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FIG. 1. Molecular form of spin-orbital entangled j
e↵

states in GaTa
4

Se
8

. a The con-
nectivity between the neighboring M

4

clusters and the local distortion of each cluster. b Band
structure and projected density of states of GaTa

4

Se
8

without SOC. c Three Wannier orbitals
constructed from the triplet molecular orbital bands near the Fermi level. d Band structure and
density of states with SOC, projected onto the j

e↵

= 1/2 and 3/2 subspaces. The size of the circle
in the band structure shows the weight of each subspace in each Bloch state. e Schematic figures
showing the spin-orbital entanglement of each j

e↵

Wannier function on the M
4

cluster.

The chemical formula and crystal structure of the GaM
4

X

8

lacunar spinels are easily de-

duced from the spinel with half-deficient Ga atoms, i.e. Ga
0.5

M

2

X

4

. Due to the half-removal

of the Ga atoms, the transition metal atoms are strongly distorted into the tetrahedral center

as denoted by the red arrows in Fig. 1 a, and a tetramerized M

4

cluster appears. The M

4

cluster yields a short inter-cluster M -M distance, naturally inducing the molecular states

residing on the cluster as basic building blocks for the low energy electronic structure. On

the other hand, the large inter-cluster distance results in a weak inter-cluster bonding and

a narrow bandwidth of the molecular states.

As a representative example of the lacunar spinels, we investigate the electronic structure

of GaTa
4

Se
8

(Fig. 1 b-e). Figure 1 b shows the band structure and the projected density of

states (PDOS) of GaTa
4

Se
8

in the absence of SOC. In consistency with previous studies, the

triply degenerate molecular t

2

bands occupied by one electron are located near the Fermi

level with a small bandwidth (⇠0.75 eV)17,18. As shown in the PDOS plot, the molecular t
2

bands are dominated by Ta t

2g

orbital components; the small admixture of Se 5p and the
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Transition from Mott Insulator to Superconductor
in GaNb4Se8 and GaTa4Se8 under High Pressure
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Electronic conduction in GaM4Se8 (M ! Nb;Ta) compounds with the fcc GaMo4S8-type structure
originates from hopping of localized unpaired electrons (S ! 1

2 ) among widely separated tetrahedral
M4 metal clusters. We show that under pressure these systems transform from Mott insulators to a
metallic and superconducting state with TC ! 2:9 and 5.8 K at 13 and 11.5 GPa for GaNb4Se8 and
GaTa4Se8, respectively. The occurrence of superconductivity is shown to be connected with a pressure-
induced decrease of the MSe6 octahedral distortion and simultaneous softening of the phonon
associated with M-Se bonds.

DOI: 10.1103/PhysRevLett.93.126403 PACS numbers: 71.30.+h, 74.10.+v, 74.25.Kc, 74.62.Fj

Superconductivity in the presence of strong electron
correlations has attracted considerable attention, espe-
cially after the discovery of high-TC superconductors.
Usually superconductivity is obtained in such systems
by doping Mott insulators, as in cuprates [1] or in
NaxCoO2 " yH2O [2]. Another option is to study the oc-
currence of superconductivity under high pressure in stoi-
chiometric systems in the proximity to a Mott transition.
The advantage in this case is the absence of disorder.
Unfortunately, there are very few such systems known
(e.g., !-Na0:33V2O5 [3] and recent theoretical discus-
sion [4]).

In this work we show that cluster compounds GaM4Se8
(M ! Nb;Ta), which are nonmagnetic Mott insulators at
ambient pressure, transform to a metallic and supercon-
ducting state at pressures of 13 and 11.5 GPa with critical
temperatures TC ! 2:9 and 5.8 K, respectively. We show
that the Mott transition itself is apparently connected
with internal distortions of the clusters rather than a
change of the lattice symmetry. We also observed a rather
strong softening of one of the phonon modes, which
correlates with the appearance of superconductivity.

Ternary chalcogenides AM4X8 (A ! Ga;Ge; M ! V;
Mo;Nb;Ta; X ! S; Se) belong to an interesting class of
transition metal systems which exhibit strong electronic
correlation effects. The origin of the electronic correla-
tion in these systems is a consequence of their peculiar
crystal structure, shown in Fig. 1(a). This fcc structure
(GaMo4S8-type) can be described as a deficient spinel
A0:5M2X4 [5,6], in which the ordering of the tetrahedral
A ions reduces the symmetry from Fd3m to F43m. As a
result, the M (transition metal) atoms are shifted off the
centers of the S=Se octahedral, see Fig. 1(b), forming
tetrahedral M4 clusters with typical intracluster M#M
distances $dM% of &3 !A. At the same time the M#M
distances $dC% between the M4 clusters become large
(>4 !A), which results in a formation of localized elec-

tronic states in the clusters. This leads to unusual trans-
port and magnetic properties. None of these compounds
show metallic conductivity; instead the electronic con-
duction takes place by hopping of carriers between the
clusters [7–10]. Simultaneously, magnetic susceptibility is
typical for localized spins. Thus, this class of systems can
be considered as Mott insulators.

The ground state properties of these compounds
strongly depend on the local electronic structure of the
M4 cluster (actually M4X4 clusters) which is mainly
determined by the number of valence electrons per cluster
[9–11]. According to MO calculations, the d orbitals

FIG. 1. (a) Linkage of the Ta4Se4 cluster units via bridging
Se2 atoms and their connection with the GaSe4 tetrahedra in
the fcc GaMo4S8 structure. (b) (Ta,Nb) atoms shifted off the
centers of distorted edge-sharing Se6 octahedra (dTa-Se1 !
2:508 !A; dTa-Se2 ! 2:643 !A). (c) Molecular orbital (MO)
scheme for the M-M bonding orbitals of a M4 cluster with
ideal Td symmetry for seven electrons per cluster.
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Lacunar spinel compound: AM4X8

A= Ga,Ge; 
M=V, Mo, Ta, Nb, Cr 
X (Q) = Se,Te,S

M: fractional valence charge 
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12 h. The pellets were contacted with silver wires and silver paste,
and the electrical resistances were measured between 8 and 320 K
using a dc four-point current-reversal method.23
Magnetic Measurements. Magnetic properties of the samples

were measured utilizing a SQUID magnetometer (MPMS-XL
Quantum Design Inc.). Fine ground powder samples were inserted
in capsules, and those were fixed into a straw of known diamag-
netism. The magnetic susceptibilities of the samples were collected
in the temperature range of 1.8 to 300 K with magnetic flux
densities up to 5 T. To determine the Curie points, zero-field-cooled
and field-cooled measurements at 3 mT were done. The data were
corrected for diamagnetic contributions of the capsule, the straw,
and the sample using diamagnetic increments24 and analyzed with
a modified Curie-Weiss law:

From the Curie constants C, the effective magnetic moments per
formula unit were calculated using the spin-only approximation.

Results

Crystal Structures. The X-ray powder patterns of samples
with the nominal compositions Ga(V4-yCry)S8 show single
phases up to y ≈ 1.5 and could be indexed using cubic
face-centered unit cells. In this range, the lattice parameter
changes only slightly from 966.1 pm (GaV4S8) to 968.0 pm
(Ga(V2.5Cr1.5)S8) as expected from the similar ionic radii of
vanadium and chromium. But the lattice parameter grows
rapidly around y ≈ 2, reaches 986.7 pm at y ) 2.5, and
remains around 989 pm up to y ) 4. The lattice parameters
are listed in Table 1 and graphically depicted in Figure 4.

Noticeable amounts of impurity phasessmainly Cr2S3s
were initially detected for y g 2, indicating that
these compounds may not have the nominal composition
Ga(V4-yCry)S8. For that reason, we performed X-ray structure
determinations of single crystals selected from samples with
y ) 1.5, 2.0, and 2.5. Parameters of the data collections and
results of the structure refinements together with selected
bond distances are compiled in Table 2. Further details of
the crystal structure determinations (CIF data) are deposited
and can be obtained from Fachinformationszentrum
Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany)

(e-mail: crysdata@fiz-karlsruhe.de), by quoting the Registry
No.’s 417903 (Ga(V2.5Cr1.5)S8), 417904 (Ga1.11(V2Cr2)S8),
and 417905 (Ga1.33V1.5Cr2.5S8).
The refinements confirmed the GaMo4S8-type structure for

Ga(V2.5Cr1.5)S8 with space group F4h3m, and we can safely
assume that this is also the case for all compounds with y <
1.5. For y) 2, we detected weak electron density at a second
tetrahedral site (4c), which is empty in the GaMo4S8 structure.
We refined the structure still in the space group F4h3m with
∼10% gallium atoms occupying this position. Apart from
the Cr/V statistics, this is essentially the structure of
R-Ga1.33Cr4S8, but with lower Ga content of 0.11 at the
second tetrahedral site (4c). The occupation of this site
increases to 0.33 in the crystal with nominal composition y
) 2.5. Simultaneously, the distances within the (V4-yCry)
clusters increase from 291 pm at y ) 0-1.5 to 306 pm at y
) 2 and reach 325 pm for y ) 2.5. The latter is too long to
be considered as a significant metal-metal bond. This
alteration of the M-M distances within and between the
clusters is depicted in Figure 5. Obviously, the GaMo4S8
structure exists up to a composition close to Ga(V2Cr2)S8
with nine electrons in the cluster orbitals.

The chemical compositions obtained from the single-
crystal data were subsequently used to synthesize phase-pure
samples of GaxV4-yCryS8 with x) 1.1-1.33 and yg 2. Their
X-ray powder patterns were free from reflections of Cr2S3
or other impurity phases and suitable for magnetic measure-
ments.

(23) Keithley Low LeVel Measurements, Precision DC Current, Voltage
and Resistance Measurements, 5th ed.; Keithley Instruments, Inc.:
Cleveland, OH, 1998.

(24) Lueken, H. Magnetochemie; Teubner: Stuttgart, Leipzig, Germany,
1999.
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Figure 4. Lattice parameters of the series Gax(V4-yCry)S8. The two symbols
at y ) 4 mark the R- and "-polymorphs of Ga1.33Cr4S8.18

Table 1. Lattice Parameters of the Series Gax(V4-yCry)S8 from
Powder Diffraction Data

x y a/pm
1.00 0 966.1(1)
1.00 0.5 966.0(1)
1.00 1 966.5(1)
1.00 1.5 968.0(3)
1.10 2 975.3(5)
1.33 2.5 986.7(10)
1.33 3 989.5(2)
1.33 3.5 988.6(2)
1.33 4 (R) 989.6a
1.33 4 (") 988.0a

a Lattice parameters from ref 18.

Figure 5. M-S andM-M (M ) V/Cr) distances in the series GaxV4-yCryS8.

4318 Chem. Mater., Vol. 19, No. 17, 2007 Bichler and Johrendt

Figure 2, has crucial consequences for the physical properties.
The metal-centered electrons not incorporated in M-S
bonding are now localized in cluster molecular orbitals
(MOs). Since the intercluster distances are too long (typically
∼400 pm) for significant orbital overlap, GaMo4S8-type
compounds are narrow-band semiconductors.

As we reported in recent publications, fundamental physi-
cal properties of these compounds such as magnetism and
electrical conductivity can be rationalized by a simple cluster
molecular orbital scheme.5,10,15-17 Six M-M bonding MOs
are available for a maximum of 12 metal-centered electrons.
GaV4S8 contains 7 electrons in each V4 unit according to
the ionic formula splitting Ga3+(V3.25+)4(S2-)8, whereas the
cluster MO is almost completely filled with 11 electrons in
GaMo4S8. Both MO schemata are depicted in Figure 3.

The highest occupied molecular orbital (HOMO) is
threefold degenerated in the cubic case. One spin remains
unpaired in this t2 orbital and causes the magnetic properties
of GaV4S8 and GaMo4S8. Experimental magnetic moments
are compatible with one spin per V4 or Mo4 cluster,
respectively, in good agreement with this simple MO scheme.
Also, GeV4S8 with eight electrons (even number) in the MO
follows this model and exhibits the magnetic moment of two
spins per V4 cluster.5,15 All three compounds mentioned here
show ferro- or antiferromagnetic ordering at low temperatures
(10-30 K) and are narrow-gap semiconductors (Eg ≈ 0.2
eV).5,8,10,15
The interesting electronic and magnetic properties of the

GaMo4S8 type compounds are in good agreement with the
predictions of the cluster MO scheme. From this starting
point, we had the idea to increase the electron count in
GaV4S8 stepwise from 7 to 11 and to study the resulting
magnetism. According to the model proposed above, we
expected growing magnetic moments up to maximal three

unpaired spins in the t2 level (9 electrons per cluster) followed
by a decrease due to spin pairing. Increasing the cluster
electron count seemed possible by substituting vanadium
gradually by chromium. However, GaCr4S8 is not known
up to now, but the closely related ferromagnetic spinel
R-Ga1.33Cr4S8 with partially ordered occupation of the gallium
sites and antiferromagnetic !-Ga1.33Cr4S8 with random
distribution of gallium at the tetrahedral sites are known.18
In this paper, we report the synthesis, the structural charac-
terization, and the trends of the structural and magnetic
properties in the solid solution GaxV4-yCryS8.

Experimental Section

Synthesis. Starting materials were gallium ingots (99.999%, Alfa
Aesar), vanadium granules (99.5%, Alfa Aesar), chromium powder
(99.8%, Alfa Aesar), and sulfur flakes (99.99%, Sigma-Aldrich).
Powder samples of GaxV4-yCryS8 with x ) 1 and 1.33 and y )
0-4 were prepared by reacting stoichiometric mixtures of the
elements in silica tubes under argon atmosphere at 1273 K, heated
at a rate of 30 K/h and holding the final temperature for 12 h. After
this initial heating, the samples were cooled to room temperature
and ground. The process was repeated until homogeneous phases
were obtained. This procedure yielded black, crystalline powders,
which are not sensitive to air. Small single crystals with metallic
luster were selected directly from the samples.
EDX Measurements. Semiquantitative compositions were ob-

tained by energy dispersive X-ray (EDX) analysis using a scanning
electron microscope (JEOL JSM-6500 FE-SEM) equipped with an
EDX detector (Oxford Instruments). The samples were prepared
on a brazen sample holder and coated with carbon to ensure electric
conductivity. Several points on the sample were investigated, and
the results were averaged (standards: S/FeS2, V/V, Cr/Cr, and Ga/
GaP).
X-ray Powder Diffraction. X-ray powder patterns were recorded

using a Stoe Stadi-P diffractometer (Cu KR1 radiation, Ge(111)-
monochromator, 7° position sensitive detector, Si as external
standard) or a Huber G670 imaging plate diffraction system (Cu
KR1 radiation, Ge(111)-monochromator, SiO2 as external standard).
Lattice parameters were refined using the software WinXPow.19
Single-Crystal X-ray Diffraction. Crystals from samples of

different compositions were selected, glued to thin silica fibers,
and checked for their quality by Laue photographs. Suitable
specimens were used to collect complete intensity data sets in the
oscillation mode with a Stoe IPDS-1 imaging plate detector (Mo
KR radiation, graphite monochromator). Data processing and
numerical absorption corrections were performed using the X-RED
program.20 The structures were solved with the direct methods
program SHELXS21 and refined with full-matrix least-squares using
SHELXL.22 All final cycles included anisotropic displacement
parameters. Because of the practically identical scattering powers
of Cr and V, we were unable to refine the V/Cr ratios and have,
thus, fixed them to the EDX results. However, certain deviations
from the nominal compositions of about (10% are possible.
Electrical Resistivity. Cold-pressed powder pellets (diameter )

6 mm, height ≈ 1 mm) of the samples were sintered at 1273 K for

(15) Johrendt, D. Z. Anorg. Allg. Chem. 1998, 624, 952-958.
(16) Shanthi, N.; Sarma, D. D. J. Solid State Chem. 1999, 148, 143-149.
(17) Le Beuze, A.; Loirat, H.; Zerrouki, M. C.; Lissillour, R. J. Solid State

Chem. 1995, 120, 80-89.

(18) Ben Yaich, H.; Jegaden, J. C.; Potel, M.; Sergent, M.; Huguet, P.;
Alquier, G. Mater. Res. Bull. 1983, 18, 853-860.

(19) WinXPow 1.08; STOE & Cie GmbH: Darmstadt, Germany, 2000.
(20) X-RED32 X-RED Data Reduction, 1.26; Stoe & Cie GmbH: Darm-

stadt, Germany, 2004.
(21) SHELXS; Sheldrick, G. M., Universität Göttingen: Göttingen, Ger-

many, 1997.
(22) SHELXL; Sheldrick, G. M., Universität Göttingen: Göttingen, Ger-

many, 1997.

Figure 2. Substructures of the metal atoms in the spinel-type (a) and in
the GaMo4S8 structure (b).

Figure 3. Molecular orbital schemes for the tetrahedral M4 clusters: (a)
GaV4S8 and (b) GaMo4S8.

Tuning of Metal-Metal Bonding and Magnetism Chem. Mater., Vol. 19, No. 17, 2007 4317

Figure 2, has crucial consequences for the physical properties.
The metal-centered electrons not incorporated in M-S
bonding are now localized in cluster molecular orbitals
(MOs). Since the intercluster distances are too long (typically
∼400 pm) for significant orbital overlap, GaMo4S8-type
compounds are narrow-band semiconductors.

As we reported in recent publications, fundamental physi-
cal properties of these compounds such as magnetism and
electrical conductivity can be rationalized by a simple cluster
molecular orbital scheme.5,10,15-17 Six M-M bonding MOs
are available for a maximum of 12 metal-centered electrons.
GaV4S8 contains 7 electrons in each V4 unit according to
the ionic formula splitting Ga3+(V3.25+)4(S2-)8, whereas the
cluster MO is almost completely filled with 11 electrons in
GaMo4S8. Both MO schemata are depicted in Figure 3.

The highest occupied molecular orbital (HOMO) is
threefold degenerated in the cubic case. One spin remains
unpaired in this t2 orbital and causes the magnetic properties
of GaV4S8 and GaMo4S8. Experimental magnetic moments
are compatible with one spin per V4 or Mo4 cluster,
respectively, in good agreement with this simple MO scheme.
Also, GeV4S8 with eight electrons (even number) in the MO
follows this model and exhibits the magnetic moment of two
spins per V4 cluster.5,15 All three compounds mentioned here
show ferro- or antiferromagnetic ordering at low temperatures
(10-30 K) and are narrow-gap semiconductors (Eg ≈ 0.2
eV).5,8,10,15
The interesting electronic and magnetic properties of the

GaMo4S8 type compounds are in good agreement with the
predictions of the cluster MO scheme. From this starting
point, we had the idea to increase the electron count in
GaV4S8 stepwise from 7 to 11 and to study the resulting
magnetism. According to the model proposed above, we
expected growing magnetic moments up to maximal three

unpaired spins in the t2 level (9 electrons per cluster) followed
by a decrease due to spin pairing. Increasing the cluster
electron count seemed possible by substituting vanadium
gradually by chromium. However, GaCr4S8 is not known
up to now, but the closely related ferromagnetic spinel
R-Ga1.33Cr4S8 with partially ordered occupation of the gallium
sites and antiferromagnetic !-Ga1.33Cr4S8 with random
distribution of gallium at the tetrahedral sites are known.18
In this paper, we report the synthesis, the structural charac-
terization, and the trends of the structural and magnetic
properties in the solid solution GaxV4-yCryS8.

Experimental Section

Synthesis. Starting materials were gallium ingots (99.999%, Alfa
Aesar), vanadium granules (99.5%, Alfa Aesar), chromium powder
(99.8%, Alfa Aesar), and sulfur flakes (99.99%, Sigma-Aldrich).
Powder samples of GaxV4-yCryS8 with x ) 1 and 1.33 and y )
0-4 were prepared by reacting stoichiometric mixtures of the
elements in silica tubes under argon atmosphere at 1273 K, heated
at a rate of 30 K/h and holding the final temperature for 12 h. After
this initial heating, the samples were cooled to room temperature
and ground. The process was repeated until homogeneous phases
were obtained. This procedure yielded black, crystalline powders,
which are not sensitive to air. Small single crystals with metallic
luster were selected directly from the samples.
EDX Measurements. Semiquantitative compositions were ob-

tained by energy dispersive X-ray (EDX) analysis using a scanning
electron microscope (JEOL JSM-6500 FE-SEM) equipped with an
EDX detector (Oxford Instruments). The samples were prepared
on a brazen sample holder and coated with carbon to ensure electric
conductivity. Several points on the sample were investigated, and
the results were averaged (standards: S/FeS2, V/V, Cr/Cr, and Ga/
GaP).
X-ray Powder Diffraction. X-ray powder patterns were recorded

using a Stoe Stadi-P diffractometer (Cu KR1 radiation, Ge(111)-
monochromator, 7° position sensitive detector, Si as external
standard) or a Huber G670 imaging plate diffraction system (Cu
KR1 radiation, Ge(111)-monochromator, SiO2 as external standard).
Lattice parameters were refined using the software WinXPow.19
Single-Crystal X-ray Diffraction. Crystals from samples of

different compositions were selected, glued to thin silica fibers,
and checked for their quality by Laue photographs. Suitable
specimens were used to collect complete intensity data sets in the
oscillation mode with a Stoe IPDS-1 imaging plate detector (Mo
KR radiation, graphite monochromator). Data processing and
numerical absorption corrections were performed using the X-RED
program.20 The structures were solved with the direct methods
program SHELXS21 and refined with full-matrix least-squares using
SHELXL.22 All final cycles included anisotropic displacement
parameters. Because of the practically identical scattering powers
of Cr and V, we were unable to refine the V/Cr ratios and have,
thus, fixed them to the EDX results. However, certain deviations
from the nominal compositions of about (10% are possible.
Electrical Resistivity. Cold-pressed powder pellets (diameter )

6 mm, height ≈ 1 mm) of the samples were sintered at 1273 K for
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Figure 2. Substructures of the metal atoms in the spinel-type (a) and in
the GaMo4S8 structure (b).

Figure 3. Molecular orbital schemes for the tetrahedral M4 clusters: (a)
GaV4S8 and (b) GaMo4S8.
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GaMo4S8 type, which is depicted in Figure 1. The structure can
be derived from the spinel type AM2Q4. Gallium occupies one-
half of the tetrahedral sites (atom A) in the cubic close packing
of Q atoms in an ordered way, which reduces the space group
symmetry from Fd3hm to F4h3m. The coordinates of the metal
atom (M) are shifted along the three-fold axis (x,x,x) from x )
0.625 (5/8) to x ≈ 0.603. This shift has important conse-
quences: (i) the metal atoms are no longer in the centers of the
chalcogen octahedra, but the distances split into three longer
M-Q1 and three shorter M-Q2 bonds, as shown in Figure 2a.
(ii) The metal atoms join to tetrahedral M4 clusters with M-M
distances about 3 Å and intercluster M‚‚‚M distances about 4.2
Å. This makes a description as a rocksalt-like arrangement of
M4Q4 cubes and GaQ4 tetrahedra appropriate, which is empha-
sized in Figure 1. However, the change in the metal atom
positions is very important for the electronic properties of these
materials.

The metal atoms in the spinel type form a three-dimensional
network with each six metal neighbors, which is also known as
the pyrochlore net. If the M-M distances are not too long and
the metal d shell is partially filled, one can expect metallic
conductivity. Examples are several metallic thiospinel com-
pounds such as CuM2S4, with M ) V, Ir, Rh.15 By joining the
metal atoms to tetrahedral cluster units, electrons become

localized in the cluster bonding states and are thereby no longer
available for metallic conductivity. Thus, the GaMo4S8-type
compounds are expected to be Mott-Hubbard insulators, but
their correlated units are tetrahedral M4 cluster units (or
molecular orbitals [MOs]) instead of separate metal atoms.
Hopping of carriers between these units is only possible if the
cluster-MOs are partially occupied. According to MO theory,
six M-M bonding states are available in a M4 cluster with Td
symmetry, as shown in Figure 2b. One a1, one two-fold
degenerate e, and one three-fold degenerated t2 occur for a
maximum electron count of 12.
Following our previous work about the magnetic Mott

insulators AV4Q8 (A ) Ga, Ge; Q ) S, Se),16,17 we have now
directed our interest toward the isostructural compounds with
4d and 5d group 5 metals, niobium and tantalum. The corre-
sponding M4 cluster-MO is now occupied by only seven
electrons with one unpaired spin in the t2 level (S ) 1/2), as
shown schematically in Figure 2b. GaNb4S8, GaNb4Se8, and
GaTa4Se8 were first reported by Ben Yaich et al.,18 who
concluded that the observed weak paramagnetism is similar to
those of intermetallic compounds with very high density of
states, but they have not investigated the Mott insulating
behavior. In contrast to this, one unpaired spin in GaMo4S8 with
11 electrons per Mo4 causes ferromagnetic ordering at low
temperatures.19
Recently, we have discovered pressure-induced transitions

from the Mott insulating to a superconducting state in
GaTa4Se8 and GaNb4Se8, beginning at ∼10 GPa with TC’s up
to 8 K.20 In this work, we present comprehensive experimental
and theoretical investigations of the structures and properties
of this class of materials. We report the structural parameters
of single crystals of GaNb4S8 and GaTa4Se8 together with the
results of electrical resistivity and magnetic susceptibility
measurements at ambient pressure. In addition, we show the
effect of high pressure on the structural parameters of GaTa4-
Se8 and on the electronic conduction of GaNb4S8, which
transforms likewise from the Mott insulating to a supercon-
ducting state under pressure. Because of the particular impor-
tance of the electronic structure in these compounds, we present
the results of DFT band structure calculations to gain an insight
in the electronic properties of this new class of Mott insulators
from a chemical point of view.

2. Crystal structures

First we have determined the single-crystal structure data for
GaNb4S8 and GaTa4Se8 at ambient pressure (which were not
reported in ref 18) and then for GaTa4Se8 at pressures of 5, 10,
and 14.5 GPa in the diamond-anvil cell (DAC). The necessary
hydrostatic conditions are difficult to maintain above 10 GPa
with N2 as pressure medium. Therefore, we choose GaTa4Se8
for the high-pressure experiment because of its lowest com-

(15) (a) Maehl, D.; Pickardt, J.; Reuter, B. Z. Anorg. Allg. Chem. 1982, 491,
203. (b) Riedel, E.; Pickardt, J.; Soechtig, J. Z. Anorg. Allg. Chem. 1976,
419, 63. (c) Hagino, T.; Seki, Y.; Wada, N.; Tsuji, S.; Shirane, T.; Kumagai,
K.; Nagata, S. Phys. ReV. B 1995, 51, 12673. (d) Furubayashi, T.;
Matsumoto T.; Hagino, T.; Nagata, S. J. Phys. Soc. Jpn. 1004, 63, 3333.

(16) Johrendt, D. Z. Anorg. Allg. Chem. 1998, 624, 952.
(17) Pocha, R.; Johrendt, D.; Pöttgen, R. Chem. Mater. 2000, 12, 2882.
(18) Ben Yaich, H.; Jegaden, J. C.; Potel, M.; Sergent, M.; Rastogi, A. K.;

Tournier, R. J. Less-Common Met. 1984, 102, 9.
(19) Shamrai, V.; Mädge, H.; Mydlarz, T.; Leitus, G. J. Low Temp. Phys. 1982,

49, 123.
(20) Abd-Elmeguid, M. M.; Ni, B.; Khomskii, D. I.; Pocha, R.; Johrendt, D.;

Wang, X.; Syassen, K. Phys. ReV. Lett. 2004, 93, 126403-1.

Figure 1. Crystal structure of GaM4Q8 with M ) Nb, Ta; Q ) S, Se
(GaMo4S8-type). The rocksalt-like distribution of M4Q4 cubes and GaQ4
tetrahedra is emphasized. The distorted octahedral coordination of the M
atoms is also indicated in red.

Figure 2. (a) Connection of two M4Q4 cubes in GaM4Q8. The M atoms
(black spheres) are located in distorted, edge-sharing MQ6 octahedra (red)
with three shorter M-Q1 (solid) and three longer M-Q2 bonds (dashed).
(b) MO scheme of the tetrahedral M4-cluster withM ) V, Nb, Ta, occupied
by seven electrons according to the formula GaM4

3.25+Q8
2-.
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Metal-insulator transition

within the M4 clusters can be described by MO’s which
consist of three energetically different bonding states (for
cubic Td symmetry) [12]: a nondegenerate level (a1),
followed by twofold (e) and threefold (t2) degenerated
levels [see Fig. 1(c)]. For cluster compounds of the type
Ga3!"M3:25!#4"S2$; Se2$#8, we have seven valence elec-
trons per cluster with M % V;Nb;Ta and 11 electrons
with M % Mo. In both cases, the occupation of the cluster
orbitals leads to one unpaired electron (i.e., S % 1

2 ) per
cluster. This is in agreement with the values of the mag-
netic moments obtained from magnetic susceptibility
measurements and is also consistent with spin polarized
band structure calculations [10,11]. In one respect, how-
ever, these systems are different from the conventional
Mott insulators such as transition metal oxides: in con-
trast to the latter, the correlated units are M4 clusters
which may have extra internal degrees of freedom. As
we show below, this leads to a high sensitivity of these
systems to external pressure.

Single phase polycrystalline samples of GaTa4Se8 and
GaNb4Se8 were prepared as described in Ref. [9]. X-ray
powder patterns were completely indexed using the struc-
tural data obtained from single-crystal experiments [13].
The pressure dependence of the lattice constants at 300 K
up to about 26 GPa was measured on powdered samples
by energy dispersive x-ray diffraction (EDX) at
HASYLAB using the diamond anvil cell (DAC) tech-
nique. The same type of DAC has been used for conven-
tional four-terminal electrical resistance measurements
up to about 29 GPa between 1.6 and 300 K. Single-crystal
x-ray diffraction measurements (MoK!1) of GaTa4Se8
were performed at 300 K up to p % 15 GPa using a
special DAC. Raman spectra were recorded in backscat-
tering geometry using a microspectrometer.

Before discussing the high pressure results we briefly
mention some experimental data at ambient pressure. The
values of the lattice parameter a as determined from x-
ray diffraction measurements at 300 K are found to be
10.440(1) and 10:358"1# !A for GaNb4Se8 and GaTa4Se8,
respectively, in agreement with previous results [6]. From
single-crystal x-ray data we obtained the values of the
characteristic intracluster and intercluster distances:
dM%3:051"3#;3:015"2# !A, and dC%4:332"3#;4:338"2# !A,
for GaNb4Se8 and GaTa4Se8, respectively. Measurements
of the temperature dependence of electrical resistivity
(1:6 & T & 300 K) show for both samples a semiconduc-
torlike behavior with activation energies of 0.14 eV
(GaNb4Se8) and 0.1 eV (GaTa4Se8). Actually, the activa-
tion energy decreases with decreasing temperature, in
agreement with that reported for GaMo4S8 and GaV4S8
[10]. The magnetic susceptibility of the two samples
shows Curie-Weiss behavior (100 & T & 300 K), indicat-
ing the existence of magnetic correlations, but no mag-
netic ordering is found down to 1.6 K in agreement with
Ref. [6]. The estimated values of the effective magnetic

moments are 1:6"B per Nb4 cluster (close to theoretical
value 1:73"B for S % 1

2 ) and 0:7"B per Ta4 cluster.
Detailed analyses of the results at ambient pressure are
presented elsewhere [13,14]; in the present Letter we
focus on high pressure results.

Figures 2(a) and 2(b) display the temperature depen-
dence of the normalized electrical resistance Rn % R"T#=
R"297 K# in the temperature range 1:6 & T & 300 K as a
function of pressure for GaNb4Se8 and GaTa4Se8, respec-
tively. Considering first the overall behavior of Rn"T; p# in
both samples, one finds with increasing pressure a gradual
change from the semiconducting to a metalliclike behav-
ior and a sudden drop of Rn at low temperatures above a
critical pressure (pc), indicative of a superconducting
transition. While the metallic behavior dR=dT > 0 is
observed at rather high pressures [p ' 19 GPa
(GaNb4Se8) and p ' 15 GPa (GaTa4Se8)], superconduc-
tivity already sets in at lower pressures where the tem-
perature dependence of Rn is still semiconductinglike;
TC % 2:9K at 13 GPa for GaNb4Se8 and 5.8 K at
11.5 GPa for GaTa4Se8. This type of behavior is usually
observed in the superconducting state of polycrystal-
line sintered samples, e.g., at ambient pressure in
La1$xSrxCuO4 [15] and under high pressure in the
Chevrel phase compound Eu1:2Mo6"S; Se#8 [16,17], and
is known to be due to a coexistence of superconducting
and semiconducting phases (granular superconductivity),
in the bulk and surface of the grains of such samples,
respectively. This explains the finite value of the resistiv-
ity observed in the superconducting state of our samples
(#0 ( 10$4 " cm at T % 1:6 K and p ( 20 GPa) de-
spite their single phase purity as well as the increase
of the drop of R"T# with increasing pressure (see
Fig. 2). We note, however, that the drop of R"T# is sub-
stantial ()70%) at p ( 20 GPa and 1.6 K and is expected
to further increase at lower temperatures resulting in a
lower value of the resistivity. This indicates an increase of
the fraction of superconductivity in the samples with

FIG. 2. Temperature dependence of the normalized electrical
resistance Rn % *R"T#=R"297 K#+ of GaNb4Se8 (a) and
GaTa4Se8 (b) at different pressures up to 28.5 GPa. The insets
show the drop of Rn at high pressures and low temperatures.
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Single crystals were prepared according to a procedure
described in Ref. [24]. The GaTa4Se8 pellet was obtained
in two steps. Elemental Se was put in a first silica container,
and Ga and Ta were put in a second one. Both containers
were introduced in a silica tube subsequently pumped
down to 2! 10"2 mbar and sealed. The whole is then
heated at 800 #C for 24 h with heating and cooling ramps
of 300 #C=h. As the resulting black powder consists of
GaTa4Se8 with TaSe2 impurities, a second similar heat
treatment was performed after pressing the powder into a
pellet, yielding a pure GaTa4Se8 phase according to usual
x-ray diffraction standards.

The ambient-P nearly normal incidence reflectivity
Rð!Þ was measured between 50 and 10 000 cm"1 on a
150! 150 !m2 GaTa4Se8 single crystal, and on a well
characterized high density pellet up to 52 000 cm"1. An
in situ evaporation technique was used to measure the
reference. The high-P study was performed using a dia-
mond anvil cell (DAC). The GaTa4Se8 single crystal was
loaded inside the gasket hole together with KBr as the
hydrostatic medium. Great care was taken to obtain a clean
sample-diamond interface where the reflectivity spectra,
Rsd, was measured from 400 cm"1 to 10 000 cm"1. The
measurement was performed at the high brightness infra-
red synchrotron radiation source SISSI@Elettra (Trieste)
[25]. Further details on the measurement procedures are
reported elsewhere [26].

The reflectivity spectra at the sample-diamond interface,
Rsdð!Þ, are shown in Fig. 1(a). Strong two-phonon dia-
mond absorption prevents the measurement of Rsd between
1750 cm"1 and 2700 cm"1. Note that the value of Rsdð!Þ
is very small (less than 10 percent), making a quantitative
analysis at high frequency a difficult task. In order to
evaluate the accuracy of the high-P measurements, the
Rsdð!Þ data were compared to the expected reflectivity at
a sample-diamond interface Rcal

sd ð!Þ, calculated from the
ambient-P Rð!Þ [26]. The calculated Rcal

sd ð!Þ is in good
agreement with the Rsdð!Þ measured in the DAC at the
lowest pressure (1.6 GPa). In order to reliably estimate the
pressure-dependent optical conductivity, the Rsdð!Þ
measured in the DAC were slightly renormalized by
a P-independent factor, according to the procedure
described in Ref. [27]. Note that this procedure changes
neither the shape nor the pressure dependence of the opti-
cal conductivities. On increasing the pressure, Rsdð!Þ is
progressively enhanced at low frequency.

The pressure-dependent optical conductivities "ð!Þ
shown in Fig. 1(b) are calculated from Rsdð!Þ by using
Kramers-Krönig constrained variational dielectric function
analysis [28]. Apart from phonon modes below 500 cm"1,
the ambient pressure optical conductivity consists of a
broad midinfrared band with a charge gap of the order of
0.12 eV, estimated by extrapolating the steeply increasing
part of "ð!Þ to zero [see the dashed line in Fig. 1(b)]. Such
a gap value is of the same order as the one deduced from

the activation energy measured in transport measurements
[24]. As pressure is increased, the optical conductivity
"ð!Þ is mainly enhanced below & 3000–4000 cm"1,
while the midinfrared band persists up to the highest
investigated pressure (10.7 GPa). Consequently, as shown
in Fig. 1(c), the spectral weight (SW) SW!

!0
ðPÞ ¼R

!
!0

"ð!;PÞd! increases with pressure and tends

to become pressure independent only above ! &
10 000 cm"1. Note that this energy is about 10 times larger
than the optical gap. Such a SW transfer over a large
energy scale under pressure is not expected for band insu-
lators, and is a usual fingerprint of strongly correlated
systems [29–33]. The analysis of the pressure-dependent
relative spectral weight "SWðPÞ reveals the existence of
two regimes. Indeed, as shown in Fig. 1(d), the low energy

FIG. 1 (color online). (a) Renormalized Rsdð!Þ reflectivity at
the sample-diamond interface from 1.6 GPa (lowest) to 10.7 GPa
(highest curve), compared to Rcal

sd ð!Þ (see text). (b) Pressure-
dependent optical conductivity "ð!Þ from 1.6 GPa (lowest) to
10.7 GPa (highest curve). The dashed area corresponds to
ambient pressure optical conductivity. (c) Spectral weight
SW!

!0
ðPÞ ¼ R

!
!0

"ð!;PÞd!, integrated between !0 ¼
400 cm"1 and ! for various pressures from 0 GPa (lowest) to
10.7 GPa (highest curve). (d) Relative spectral weight
SW

!2
!1

ðPÞ"SW
!2
!1

ð0Þ
SW

!2
!1

ð0Þ
as a function of pressure, integrated at low

energy (!1,!2 ¼ 400, 1000 cm"1) and high energy (!1,!2 ¼
2700, 10 000 cm"1). Solid lines are a guide for the eye.
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GaNbS 10GPa Mott to 
superconductor Tc = 2.1K

noncentrosymm
etric  

superconductor

GaTaSe 11.5GPa Mott to 
superconductor Tc=5.8K

noncentrosymm
etric  

superconductor

GaNbSe 13GPa Mott to 
superconductor Tc= 2.9K

noncentrosymm
etric  

superconductor
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Some magnetism

GaV4S8 
7e in the cluster M=1.7 FM at Tc=10K

GeV4S8 
8e in the cluster M=2.8 AFM at Tc=13K, 

q=[1/2,1/2,0]
might be some 
charge order?

GaNb4S8 
s=1/2 cluster

-298K Curie-
Weiss 

spin singlet state 
with spin gap 

200K

structural and 
magnetic xtion 

at 31K
GaMo4S8

structural xtion 
at 46.5K, 

weakly FM 
below 13K

GaNb4Se8 M=1.73 weak soc

GaTa4Se8 M=0.7 strong sox

GaMo4Se8 FM below 26.7K

Gang Chen’s theory group 

Gang Chen’s theory group



Basic features of these materials: 

• Structure: 3D pyrochlore lattice, break inversion,  
chemical doping can do something; 

• charge transport: mostly Mott insulator, can become  
metal or superconductor under high pressure,  
electrons are localized to the cluster not to lattice sites; 

• magnetism: not very clear. Very limited experiments  
suggests some ordering in some material.  
Current “theory” assumes molecular/cluster orbitals  
and spins, spin-orbit coupling seems to be important  
in some compounds
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Pyrochlore lattice Hubbard model

H = �
X

hiji

t(c†i�cj� + h.c.) + V
X

hiji

ninj +
U

2

X

i

(ni �
1

2
)2 � µ

X

i

ni

• 1/2 filling: 1 electron per site 

• 1/4 filling: 2 electron per tetrahedron 

• 1/8 filling: 1 electron per tetrahedron
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site mott insulator vs cluster mott insulator

For 1/2 filling, electron becomes localized on the lattice 
site in the strong Mott insulator. At weak Mott regime,  
maybe interpreted as “metallic in short distance 
and insulator in long distance”. 

For 1/4 filling, electron becomes localized on the tetrahedral 
cluster in the strong Mott insulator.  There are two electrons 
per cluster. Since there are empty sites, electron can do  
some collective motion. 

Similar for 1/8 filling, there is only 1 electron  
in each cluster 
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Metal-insulator transition

c†i� = ei✓if†
i� rotor takes care of the bosonic charge 

fermion takes care of the spin 

One may justify/understand this from many body wavefuction

 c(r1, r2, · · · ) =  ✓(r1, r2, · · · )⇥ f (r1, r2, · · · )

For 1/2 filling, 

metal: superfluid wavefct for rotor

insulator: boson mott insulator wavefct for rotor

in terms of operator,
h✓i 6= 0 or h✓i = 0

with a constraint

2

ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz

i = (
P

� f
†
i�fi�) � 1

2

,
where [✓i, Lz

j ] = i�ij .

Via a decoupling of the electron tunneling term, the
cluster Hubbard model is reduced to two Hamiltonians
H

S

and H
C

for the spin and charge sectors, respectively,

H
S

= �
X
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†
i�fj� + h.c.)�

X

i,�

(µ+ hi)f
†
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H
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= �
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z
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+3V
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i +

X

i

hi(L
z
i +
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2
) +
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2

X

i

(Lz
i )

2. (2)

Here, te↵ij = thei✓i�i✓j i, Je↵

ij = t
P

�hf
†
i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H

C

and H
S

are
invariant under the U(1) gauge transformation f†

i� !
f†
i�e

�i�i , ✓i ! ✓i + �i and te↵ij ! te↵ij e
i(�i��j), Je↵

ij !
Je↵

ij e
�i(�i��j).

In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.

to the interaction,
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where J
ring

= 24(Jeff
)

3

V 2 is the ring charge tunneling around
a hexagon plaquette (see Fig. 1). This low-energy e↵ec-
tive model is identical to the one obtained in the con-
text of quantum spin ice[? ] and the 1

2

-magnetization
plateau of the XXZ model[? ] on pyrochlore lattice ex-
cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
over, the original charge-qe bosonic rotor fractionalizes
into two fractionally-charged bosons (�r) that carry half
the electron charge. As shown in Table. I, these two
fractionally charged bosons also carry the U(1)

sc

gauge
charge Qsc

i =
P

� f
†
i�fi� � Lz

i as well as the U(1)
c

gauge
charge Qc

r = ⌘r(
P

µ L
z
r,r+⌘reµ

) + ⌘r. Here, ⌘r = +1(�1)
for r on the I (II) sublattice of the dual diamond lattice
and eµ are the four nearest-neighbor vector from the I
sublattice sites. The charge- qe

2

bosons are fully gapped in
the Mott insulator. As the electron hopping t increases,
the gap of the charge bosons diminishes, and eventually
the charge gap close and charge bosons condense. The
condensation of charge- qe

2

bosons higgs out the two inter-
nal gauge fields (U(1)

c

and U(1)
sc

) simutanesouly, and
drives a phase transition from the Mott insulator to the
Fermi liquid metal.
To manifest the U(1) gauge structure of the charge sec-

tor, we implement the gauge mean-field approach that
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For 1/4 filling, one needs a different boson wavefct
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With slave rotor decoupling

c†i�cj� ⇠ hei(✓i�✓j)if†
i�fj� + ei(✓i�✓j)hf†

i�fj�i

then we have two Hamiltonian for spin and charge,  
respectively,

2

ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz

i = (
P
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,
where [✓i, Lz

j ] = i�ij .

Via a decoupling of the electron tunneling term, the
cluster Hubbard model is reduced to two Hamiltonians
H

S

and H
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for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i, Je↵
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i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H
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and H
S

are
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In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.
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V 2 is the ring charge tunneling around
a hexagon plaquette (see Fig. 1). This low-energy e↵ec-
tive model is identical to the one obtained in the con-
text of quantum spin ice[? ] and the 1

2

-magnetization
plateau of the XXZ model[? ] on pyrochlore lattice ex-
cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
over, the original charge-qe bosonic rotor fractionalizes
into two fractionally-charged bosons (�r) that carry half
the electron charge. As shown in Table. I, these two
fractionally charged bosons also carry the U(1)
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gauge
charge Qsc

i =
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i as well as the U(1)
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for r on the I (II) sublattice of the dual diamond lattice
and eµ are the four nearest-neighbor vector from the I
sublattice sites. The charge- qe
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bosons are fully gapped in
the Mott insulator. As the electron hopping t increases,
the gap of the charge bosons diminishes, and eventually
the charge gap close and charge bosons condense. The
condensation of charge- qe
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bosons higgs out the two inter-
nal gauge fields (U(1)

c

and U(1)
sc

) simutanesouly, and
drives a phase transition from the Mott insulator to the
Fermi liquid metal.
To manifest the U(1) gauge structure of the charge sec-

tor, we implement the gauge mean-field approach that
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ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz
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Via a decoupling of the electron tunneling term, the
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ij = t
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�hf
†
i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H

C

and H
S

are
invariant under the U(1) gauge transformation f†
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In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.
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form a spinon Fermi surface. The situation here is some-
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cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
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Operator Qem Qsc Qc

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 I qe/2 �1/2 1

�†
r, r 2 II �qe/2 1/2 1

TABLE I. The di↵erent gauge charges carried by di↵erent op-
erators. Qem, Qsc and Qc refer to the gauge charge for the
external electromagnetic field, the U(1)sc gauge field (that is
responsible for spin charge separation) and the U(1)c gauge
field (that is responsible for charge fractionalization), respec-
tively. qe is the charge of the electron.

was recently developed to study the Higgs’ transition of
quantum spin ices.[? ] We enlarge the Hilbert space by
the mapping ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 , where r, r0 label

the dual diamond lattice sites such that r (r0) belongs
to the I (II) sublattice and pyrochlore lattice site i is
also the link (rr0) on the dual diamond lattice. Here,
lzrr0 and l+rr0 ⌘ �rr0e

iArr0 are the U(1)c gauge fields on
the links of the dual diamond lattice. To constrain the
enlarged Hilbert space, we make the following identifica-
tion, [�r, Q
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where we have dropped the residual Zeeman coupling
because of the particle-hole symmetry at the transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

c

gauge field on the dual diamond lattice.
Within the gauge mean-field approximation, the Mott

transition occurs at (J
eff

V )c ⇡ 0.192 where the charge
bosons develop an energy gap. Together with the self-
consistent mean-field theory for H

S

, we obtain a con-
tinous Mott transition at ( t

V )c ⇡ 0.511 at the level of
mean-field.

In the Mott insulating phase, the electron fraction-
alizes into two charge-qe/2 bosons and one fermionic
spinon (see Fig. 1), i.e. c†i� = �†
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i�. There-
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function Ge,↵�(i, j; ⌧) = �hTci↵(⌧)c

†
j�(0)i = �2G

I

(ri �
rj , ⌧)G

II

(r0j � r0i,�⌧)Gf,↵�(i, j; ⌧), where � ⌘ �ij for a
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and the sites i and j correspond to the links (rir0i) and
(rjr0j), respectively. GI

, G
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and Gf are the Green’s func-
tions of charge bosons on I, II sublattices and spinons, re-
spectively. Unlike the existence of Landau quasiparticle
peak in the Fermi liquid metal for U < Uc, we find the

electron spectral function for U � Uc is given by convo-
luting the bosonic (A
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) and fermionic (Af ) spectral
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where n and f are the Bose and Fermi distribution
function, respectively. Due to the electron fractional-
ization, there is a strong suppression of spectral weight
at the Mott transition which is manifested in the low
frequency dependence of the single-particle tunneling
density N crit

tunn

(!) ⇠ !4 instead of !2 for the case in
Ref.[XXX] at the critical point. For the Mott insu-
lating phase at V > Vc, the tunneling density is fur-
ther suppressed by the presence of the charge boson gap
m ⇠ (V �Vc)

1
2 and is characterized by an Arrhenius type

of temperature dependence with an activation gap that
is twice of the single charge boson gap.
Crossovers in the vincinity of Mott transition. To go

beyond mean-field theory, we include gauge fluctuations
into the mean-field description of the Mott transition.
After coarse-graining, we obtain the low-energy e↵ective
field theory that is described by the minimal couplings
of the fractionally charged bosons and fermionic spinons
with the dynamical U(1)

sc

and U(1)
c

gauge fields. The
e↵ective action of the low-energy theory in the vincinity

of the Mott transition is written as S =
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we need 2 internal U(1) gauge fields, 
one for spin-charge separation 
one for charge fractionalization 3
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(@µA⌫ � @⌫Aµ)

2, La =
1

4g2a
(@µa⌫ � @⌫aµ)

2

Lf� = �| �|2(|�I

|2 + |�
II

|2).

Here, �
I

(�
II

) is the fractionally charged bosonic field
of the I (II) sublattice of the dual diamond lattice,  �

is the fermionic spinon field, and aµ (Aµ) is the U(1)
sc

(U(1)
c

) gauge field for the spin-charge separation (charge
fractionalization).
First we consider the renormalized Lagrangian for the

U(1)
sc

gauge field aµ by integrating out the matter fields.
Under the Coulomb gauge r · a = 0, the temporal com-
ponent a

0

is screened by the gapless spinons, while the
unscreened transverse component a is strongly renor-
malized and its inverse proprogator is renormalized to
D�1(q, i⌫n) = ⇧f (q, i⌫n)+⇧I

(q, i⌫n)+⇧II

(q, i⌫n) under
a random-phase approximation. Here ⇧f , ⇧I

and ⇧
II

are
fermion and boson polarization functions, respectively.

c†1c2c
†
3

c†1

measure change with respect to the parent 
state

c†1c2c
†
3c4c

†
5

c†1c2c
†
3c4c

†
5c6c

†
7

c†1c2c
†
3c4c

†
5c6c

†
7c8c

†
9

· · · · · ·
introduce one charge to the system, but  

shared by two tetrahedra on its ends
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Mott transition

in terms of wavefct,  c =  �,I �,II f

metal: superfluid wavefct for two bosons 
mott insulator: bosonic mott insulator for two bosons

here, we assume inversion symmetry, so two bosons behave the “same”.

in terms of operator, h�i 6= 0metal: 
insulator: h�i = 0
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Ge,↵�(i, j; ⌧) = �hTci↵(⌧)c
†
j�(0)i = �2GI (ri � rj , ⌧)GII(r

0
j � r0i,�⌧)Gf,↵�(i, j; ⌧)

Electron Green’s function

Electron spectral function

3

Operator Qem Qsc Qc

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 I qe/2 �1/2 1

�†
r, r 2 II �qe/2 1/2 1

TABLE I. The di↵erent gauge charges carried by di↵erent op-
erators. Qem, Qsc and Qc refer to the gauge charge for the
external electromagnetic field, the U(1)sc gauge field (that is
responsible for spin charge separation) and the U(1)c gauge
field (that is responsible for charge fractionalization), respec-
tively. qe is the charge of the electron.

was recently developed to study the Higgs’ transition of
quantum spin ices.[? ] We enlarge the Hilbert space by
the mapping ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 , where r, r0 label

the dual diamond lattice sites such that r (r0) belongs
to the I (II) sublattice and pyrochlore lattice site i is
also the link (rr0) on the dual diamond lattice. Here,
lzrr0 and l+rr0 ⌘ �rr0e

iArr0 are the U(1)c gauge fields on
the links of the dual diamond lattice. To constrain the
enlarged Hilbert space, we make the following identifica-
tion, [�r, Q

c

r] = �r and [�†
r, Q

c

r] = ��†
r. With the above

mapping, the charge sector Hamiltonian is transformed
into

H
C

= �Je↵

X

r,µ 6=⌫

�†
r+⌘reµ

�r+⌘re⌫
l�⌘r
r,r+⌘reµ

l+⌘r
r,r+⌘re⌫

+
V

2

X

r

(Qc

r)
2, (4)

where we have dropped the residual Zeeman coupling
because of the particle-hole symmetry at the transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

c

gauge field on the dual diamond lattice.
Within the gauge mean-field approximation, the Mott

transition occurs at (J
eff

V )c ⇡ 0.192 where the charge
bosons develop an energy gap. Together with the self-
consistent mean-field theory for H

S

, we obtain a con-
tinous Mott transition at ( t

V )c ⇡ 0.511 at the level of
mean-field.

In the Mott insulating phase, the electron fraction-
alizes into two charge-qe/2 bosons and one fermionic
spinon (see Fig. 1), i.e. c†i� = �†

r�r0 l
+

rr0f
†
i�. There-

fore, at mean field level we have for the electron Green’s
function Ge,↵�(i, j; ⌧) = �hTci↵(⌧)c

†
j�(0)i = �2G

I

(ri �
rj , ⌧)G

II

(r0j � r0i,�⌧)Gf,↵�(i, j; ⌧), where � ⌘ �ij for a
uniform gauge choice with a zero background gauge flux
and the sites i and j correspond to the links (rir0i) and
(rjr0j), respectively. GI

, G
II

and Gf are the Green’s func-
tions of charge bosons on I, II sublattices and spinons, re-
spectively. Unlike the existence of Landau quasiparticle
peak in the Fermi liquid metal for U < Uc, we find the

electron spectral function for U � Uc is given by convo-
luting the bosonic (A

I

, A
II

) and fermionic (Af ) spectral
functions

Ae(k,!) =
X

k1,k2

Z

E1,E2

f(E
1

)[n(E
1

+ E
2

� !)� n(E
2

)]

⇥ �2A
I

(k
2

, E
2

)A
II

(k
1

+ k
2

� k, E
1

+ E
2

� !)

⇥ Af (k1

, E
1

), (5)

where n and f are the Bose and Fermi distribution
function, respectively. Due to the electron fractional-
ization, there is a strong suppression of spectral weight
at the Mott transition which is manifested in the low
frequency dependence of the single-particle tunneling
density N crit

tunn

(!) ⇠ !4 instead of !2 for the case in
Ref.[XXX] at the critical point. For the Mott insu-
lating phase at V > Vc, the tunneling density is fur-
ther suppressed by the presence of the charge boson gap
m ⇠ (V �Vc)

1
2 and is characterized by an Arrhenius type

of temperature dependence with an activation gap that
is twice of the single charge boson gap.
Crossovers in the vincinity of Mott transition. To go

beyond mean-field theory, we include gauge fluctuations
into the mean-field description of the Mott transition.
After coarse-graining, we obtain the low-energy e↵ective
field theory that is described by the minimal couplings
of the fractionally charged bosons and fermionic spinons
with the dynamical U(1)

sc

and U(1)
c

gauge fields. The
e↵ective action of the low-energy theory in the vincinity

of the Mott transition is written as S =
R �
0

d⌧L, where
the Lagrangian L is given as

L = L
�

+ Lf + LA + La + Lbf (6)

L
�

=
��[@µ � i(Aµ � aµ

2
)]�

I

��2 +
��[@µ � i(Aµ +

aµ
2
)]�

II

��2

+ m2[|�
I

|2 + |�
II

|2] + u[|�
I

|4 + |�
II

|4] + v|�
I

|2|�
II

|2

Lf =  †
�(@⌧ � ia

0

� µf ) � +
1

2mf
|(r� ia) �|2

LA =
1

4g2A
(@µA⌫ � @⌫Aµ)

2, La =
1

4g2a
(@µa⌫ � @⌫aµ)

2

Lf� = �| �|2(|�I

|2 + |�
II

|2).

Here, �
I

(�
II

) is the fractionally charged bosonic field
of the I (II) sublattice of the dual diamond lattice,  �

is the fermionic spinon field, and aµ (Aµ) is the U(1)
sc

(U(1)
c

) gauge field for the spin-charge separation (charge
fractionalization).
First we consider the renormalized Lagrangian for the

U(1)
sc

gauge field aµ by integrating out the matter fields.
Under the Coulomb gauge r · a = 0, the temporal com-
ponent a

0

is screened by the gapless spinons, while the
unscreened transverse component a is strongly renor-
malized and its inverse proprogator is renormalized to
D�1(q, i⌫n) = ⇧f (q, i⌫n)+⇧I

(q, i⌫n)+⇧II

(q, i⌫n) under
a random-phase approximation. Here ⇧f , ⇧I

and ⇧
II

are
fermion and boson polarization functions, respectively.

1. activated behaviour in the mott phase: gap = 2* boson gap  

2. pseudogap-like at mott transition point, A(w) ~ w^4
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Beyond mean field theory, include gauge fluctuations 

3

Operator Qem Qsc Qc

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 I qe/2 �1/2 1

�†
r, r 2 II �qe/2 1/2 1

TABLE I. The di↵erent gauge charges carried by di↵erent op-
erators. Qem, Qsc and Qc refer to the gauge charge for the
external electromagnetic field, the U(1)sc gauge field (that is
responsible for spin charge separation) and the U(1)c gauge
field (that is responsible for charge fractionalization), respec-
tively. qe is the charge of the electron.

was recently developed to study the Higgs’ transition of
quantum spin ices.[? ] We enlarge the Hilbert space by
the mapping ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 , where r, r0 label

the dual diamond lattice sites such that r (r0) belongs
to the I (II) sublattice and pyrochlore lattice site i is
also the link (rr0) on the dual diamond lattice. Here,
lzrr0 and l+rr0 ⌘ �rr0e

iArr0 are the U(1)c gauge fields on
the links of the dual diamond lattice. To constrain the
enlarged Hilbert space, we make the following identifica-
tion, [�r, Q

c

r] = �r and [�†
r, Q

c

r] = ��†
r. With the above

mapping, the charge sector Hamiltonian is transformed
into

H
C

= �Je↵

X

r,µ 6=⌫

�†
r+⌘reµ

�r+⌘re⌫
l�⌘r
r,r+⌘reµ

l+⌘r
r,r+⌘re⌫

+
V

2

X

r

(Qc

r)
2, (4)

where we have dropped the residual Zeeman coupling
because of the particle-hole symmetry at the transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

c

gauge field on the dual diamond lattice.
Within the gauge mean-field approximation, the Mott

transition occurs at (J
eff

V )c ⇡ 0.192 where the charge
bosons develop an energy gap. Together with the self-
consistent mean-field theory for H

S

, we obtain a con-
tinous Mott transition at ( t

V )c ⇡ 0.511 at the level of
mean-field.

In the Mott insulating phase, the electron fraction-
alizes into two charge-qe/2 bosons and one fermionic
spinon (see Fig. 1), i.e. c†i� = �†

r�r0 l
+

rr0f
†
i�. There-

fore, at mean field level we have for the electron Green’s
function Ge,↵�(i, j; ⌧) = �hTci↵(⌧)c

†
j�(0)i = �2G

I

(ri �
rj , ⌧)G

II

(r0j � r0i,�⌧)Gf,↵�(i, j; ⌧), where � ⌘ �ij for a
uniform gauge choice with a zero background gauge flux
and the sites i and j correspond to the links (rir0i) and
(rjr0j), respectively. GI

, G
II

and Gf are the Green’s func-
tions of charge bosons on I, II sublattices and spinons, re-
spectively. Unlike the existence of Landau quasiparticle
peak in the Fermi liquid metal for U < Uc, we find the

electron spectral function for U � Uc is given by convo-
luting the bosonic (A

I

, A
II

) and fermionic (Af ) spectral
functions

Ae(k,!) =
X

k1,k2

Z

E1,E2

f(E
1

)[n(E
1

+ E
2

� !)� n(E
2

)]

⇥ �2A
I

(k
2

, E
2

)A
II

(k
1

+ k
2

� k, E
1

+ E
2

� !)

⇥ Af (k1

, E
1

), (5)

where n and f are the Bose and Fermi distribution
function, respectively. Due to the electron fractional-
ization, there is a strong suppression of spectral weight
at the Mott transition which is manifested in the low
frequency dependence of the single-particle tunneling
density N crit

tunn

(!) ⇠ !4 instead of !2 for the case in
Ref.[XXX] at the critical point. For the Mott insu-
lating phase at V > Vc, the tunneling density is fur-
ther suppressed by the presence of the charge boson gap
m ⇠ (V �Vc)

1
2 and is characterized by an Arrhenius type

of temperature dependence with an activation gap that
is twice of the single charge boson gap.
Crossovers in the vincinity of Mott transition. To go

beyond mean-field theory, we include gauge fluctuations
into the mean-field description of the Mott transition.
After coarse-graining, we obtain the low-energy e↵ective
field theory that is described by the minimal couplings
of the fractionally charged bosons and fermionic spinons
with the dynamical U(1)

sc

and U(1)
c

gauge fields. The
e↵ective action of the low-energy theory in the vincinity

of the Mott transition is written as S =
R �
0

d⌧L, where
the Lagrangian L is given as

L = L
�

+ Lf + LA + La + Lbf (6)

L
�

=
��[@µ � i(Aµ � aµ

2
)]�

I

��2 +
��[@µ � i(Aµ +

aµ
2
)]�

II

��2

+ m2[|�
I

|2 + |�
II

|2] + u[|�
I

|4 + |�
II

|4] + v|�
I

|2|�
II

|2

Lf =  †
�(@⌧ � ia

0

� µf ) � +
1

2mf
|(r� ia) �|2

LA =
1

4g2A
(@µA⌫ � @⌫Aµ)

2, La =
1

4g2a
(@µa⌫ � @⌫aµ)

2

Lf� = �| �|2(|�I

|2 + |�
II

|2).

Here, �
I

(�
II

) is the fractionally charged bosonic field
of the I (II) sublattice of the dual diamond lattice,  �

is the fermionic spinon field, and aµ (Aµ) is the U(1)
sc

(U(1)
c

) gauge field for the spin-charge separation (charge
fractionalization).
First we consider the renormalized Lagrangian for the

U(1)
sc

gauge field aµ by integrating out the matter fields.
Under the Coulomb gauge r · a = 0, the temporal com-
ponent a

0

is screened by the gapless spinons, while the
unscreened transverse component a is strongly renor-
malized and its inverse proprogator is renormalized to
D�1(q, i⌫n) = ⇧f (q, i⌫n)+⇧I

(q, i⌫n)+⇧II

(q, i⌫n) under
a random-phase approximation. Here ⇧f , ⇧I

and ⇧
II

are
fermion and boson polarization functions, respectively.
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FIG. 2. The finite temperature crossover in the vincinty of
the weakly first-order Mott transition.

It has been shown that the Landau damping term
|!|
q |a(q,!)|2, which originates from the fermionic polar-
ization function ⇧f , scales in the same way as a Higgs
mass term under the dynamical scaling of the bosonic
charge sector with dynamically exponent zc = 1 and thus
quenches the U(1)

sc

gauge fluctuations in low-energy sec-
tor of the bosonic charges. For the bosonic sector at low
energies, the fractionally-charged bosons are then mim-
inally coupled to the dynamical U(1)

c

gauge field Aµ.
It is well-known that, the U(1)

c

gauge fluctuation drives
the Mott transition from a continuous one to a weakly
first-order one. For a rather large temperature regime ex-
cept at an extremely low temperature, however, the low
energy physics would still be controlled by a continuous
XY transition with zc = 1 from the previous mean-field
analysis. Therefore, in the vincinity of the Mott transi-
tion, the system is governed togetherly by a boson-U(1)

c

gauge theory with a dynamical exponent zc = 1 in the
charge sector and a spinon-U(1)

sc

gauge theory with a
dynamical exponent zs = 3 in the spin sector.

The spin (charge) sector enters its quantum critical
regime at a crossover temperature scale T s ⇠ |V � Vc|

3
2

(T c ⇠ |V � Vc|
1
2 ). These crossovers should be mani-

fest, for example, in the thermodynamic or transport
properties. We expect the spin crossover scale T s is
visible in the heat capacity that behaves as Cv ⇡ �

1

T
(�

2

T ln 1

T ) on the metallic (insulating) side for T <⇠ T s

and Cv ⇠ T ln ln 1

T for T >⇠ T s. Here �
1

⇠ ln ln 1

Vc�V

and �
2

⇠ ln 1

V�Vc
. The charge crossover scale T c can

be detected from the electric resistivity measurement.
The charge fractionalization leads to a modified Io↵e-
Larkin composition rule with the current-current corre-
lation ⇧�1 = ⇧�1

f +(⇧
I

+⇧
II

)�1. Hence, the electric re-

sistivity of the system is given by ⇢ = ⇢f +(⇢�1

I

+⇢�1

II

)�1

and hence is dominated by the contribution of the charge
bosons.[? ] The conductivity on the Mott side has an
Arrhenius activated form with the gap given by the sin-
gle charge boson excitation for T < T c. For T > T c,
⇢
I

= ⇢
II

⇠ 1

T and leads to an insulating quantum critical
regime.

In the metallic phase V < Vc, the charge boson is con-

densed and then ⇧
I

= ⇧
II

⇡ ⇢s [need a scaling form]
where is P is a scaling function and ⇢s ⇠ |Vc � V | near
the transition. With the renormalized gauge field propa-
gator, one can then compute the spinon self-energy near
the spinon Fermi surface and obtain ⌃f ⇠ ! ln ln 1

⇢s
.

As previously discussed, the electron Green’s function
is now given as Ge = �2|h�

I

i|2|h�
II

i|2Gf = Ze
!�✏⇤

k
+i0 ,

where the renormalized dispersion ✏⇤k ⇠ ✏k
ln ln 1/⇢s

and the

quasiparticle weight Ze ⇠ ⇢2
s

ln ln 1/⇢s
. Therefore, as one

approaches the Mott transition from the Fermi liquid
metal, the electron e↵ective mass m⇤

e/me ⇠ ln ln 1

Vc�V

and Ze ⇠ (Vc�V )

2

ln ln 1/(Vc�V )

.

The strong Mott regime. In the strong Mott regime,
the electrons on neighboring tetrahedral are always sepa-
rated by one unoccupied site. The superexchange spin in-
teraction is naively obtained by a 4th order perturbation
with the coupling J

ex

⇠ t4

(U+V )V 2 . A qualitatilvely di↵er-
ent but more dominant spin interaction occurs through
the ring hopping of the three electrons on the hexagon
(see Fig. 1) and is given as

H
e↵

= �3t3

V 2

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.). (7)

We emphasize that, Eq.7 cannot be casted into the usual
form of spin exchange, which is one important di↵er-
ence between cluster magnets and conventional magnets.
Moreover, Eq.7 transfers both spin and charge around
the elementary hexagon. This is easily seen by the slave-
rotor formalism and decoupling the fermionic spinon and
bosonic charge rotor. From the same reasoning as dis-
cussed previously, we still expect a U(1) quantum charge
liquid ground state. For the spin sector, the quantum
spin liquid with spinon Fermi surface from the weak Mott
regime is likely to survive in the strong Mott regime.
The usual mechanism for magnetic ordering in conven-
tional magnets is that, the spin moment can be consid-
ered as being coupled to a mean magnetic field provided
by the neighboring spins and if this mean field does not
have strong quantum fluctuations the spin tends to align
with this field and develop magnetic order. For cluster
magnets, the spin interaction does not have the usual
exchange-like form and such a mean magnetic field can-
not be defined, and hence the spins are likely to be disor-
dered and form a quantum spin liquid ground state. This
suggests that cluster magnets are more likely to stabilize
a quantum spin liquid than the conventional magnets.
At finite temperatures, generic arguments have sug-

gested the absence of finite temperature phase transi-
tions. A crossover is expected to occur at T ⇠ t3

V 2

where the system loses its quantum coherence. For
t3

V 2
<⇠ T <⇠ V , the nearest-neighbor repulsion demand

a single electron occupation on each tetrahedron, leading

C-R-QSL
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Crossover in heat capacity and electric conductivity

heat capacity crossover signals the zs=3 dynamical exponent 

electric resistivity signals the zc=1 dynamical exponent and 

⇢c = ⇢f + (⇢�1
I + ⇢�1

II )
�1

spin sector dominates the thermodynamics

note: the resistivity gap in the mott regime is single boson gap.

In this limit, all diagrams can be summed exactly to

yield a renormalized bosonic interaction u!1
renðq;!Þ ¼

~u!1ðq;!Þ þ lnð!=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ q2 þm2

p
Þ. Near the QCP, the

second term dominates, and uren ! 0. Hence, L0 is (dan-
gerously) marginally irrelevant.

Now we reinstate the gauge field and first consider its
renormalization from integrating out the matter fields. We
work in the Coulomb gauge r & a ¼ 0, in which a0 and a
decouple in Lg. Then the longitudinal field a0 is screened
by the gapless fermions and can thus be ignored. On the
other hand, the transverse part of a remains unscreened,
but it is strongly renormalized by the matter fields, whose
contribution dominates over the bare gauge field action. In
the random phase approximation, the renormalized inverse
transverse gauge field propagator is D!1ðq; i!nÞ ¼
"fðq; i!nÞ þ"bðq; i!nÞ, where "f and "b are fermion
and boson polarization functions, respectively.

The fermionic contribution, shown in Fig. 2(a), is"f ¼
"0

j!nj
q þ #0q

2. The term proportional to "0 describes the

Landau damping due to the gapless spinons, and #0 is the
diamagnetic susceptibility of the spinons. This form can be
further justified in the large Nf limit, where Nf is the
number of flavors of the fermions. The corrections appear-
ing in a 1=Nf expansion do not change this form [13]. The
bosonic contribution shown in Fig. 2(b) for m2 ' 0 (or

U ' Uc) is "b ¼ q2

24$2 ln
m0

ðq2þm2Þ1=2 , where m0 is a nonun-

iversal constant, leading to "b ¼ q2

24$2 ln
m0

q at the critical

point U ¼ Uc and "b ( q2

24$2 ln
m0

m for U >Uc. On the

other hand, when m2 < 0 or U <Uc, "b ( %s, where
%s / jh&ij2 is the ‘‘superfluid stiffness’’ of the bosons.
Thus the bosons determine the different forms of the gauge
field propagator in various regimes.

It is readily seen that the boson self-energy #bðq; !Þ,
given by Fig. 2(d), acquires only analytic corrections in q
and !, and thus the bosons are not renormalized in an
essential way by the gauge fluctuations. The boson sector is
thus not affected by the gauge fluctuations in the scaling
limit near the QCP [11].

The fermion self-energy #f shown in Fig. 2(c) can be
computed by using the gauge field propagators obtained
above. Near the spinon Fermi surface jkj ( kf, this leads

to #f )! lnln1=j!jþ i $2
j!j

ln1=j!j at the QCP U ¼ Uc and

#f )! ln1=j!jþ i $2 j!j in the spin liquid for U >Uc.
Finally, recall that the electron operator is decomposed

into a boson and a fermion locally (in space and time) as
cy'ðr; (Þ ¼ &ðr; (Þc y

'ðr; (Þ. This leads to an electron
Green’s function that is a convolution (in momentum and
frequency) of the & and c ' Green’s functions. Vertex
corrections to this result, arising from interactions with
the gauge field, are unimportant at low frequencies [11].
In the metallic phase, we thus get the electron Green’s
function Ge ¼ jh&ij2Gf ¼ Ze

!!)*pþi* , with )*p ) )p
lnln1=%s

and

Ze ) %s

lnln1=%s
. By using %s / ðUc !UÞ ln 1

Uc!U , the effec-

tive mass of the electrons m*
e=me ) lnln1=ðUc !UÞ di-

verges very weakly. The quasiparticle weight

Ze )
ðUc!UÞ ln 1

Uc!U

lnln1=ðUc!UÞ diminishes as one approaches the QCP.

Scaling, finite temperature phase diagram, and specific
heat.—The finite T crossovers involve multiple energy
scales originating in the different space-time scaling of
the gauge field and the bosons. Note that the mean-field
transition of bosons at finite temperature, below which
%s ! 0, becomes a crossover in the full theory and repre-
sents the onset of the charge coherence.
The behavior of the charge excitations is governed by

T )!) q scaling (z ¼ 1 theory). In either phase, for T *
T* ) jU!Ucj1=2, the charge bosons are in their quantum
critical regime. In the insulator, T* may be identified with
the zero temperature charge gap.
The scaling behavior of the coupled spinon-gauge sys-

tem is, however, determined by T )!) q3 scaling (z ¼ 3
theory) up to logarithmic corrections (in principle, one
should use !) q3 ln1=q scaling). The spinon-gauge sys-
tem thus emerges out of the quantum critical regime only at
a scale T** ) jU!Ucj3=2. This crossover scale is, in
principle, visible in the specific heat which behaves as

C (

8
><
>:

T lnln1=T T > jU!Ucj3=2;
"1T ln1=T T < ðU!UcÞ3=2;
"2T T < ðUc !UÞ3=2;

(2)

where "1 / 1= ln 1
ðU!UcÞ and "2 ) lnln 1

ðUc!UÞ . Note, how-

ever, that there are only rather weak changes in properties
across this second crossover temperature T**.
The crossover scale T* is, on the other hand, visible in

the electrical conductivity which is readily measured in
experiments. It is obtained from the Ioffe-Larkin rule,
which states that, in a slave-particle formalism, the elec-
trical resistivity of the system is the sum of the resistivities
of the fermions and the bosons: % ¼ %f þ %b. For the
fermions, we assume that the conductivity is dominated
by elastic scattering from impurities: 'f ¼ 'f;0. The bo-
sonic conductivity, on the other hand, is strongly tempera-
ture- and pressure-dependent. In the Mott insulator, when
the bosons are gapped (T < T*), the bosonic conductivity
is activated, and 'bðTÞ ) e!T*=T . On the other hand, in the
metal, the bosons are condensed, and 'bðT ! 0Þ ! 1. In
the quantum critical regime, standard scaling arguments
give 'bðTÞ ) Tln2 1

T (the log corrections are due to the
marginally irrelevant boson-boson interactions). As this
goes to zero for small T, the boson contribution dominates
over the fermions due to the Ioffe-Larkin rule. Hence, the
QCP itself is insulating.
These results for the conductivity are summarized in

Figs. 1(b) and 1(c). Note that, in the metallic phase near
the QCP, ' is not monotonic with temperature. At high T,
the system is in the (insulating) quantum critical fan, and
conductivity decreases with decreasing T. Only at low T
does the system realize that it is inside the metal, and 'ðTÞ
begins to rise. Hence, it is possible for a system to be
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How about 1/8 filling?

With slave rotor, we obtain a xxz model for charge sector. 
The mott state (which is incompressible) corresponds to  
the 1/2 magnetization plateau of the xxz model. There is  
only one electron in each cluster, which turns into a Gauss 
law for the low energy physics. 

2

ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz

i = (
P

� f
†
i�fi�) � 1

2

,
where [✓i, Lz

j ] = i�ij .

Via a decoupling of the electron tunneling term, the
cluster Hubbard model is reduced to two Hamiltonians
H

S

and H
C

for the spin and charge sectors, respectively,

H
S

= �
X

hiji,�

te↵ij (f
†
i�fj� + h.c.)�

X

i,�

(µ+ hi)f
†
i�fi�(1)

H
C

= �
X

hiji

Je↵

ij (e
i✓i�i✓j + h.c.) + V

X

hiji

Lz
iL

z
j

+3V
X

i

Lz
i +

X

i

hi(L
z
i +

1

2
) +

U

2

X

i

(Lz
i )

2. (2)

Here, te↵ij = thei✓i�i✓j i, Je↵

ij = t
P

�hf
†
i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H

C

and H
S

are
invariant under the U(1) gauge transformation f†

i� !
f†
i�e

�i�i , ✓i ! ✓i + �i and te↵ij ! te↵ij e
i(�i��j), Je↵

ij !
Je↵

ij e
�i(�i��j).

In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.

to the interaction,

H
C,e↵ = �J

ring

X

hexagon

cos(✓
1

� ✓
2

+ ✓
3

� ✓
4

+ ✓
5

� ✓
6

)

+
U

2

X

i

(Lz
i )

2, (3)

where J
ring

= 24(Jeff
)

3

V 2 is the ring charge tunneling around
a hexagon plaquette (see Fig. 1). This low-energy e↵ec-
tive model is identical to the one obtained in the con-
text of quantum spin ice[? ] and the 1

2

-magnetization
plateau of the XXZ model[? ] on pyrochlore lattice ex-
cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
over, the original charge-qe bosonic rotor fractionalizes
into two fractionally-charged bosons (�r) that carry half
the electron charge. As shown in Table. I, these two
fractionally charged bosons also carry the U(1)

sc

gauge
charge Qsc

i =
P

� f
†
i�fi� � Lz

i as well as the U(1)
c

gauge
charge Qc

r = ⌘r(
P

µ L
z
r,r+⌘reµ

) + ⌘r. Here, ⌘r = +1(�1)
for r on the I (II) sublattice of the dual diamond lattice
and eµ are the four nearest-neighbor vector from the I
sublattice sites. The charge- qe

2

bosons are fully gapped in
the Mott insulator. As the electron hopping t increases,
the gap of the charge bosons diminishes, and eventually
the charge gap close and charge bosons condense. The
condensation of charge- qe

2

bosons higgs out the two inter-
nal gauge fields (U(1)

c

and U(1)
sc

) simutanesouly, and
drives a phase transition from the Mott insulator to the
Fermi liquid metal.
To manifest the U(1) gauge structure of the charge sec-

tor, we implement the gauge mean-field approach that

Like quantum spin ice state, the  
low energy theory is also the  
U(1) compact QED.

Gang Chen’s theory group 

Gang Chen’s theory group

bose hubbard model at n=1,2,3,4,5, fixed density, there is emergent particle-hole 
symmetry and xy transition as one tune U/t. 


here, we stay on the 1/2 magnetization plateau or fix the density/filling of the boson 
and tune the interaction. 


we measure the charge of “quasiparticle” respect to the original state. 



Strong Mott regime: spin becomes important

For 1/4 filling, the spin interaction appears in 2nd order

J
ex

⇠ t2

U + V

4

FIG. 2. The finite temperature crossover in the vincinty of
the weakly first-order Mott transition.

It has been shown that the Landau damping term
|!|
q |a(q,!)|2, which originates from the fermionic polar-
ization function ⇧f , scales in the same way as a Higgs
mass term under the dynamical scaling of the bosonic
charge sector with dynamically exponent zc = 1 and thus
quenches the U(1)

sc

gauge fluctuations in low-energy sec-
tor of the bosonic charges. For the bosonic sector at low
energies, the fractionally-charged bosons are then mim-
inally coupled to the dynamical U(1)

c

gauge field Aµ.
It is well-known that, the U(1)

c

gauge fluctuation drives
the Mott transition from a continuous one to a weakly
first-order one. For a rather large temperature regime ex-
cept at an extremely low temperature, however, the low
energy physics would still be controlled by a continuous
XY transition with zc = 1 from the previous mean-field
analysis. Therefore, in the vincinity of the Mott transi-
tion, the system is governed togetherly by a boson-U(1)

c

gauge theory with a dynamical exponent zc = 1 in the
charge sector and a spinon-U(1)

sc

gauge theory with a
dynamical exponent zs = 3 in the spin sector.

The spin (charge) sector enters its quantum critical
regime at a crossover temperature scale T s ⇠ |V � Vc|

3
2

(T c ⇠ |V � Vc|
1
2 ). These crossovers should be mani-

fest, for example, in the thermodynamic or transport
properties. We expect the spin crossover scale T s is
visible in the heat capacity that behaves as Cv ⇡ �

1

T
(�

2

T ln 1

T ) on the metallic (insulating) side for T <⇠ T s

and Cv ⇠ T ln ln 1

T for T >⇠ T s. Here �
1

⇠ ln ln 1

Vc�V

and �
2

⇠ ln 1

V�Vc
. The charge crossover scale T c can

be detected from the electric resistivity measurement.
The charge fractionalization leads to a modified Io↵e-
Larkin composition rule with the current-current corre-
lation ⇧�1 = ⇧�1

f +(⇧
I

+⇧
II

)�1. Hence, the electric re-

sistivity of the system is given by ⇢ = ⇢f +(⇢�1

I

+⇢�1

II

)�1

and hence is dominated by the contribution of the charge
bosons.[? ] The conductivity on the Mott side has an
Arrhenius activated form with the gap given by the sin-
gle charge boson excitation for T < T c. For T > T c,
⇢
I

= ⇢
II

⇠ 1

T and leads to an insulating quantum critical
regime.

In the metallic phase V < Vc, the charge boson is con-

densed and then ⇧
I

= ⇧
II

⇡ ⇢s [need a scaling form]
where is P is a scaling function and ⇢s ⇠ |Vc � V | near
the transition. With the renormalized gauge field propa-
gator, one can then compute the spinon self-energy near
the spinon Fermi surface and obtain ⌃f ⇠ ! ln ln 1

⇢s
.

As previously discussed, the electron Green’s function
is now given as Ge = �2|h�

I

i|2|h�
II

i|2Gf = Ze
!�✏⇤

k
+i0 ,

where the renormalized dispersion ✏⇤k ⇠ ✏k
ln ln 1/⇢s

and the

quasiparticle weight Ze ⇠ ⇢2
s

ln ln 1/⇢s
. Therefore, as one

approaches the Mott transition from the Fermi liquid
metal, the electron e↵ective mass m⇤

e/me ⇠ ln ln 1

Vc�V

and Ze ⇠ (Vc�V )

2

ln ln 1/(Vc�V )

.

The strong Mott regime. In the strong Mott regime,
the electrons on neighboring tetrahedral are always sepa-
rated by one unoccupied site. The superexchange spin in-
teraction is naively obtained by a 4th order perturbation
with the coupling J

ex

⇠ t4

(U+V )V 2 . A qualitatilvely di↵er-
ent but more dominant spin interaction occurs through
the ring hopping of the three electrons on the hexagon
(see Fig. 1) and is given as

H
e↵

= �3t3

V 2

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.). (7)

We emphasize that, Eq.7 cannot be casted into the usual
form of spin exchange, which is one important di↵er-
ence between cluster magnets and conventional magnets.
Moreover, Eq.7 transfers both spin and charge around
the elementary hexagon. This is easily seen by the slave-
rotor formalism and decoupling the fermionic spinon and
bosonic charge rotor. From the same reasoning as dis-
cussed previously, we still expect a U(1) quantum charge
liquid ground state. For the spin sector, the quantum
spin liquid with spinon Fermi surface from the weak Mott
regime is likely to survive in the strong Mott regime.
The usual mechanism for magnetic ordering in conven-
tional magnets is that, the spin moment can be consid-
ered as being coupled to a mean magnetic field provided
by the neighboring spins and if this mean field does not
have strong quantum fluctuations the spin tends to align
with this field and develop magnetic order. For cluster
magnets, the spin interaction does not have the usual
exchange-like form and such a mean magnetic field can-
not be defined, and hence the spins are likely to be disor-
dered and form a quantum spin liquid ground state. This
suggests that cluster magnets are more likely to stabilize
a quantum spin liquid than the conventional magnets.
At finite temperatures, generic arguments have sug-

gested the absence of finite temperature phase transi-
tions. A crossover is expected to occur at T ⇠ t3

V 2

where the system loses its quantum coherence. For
t3

V 2
<⇠ T <⇠ V , the nearest-neighbor repulsion demand

a single electron occupation on each tetrahedron, leading

we also the ring hopping

not sure which one is larger. If exchange is dominant,  
one may favor some electron configuration that optimize 
the spin state first, then one may not have the U(1) quantum 
charge ice state.  In opposite limit, one have quantum charge 
ice, spin is likely to form a quantum spin liquid.  
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Remark: 

1. the leading order spin interaction is not usual spin  
exchange nor ring exchange, it cannot be written into  
the standard spin operator. This is an important feature  
brought by the cluster Mott insulator.  
 

2. for this kind of spin interaction, it is hard to define a mean  
mean field that couples to the spin, so it is more likely for  
the spins to form a quantum spin liquid than the usual  
magnets. 

Because in that limit, we have..
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How about 1/8 filling

V � t the leading interaction is the following

4

FIG. 2. The finite temperature crossover in the vincinty of
the weakly first-order Mott transition.

It has been shown that the Landau damping term
|!|
q |a(q,!)|2, which originates from the fermionic polar-
ization function ⇧f , scales in the same way as a Higgs
mass term under the dynamical scaling of the bosonic
charge sector with dynamically exponent zc = 1 and thus
quenches the U(1)

sc

gauge fluctuations in low-energy sec-
tor of the bosonic charges. For the bosonic sector at low
energies, the fractionally-charged bosons are then mim-
inally coupled to the dynamical U(1)

c

gauge field Aµ.
It is well-known that, the U(1)

c

gauge fluctuation drives
the Mott transition from a continuous one to a weakly
first-order one. For a rather large temperature regime ex-
cept at an extremely low temperature, however, the low
energy physics would still be controlled by a continuous
XY transition with zc = 1 from the previous mean-field
analysis. Therefore, in the vincinity of the Mott transi-
tion, the system is governed togetherly by a boson-U(1)

c

gauge theory with a dynamical exponent zc = 1 in the
charge sector and a spinon-U(1)

sc

gauge theory with a
dynamical exponent zs = 3 in the spin sector.

The spin (charge) sector enters its quantum critical
regime at a crossover temperature scale T s ⇠ |V � Vc|

3
2

(T c ⇠ |V � Vc|
1
2 ). These crossovers should be mani-

fest, for example, in the thermodynamic or transport
properties. We expect the spin crossover scale T s is
visible in the heat capacity that behaves as Cv ⇡ �

1

T
(�

2

T ln 1

T ) on the metallic (insulating) side for T <⇠ T s

and Cv ⇠ T ln ln 1

T for T >⇠ T s. Here �
1

⇠ ln ln 1

Vc�V

and �
2

⇠ ln 1

V�Vc
. The charge crossover scale T c can

be detected from the electric resistivity measurement.
The charge fractionalization leads to a modified Io↵e-
Larkin composition rule with the current-current corre-
lation ⇧�1 = ⇧�1

f +(⇧
I

+⇧
II

)�1. Hence, the electric re-

sistivity of the system is given by ⇢ = ⇢f +(⇢�1

I

+⇢�1

II

)�1

and hence is dominated by the contribution of the charge
bosons.[? ] The conductivity on the Mott side has an
Arrhenius activated form with the gap given by the sin-
gle charge boson excitation for T < T c. For T > T c,
⇢
I

= ⇢
II

⇠ 1

T and leads to an insulating quantum critical
regime.

In the metallic phase V < Vc, the charge boson is con-

densed and then ⇧
I

= ⇧
II

⇡ ⇢s [need a scaling form]
where is P is a scaling function and ⇢s ⇠ |Vc � V | near
the transition. With the renormalized gauge field propa-
gator, one can then compute the spinon self-energy near
the spinon Fermi surface and obtain ⌃f ⇠ ! ln ln 1

⇢s
.

As previously discussed, the electron Green’s function
is now given as Ge = �2|h�

I

i|2|h�
II

i|2Gf = Ze
!�✏⇤

k
+i0 ,

where the renormalized dispersion ✏⇤k ⇠ ✏k
ln ln 1/⇢s

and the

quasiparticle weight Ze ⇠ ⇢2
s

ln ln 1/⇢s
. Therefore, as one

approaches the Mott transition from the Fermi liquid
metal, the electron e↵ective mass m⇤

e/me ⇠ ln ln 1

Vc�V

and Ze ⇠ (Vc�V )

2

ln ln 1/(Vc�V )

.

The strong Mott regime. In the strong Mott regime,
the electrons on neighboring tetrahedral are always sepa-
rated by one unoccupied site. The superexchange spin in-
teraction is naively obtained by a 4th order perturbation
with the coupling J

ex

⇠ t4

(U+V )V 2 . A qualitatilvely di↵er-
ent but more dominant spin interaction occurs through
the ring hopping of the three electrons on the hexagon
(see Fig. 1) and is given as

H
e↵

= �3t3

V 2

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.). (7)

We emphasize that, Eq.7 cannot be casted into the usual
form of spin exchange, which is one important di↵er-
ence between cluster magnets and conventional magnets.
Moreover, Eq.7 transfers both spin and charge around
the elementary hexagon. This is easily seen by the slave-
rotor formalism and decoupling the fermionic spinon and
bosonic charge rotor. From the same reasoning as dis-
cussed previously, we still expect a U(1) quantum charge
liquid ground state. For the spin sector, the quantum
spin liquid with spinon Fermi surface from the weak Mott
regime is likely to survive in the strong Mott regime.
The usual mechanism for magnetic ordering in conven-
tional magnets is that, the spin moment can be consid-
ered as being coupled to a mean magnetic field provided
by the neighboring spins and if this mean field does not
have strong quantum fluctuations the spin tends to align
with this field and develop magnetic order. For cluster
magnets, the spin interaction does not have the usual
exchange-like form and such a mean magnetic field can-
not be defined, and hence the spins are likely to be disor-
dered and form a quantum spin liquid ground state. This
suggests that cluster magnets are more likely to stabilize
a quantum spin liquid than the conventional magnets.
At finite temperatures, generic arguments have sug-

gested the absence of finite temperature phase transi-
tions. A crossover is expected to occur at T ⇠ t3

V 2

where the system loses its quantum coherence. For
t3

V 2
<⇠ T <⇠ V , the nearest-neighbor repulsion demand

a single electron occupation on each tetrahedron, leading

ring hopping of electrons

spin-charge separation: 
c = b f

Boson is hardcored because of the large onsite U
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Decouple the electron ring hopping
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FIG. 2. The finite temperature crossover in the vincinty of
the weakly first-order Mott transition.

It has been shown that the Landau damping term
|!|
q |a(q,!)|2, which originates from the fermionic polar-
ization function ⇧f , scales in the same way as a Higgs
mass term under the dynamical scaling of the bosonic
charge sector with dynamically exponent zc = 1 and thus
quenches the U(1)

sc

gauge fluctuations in low-energy sec-
tor of the bosonic charges. For the bosonic sector at low
energies, the fractionally-charged bosons are then mim-
inally coupled to the dynamical U(1)

c

gauge field Aµ.
It is well-known that, the U(1)

c

gauge fluctuation drives
the Mott transition from a continuous one to a weakly
first-order one. For a rather large temperature regime ex-
cept at an extremely low temperature, however, the low
energy physics would still be controlled by a continuous
XY transition with zc = 1 from the previous mean-field
analysis. Therefore, in the vincinity of the Mott transi-
tion, the system is governed togetherly by a boson-U(1)

c

gauge theory with a dynamical exponent zc = 1 in the
charge sector and a spinon-U(1)

sc

gauge theory with a
dynamical exponent zs = 3 in the spin sector.

The spin (charge) sector enters its quantum critical
regime at a crossover temperature scale T s ⇠ |V � Vc|

3
2

(T c ⇠ |V � Vc|
1
2 ). These crossovers should be mani-

fest, for example, in the thermodynamic or transport
properties. We expect the spin crossover scale T s is
visible in the heat capacity that behaves as Cv ⇡ �

1

T
(�

2

T ln 1

T ) on the metallic (insulating) side for T <⇠ T s

and Cv ⇠ T ln ln 1

T for T >⇠ T s. Here �
1

⇠ ln ln 1

Vc�V

and �
2

⇠ ln 1

V�Vc
. The charge crossover scale T c can

be detected from the electric resistivity measurement.
The charge fractionalization leads to a modified Io↵e-
Larkin composition rule with the current-current corre-
lation ⇧�1 = ⇧�1

f +(⇧
I

+⇧
II

)�1. Hence, the electric re-

sistivity of the system is given by ⇢ = ⇢f +(⇢�1

I

+⇢�1

II

)�1

and hence is dominated by the contribution of the charge
bosons.[? ] The conductivity on the Mott side has an
Arrhenius activated form with the gap given by the sin-
gle charge boson excitation for T < T c. For T > T c,
⇢
I

= ⇢
II

⇠ 1

T and leads to an insulating quantum critical
regime.

In the metallic phase V < Vc, the charge boson is con-

densed and then ⇧
I

= ⇧
II

⇡ ⇢s [need a scaling form]
where is P is a scaling function and ⇢s ⇠ |Vc � V | near
the transition. With the renormalized gauge field propa-
gator, one can then compute the spinon self-energy near
the spinon Fermi surface and obtain ⌃f ⇠ ! ln ln 1

⇢s
.

As previously discussed, the electron Green’s function
is now given as Ge = �2|h�

I

i|2|h�
II

i|2Gf = Ze
!�✏⇤

k
+i0 ,

where the renormalized dispersion ✏⇤k ⇠ ✏k
ln ln 1/⇢s

and the

quasiparticle weight Ze ⇠ ⇢2
s

ln ln 1/⇢s
. Therefore, as one

approaches the Mott transition from the Fermi liquid
metal, the electron e↵ective mass m⇤

e/me ⇠ ln ln 1

Vc�V

and Ze ⇠ (Vc�V )

2

ln ln 1/(Vc�V )

.

The strong Mott regime. In the strong Mott regime,
the electrons on neighboring tetrahedral are always sepa-
rated by one unoccupied site. The superexchange spin in-
teraction is naively obtained by a 4th order perturbation
with the coupling J

ex

⇠ t4

(U+V )V 2 . A qualitatilvely di↵er-
ent but more dominant spin interaction occurs through
the ring hopping of the three electrons on the hexagon
(see Fig. 1) and is given as

H
e↵

= �3t3

V 2

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.). (7)

We emphasize that, Eq.7 cannot be casted into the usual
form of spin exchange, which is one important di↵er-
ence between cluster magnets and conventional magnets.
Moreover, Eq.7 transfers both spin and charge around
the elementary hexagon. This is easily seen by the slave-
rotor formalism and decoupling the fermionic spinon and
bosonic charge rotor. From the same reasoning as dis-
cussed previously, we still expect a U(1) quantum charge
liquid ground state. For the spin sector, the quantum
spin liquid with spinon Fermi surface from the weak Mott
regime is likely to survive in the strong Mott regime.
The usual mechanism for magnetic ordering in conven-
tional magnets is that, the spin moment can be consid-
ered as being coupled to a mean magnetic field provided
by the neighboring spins and if this mean field does not
have strong quantum fluctuations the spin tends to align
with this field and develop magnetic order. For cluster
magnets, the spin interaction does not have the usual
exchange-like form and such a mean magnetic field can-
not be defined, and hence the spins are likely to be disor-
dered and form a quantum spin liquid ground state. This
suggests that cluster magnets are more likely to stabilize
a quantum spin liquid than the conventional magnets.
At finite temperatures, generic arguments have sug-

gested the absence of finite temperature phase transi-
tions. A crossover is expected to occur at T ⇠ t3

V 2

where the system loses its quantum coherence. For
t3

V 2
<⇠ T <⇠ V , the nearest-neighbor repulsion demand

a single electron occupation on each tetrahedron, leading

hb†1b2b
†
3b4b

†
5b6if

†
1↵f2↵f

†
3�f4�f

†
5�f6�

hf†
1↵f2↵f

†
3�f4�f

†
5�f6�ib

†
1b2b

†
3b4b

†
5b6

The charge sector Hamiltonian

H
c

⇠ �
X

hexagon

b†1b2b
†
3b4b

†
5b6 + h.c

identical to the effective model to quantum spin ice! 
so we expect a quantum charge ice ground state for 
the charge sector.  
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What do we do for the spin?

f†
1↵f2↵f

†
3�f4�f

†
5�f6� ! hf†

3�f4�ihf
†
5�f6�if

†
1↵f2↵

or directly from the original Hamiltonian

c†1↵c2↵ ⇠ hb†1b2if
†
1↵f2↵

This will lead to a quantum spin liquid with  
spinon Fermi surface 

(the choice of hopping for 1/4 filling leads to some flat band at 
Fermi level. the flatness can be broken by extra hopping)
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At finite temperature ?

Crossover instead of transition.  
 
more general model for the actual quantum spin ice 
may allow 1st transition. Here we probably do not  
expect phase transition. One reason is that in the  
numerics, one does not see finite transition transition.

Crossover temperature T ⇠ t3

V 2

quantum charge ice turns to a classical charge ice
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Experimental consequence:

1. Thermodynamics: Cv ~ T ln1/T + T^3  
spin susceptibility: chi ~ const  (but complicated by SOC) 

 
2.  Transport: charge is fractionalized. difference between 
tunnelling conductance and electric conductance.  
 
3.   In (charge) gap physics: note the external magnetic flux 
can couple to internal ones, this may lead to the in gap optical 
conductivity/absorption (not looked at right now). (These are 
for the experts in the audience! )

What did we find? 
We find a new phase whose spin and charge are both  
exotic.  It seems to be a natural case to think for the  
cluster Mott insulator. 
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Metal-insulator transition

within the M4 clusters can be described by MO’s which
consist of three energetically different bonding states (for
cubic Td symmetry) [12]: a nondegenerate level (a1),
followed by twofold (e) and threefold (t2) degenerated
levels [see Fig. 1(c)]. For cluster compounds of the type
Ga3!"M3:25!#4"S2$; Se2$#8, we have seven valence elec-
trons per cluster with M % V;Nb;Ta and 11 electrons
with M % Mo. In both cases, the occupation of the cluster
orbitals leads to one unpaired electron (i.e., S % 1

2 ) per
cluster. This is in agreement with the values of the mag-
netic moments obtained from magnetic susceptibility
measurements and is also consistent with spin polarized
band structure calculations [10,11]. In one respect, how-
ever, these systems are different from the conventional
Mott insulators such as transition metal oxides: in con-
trast to the latter, the correlated units are M4 clusters
which may have extra internal degrees of freedom. As
we show below, this leads to a high sensitivity of these
systems to external pressure.

Single phase polycrystalline samples of GaTa4Se8 and
GaNb4Se8 were prepared as described in Ref. [9]. X-ray
powder patterns were completely indexed using the struc-
tural data obtained from single-crystal experiments [13].
The pressure dependence of the lattice constants at 300 K
up to about 26 GPa was measured on powdered samples
by energy dispersive x-ray diffraction (EDX) at
HASYLAB using the diamond anvil cell (DAC) tech-
nique. The same type of DAC has been used for conven-
tional four-terminal electrical resistance measurements
up to about 29 GPa between 1.6 and 300 K. Single-crystal
x-ray diffraction measurements (MoK!1) of GaTa4Se8
were performed at 300 K up to p % 15 GPa using a
special DAC. Raman spectra were recorded in backscat-
tering geometry using a microspectrometer.

Before discussing the high pressure results we briefly
mention some experimental data at ambient pressure. The
values of the lattice parameter a as determined from x-
ray diffraction measurements at 300 K are found to be
10.440(1) and 10:358"1# !A for GaNb4Se8 and GaTa4Se8,
respectively, in agreement with previous results [6]. From
single-crystal x-ray data we obtained the values of the
characteristic intracluster and intercluster distances:
dM%3:051"3#;3:015"2# !A, and dC%4:332"3#;4:338"2# !A,
for GaNb4Se8 and GaTa4Se8, respectively. Measurements
of the temperature dependence of electrical resistivity
(1:6 & T & 300 K) show for both samples a semiconduc-
torlike behavior with activation energies of 0.14 eV
(GaNb4Se8) and 0.1 eV (GaTa4Se8). Actually, the activa-
tion energy decreases with decreasing temperature, in
agreement with that reported for GaMo4S8 and GaV4S8
[10]. The magnetic susceptibility of the two samples
shows Curie-Weiss behavior (100 & T & 300 K), indicat-
ing the existence of magnetic correlations, but no mag-
netic ordering is found down to 1.6 K in agreement with
Ref. [6]. The estimated values of the effective magnetic

moments are 1:6"B per Nb4 cluster (close to theoretical
value 1:73"B for S % 1

2 ) and 0:7"B per Ta4 cluster.
Detailed analyses of the results at ambient pressure are
presented elsewhere [13,14]; in the present Letter we
focus on high pressure results.

Figures 2(a) and 2(b) display the temperature depen-
dence of the normalized electrical resistance Rn % R"T#=
R"297 K# in the temperature range 1:6 & T & 300 K as a
function of pressure for GaNb4Se8 and GaTa4Se8, respec-
tively. Considering first the overall behavior of Rn"T; p# in
both samples, one finds with increasing pressure a gradual
change from the semiconducting to a metalliclike behav-
ior and a sudden drop of Rn at low temperatures above a
critical pressure (pc), indicative of a superconducting
transition. While the metallic behavior dR=dT > 0 is
observed at rather high pressures [p ' 19 GPa
(GaNb4Se8) and p ' 15 GPa (GaTa4Se8)], superconduc-
tivity already sets in at lower pressures where the tem-
perature dependence of Rn is still semiconductinglike;
TC % 2:9K at 13 GPa for GaNb4Se8 and 5.8 K at
11.5 GPa for GaTa4Se8. This type of behavior is usually
observed in the superconducting state of polycrystal-
line sintered samples, e.g., at ambient pressure in
La1$xSrxCuO4 [15] and under high pressure in the
Chevrel phase compound Eu1:2Mo6"S; Se#8 [16,17], and
is known to be due to a coexistence of superconducting
and semiconducting phases (granular superconductivity),
in the bulk and surface of the grains of such samples,
respectively. This explains the finite value of the resistiv-
ity observed in the superconducting state of our samples
(#0 ( 10$4 " cm at T % 1:6 K and p ( 20 GPa) de-
spite their single phase purity as well as the increase
of the drop of R"T# with increasing pressure (see
Fig. 2). We note, however, that the drop of R"T# is sub-
stantial ()70%) at p ( 20 GPa and 1.6 K and is expected
to further increase at lower temperatures resulting in a
lower value of the resistivity. This indicates an increase of
the fraction of superconductivity in the samples with

FIG. 2. Temperature dependence of the normalized electrical
resistance Rn % *R"T#=R"297 K#+ of GaNb4Se8 (a) and
GaTa4Se8 (b) at different pressures up to 28.5 GPa. The insets
show the drop of Rn at high pressures and low temperatures.
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Single crystals were prepared according to a procedure
described in Ref. [24]. The GaTa4Se8 pellet was obtained
in two steps. Elemental Se was put in a first silica container,
and Ga and Ta were put in a second one. Both containers
were introduced in a silica tube subsequently pumped
down to 2! 10"2 mbar and sealed. The whole is then
heated at 800 #C for 24 h with heating and cooling ramps
of 300 #C=h. As the resulting black powder consists of
GaTa4Se8 with TaSe2 impurities, a second similar heat
treatment was performed after pressing the powder into a
pellet, yielding a pure GaTa4Se8 phase according to usual
x-ray diffraction standards.

The ambient-P nearly normal incidence reflectivity
Rð!Þ was measured between 50 and 10 000 cm"1 on a
150! 150 !m2 GaTa4Se8 single crystal, and on a well
characterized high density pellet up to 52 000 cm"1. An
in situ evaporation technique was used to measure the
reference. The high-P study was performed using a dia-
mond anvil cell (DAC). The GaTa4Se8 single crystal was
loaded inside the gasket hole together with KBr as the
hydrostatic medium. Great care was taken to obtain a clean
sample-diamond interface where the reflectivity spectra,
Rsd, was measured from 400 cm"1 to 10 000 cm"1. The
measurement was performed at the high brightness infra-
red synchrotron radiation source SISSI@Elettra (Trieste)
[25]. Further details on the measurement procedures are
reported elsewhere [26].

The reflectivity spectra at the sample-diamond interface,
Rsdð!Þ, are shown in Fig. 1(a). Strong two-phonon dia-
mond absorption prevents the measurement of Rsd between
1750 cm"1 and 2700 cm"1. Note that the value of Rsdð!Þ
is very small (less than 10 percent), making a quantitative
analysis at high frequency a difficult task. In order to
evaluate the accuracy of the high-P measurements, the
Rsdð!Þ data were compared to the expected reflectivity at
a sample-diamond interface Rcal

sd ð!Þ, calculated from the
ambient-P Rð!Þ [26]. The calculated Rcal

sd ð!Þ is in good
agreement with the Rsdð!Þ measured in the DAC at the
lowest pressure (1.6 GPa). In order to reliably estimate the
pressure-dependent optical conductivity, the Rsdð!Þ
measured in the DAC were slightly renormalized by
a P-independent factor, according to the procedure
described in Ref. [27]. Note that this procedure changes
neither the shape nor the pressure dependence of the opti-
cal conductivities. On increasing the pressure, Rsdð!Þ is
progressively enhanced at low frequency.

The pressure-dependent optical conductivities "ð!Þ
shown in Fig. 1(b) are calculated from Rsdð!Þ by using
Kramers-Krönig constrained variational dielectric function
analysis [28]. Apart from phonon modes below 500 cm"1,
the ambient pressure optical conductivity consists of a
broad midinfrared band with a charge gap of the order of
0.12 eV, estimated by extrapolating the steeply increasing
part of "ð!Þ to zero [see the dashed line in Fig. 1(b)]. Such
a gap value is of the same order as the one deduced from

the activation energy measured in transport measurements
[24]. As pressure is increased, the optical conductivity
"ð!Þ is mainly enhanced below & 3000–4000 cm"1,
while the midinfrared band persists up to the highest
investigated pressure (10.7 GPa). Consequently, as shown
in Fig. 1(c), the spectral weight (SW) SW!

!0
ðPÞ ¼R

!
!0

"ð!;PÞd! increases with pressure and tends

to become pressure independent only above ! &
10 000 cm"1. Note that this energy is about 10 times larger
than the optical gap. Such a SW transfer over a large
energy scale under pressure is not expected for band insu-
lators, and is a usual fingerprint of strongly correlated
systems [29–33]. The analysis of the pressure-dependent
relative spectral weight "SWðPÞ reveals the existence of
two regimes. Indeed, as shown in Fig. 1(d), the low energy

FIG. 1 (color online). (a) Renormalized Rsdð!Þ reflectivity at
the sample-diamond interface from 1.6 GPa (lowest) to 10.7 GPa
(highest curve), compared to Rcal

sd ð!Þ (see text). (b) Pressure-
dependent optical conductivity "ð!Þ from 1.6 GPa (lowest) to
10.7 GPa (highest curve). The dashed area corresponds to
ambient pressure optical conductivity. (c) Spectral weight
SW!

!0
ðPÞ ¼ R

!
!0

"ð!;PÞd!, integrated between !0 ¼
400 cm"1 and ! for various pressures from 0 GPa (lowest) to
10.7 GPa (highest curve). (d) Relative spectral weight
SW

!2
!1

ðPÞ"SW
!2
!1

ð0Þ
SW

!2
!1

ð0Þ
as a function of pressure, integrated at low

energy (!1,!2 ¼ 400, 1000 cm"1) and high energy (!1,!2 ¼
2700, 10 000 cm"1). Solid lines are a guide for the eye.
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Kagome Hubbard model at 1/6 filling

metal Mott insulator with 
a charge ordering

Hard-Core Bosons on the Kagome Lattice: Valence-Bond Solids and Their Quantum Melting
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Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state
phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with
the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid
prevails at half filling, two novel solid phases emerge at densities ! ! 1=3 and ! ! 2=3. These solids
exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of
hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the
quantum melting point between these solid phases and the superfluid.

DOI: 10.1103/PhysRevLett.97.147202 PACS numbers: 75.10.Jm, 05.30.Jp, 67.90.+z, 75.40.Mg

Current interest in microscopic models of frustrated
quantum systems stems largely from the search for exotic
quantum phases and spin liquid states. In general, geomet-
ric frustration tends to destabilize quasiclassical order,
possibly allowing for nontrivial quantum states and novel
critical phenomena to emerge in such systems. One intri-
guing approach addresses classically frustrated (Ising)
models perturbed by quantum (off-diagonal) interactions
[1]. The behavior of classically disordered, degenerate
ground state manifolds upon application of a U(1) sym-
metric perturbation (e.g., ferromagnetic exchange) is of
special interest, as experimental advances in the construc-
tion and control of atomic gases in optical lattices have
opened up the possibility of designing such Hamiltonians
for ultracold bosons. In particular, it has recently been
shown how an optical kagome lattice can be constructed
using a triple laser beam design [2], which could permit
access to parameter regions of interest in the search for
exotic quantum phenomena.

In this Letter, we consider a model of bosons on the
kagome lattice in the strongly interacting regime, corre-
sponding to the hard-core limit of the Bose-Hubbard
Hamiltonian discussed in Ref. [2],

 Hb ! "t
X

hi;ji
#byi bj $ H:c:% $ V

X

hi;ji
ninj ""

X
i
ni; (1)

where byi (bi) creates (destroys) a particle on site i, t > 0
denotes the nearest-neighbor hopping, V > 0 is the
nearest-neighbor repulsion, and " is the chemical poten-
tial. This model can also be mapped onto the spin-1=2 XXZ
model [3], allowing for an interpretation of our results in
terms of both bosons and quantum spins. We report results
on the ground state phase diagram obtained from a com-
bined analysis of large scale quantum Monte Carlo (QMC)
simulations using the stochastic series expansion technique
[4,5] and phenomenological dual vortex theory (DVT)
[6,7]. We find that, in contrast to previous theoretical

expectations, a uniform superfluid persists at half filling
for all values of V=t. In addition, for fillings ! ! 1=3 and
2=3, we find evidence for valence-bond solid (VBS) phases
where bosons are delocalized around a subset of hexagons
(see Fig. 1). We find that the quantum melting of both VBS
phases into the superfluid occurs at weakly first-order
quantum phase transitions.

Past work on the ground state phase diagram of this
model has been controversial and intriguing: Spin-wave
calculations suggest that a supersolid state may emerge
around half filling (! ! 1=2) at " ! 2V for t=V < 0:5 [8].
However, these results are not conclusive, since strong
quantum fluctuations may destroy the long-range order
assumed within mean-field theory [8]. More recently, con-
sideration of the large classical degeneracy [9] at t ! 0 has
led to the proposal of several exotic Mott-insulating states
(e.g., VBSs or disordered quantum liquids) at half filling
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FIG. 1 (color online). Ground state phase diagram of hard-core
bosons on the kagome lattice (inset). The primitive vectors a1

and a2 are constrained on a (periodic) torus spanned by L1 !
n1 & a1 and L2 ! n2 & a2 (where a1 ! a2 ! 2). The circles
illustrate the subset of hexagons with a resonating boson occu-
pation of three bosons per hexagon in the ! ! 2=3 solid. The
remaining bosons localize to form a solid backbone on the sites
that do not belong to any of these hexagons.
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =P
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is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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In the second method, the non-magnetic Zn2Mo3O8 data were not scaled for the change in the 

number of atoms per formula unit (paper Figure 2b). Instead, a smooth fit to the non-magnetic 

Zn2Mo3O8 CpͼT
-1 was directly subtracted, giving the data in figure S3(b), which includes both the 

magnetic contribution and the extra lattice contribution from the extra lithium atom per formula 

unit.   

 

 

Figure S3 | Estimated excess heat capacity in LiZn2Mo3O8 computed by two methods. a, In 

the first method, the data for non-magnetic Zn2Mo3O8 was scaled to account for the expected 

change in Debye temperature (compared to LiZn2Mo3O8) as well as for the change in the number 

of atoms per formula unit, leaving only an estimate of the magnetic entropy. Note the unphysical 

dip to negative heat capacity around T = 50 K. b, In the second method, the non-magnetic 

Zn2Mo3O8 data were not scaled for the change in the number of atoms per formula unit, leaving 

contributions from both magnetism and the extra lattice contribution from the extra lithium atom 

per formula unit. The extra lattice entropy of Li can then be accounted for by fitting to an 

^ϱ�
�

Einstein (or Debye) oscillator mode (fit shown in red). 

 

Both methods give similar insights into the magnetic behavior for LiZn2Mo3O8. Method two 

gives a larger feature at T � 100 K, which must (at least partly) the freezing out of the extra 

vibrational modes from Li in LiZn2Mo3O8. Figure S3(b) shows a fit of this feature to an Einstein 

oscillator mode, with an Einstein temperature Ĭ = 403 K (a Debye mode fits equally well), 

which was subtracted to leave the magnetic contribution. In both cases, the magnetic entropy was 

then extracted by computing dT
T
CTS

T

³=
0

)(  . A comparison of the two are shown in figure S4.  

 

Figure S4 | Estimated magnetic entropy by two methods. a, Integrated CpͼT
-1 data from 

method one. Although the dip in entropy around T = 50 K is unphysical, the general result, of 

two distinct regions of entropy loss - below and above T § 100 K – is the same as that found by 

method two. b, Integrated CpͼT
-1 from method two. This data is the same as paper figure 2c, and 

also shows two distinct regions of entropy loss.  
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Figure 2 | Physical properties of LiZn2Mo3O8. a, Inverse magnetic susceptibility as a function of temperature for LiZn2Mo3O8. Curie–Weiss fits to the two
distinct linear portions are shown. Two-thirds of the spins ‘disappear’ on cooling below T = 96 K. The Curie constant C is in units of e.m.u. K Oe�1 mol fu�1.
b, Heat capacity divided by temperature as a function of temperature. The inset shows a strong magnetic field dependence of the low-temperature specific
heat. Data for non-magnetic Zn2Mo3O8 are shown for comparison. c, Integrated entropy as a function of temperature. The lattice contribution was
subtracted before integrating (see Supplementary Information). Error bars are calculated using standard analysis of error techniques for the propagation of
the uncertainty in each Cp measurement through the numerical integration. This is given by �SN =P
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is the uncertainty in the Cp/T value of the ith point. d, Proposed magnetic phase diagram of LiZn2Mo3O8. Below T = 96 K the
spins enter a condensed valence-bond state.

magnetic order. Furthermore, the difference in entropy between
T = 0.1K and T = 100K is approximately 1/3R · ln(2), consistent
with freezing out of the remaining one-third of spins that did not
condense into singlets at T = 96K.

The resulting magnetic phase diagram of LiZn2Mo3O8 is shown
in Fig. 2d. Near room temperature, the system is paramagnetic and
the spins thermally randomize. Cooling below the condensation
temperature (T ⇠ 96K), two-thirds of the spins form a condensed
valence-bond state. The remaining one-third of the spins are still
paramagnetic and interacting antiferromagnetically until lower
temperatures, at which point they lose entropy in a yet-to-
be determined manner.

These results indicate that LiZn2Mo3O8 exhibits geometric mag-
netic frustration between S= 1/2 magnetic clusters and two-thirds
of the spins condense into singlets below approximately T = 96K.
Therefore, LiZn2Mo3O8 is a candidate for a resonating valence-
bond state, as there is no evidence for static singlets. More generally,
our results show how an extended lattice of magnetic clusters, in
place of magnetic ions, produces exotic physics while providing
numerous advantages in the design and control of magnetically

frustrated materials. This approach opens a new chemical frontier
in the search for emergent phenomena in frustrated systems.

Methods
Phase-pure LiZn2Mo3O8 was synthesized from a mixture of Mo, ZnO,
Li2MoO4 and MoO2 (99+% purity) with an overall starting formula of
LiZn2Mo3O8(Li2Zn2O3)0.2. Mo was used as received. ZnO and Li2MoO4 were
dried at T = 160 �C overnight. MoO2 was purified by heating overnight under
flowing 5% H2/95%Ar. The mixtures were pressed into pellets, placed in alumina
crucibles and double-sealed in evacuated, fused-silica tubes. The reaction vessel
was heated to T = 600 � C for 24 h, ramped to T = 1,000 � C at 10 �Ch�1, held for
12 h, followed by a water quench. The sample was reground and heated again in the
same manner. Zn2Mo3O8 was synthesized in a similar manner, but with 3% excess
ZnO and a final temperature of T = 1,050 �C.

Magnetization measurements, heat capacities and resistivities were measured
on a sintered pellet in a Quantum Design Physical Properties Measurement
System using a dilution refrigerator for T < 2K measurements. Heat capacities
were measured three times at each temperature using the semi-adiabatic pulse
technique, waiting for three time constants per measurement. Data were collected
from T = 0.05K to T = 400K under magnetic fields of µoH = 0 T, µoH = 1 T and
µoH = 9 T. Magnetic susceptibilities were measured from T = 1.8K to T = 320K
under a µoH = 1 T field. Laboratory X-ray powder diffraction patterns were
collected using Cu K↵ radiation (1.5418Å) on a Bruker D8 Focus diffractometer
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Supplementary material for “Molecular Quantum Magnetism in LiZn2Mo3O8”

1. Curie-Weiss analysis of the bulk susceptibility

In Ref. 16, diamagnetic contributions (�0) to the susceptibility of LiZn2Mo3O8 were determined

using an equimolar amount of the non-magnetic sample Zn2Mo3O8 mounted on the same sample

holder. This approach has the advantage of being independent of the data analysis procedure,

but has limitations related to the stability of the instrumentation. In this work we determine �0

by fitting the data of Ref. 16 for temperatures between Tmin and 330 K with Tmin 2 [100, 250] K.

The fit yields �0 = �137(48) ⇥ 10�6 (emu/mol fuOe) in excellent agreement with the empirical

estimate �0 = �200 ⇥ 10�6 (emu/mol fuOe). The errorbar represents the standard deviation of

�0 over the range of Tmin. The inverse susceptibility of LiZn2Mo3O8 corrected for �0 is presented

in Fig. S1 along with representative non-linear least-squares fits of the two distinct T > 100 K

and T < 90 K Curie-Weiss regimes. In Fig. S2, the fit results are presented versus fitting range

and �0. Statistically averaged values over the range of Tmin are summarized in Tab. S1 along with

comparison to predictions for S = 1/2 spins with g = 2.0 (free electron), g = 1.9(1) (obtained

by ESR in Ref. 22) or g = 1.6 (obtained in Ref. 16) and N = 1 or N = 1/3 spins per formula-

unit. The results are ⇥W = �339(12) K, µ2
e↵ = 3.08(6)µ2

B for T > 100 K and ⇥⇤
W = �27(6) K,

µ⇤2
e↵ = 0.88(6)µ2

B for T < 90 K.

T (K)

LiZn2Mo3O8   M/H with µ0H = 1 T

[ χ
m

 −
 χ
0 ]−

1  (m
ol

.fu
.O

e.
em

u−
1 )

 

 

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

χ0 = +0.000000
χ0 = −0.000200
χ0 = −0.000137

FIG. S1. Inverse molar susceptibility [�m(T ) � �0]
�1 of LiZn2Mo3O8: taken from Ref. 16 (black squares),

corrected for a small negative �0 obtained by fitting (white squares) and corrected for an empirical estimate

of �0 (black stars). The red and blue lines are representative Curie-Weiss fits to the T > 100 K and T < 90 K

regimes, respectively.
FIG. 4: (a) NMR spin-lattice relaxation rate (of peak ‘a’, see Fig. 2 (b)) divided by temperature, (T1T )−1, a

measure of electron spin relaxation scales with µSR λ ·T 1. Both datasets are compared to the previously re-

ported bulk magnetic susceptibility, shown as a gray line. The data are self-consistent and indicate gapless,

short range spin-spin correlations. The characteristic measurement frequencies for each technique are ap-

proximately ωo = 8 ·106 Hz for µSR at µoH = 10mT and ωo = 9 ·107 Hz for 7Li NMR at µoH = 5.36 T. (b)

The bulk susceptibility divided by NMR (T1T )−1 and µSR λ ·T 1, a measure of relaxation rate as compared

to inelastic neutron scattering data33. The data show a slowing of spin fluctuations as the temperature is

lowered, in agreement with the electron spin relaxation rate (Γ) extracted from inelastic neutron scattering

(blue diamonds). The red line is a guide to the eye. The error bars on the µSR data were calculated by

propagating errors on both the bulk susceptibility and µSR datasets.
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