since the Zeeman coupling can be tuned experimentally,
the magnetic state of the Pr local moments can thus be
manipulated by the external magnetic field.

III. DIRAC BAND TOUCHINGS AND WEYL
NODES OF THE IRIDIUM SUBSYSTEM

For Pr2Ir2O7, the Ir conduction electrons were found
to develop a Luttinger semimetallic band structure. It is
well-known that the Luttinger semimetal is a parent state

Ir 5d electron: hopping, SOC, interaction ~<1eV

Pr 4f electron: exchange interaction ~10K

Pr-Ir interaction: f-d exchange ~
174 the magnetic field, not to say, there is a vanishing density of
175 states if the Fermi energy sits right at the Γ point of the
176 quadratic band touching. The Zeeman coupling to the Pr
177 local moment would simply favor a Q ¼ 0 state and thus
178 competes with the exchange interaction of the Pr subsys-
179 tem. The combination of the magnetic field and the Pr
180 exchange coupling generates several different magnetic
181 states for the Pr local moments. These magnetic orders
182 create distinct exchange fields on the Ir conduction elec-
183 trons and thereby gives new types of reconstructions of the
184 conduction electron bands. From the symmetry point of
185 view, the Dirac-band touchings at the time-reversal invari-
186 ant momenta are no longer present in the magnetic field.
187 We further find that the Weyl nodes exist broadly when
188 the magnetic field is applied to the system. This provides
189 a feasible experimental scheme to engineer the band-
190 structure properties of the Ir itinerant electrons.
191 The remaining parts of the paper are organized
192 as follows. In Sec. II, we introduce the microscopic
193 Hamiltonian for the Ir subsystem and the f-d exchange
194 between the Ir subsystem and the Pr subsystem. In Sec. III,
195 we include the antiferromagnetic Ising order of the Pr local
196 moments and study the reconstruction of the Ir band
197 structure under this magnetic order. In Sec. IV, we further
198 explore the interplay between the Zeeman coupling, the
199 Pr exchange coupling, and the Ir band structure, and point
200 out that the external field can be used to engineer the
201 topological band structure. Finally, in Sec. V, we propose
202 various experiments to confirm our prediction and suggest
203 the application and impact to the hybrid quantum materials
204 with both itinerant electrons and local moments.

205 II. MICROSCOPIC MODEL

206 We here propose the minimal microscopic model for
207 Pr2 Ir2O7 and explain the limitation of the model. The
208 approximation in the minimal model is further justified and
209 designed to reveal the physics that we discuss in this paper.
210 The full Hamiltonian of this system should contain the
211 following ingredients [14],

H ¼ HTB þHex þHfd þHZeeman; ð1Þ

212213 where HTB is the tight-binding model of the Ir conduction
214 electron, Hex is the interaction between the Pr local
215 moments and originates from the superexchange process
216 and the dipolar interaction, Hfd is the coupling between the
217 Pr local moment with the spin density of the Ir conduction
218 electrons, and the HZeeman defines the Zeeman coupling of
219 the Pr local moment to the external magnetic field.

220 A. Ir subsystem

221 We start with the tight-binding model for the Ir con-
222 duction electrons. The Ir4þ ion has a 5d5 electron con-
223 figuration, and these five electrons occupy the t2g orbitals.

224The atomic spin-orbit coupling splits the sixfold degenerate
225spin and orbital states in the t2g manifold into the lower
226j ¼ 3=2 quadruplets and the upper j ¼ 1=2 doublets.
227Because of the lattice geometry of the pyrochlore system,
228the t2g orbitals and the effective spin J are defined in the
229local coordinate system of the IrO6 octahedron. For the Ir4þ

230ion, the lower j ¼ 3=2 quadruplets are fully filled, and the
231upper j ¼ 1=2 doublets are half filled [8,47–49]. It was
232shown that the pyrochlore iridate band structure near the
233Fermi level is well approximated by a tight-binding model
234based on the j ¼ 1=2 doublets [8,11,16,42]. The model is
235given as

HTB ¼
X

i;j∈Ir

X

αβ

tij;αβd
†
iαdjβ; ð2Þ

236237where d†iα (diα) creates (annihilates) an electron with an
238effective spin α in the j ¼ 1=2 doublet. The hopping tij;αβ
239includes both the direct electron hoppings (tσ and tπ)
240between the nearest-neighbor Ir ions and the indirect
241electron hopping (tid) through the intermediate oxygen.
242It has been shown [16] that in the regime −1.67tid < tσ <
243−0.67tid and tπ ¼ −2tσ=3, the system becomes a Luttinger
244semimetal with a quadratic band touching at the Γ point.
245This quadratic band touching is protected by the cubic
246lattice symmetry [11,42,43]. The Ir conduction electron of
247Pr2 Ir2O7 is described by the Luttinger semimetal of this
248tight-binding model.
249In contrast to other pyrochlore iridates, Pr2 Ir2O7 is
250experimentally known to be metallic [9,10], so the
251Hubbard-U for the Ir atoms is apparently insufficient to
252drive a Mott transition. Therefore, while Hubbard-U is
253certainly necessary to understand the correlation physics
254and/or Mott transition of pyrochlore iridates, in this work
255we will assume it can be accounted for through a renorm-
256alization of the band-structure parameters, which we treat
257as phenomenological parameters to obtain a phase diagram.
258The quadratic band touching at Γ point and the emergence
259of Dirac and Weyl band touchings are robust against the
260moderate Hubbard-U. Indeed, density functional theory
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F1:1FIG. 1. The pyrochlore lattice structure for Pr2 Ir2O7. (a) Both Ir
F1:2and Pr ions form pyrochlore lattices of corner-sharing tetrahedra.
F1:3(b) For each Pr ion, six nearest Ir ions form a hexagon with the Pr
F1:4ion in the hexagon center.
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Figure 2 | Pyrochlore lattice and electron hopping. a, Pyrochlore lattice of corner-sharing tetrahedra. It can be viewed as the face-centred cubic lattice
with tetrahedral bases added at each site. One such base, with Ir ions numbered from 0 to 3, is shown. b, Oxygen-mediated hopping between Ir sites. Sites
0 (on the left) and 3 (on the right) of the tetrahedral basis are shown (large grey spheres), together with their oxygen octahedral environment (small red
spheres). On the ‘shared’ oxygen site we show its p

y

orbital (green) with respect to the coordinate system of site 0, and p

x

orbital (blue) with respect to the
coordinate system of site 3. Belonging to different coordinate systems, these orbitals are not orthogonal, the angle between them being ⇡84�. Electrons
can hop from the local d

yz

orbital on site 0 onto p

y

, and from the d

xy

orbital on site 3 onto p

x

. As the two p orbitals are not orthogonal, an effective Ir–Ir
hopping is induced.
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Figure 3 | Electronic band structure of Ir 5d electrons on the pyrochlore
lattice at large spin–orbit coupling, �/t! 1. Only the relevant four
doubly degenerate bands are shown. A bandgap between the filled lower
two bands and the empty upper two bands is clearly seen.

We note that the anisotropic exchange term,
$
001, is small compared

with the other ones. Spin ordering in this model was considered
in ref. 20. Our Dzyaloshinskii–Moriya term corresponds to the
‘indirect’ case of ref. 20, and |D01|/J ⇡ 0.63, that is, very large
Dzyaloshinskii–Moriya interactions. In this case, a magnetically
ordered ground state is expected, which breaks point-group
symmetries but does not enlarge the unit cell.

Slave-rotor approach
An exact or accurate numerical solution for the full phase diagram
for equation (1) is very challenging, especially at intermediate U/t .
To study it, we use the slave-rotor approximation of ref. 21. This
approach has a number of merits. It becomes exact for U/t = 0,
and captures the bandwidth reduction with increasing U/t . Its
predictions forHubbardmodels on other frustrated lattices without
SOI at intermediate U/t are in agreement with more controlled
approaches such as the path-integral renormalization group22,
Gutzwiller-type variational wavefunctions23 and the variational
cluster method24. As we will see that the Mott transition occurs
at smaller U/t with increasing �/t , we expect that the slave-rotor
approximation should be reasonable to describe it for the full range
of SOI. It clearly fails at large U/t , but we can substitute direct
analysis of the spin–orbital model in that limit.

We decompose the physical electron annihilation operator as
dRi↵ = e�i✓Ri fRi↵ , where the angle ✓Ri is the conjugated variable to the
number of electrons on site R,i (the ‘angular momentum’ of the

rotor), and the ‘spinon’ fRi↵ carries the rest of the degrees of freedom.
The constraint LRi =

P
↵ f

†
Ri↵fRi↵ �nd , restricting the physical part of

the Hilbert space, is treated on average. Furthermore, we use the
mean-field decomposition of the hopping term, which couples the
spinons and rotors according to AB ! AhBi + BhAi. This mean
field theory (MFT) reduces the Hamiltonian (1) to two uncoupled
Hamiltonians for spinons and rotors:

Hf =
X

Ri↵

("↵ �µ�h)f †
Ri↵fRi↵ + tQf

X

hRi,R0 i0i
↵↵0

T ii0
↵↵0 f †

Ri↵fR0 i0↵0

H✓ = U
2

X

Ri

L2Ri +h(LRi +nd)+ tQ✓

X

hRi,R0 i0i
ei✓Ri�i✓R0 i0

Here LRi = �i(@/@✓Ri), the coordinate-independent Lagrange
multiplier h is introduced to treat the constraint on the angular
momentum and the couplings Qf and Q✓ need to be determined
self-consistently fromQf =

⌦
ei✓Ri�i✓Ri0

↵
,Q✓ =P

↵↵0T ii0
↵↵0

⌦
f †
Ri↵fRi0↵0

↵
(note

Q✓  0 in the self-consistent solution). Here we have made the
so-called ‘uniform’ mean-field approximation, on the grounds that
it is the one that smoothly connects to theU/t = 0 limit, and hence
should be appropriate for small to intermediate U/t , the range of
interest. Note that the strength of the spin–orbit interaction, �, is
not renormalized. After the mean-field decomposition, the spinon
and rotor sectors can be solved almost independently, with coupling
only through the self-consistency requirements onQf andQ✓ .

We first consider the spinon Hamiltonian, Hf . It is identical to
the non-interacting electron Hamiltonian, but with renormalized
hopping teff = tQf . All of the preceding analysis carried out forU =0
can therefore be carried over with this replacement. As Qf < 1, we
indeed observe that the dimensionless spin–orbit strength �/(Qf t )
is enhanced by correlations. Physically, however, we must take care
as the f fermions are spinons and therefore their properties do not
necessarily translate directly to the physical electrons.

We now turn to the charge (rotor) sector. H✓ describes rotor
bosons moving on the pyrochlore lattice. The parameter h must
be fixed by charge neutrality, hf †

Ri↵fRi↵i = nd , and hence hLRii = 0.
We therefore take h= 0, which guarantees the latter condition, as
H✓ then has particle–hole symmetry, LRi ! �LRi,✓Ri ! �✓Ri. H✓

is then expected to have two phases. For U/(Q✓ t )⌧ 1, the rotors
are condensed, hei✓Rii 6= 0, whereas for U/(tQ✓ ) � 1, they form
an uncondensed Bose Mott insulator with a gap and hei✓Rii = 0.
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FIG. 1. (Color online) A projective view of R2Ir2O7 in the (111)
plane. Left: The neighboring Ir (in dark red) and R (in light blue)
tetrahedra. “1,2,3,4” label the four sublattices. Ir/R atoms are marked
with big/small (red/blue) circles. Empty/dark/light circles indicate
that the atoms are below/above/in the (111) plane. Right: An IrR6

complex singled out from the left figure.

other hand, under time reversal j → −j. This property leads
to a remarkable simplification of the coupling—only τ z

couples to the Ir spin j. We consider the nearest-neighbor
(NN) R-Ir exchange, which, due to space group symmetry,
is parametrized by two couplings c1,c2. For the single Ir site
labeled Ir1 in Fig. 1, the f -d exchange is

Hfd =
[
c1τ

z
4 − c2

(
τ z

2 + τ z
3

)]
jx

1 +
[
c1τ

z
3 − c2

(
τ z

2 + τ z
4

)]
j

y
1

+
[
c1τ

z
2 − c2

(
τ z

3 + τ z
4

)]
jz

1 + [2 ↔ 2′,3 ↔ 3′,4 ↔ 4′],

(1)

where the labeling of sites is given in Fig. 1. Further details
are given in Appendix. A.

In the Kramers case, the Ising part of the f -d exchange
(coupling of τ z to j) is identical. Transverse exchange
involving τ x,y is also permitted by time-reversal symmetry.
Even in the non-Kramers case, while τ x,y does not couple to the
Ir effective spin, it can couple to the Ir charge density. In both
cases we ignore these transverse couplings, both for simplicity
and because they may be suppressed by strong easy-axis
anisotropy of the f moments along local [111] axes, which is
known to be present in R = Dy, Ho pyrochlore oxides,14 and
may be present more broadly. However, effects of transverse
exchange may be important, and will be an interesting topic
for future study.

For the Ir subsystem, we follow Ref. 6 and include both the
indirect hopping of 5d electrons through oxygen, and direct
hopping between Ir sites, using the following Hubbard model:

HIr =
∑

⟨rr ′⟩

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β + U
∑

r

nr,↑nr,↓, (2)

where d
†
r,α is the electron creation operator, with α =↑ , ↓

labeling the effective spin jz = 1/2, − 1/2 states at site r ,
and nr,α = d

†
r,αdr,α . The sum is over NN pairs of Ir sites. The

direct hoppings (T d
rr ′ ) involve two parameters,6 tσ and tπ , that

describe the σ and π bonding, respectively. To be specific, we
follow Ref. 6 and set tπ = − 2

3 tσ throughout the paper. The
indirect hopping (T id

rr ′) only has one hopping parameter which
we denote as t .4

The R local moments can couple to each other either via su-
perexchange through intermediate atoms, by dipole-dipole in-
teraction, or by the RKKY (Ruderman-Kittel-Kasuya-Yosida)

exchange mediated by Ir electrons. Dipole-dipole interactions
may play an important role for R (= Gd, Tb, Dy, Ho) where a
large local magnetic moment is observed.26 RKKY exchange
is likely to be the dominant exchange for the other compounds,
as the Curie-Weiss temperatures in many of the isostructural
insulating materials R2Sn2O7

32 are of much lower magnitude
than the corresponding iridates. For example, The Curie-Weiss
temperatures &CW are −0.35 K in Pr2Sn2O7 and −1026 or
−20 K33 in Pr2Ir2O7. For the R = Nd compounds, &CW ≈
−0.31 K in the stannate32 and &CW ≈ −19 K in the iridate.26

From the above analysis, we obtain our minimal model
for R2Ir2O7, which includes the R-Ir exchange coupling in
Eq. (1) and the Ir-Ir hopping and interaction Eq. (2), Hmin =
Hfd + HIr.

To analyze the phase diagram we start with the tight-binding
model of the Ir subsystem. Following Ref. 6, a semimetal
phase is obtained for −1.67t ! tσ ! −0.67t . Otherwise, a
strong topological band insulator (STI) with topological class
(1;000) is obtained.34–36 In the semimetal phase, at the
' point there is a quadratic band touching (protected by
cubic symmetry) at the Fermi energy (EF ). There are also
nondispersing bands at EF along the '-L lines; this feature
is a consequence of fine tuning; it can be removed by adding
a weak next-nearest-neighbor hopping (t ′).6 The low-energy
features of the band structure agree rather well with the
first-principles calculation for Y2Ir2O7,5,37 with the differences
that the quadratic '-point touching is below EF and the '-L
lines have a small dispersion.

Due to the Ising form of the coupling, the model with the
f -d exchange does not contain quantum fluctuations of the
f moments, and reduces to a free fermion problem for any
fixed configuration of localized moments. Finding the ground
state amounts to finding the minimum-energy configuration
of local moments. Moreover, certainly c1,c2 ≪ t , so the f -d
exchange can be treated perturbatively, and the leading effect
is to generate a RKKY exchange between the f moments. As
shown in Appendix A, we find that beyond fourth neighbors
the RKKY exchange becomes significantly smaller, so we
keep only up through fourth-neighbor exchange. Using the
Luttinger-Tizsa method,38 we find that the ground state of the
truncated RKKY exchange has a q = 0 magnetic order except
in the light shaded regions of Figs. 2(a) and 2(b). In the light
shaded regions, the hard-spin constraint cannot be satisfied,
and the nature of the ground state is not presently clear.
However, it is likely that the q = 0 magnetic order extends
at least somewhat into to the light shaded regions.

Without losing any generality, we can simply focus on
the case with c1 > 0 and define ( ≡ tan−1(c2/c1) and c ≡√

c2
1 + c2

2. As shown in Figs. 2(a) and 2(b), for most of
parameter space, “all-in all-out” magnetic order is favored,
where every tetrahedron of neighboring R sites has either
all τ z pointing in (i.e., toward the tetrahedron center), or all
pointing out. In the dark shaded region, q = 0 “two-in two-out”
magnetic order is obtained, where on every tetrahedron, two τ z

point in and two point out. (The q = 0 two-in two-out state also
has lowest energy, at least among q = 0 states, in the vertically
hatched regions.) Since no ferromagnetic state is observed
in any R2Ir2O7, we restrict our discussion to all-in all-out
state. Such order of the R subsystem also induces all-in all-out
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couples to the Ir spin j. We consider the nearest-neighbor
(NN) R-Ir exchange, which, due to space group symmetry,
is parametrized by two couplings c1,c2. For the single Ir site
labeled Ir1 in Fig. 1, the f -d exchange is

Hfd =
[
c1τ

z
4 − c2

(
τ z

2 + τ z
3

)]
jx

1 +
[
c1τ

z
3 − c2

(
τ z

2 + τ z
4

)]
j

y
1

+
[
c1τ

z
2 − c2

(
τ z

3 + τ z
4

)]
jz

1 + [2 ↔ 2′,3 ↔ 3′,4 ↔ 4′],

(1)

where the labeling of sites is given in Fig. 1. Further details
are given in Appendix. A.

In the Kramers case, the Ising part of the f -d exchange
(coupling of τ z to j) is identical. Transverse exchange
involving τ x,y is also permitted by time-reversal symmetry.
Even in the non-Kramers case, while τ x,y does not couple to the
Ir effective spin, it can couple to the Ir charge density. In both
cases we ignore these transverse couplings, both for simplicity
and because they may be suppressed by strong easy-axis
anisotropy of the f moments along local [111] axes, which is
known to be present in R = Dy, Ho pyrochlore oxides,14 and
may be present more broadly. However, effects of transverse
exchange may be important, and will be an interesting topic
for future study.

For the Ir subsystem, we follow Ref. 6 and include both the
indirect hopping of 5d electrons through oxygen, and direct
hopping between Ir sites, using the following Hubbard model:

HIr =
∑

⟨rr ′⟩

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β + U
∑

r

nr,↑nr,↓, (2)

where d
†
r,α is the electron creation operator, with α =↑ , ↓

labeling the effective spin jz = 1/2, − 1/2 states at site r ,
and nr,α = d

†
r,αdr,α . The sum is over NN pairs of Ir sites. The

direct hoppings (T d
rr ′ ) involve two parameters,6 tσ and tπ , that

describe the σ and π bonding, respectively. To be specific, we
follow Ref. 6 and set tπ = − 2

3 tσ throughout the paper. The
indirect hopping (T id

rr ′) only has one hopping parameter which
we denote as t .4

The R local moments can couple to each other either via su-
perexchange through intermediate atoms, by dipole-dipole in-
teraction, or by the RKKY (Ruderman-Kittel-Kasuya-Yosida)

exchange mediated by Ir electrons. Dipole-dipole interactions
may play an important role for R (= Gd, Tb, Dy, Ho) where a
large local magnetic moment is observed.26 RKKY exchange
is likely to be the dominant exchange for the other compounds,
as the Curie-Weiss temperatures in many of the isostructural
insulating materials R2Sn2O7

32 are of much lower magnitude
than the corresponding iridates. For example, The Curie-Weiss
temperatures &CW are −0.35 K in Pr2Sn2O7 and −1026 or
−20 K33 in Pr2Ir2O7. For the R = Nd compounds, &CW ≈
−0.31 K in the stannate32 and &CW ≈ −19 K in the iridate.26

From the above analysis, we obtain our minimal model
for R2Ir2O7, which includes the R-Ir exchange coupling in
Eq. (1) and the Ir-Ir hopping and interaction Eq. (2), Hmin =
Hfd + HIr.

To analyze the phase diagram we start with the tight-binding
model of the Ir subsystem. Following Ref. 6, a semimetal
phase is obtained for −1.67t ! tσ ! −0.67t . Otherwise, a
strong topological band insulator (STI) with topological class
(1;000) is obtained.34–36 In the semimetal phase, at the
' point there is a quadratic band touching (protected by
cubic symmetry) at the Fermi energy (EF ). There are also
nondispersing bands at EF along the '-L lines; this feature
is a consequence of fine tuning; it can be removed by adding
a weak next-nearest-neighbor hopping (t ′).6 The low-energy
features of the band structure agree rather well with the
first-principles calculation for Y2Ir2O7,5,37 with the differences
that the quadratic '-point touching is below EF and the '-L
lines have a small dispersion.

Due to the Ising form of the coupling, the model with the
f -d exchange does not contain quantum fluctuations of the
f moments, and reduces to a free fermion problem for any
fixed configuration of localized moments. Finding the ground
state amounts to finding the minimum-energy configuration
of local moments. Moreover, certainly c1,c2 ≪ t , so the f -d
exchange can be treated perturbatively, and the leading effect
is to generate a RKKY exchange between the f moments. As
shown in Appendix A, we find that beyond fourth neighbors
the RKKY exchange becomes significantly smaller, so we
keep only up through fourth-neighbor exchange. Using the
Luttinger-Tizsa method,38 we find that the ground state of the
truncated RKKY exchange has a q = 0 magnetic order except
in the light shaded regions of Figs. 2(a) and 2(b). In the light
shaded regions, the hard-spin constraint cannot be satisfied,
and the nature of the ground state is not presently clear.
However, it is likely that the q = 0 magnetic order extends
at least somewhat into to the light shaded regions.

Without losing any generality, we can simply focus on
the case with c1 > 0 and define ( ≡ tan−1(c2/c1) and c ≡√

c2
1 + c2

2. As shown in Figs. 2(a) and 2(b), for most of
parameter space, “all-in all-out” magnetic order is favored,
where every tetrahedron of neighboring R sites has either
all τ z pointing in (i.e., toward the tetrahedron center), or all
pointing out. In the dark shaded region, q = 0 “two-in two-out”
magnetic order is obtained, where on every tetrahedron, two τ z

point in and two point out. (The q = 0 two-in two-out state also
has lowest energy, at least among q = 0 states, in the vertically
hatched regions.) Since no ferromagnetic state is observed
in any R2Ir2O7, we restrict our discussion to all-in all-out
state. Such order of the R subsystem also induces all-in all-out
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7

Neel state on square lattice 
for cuprate AFM.

T̃ ⌘ T � t
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7
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Pr magnetic order transfers its time reversal  
symmetry breaking to Ir Luttinger semimetal. 
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FIG. 2. (a) The (crystal) Brillouin zone of the original pyrochlore lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
(MHG) spin state, the unit cell is enlarged. The plot is the magnetic Brillouin zone corresponding to the enlarged unit cell.
(c) The spin configuration of the MHG spin state. It is a “2-in 2-out” spin state with Q = 2⇡(001) ordering wavevector. The
magnetic unit cell with b̃

i

’s is defined in the Appendix A. (d) The folded band of the Ir electrons without f -d exchange develops
a quadratic touching at �̃. High symmetry momentum lines are defined in (b) as blue lines.

⌘ �h
X

i2Pr

⌧z
i

(ẑ
i

· n̂), (13)

where n̂ is the direction of the external magnetic field.
The ẑ

i

direction is defined locally for each sublattice of
the Pr subsystem.

E. Energy scales

Clearly, the largest energy scale in the model is the
bandwidth and interaction of the Ir conduction electrons.
The second largest energy scale is the f -d exchange cou-
pling. The lowest ones would be the exchange coupling
between the Pr moments and the Zeeman coupling. Since
the Zeeman coupling can be tuned experimentally, the
magnetic state of the Pr local moments can thus be ma-
nipulated by the external magnetic field. As the rare-
earth local moments such as Pr moments here interact
with a rather small energy scale, a magnetic field in the
laboratory setting could achieve the goal.

III. DIRAC BAND TOUCHINGS AND WEYL
NODES OF THE IRIDIUM SUBSYSTEM

For Pr2Ir2O7, the Ir conduction electrons were found
to develop a Luttinger semimetallic band structure that
is similar to the bulk HgTe39–43. It is well-known that
the Luttinger semimetal is a parent state of various topo-
logical phases such as topological insulator and Weyl
semimetal39,42,43. The Pr Ising order breaks the time re-
versal symmetry, and the time reversal symmetry break-
ing is transmitted to the Luttinger semimetal of the Ir
subsystem through the f -d exchange. We here study
the band structure reconstruction of the Ir 5d electrons
through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the MHG
spin ice state in the recent samples with di↵erent Ir and

O contents from the old ones36. The MHG spin state
breaks the time reversal and the lattice translation by
doubling the crystal unit cell. Due to this interesting
magnetic ordering structure, the combination of the time
reversal and certain lattice translations remains to be a
symmetry of the system after the development of the
magnetic ordering. As we show below, this symmetry
leads to a remarkable band structure property of the Ir
subsystem after the band reconstruction.
The reconstructed band structure of the Ir conduction

electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal in
the absence of the Pr magnetic order and give a quadratic
band touching at the �̃ point. Without losing any gen-
erality, in Fig. 2 we choose the MHG spin state of the Pr
moments to have a propagating wavevector Q = 2⇡(001)
and the band structure in Fig. 2(d) is plotted in the mag-
netic Brillouin zone of Fig. 2(b). Before the appearance
of the Pr Ising order, the system has both time rever-
sal (T ) and inversion (I) symmetries, and each band of
the Ir electrons has a two-fold Kramers degeneracy. The
quadratic band touching at the �̃ point results from the
cubic symmetry. As the Pr magnetic order appears, the
Ir band structure is immediately modified. Before we
present the reconstructed band structure in details, we
first understand the band structure properties from the
symmetry point of view. For our choice of the propa-
gating wavevector, the MHG spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the develop-
ment of the Pr magnetic order. These two symmetries of
the MHG spin state are analogous to the staggered time
reversal of the antiferromagnetic Néel state on a square
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(a) c1 = 0.25, c2 = 0.10
Q = 2⇡(001),

E
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(b) c1 = 0.05, c2 = 0.30
Q = 2⇡(001),

(c) c1 = 0.15, c2 = 0.15
Q = 2⇡(001),

(d) c1 = 0.30, c2 = 0.30
Q = 2⇡(001),

FIG. 3. Evolution of the Ir band structure as a function of f -d exchange parameters c1 and c2. The dashed (solid) circle marks
the usual (double) Weyl node. Here, usual Weyl node has linear dispersions along all three momentum directions while the
double Weyl node has quadratic dispersions along two momentum direction and linear along one momentum direction58. For
su�ciently large parameters in (d), the Weyl nodes disappear and a band gap is opened. Here, “2I2O” refers to the “2-in
2-out” spin configuration. The energy unit in the plots is t

id

. The dashed line refers to the Fermi energy. Here only a finite
energy range is plotted for clarity. See Appendix. B for full band structures.

lattice. Like the pure time reversal, T̃1 and T̃2 are anti-
unitary operations. Similar anti-unitary symmetry has
been considered in the early proposal of antiferromagnetc
topological insulator by Mong, Essin and Moore57. Due
to the involvement of the lattice translations, T̃1 and T̃2
do not lead to the Kramers degeneracy for all the time re-
versal invariant momenta in the magnetic Brillouin zone.
It is ready to confirm that,

T̃1|�̃, "i = i|�̃, #i, T̃2|�̃, "i = i|�̃, #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �̃, M̃
and R̃; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. Note that �̃, M̃ and R̃ are also time reversal
invariant momenta of the crystal Brillouin zone while X̃,
Z̃ and Ã are not. It immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points,
but not for the X̃, Z̃ and Ã points. Actually the for-
mer holds for other time reversal invariant momenta of
the crystal Brillouin zone. To confirm the above predic-
tion, we carry out the explicit calculation of the Ir band
structure in the presence of the Pr magnetic order. As
we show in Fig. 3 for four specific choices of the f -d ex-
change couplings, there exist emergent two-fold Kramers
degeneracies with Dirac band touchings at the �̃, M̃ and
R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure

is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7

are unknown to us. To proceed, we fix the tight-binding
part of the Ir hopping Hamiltonian and study the band
structure phase diagram of Ir electrons by varying the f -
d exchange couplings. This approach is not designed to
be self-consistent, but is phenomenological. The Pr Ising
order, that is observed experimentally36, is used as the
input information to the Ir band structure calculation in
this section. We expect, the realistic case for Pr2Ir2O7

would be located at one specific parameter point in the
phase diagram. It is possible that the pressure could vary
the exchange couplings and allow the system to access
di↵erent parameters of the phase diagram.

In Fig. 4, we depict our phase diagram according to
the exchange couplings. For small exchange couplings,
a semimetal is always obtained. The name “semimetal”
here not only refers to the Dirac band touching or disper-
sion at some time reversal invariant momenta, but also
refers to the (topologically protected) Weyl nodes in the
magnetic Brillouin zone. In fact, Weyl semimetal with
the surface Fermi arcs was first predicted for pyrochlore
iridates with the all-in all-out magnetic order, and the
magnetic order is suggested to be driven by the Ir elec-
tron correlation15. In our result here, the magnetic order
comes from the Pr Ising order, and the time reversal sym-
metry breaking is then transmitted to the Ir conduction
electron via the f -d exchange. The Pr magnetic order is
not the simple all-in all-out magnetic order. It was also
suggested that the correlation-driven Weyl semimetal for
pyrochlore iridates appears in a rather narrow parameter
regime16. The f -d exchange, however, could significantly
enlarge the parameter regime for Weyl semimetal14. In-
deed, in Fig. 4, the semimetal region does support sev-
eral Weyl nodes near the Fermi level, and thus, we expect
the usual properties for Weyl semimetal15 to hold in this
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Band topology control: external field amplified internally 

1. Magnetic field primarily couples to Pr moments, modifies Pr spin state,  
    thereby indirectly influence the Ir band structure, 
2. Field immediately removes the Dirac band touching, 
3. Field induces Weyl nodes on the Ir band structure as well, anomalous Hall effect
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7
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FIG. 4. Phase diagram for the Ir band structure in the pa-
rameter space of the f -d exchange couplings. The bold dots
refer to the four parameter choices in Fig. 3.

regime. Moreover, since the f -d exchange coupling is
much smaller than the e↵ective hoppings of the Ir elec-
trons, so the realistic case for the ordered Pr2Ir2O7 is
expected to occur in the semimetallic region of Fig. 4.

IV. ROLE OF EXTERNAL MAGNETIC FIELDS

To further control the property of the system, we sug-
gest to apply an (uniform) external magnetic field to the
system. As we have explained in Sec. I, the magnetic field
would primarily couple to the Pr local moments. A uni-
form magnetic field induces a finite magnetic polarization
on the Pr local moments, and thus breaks the T̃1 and T̃2
symmetries of the ordered Pr2Ir2O7. As a consequence,
the emergent Dirac band touchings at the �̃, M̃ and R̃
points, that are protected by the T̃1 and T̃2 symmetries,
should disappear immediately in a generic magnetic field
along a random direction. Here the choice of a random
direction for the magnetic field simply avoids the acci-
dental degeneracy/band touching that is protected by
the reduced lattice symmetry of the system if the field
is applied along high symmetry directions.

Like the previous section where the Ir band structure is
controlled by the f -d exchange and the Ir tight-binding
model, the Ir band structure in the magnetic field re-
quires the knowledge of the Pr magnetic state that is
now modified by the external magnetic field. As we have
explained in Sec. I, the external magnetic field first mod-
ifies the Pr magnetic state and then indirectly influences
the Ir band structure through the f -d exchange interac-
tion. For the Pr subsystem, we consider the following
Hamiltonian,

HPr = H̃
ex

+HZeeman, (18)

where the exchange part includes both the first neighbor
and third neigbhor Ising exchange interactions. Since
here the Pr local moment is set to be an Ising degree of
freedom, the magnetic phase diagram of the Pr moments
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FIG. 5. Phase diagram of the Pr local moments under the ex-
ternal magnetic fields along di↵erent directions. Here “1I3O”
refers to “1-in 3-out” spin configuration.

is readily obtained by comparing energies of candidate
ground states. The magnetic phase diagram for the Pr
moments is depicted in Fig. 5, where three di↵erent di-
rections of magnetic fields are considered.
Here we focus on one specific field orientation,

n̂ ⌘ (1, 1, 1)/
p
3, and evaluate the feedback of the Pr

magnetic state on the Ir conduction electrons. Besides
the original MHG spin state, two additional spin states
are obtained. While the Ir band structure in the pres-
ence of the MHG spin state stays the same as the ones
in Sec. III under this approximation, this should be the
caveat of the approximation of the Pr local moment as
the Ising spin that ignores the quantum nature of the
Pr local moment. In reality, the magnetic field would
create a finite polarization for the Pr local moment and
modifies the Ir band structure immediately, even though
the modification can be small. This would allow us to
move the positions of the Weyl nodes in the momentum
space. The other two spin configurations of the Pr mo-
ments, that result from strong magnetic field, have an
ordering wavevector Q = 0 and restores the lattice trans-
lation symmetry. Hence, we expect two di↵erent Ir band
structures for the Q = 0 “2-in 2-out” and “1-in 3-out” Pr
spin states. In Fig. 6, we depict the Ir band structures
for specific choices of the f -d exchanges with two Q = 0
spin configurations from the phase diagram in Fig. 5(a).
By letting the Pr moments have the specified spin con-
figurations, we explicitly calculate the Ir band structure
that is depicted in Fig. 6. We find that the Dirac band
touchings at the �̃(⌘ �), R̃(⌘ L) points are absent in
the magnetic field, and now the magnetic unit cell is now
identical to the crystal unit cell. Moreover, although the
time reversal symmetry breaking is transmitted by the Pr
spin configuration due to the external magnetic field, the
overall e↵ect is equivalent to applying the time reversal
symmetry breaking to the Ir Luttinger semimetal. Since
Luttinger semimetal can be regarded as the parent state
of the Weyl semimetal19,39, it seems natural to expect
the occurrence of the Weyl nodes. Indeed, as we show
in Fig. 7, we obtain the Weyl semimetal (or Weyl metal)
for a large parameter regime in the phase diagram.
With large magnetic fields along (001) and (110) di-

584 immediately, even though the modification can be small.
585 This would allow us to move the positions of the Weyl
586 nodes in the momentum space. The other two spin
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F6:1 FIG. 6. Evolution of the Ir band structure as a function of f-d exchange parameters for (a)–(d) 1-in–3-out (1I3O) and (e)–(h) 2-in–2-
F6:2 out (2I2O) Pr magnetic states with Q ¼ 0 from Fig. 5(a). The dashed (solid) circle marks the usual (double) Weyl node. In (a) and (b),
F6:3 one band from L to Γ is flat. This is accidental for the nearest-neighbor hopping model and is dispersive if further neighbor hoppings are
F6:4 included [16]. In (g), the Weyl nodes are actually at different energies. The energy unit in the plots is tid. The dashed line refers to the
F6:5 Fermi energy.

(a) (b) (c)

F5:1 FIG. 5. Phase diagram of the Pr local moments under the
F5:2 external magnetic fields along different directions. Here, “1I3O”
F5:3 refers to “1-in–3-out” spin configuration.
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FIG. 4. Phase diagram for the Ir band structure in the pa-
rameter space of the f -d exchange couplings. The bold dots
refer to the four parameter choices in Fig. 3.

regime. Moreover, since the f -d exchange coupling is
much smaller than the e↵ective hoppings of the Ir elec-
trons, so the realistic case for the ordered Pr2Ir2O7 is
expected to occur in the semimetallic region of Fig. 4.

IV. ROLE OF EXTERNAL MAGNETIC FIELDS

To further control the property of the system, we sug-
gest to apply an (uniform) external magnetic field to the
system. As we have explained in Sec. I, the magnetic field
would primarily couple to the Pr local moments. A uni-
form magnetic field induces a finite magnetic polarization
on the Pr local moments, and thus breaks the T̃1 and T̃2
symmetries of the ordered Pr2Ir2O7. As a consequence,
the emergent Dirac band touchings at the �̃, M̃ and R̃
points, that are protected by the T̃1 and T̃2 symmetries,
should disappear immediately in a generic magnetic field
along a random direction. Here the choice of a random
direction for the magnetic field simply avoids the acci-
dental degeneracy/band touching that is protected by
the reduced lattice symmetry of the system if the field
is applied along high symmetry directions.

Like the previous section where the Ir band structure is
controlled by the f -d exchange and the Ir tight-binding
model, the Ir band structure in the magnetic field re-
quires the knowledge of the Pr magnetic state that is
now modified by the external magnetic field. As we have
explained in Sec. I, the external magnetic field first mod-
ifies the Pr magnetic state and then indirectly influences
the Ir band structure through the f -d exchange interac-
tion. For the Pr subsystem, we consider the following
Hamiltonian,

HPr = H̃
ex

+HZeeman, (18)

where the exchange part includes both the first neighbor
and third neigbhor Ising exchange interactions. Since
here the Pr local moment is set to be an Ising degree of
freedom, the magnetic phase diagram of the Pr moments
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FIG. 5. Phase diagram of the Pr local moments under the ex-
ternal magnetic fields along di↵erent directions. Here “1I3O”
refers to “1-in 3-out” spin configuration.

is readily obtained by comparing energies of candidate
ground states. The magnetic phase diagram for the Pr
moments is depicted in Fig. 5, where three di↵erent di-
rections of magnetic fields are considered.
Here we focus on one specific field orientation,

n̂ ⌘ (1, 1, 1)/
p
3, and evaluate the feedback of the Pr

magnetic state on the Ir conduction electrons. Besides
the original MHG spin state, two additional spin states
are obtained. While the Ir band structure in the pres-
ence of the MHG spin state stays the same as the ones
in Sec. III under this approximation, this should be the
caveat of the approximation of the Pr local moment as
the Ising spin that ignores the quantum nature of the
Pr local moment. In reality, the magnetic field would
create a finite polarization for the Pr local moment and
modifies the Ir band structure immediately, even though
the modification can be small. This would allow us to
move the positions of the Weyl nodes in the momentum
space. The other two spin configurations of the Pr mo-
ments, that result from strong magnetic field, have an
ordering wavevector Q = 0 and restores the lattice trans-
lation symmetry. Hence, we expect two di↵erent Ir band
structures for the Q = 0 “2-in 2-out” and “1-in 3-out” Pr
spin states. In Fig. 6, we depict the Ir band structures
for specific choices of the f -d exchanges with two Q = 0
spin configurations from the phase diagram in Fig. 5(a).
By letting the Pr moments have the specified spin con-
figurations, we explicitly calculate the Ir band structure
that is depicted in Fig. 6. We find that the Dirac band
touchings at the �̃(⌘ �), R̃(⌘ L) points are absent in
the magnetic field, and now the magnetic unit cell is now
identical to the crystal unit cell. Moreover, although the
time reversal symmetry breaking is transmitted by the Pr
spin configuration due to the external magnetic field, the
overall e↵ect is equivalent to applying the time reversal
symmetry breaking to the Ir Luttinger semimetal. Since
Luttinger semimetal can be regarded as the parent state
of the Weyl semimetal19,39, it seems natural to expect
the occurrence of the Weyl nodes. Indeed, as we show
in Fig. 7, we obtain the Weyl semimetal (or Weyl metal)
for a large parameter regime in the phase diagram.
With large magnetic fields along (001) and (110) di-
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Magnetic field modifies the Pr magnetic structure, thereby modifies the Ir band structure.  

We predict that external magnetic field destroy the symmetry protected Dirac band 
touching, and Weyl nodes still persist and give to anomalous Hall effect.
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FIG. 4. Phase diagram for the Ir band structure in the pa-
rameter space of the f -d exchange couplings. The bold dots
refer to the four parameter choices in Fig. 3.

regime. Moreover, since the f -d exchange coupling is
much smaller than the e↵ective hoppings of the Ir elec-
trons, so the realistic case for the ordered Pr2Ir2O7 is
expected to occur in the semimetallic region of Fig. 4.

IV. ROLE OF EXTERNAL MAGNETIC FIELDS

To further control the property of the system, we sug-
gest to apply an (uniform) external magnetic field to the
system. As we have explained in Sec. I, the magnetic field
would primarily couple to the Pr local moments. A uni-
form magnetic field induces a finite magnetic polarization
on the Pr local moments, and thus breaks the T̃1 and T̃2
symmetries of the ordered Pr2Ir2O7. As a consequence,
the emergent Dirac band touchings at the �̃, M̃ and R̃
points, that are protected by the T̃1 and T̃2 symmetries,
should disappear immediately in a generic magnetic field
along a random direction. Here the choice of a random
direction for the magnetic field simply avoids the acci-
dental degeneracy/band touching that is protected by
the reduced lattice symmetry of the system if the field
is applied along high symmetry directions.

Like the previous section where the Ir band structure is
controlled by the f -d exchange and the Ir tight-binding
model, the Ir band structure in the magnetic field re-
quires the knowledge of the Pr magnetic state that is
now modified by the external magnetic field. As we have
explained in Sec. I, the external magnetic field first mod-
ifies the Pr magnetic state and then indirectly influences
the Ir band structure through the f -d exchange interac-
tion. For the Pr subsystem, we consider the following
Hamiltonian,

HPr = H̃
ex

+HZeeman, (18)

where the exchange part includes both the first neighbor
and third neigbhor Ising exchange interactions. Since
here the Pr local moment is set to be an Ising degree of
freedom, the magnetic phase diagram of the Pr moments
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FIG. 5. Phase diagram of the Pr local moments under the ex-
ternal magnetic fields along di↵erent directions. Here “1I3O”
refers to “1-in 3-out” spin configuration.

is readily obtained by comparing energies of candidate
ground states. The magnetic phase diagram for the Pr
moments is depicted in Fig. 5, where three di↵erent di-
rections of magnetic fields are considered.
Here we focus on one specific field orientation,

n̂ ⌘ (1, 1, 1)/
p
3, and evaluate the feedback of the Pr

magnetic state on the Ir conduction electrons. Besides
the original MHG spin state, two additional spin states
are obtained. While the Ir band structure in the pres-
ence of the MHG spin state stays the same as the ones
in Sec. III under this approximation, this should be the
caveat of the approximation of the Pr local moment as
the Ising spin that ignores the quantum nature of the
Pr local moment. In reality, the magnetic field would
create a finite polarization for the Pr local moment and
modifies the Ir band structure immediately, even though
the modification can be small. This would allow us to
move the positions of the Weyl nodes in the momentum
space. The other two spin configurations of the Pr mo-
ments, that result from strong magnetic field, have an
ordering wavevector Q = 0 and restores the lattice trans-
lation symmetry. Hence, we expect two di↵erent Ir band
structures for the Q = 0 “2-in 2-out” and “1-in 3-out” Pr
spin states. In Fig. 6, we depict the Ir band structures
for specific choices of the f -d exchanges with two Q = 0
spin configurations from the phase diagram in Fig. 5(a).
By letting the Pr moments have the specified spin con-
figurations, we explicitly calculate the Ir band structure
that is depicted in Fig. 6. We find that the Dirac band
touchings at the �̃(⌘ �), R̃(⌘ L) points are absent in
the magnetic field, and now the magnetic unit cell is now
identical to the crystal unit cell. Moreover, although the
time reversal symmetry breaking is transmitted by the Pr
spin configuration due to the external magnetic field, the
overall e↵ect is equivalent to applying the time reversal
symmetry breaking to the Ir Luttinger semimetal. Since
Luttinger semimetal can be regarded as the parent state
of the Weyl semimetal19,39, it seems natural to expect
the occurrence of the Weyl nodes. Indeed, as we show
in Fig. 7, we obtain the Weyl semimetal (or Weyl metal)
for a large parameter regime in the phase diagram.
With large magnetic fields along (001) and (110) di-
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FIG. 7. Phase diagram for the Ir band structure in the pa-
rameter space of the f -d exchange couplings for di↵erent Pr
magnetic states from Fig. 5(a). The bold dots in the plots are
the parameter choices for Fig. 6.

structure after the reconstruction from the Pr Ising mag-
netic state, we here propose the future experiments.
The quadratic band touching at the � point of the
non-magnetic Pr2Ir2O7 sample was first revealed by the
angle-resolved photo-emission spectroscopy (ARPES)39.
Thus, the reconstructed Ir band structure in the mag-
netically ordered Pr2Ir2O7 sample (without the magnetic
field) would be best detected by the ARPES. Although
the Pr magnetic domain may complicate the data analy-
sis, the non-trivial features at and near the � point should
not be modified by the multiple Pr magnetic domains as
these features are near zero-momentum properties. On
the other hand, the optical measurements are useful for
detecting the inter-band particle-hole transition near the
band touching points that gives rise to power-law optical
conductivity. As ARPES fails in the presence of magnetic
fields, the optical measurements can thus be complemen-
tary. The Dirac band touchings at some of the time
reversal invariant momenta, that are protected by the
magnetic translation of the MHG spin state, would im-
mediately disappear when the magnetic field is applied.
This prediction could be a sharp feature for the experi-
mental confirmation in the optical measurement.

Besides the direct band structure measurements with
ARPES and/or optics, the magneto-transport can serve
as a useful indirect probe. Due to the breaking of the
cubic symmetry, the Weyl semimetal that is induced by
the external magnetic field would show anomalous Hall
e↵ects. Furthermore, we point out the field-driven metal-
insulator transition. Although it was not emphasized in
Sec. IV, the large portion of the semimetallic region in the
phase diagram of Fig. 4 is converted into the insulating
region in the phase diagram of Fig. 7(a). From the expe-
rience in Nd2Ir2O7 with the dipole-octupole Nd3+ mag-
netic ions14,32,59,60, this field-driven metal-insulator tran-
sition via the f -d exchange could be the most visible ex-
perimental signature in the transport measurement and
may find an application in magnetic storage and mag-
netic control of electric transports. Finally, as we have

mentioned in Sec. II A, we note several theoretical works
have considered the e↵ect of the long-range Coulomb in-
teraction on the Ir conduction electron with quadratic
band touching17,47–53. Due to the partial screening of
the Coulomb interaction, various interesting correlated
phases may be stabilized. Now we have included the Pr
magnetism into the system, it can thus be interesting to
consider the long-range Coulomb interaction on top of
the reconstructed Ir bands in presence of the Pr mag-
netism in the future work.

We explain the feasibility of the magnetic control of the
physical properties such as magnetic, transport and band
structure properties of Pr2Ir2O7. From the experience
with the rare-earth pyrochlores and the rare-earth trian-
gular magnets, the interactions between the rare-earth
local moments are usually quite small60–66. In Pr2Ir2O7,
the Ir conduction electrons mediate the RKKY interac-
tion between the Pr local moments and could slightly
enhance the energy scale of the Pr-Pr interactions. Even
that, the Pr-Pr energy scale is of the order of ⇠10K from
the early susceptibility measurement34. Due to the low-
energy scale of Pr-Pr interactions, a magnetic field of the
order of several Tesla could readily modify the Pr mag-
netic structures. Indeed, early transport measurement in
magnetic fields have already hinted the change of the Pr
magnetic structures34. Although the extenal field that
one actually applies can be small, the indirect e↵ect on
the Ir conduction electron is huge due to the large in-
ternal field that is generated by the f -d exchange. This

amplification e↵ect is rather non-trivial and arises from
the separation of energy scales in Pr2Ir2O7. This e↵ect
can be immediately tested in the current laboratory set-
ting.

From a much broader perspective, Pr2Ir2O7 is a proto-
type and singular example of hybrid quantum materials
with both itinerant electrons and local moments. The
separation of the energy scales among distinct degrees of
freedom allows the quantum control between each other.
Quite recently, several rare-earth based hybrid quantum
materials have been discovered and studied. The can-
didate examples are the half heusler compounds RGeX
(R=rare earth, X=Si/Ge)67 and the rare-earth pnictide
CeSb where the itinerant electron part was proposed to
realize Weyl semimetals68,69. The rare-earth parts of
these materials could then contribute to magnetism. In
the half heusler compounds RGeX, the interesting sin-
gular angular magnetoresistance was observed and is be-
lieved to arise from the coupling between the rare-earth
moments and the itinerant electrons. Due to the sim-
ilarity of the physical contents in these systems with
Pr2Ir2O7, we propose similar physics and theories could
be well realized and readily extended to these new mate-
rials. Therefore, we think our work could inspire further
interests in these hybrid quantum materials with both
itinerant electrons and local moments.
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Conclusion

✤   We predict the band structure reconstruction of the Ir conduction electrons  
  by the Pr magnetic order. We predict symmetry protected Dirac band touching 
  and topologically protected Weyl nodes. 

✤   Some prediction has been confirmed by Nakatsuji’s experiments.  

✤   Hybrid quantum materials with both itinerant electrons and local moments  
  can be a quite interesting direction of research for topological phenomena,  
  correlation physics, band structure engineering, et al. 
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