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Physical systems usually order 
at low enough temperatures

Landau

In crystals, atoms 
develops crystal order

He-4 liquid develops
superfluid order

Spins develop
magnetic order

Break
translation symmetry
rotational symmetry

etc

Break
an internal 

U(1) symmetry

Break
spin rotation

translation symmetry
time reversal symmetry

etc

one important goal of condensed matter is to understand different 
phases of matter. 


We know the matter usualy orders in some way at low engout 
temperature. e.g. in cyrstal, atoms devlops cyrstal order, 

in he-4, the sytsem devlops SF order, 

in spin ssytem ,spin develop magnetic order. 


it was pointed out by landau, all thses ordered phase can be 
undsraodod from systemmtry breaking. Fore xmaple, He-4 SF breaks 
an internal U(1) symmetry ,and spin system breaks trnasitonl spin 
raton and time reveal .
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Modern exception: FQHE 

Laughlin Stormer Tsui

* FQHE states don’t break any symmetry and cannot be 
characterized by symmetries.
* It has fractional excitations: excitations that carry fractional 
charge and statistics.
* Emergent (Chern-Simons) gauge fields.
* FQHE is a completely new phase of matter and cannot be 
described within the Landau symmetry breaking paradigm. 

But there are modern exception. 

FQH state don’t break any symmetry and cannot be characterized by 
symmetry


FQH is very well understood in theory.  


The key property of FQH is that, it

carries fractional excitation, that has fractional charge and statistics, and 
have emergent gauge fields.


Now we know FQH is a completely new phase matter.


In fact,  it is an example of a new class of matter, This new class of 
matter cannot be described by landau symmetry breaking theory. 
Understanding this new class matter has attracted a lot of theoretical 
and experimental interest

in recent years. 
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Spin exceptions: quantum spin 
liquids

Motivation: Look for spin states/phases that
   * do not break any symmetry (more precisely, symmetry is  
        not essential to define the phase),
   * do not have long-range spin order.
   * have emergent gauge field and fractional excitation. 

This novel phase is called “quantum spin liquid”.

The only analogy between QSL and a classical liquid (e.g. water):
         * both have short-range order but no long range order

snapshot of molecules
in liquid water

QSL is an example of this new class of matter that cannot be 
characterized by landau symmetry breaking theory.


QSLs don’t have spin long-range order,

have emergent gauge field and fractional excitation. 


The name “liquid” comes from simple analogy with water liquid. 
In water liquid, there is density short range order, but there is no 
density short range order. Similarly, in spin liquid, there is spin 
short range order, but not spin long range order. This is the only 
analogy they have. 
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1973 Anderson’s resonant 
valence bonds

H = J
X

hiji

Si · Sj , J > 0

Nearest-neighbor antiferromagnetic Heisenberg model on triangular lattice

Long-range order
120-degree state

, S =
1

2
let me start with some history of QSL. 1973, 
anderson was thinking about the gs of NN AFM 
heisenberg model on triangular lattice with spin 1/2. 
now we know it has 120 degree long range order. 
but that time, he did not know. he thought, since 
spin is quantum, they tend to form a singletGang Chen’s theory group 
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1973 Anderson’s resonant 
valence bonds

=
1p
2

dimer/singlet/ valence bond

Valence bond solid: columnar dimer state (break translation, rotation)

E � |r| “with a finite string tension”, 
spinons (carrying spin-1/2) are linearly confined.

r

( � )

he thought, since spin is quantum, they tend to form a singlet. The singlet is 
often called dimer or valence bond in literature. Let’s first consider this VBS, 
in which, the dimers develop a crystal order. If we break one dimer and 
create a triplit excitation. 

The spin are carried by 

two spinons (each spinon carry spin -1/2), and then separate them.  


This process creates domain wall, it will cost a finite energy. if i separate two 
spinons further, it will disrupt a lot of dimer in between. The energy cost will 
be proportional to the separation between two spinons. That means the 
spinons are linearly confined. This is reminsticet of the quark matter 
confinement in qcd. One can imagine that the two spinons are connected by 
a string, and the string has a finite tension. 


(one way to see this, is to compute the expectation values of the Hamilotnian 
with respect to the excitated state.)


The process will break a lot of dimer in between, the energy cost is 
proportional to the distance between the spinons. As a result, spinons are 
confined. This is similar to the quark matter confinement in QCD. Gang Chen’s theory group 
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all other dimer covering+

1973 Anderson’s resonant 
valence bonds

With a RVB state (Moessner, Sondhi, PRL2001),

+

dimers are strongly fluctuating, the “string tension” 
vanishes and the spinons are deconfined.

+

1987, Anderson further proposed that RVB/spin liquid state 
might be relevant to high-Tc superconductor. Cuprates don’t 
have such a QSL regime. The Mott insulator has AFM Neel 
order. 

but if we have state which is a linear superpositions of all possible dimer 
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Kanoda

2003 Kanoda’s organics
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1H NMR and static susceptibility measurements have been performed in an organic Mott insulator

with a nearly isotropic triangular lattice, !-!BEDT-TTF"2Cu2!CN"3, which is a model system of
frustrated quantum spins. The static susceptibility is described by the spin S # 1=2 antiferromagnetic
triangular-lattice Heisenberg model with the exchange constant J$ 250 K. Regardless of the large
magnetic interactions, the 1H NMR spectra show no indication of long-range magnetic ordering down
to 32 mK, which is 4 orders of magnitude smaller than J. These results suggest that a quantum spin
liquid state is realized in the close proximity of the superconducting state appearing under pressure.

DOI: 10.1103/PhysRevLett.91.107001 PACS numbers: 74.70.Kn, 74.25.Ha, 75.50.–y, 76.60.–k

The magnetism of the Mott insulator, which is the
mother phase giving the unconventional supercon-
ductivity in the high-TC cuprates and !-!BEDT-TTF"2X
organics, has been attracting much attention, because
it holds the key to understanding the mechanism of
the superconductivity, where BEDT-TTF (ET) denotes
bis(ethylenedithio)-tetrathiafulvalene and X denotes in-
organic monovalent anion [1,2]. The ground states of the
Mott insulators studied so far in these materials are anti-
ferromagnets. The stage of the interacting spins are quasi-
two-dimensional square lattice or anisotropic triangular
lattice with the nearest neighbor transfer t and the second-
nearest neighbor transfer t0. If the lattice is close to
isotropic triangle (t0=t$ 1), however, the geometrical
frustration gets to work significantly against the long-
range magnetic ordering (LRMO), and a spin liquid state
without symmetry breaking, which attracts great interest
as an exotic state, can emerge [3].

In the case of !-!ET"2X, dimerization of a face-to-face
ET pair is strong enough to treat the dimer as a unit
[Fig. 1(a)], and the system can be effectively described
by the Hubbard model on an anisotropic triangular lattice
[Fig. 1(b)] with a half-filled conduction band [6,7]. The
effective transfer integrals between the dimers are given
as t # !jtpj% jtqj"=2 and t0 # tb2=2, respectively, where
tp, tq, and tb2 are transfer integrals shown in Fig. 1(a) and
evaluated with the extended Hückel method and the tight-
binding approximation. Among the !-!ET"2X family, a
Mott insulator !-!ET"2Cu2!CN"3 [4,5] is unique in that
the ratio of transfer integrals is almost unity (t0=t = 1.06)
[7], suggesting that the S # 1=2 nearly isotropic triangu-
lar lattice is realized and it can be a promising candidate
of the spin liquid insulator. Actually, the EPR measure-
ment has shown no signature of the antiferromagnetic
(AF) transition down to 1.7 K [5], although the nature of
the spin state is still unknown. It is in sharp contrast to
another Mott insulator !-!ET"2Cu&N!CN"2'Cl with t0=t$

0:75, which exhibits the AF transition at TN # 27 K at
ambient pressure [8,9] and the superconducting transition
at TC # 12:8 K under pressure [10]. It is also noted that
moderate hydrostatic pressure induces superconductivity
in !-!ET"2Cu2!CN"3 with TC of 3.9 K [5].

In this Letter, we report the magnetic properties of
!-!ET"2Cu2!CN"3 revealed by the 1H NMR and the static
susceptibility measurements.We have observed no LRMO
down to 32 mK well below the exchange constant J #
250 K estimated from the magnetic susceptibility at am-
bient pressure and TC under soft pressure. These results
strongly suggest that a quantum spin liquid state is likely
realized in the neighborhood of the superconducting
phase.

FIG. 1. (a) Crystal structure of an ET layer of
!-!ET"2Cu2!CN"3 viewed along the long axes of ET molecules
[4]. The transfer integrals between ET molecules, tb1, tb2, tp,
and tq, are calculated as 224, 115, 80, and (29 meV, respec-
tively [5]. For the large tb1 compared with other transfer
integrals, the face-to-face pair of ET molecules connected
with tb1 can be regarded as a dimer unit consisting of the
triangular lattice. (b) Schematic representation ofthe electronic
structure of !-!ET"2X, where the dots represent the ET dimer
units. They form the anisotropic triangular lattice with t #
!jtpj% jtqj"=2 and t0 # tb2=2.
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* molecular ET2 dimers carry spin
* triangular lattice, spin-1/2
* close to metal-insulator transition 

The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.

P H Y S I C A L R E V I E W L E T T E R S week ending
5 SEPTEMBER 2003VOLUME 91, NUMBER 10

107001-2 107001-2

The single crystals of !-!ET"2Cu2!CN"3 were prepared
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netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
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crystalline sample in a temperature range of 1.4–200 K at
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Padé approximants are adopted with J ( 250 K. This
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the short-range spin correlations. The difference between
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be partially attributed to the weak spin localization in
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along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
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Padé approximants, respectively, with J ( 250 K. The low-
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FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* constant spin susceptibility at zero temperature

Shimizu, etc, PRL, 91,107001

-(ET)2Cu2(CN)3

For a long time, there is only theoretical interest in QSL.  


Experimental breakthrough took place in 2oo3. 

 kanoda discovered an organic material. in this material, this  
molecular dimer carries spin-1/2 and forms a triangular lattice. 
the system is close to metal-insualtor xtion and on the insulating 
side.


Both spin susceptibility and NMR don’t see magnetic order, and 
spin suscep is constant at low temperatures limit.
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Figure 2 Low-temperature heat capacities of -(BEDT-TTF)2Cu2(CN)3. a,b, Data obtained for two samples under magnetic fields up to 8 T in CpT�1 versus T 2 plots.
b contains the data of the typical antiferromagnetic insulators ⇥-(BEDT-TTF)2Cu[N(CN)2]Cl, deuterated ⇥-(BEDT-TTF)2Cu[N(CN)2]Br and �⇤-(BEDT-TTF)2ICl2 for comparison.
The existence of a T-linear contribution even in the insulating state of ⇥-(BEDT-TTF)2Cu2(CN)3 is clearly observed.

magnetic resonance (NMR) and static susceptibility measurements,
they observed no static order down to 30 mK and concluded that
the spins form a kind of liquid state. The likelihood that a spin-
liquid model is appropriate is strengthened by the prediction of
the resonating-valence-bond (RVB) model of large entropy at low
temperatures and a possible temperature- (T-) linear term due
to the spinon density of states in the heat capacity3,4. The heat
capacity is considered as a very sensitive low-energy spectroscopic
method for investigating the low-energy excitations from the
ground state. We can explore a reliable discussion on what kind of
ground state is realized through the entropy with absolute precision
and without any external fields. In this respect, thermodynamic
studies at temperatures as low as possible are necessary and
required for demonstrating the quantum spin-liquid character for
this material.

In Fig. 1, we show the temperature dependence of
the heat capacity of -(BEDT-TTF)2Cu2(CN)3 and other
-type BEDT-TTF salts. -(BEDT-TTF)2Cu(NCS)2 is a
superconductor with a transition temperature (Tc) of 9.4 K.
-(BEDT-TTF)2Cu[N(CN)2]Cl is a Mott insulator with an
antiferromagnetically ordered ground state below the Néel
temperature TN = 27 K. Reflecting the same type of donor
arrangement, the temperature dependencies of the lattice heat
capacities of the samples are similar. The data for another
Mott insulating compound, �⇤-(BEDT-TTF)2ICl2, which gives
the highest Tc of 14.2 K among organic superconductors under
an applied pressure of 8.2 GPa (ref. 14), are also shown for
comparison. A slight di�erence in the lattice contribution
is observed, attributable to the di�erence of crystal packing,
but the overall temperature dependence resembles that of
the -type compounds. Although the overall tendency of the
lattice heat capacity is similar, it should be emphasized that
-(BEDT-TTF)2Cu2(CN)3 shows large heat capacities at low
temperatures as compared with typical Mott-insulating samples.
This fact demonstrates that the spin system retains large entropy
even at low temperatures and is free from ordering owing to the
existence of the frustration.

The temperature dependence of the heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is shown in a Cp T�1 versus T plot
in the inset of Fig. 1. We also show data obtained under an

external magnetic field of 8 T applied perpendicular to the plane,
demonstrating no drastic di�erence from the 0 T data over the
whole temperature range in the figure. There is no sharp thermal
anomaly indicative of long-range magnetic ordering. This is
consistent with previous NMR experiments13. The data at low
temperatures below 2.5 K, shown in Fig. 2, clearly verify the
existence of a linearly temperature-dependent term (the � term),
even in the insulating salt. The magnitude of � is estimated at
20 ± 5 mJ K�2 mol�1 from the linear extrapolation of the Cp T�1

versus T 2 plot down to T =0 K. However, the low-temperature data
show an appreciable sample dependence. Figure 2a,b shows data for
di�erent samples, (a) and (b), respectively. In the low-temperature
region, sample (a) shows a curious structure in addition to the
finite � term, which is somewhat field dependent. However, Fig. 2b
does not show such behaviour. The magnetic field dependence seen
in sample (a) is attributable to a possible paramagnetic impurity
and seems to be extrinsic. In fact, the application of a magnetic
field induces a kind of Schottky contribution, which is attributed
to a magnetic impurity of less than 0.5%. The origin of this
contribution is considered to be Cu2+ contamination in the sample
preparation, as reported by Komatsu et al.15. We measured several
other samples and found that the data of the better-quality samples
converge to those shown in Fig. 2b, with a small field-dependent
contribution. It should be noted that these samples still possess
a finite Cp T�1 value of about 15 mJ K�2 mol�1, as shown by the
extrapolation of the data down to T = 0 K. The existence of the �
term in the present insulating state is intrinsic.

The well known Mott insulators -(BEDT-TTF)2X
(X = Cu[N(CN)2]Cl, deuterated Cu[N(CN)2]Br) and
�⇤-(BEDT-TTF)2ICl2 with three-dimensional antiferromagnetic
ordering show a vanishing � value, as shown in Fig. 2b
(ref. 16). It is evident that the low-temperature heat capacity of
-(BEDT-TTF)2Cu2(CN)3 is extraordinarily large for an insulating
system. A � value of the present order (101–1.5 mJ K�2 mol�1) is
expected, for example, in spin-wave excitations in one-dimensional
antiferromagnetic spin systems with intra-chain couplings of
J/kB = 100–200 K or metallic systems with continuous excitations
around the Fermi surface. However, these are obviously very
di�erent systems from the present two-dimensional insulating
materials. Gapless excitations giving a T-linear contribution to the

460 nature physics VOL 4 JUNE 2008 www.nature.com/naturephysics

* Heat capacity

-(ET)2Cu2(CN)3

Yamashita, etc, Nature Physics, 4, 459, (2008)

QSL with a spinon  
Fermi surface?

⇤ Cv / T

⇤ � / const
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the heat capacity measurement obtain a 
linear-T dependence at low temperature 
limit.  


Constant spin suscep and linear-T heat 
capacity suggest the large density of low 
energy state. It is postulated to be

 spinon fermi surface. 
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QSL with spinon Fermi 
surfacePicture of Mott transition
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Metal

Mott spin liquid
near metal

Electrons swimming in 
sea of +vely charged 
ions

Electron charge gets 
pinned to ionic lattice 
while spins continue to 
swim freely.
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pinned to ionic lattice 
while spins continue to 
swim freely.
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theory: Motrunich, Lee, Lee, Senthil, etc

Metal 
“electrons swimming in the background 

of positively charge ions. ”

Mott insulator: QSL (spinon metal) 
“electron charge is pinned to the ion site

while the spin still swims freely.”

cr� = brfr�

split the electron into charge and spin

but glue them back to electron with gauge fields.

phases charge 
boson gauge field spin-charge

separation

metal higgsed

Mott-QSL strongly 
fluctuating Yes

hbri 6= 0

hbri = 0

Low-energy theory of Mott QSL
fermionic spinons coupled to U(1) gauge field.

electron

spinon

cr� = hbrifr�Gang Chen’s theory group 
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To describe the state, we split the electron operator into charge boson and fermionic spinon. Expressing 
the electron in this way enlarges the physical Hilbert space. One way to get back to the physical Hilbert 
space is to project out the unphysical states. The other way is to introduce a gauge field to glue the 
spinon and charge back into an electron. I am going to take the second approach. 


In the metallic phase, charge boson is condensed, gauge field is higgsed, spin and charge are confined. 
in the mott insulator, boson are not condensed, the gauge fields  are strongly fluctuating. spinon and 
charge are decofined. The charge is localized and the spinons form a spnon FS.  


The low energy theory of this QSL is described by spinon FS coupled to emergent U(1) gauge field.
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Many QSLs with many 
different low energy theories

QSLs low-energy theory
U(1) QSL QED (w/ monopole)

Dirac QSL Dirac spinon couple to QED

nodal QSL nodal spinon couple to Z2 gauge

Majorana QSL Majorana spinon couple to Z2 gauge

Fermi surface QSL spinon FS couple to U(1) or Z2 gauge

...... ......

Wen, QFT of many-
body systems

What’s remarkable is
the low-energy theory has little to do with the 
microscopic theory, which is just some bosonic spin 
exchange model. 

Now we know there are many different QSLs with quite 
different low energy theory. What’s remarkable is that, the 
low energy theory has little to do with the microscopic 
theory, which is just some bosonic spin exchange model.


even though all come, the emergent low-E theory is 
completely different.

Gang Chen’s theory group 

Gang Chen’s theory group



Where to search for QSL
• system with frustration  
(competing interaction )

• quantum spins, e.g. S=1/2

• proximate to metal-insulator transition: large 
charge fluctuation

• others: strong spin-orbit coupling, quenched 
disorder, etc

Since qsl is stabilized by quantum fluctuation, we need to search among 
the systems with strong quantum fluctuation. THe following are some 
guidance. 

The first one is frustrated system. frustration means competing 
interaction cannot be optimized simultaneously. A classical example is 

AFM ising model on triangular lattice. No matter how you arrange the 
spin, there is always one unhappy bond.  


the second one is system with small spin moment, the most quantum 
one is spin 1/2.


the third is system near metal-insua xtion. where the charge fluct are 
strong.
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Many candidate materials now!

Cs2CuCl4'
NiGa2S4'
He/3'layers'on'graphite'
κ/(ET)2Cu2(CN)3'
EtMe3Sb[Pd(dmit)2]2'
Ba3CuSb2O9'
Ba3NiSb2O9'
LiZn2Mo3O8'

ZnCu3(OH)6Cl2-
Cu3Zn(OH)6Cl2-
Cu3V2O7(OH)2-
BaCu3V2O3(OH)2-

Na2IrO3(
Na4Ir3O8(
IrO2(
Ba2YMoO6(
Yb2Ti2O7(
Pr2Zr2O7(
FeSc2S4(

κ"(ET)2Cu2(CN)3,
EtMe3Sb[Pd(dmit)2]2,
Na2IrO3,
Na4Ir3O8,,
IrO2,

Proximate to Mott transitions

Strong spin-orbit couplingkagome latticetriangular lattice

since 2003, experimentalists have 
discovered many QSL candidates. 


Some of them have already been 
ruled out to be QSL. 
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* Some common phenomenology

• No ordering down to lowest measurable temperature,  
i.e. a large frustration parameter

• Constant T = 0 spin susceptibility.  

• Power-law heat capacity.

f � |⇥CW|
TN

��1

T
⇥CW TN

Cv ⇠ T�

* Challenge
Many materials have very similar phenomenology.
Are they all quantum spin liquid?
How to connect the experiments to the theory?
We need mutual feedback between theory and experiment.

There are some common phenomenology of these QSL candidate. At 
high temp, the spin suscp obey curie-weiss law. There is no ordering 
down to lowest temp. 

It is often useful to introduce an empirical experimental parameter, called 
frustration parameter, which is given by the ratio between CW temp and 
ordering temp. In real QSL, f is infinity.  In exp, we cannot reach zero 
temperature. 

For instance, if CW is 100K, and lowest temp in exp is 1K, the frustation 
pram is greater than 100. 


the spin sucept is often const at low temp. the heat capacity is power law 
in temp at low T. 


Although many materials have similar pheno, it does not mean they are 
QSL. 

this is like biology.

you know,

whales and dolphin look like fish, but they are not fish.

they are more interesting and advanced creattures. 


The challenge is to tell which material is qsl and the type of qsl, and also 
tell which material is not qsl and if it is not, what is it. The latter requires a 
careful examination of the experiments and material. 


Gang Chen’s theory group 

Gang Chen’s theory group



failed examples
candidate materials spin lattice f explanation

Cs2CuCl4 1/2 triangle f~8 dimensional reduction

Cu3V2O7(OH)2 1/2 kagome f>30 magnetic order

Na2IrO3 1/2 honeycomb f~10 magnetic order

NiGa2S4 1 triangle f~10 spin nematics

FeSc2S4 2 diamond f>900 spin-orbital singlet

.......

Balents, Nature 2010

Gang Chen’s theory group 

Gang Chen’s theory group



promising ones
Candidate QSL spin lattice susceptibility Cv f possible QSL

kappa-(ET)2Cu2(CN)3 1/2 triangle constant Cv~T f>1000 spinon FS

EtMe3Sb[Pd(dmit)2]2 1/2 triangle constant Cv~T f>1000 spinon FS

ZnCu3(OH)6Cl2 1/2 kagome ------ ------ f>1000 Dirac QSL

Cu3Zn(OH)6Cl2 1/2 kagome constant Cv~T f>475 Majorana QSL

Na4Ir3O8 1/2 hyperkagome constant Cv~T f>300 U(1) QSL with FS

Pr2Zr2O7 1/2 pyrochlore constant ------ f>70 U(1) (quantum 
spin ice)

.......

Experimental work by C. Broholm’s group, H. Takagi’s group, 
Kanoda’s group, Y. Lee’s group, Lhuillier’s group.

If any one is interested in any of 
the materials, we can talk after the 
talk.

Gang Chen’s theory group 

Gang Chen’s theory group



Plan

• A probably failed but very interesting QSL candidate: 6H-B-
Ba3NiSb2O9

• A very promising QSL candidate:  
Na4Ir3O8

•  

Collaborators: * Michael Hermele (Univ of Colorado Boulder)   
                         *  Leo Radzihovsky (Univ of Colorado Boulder)

Collaborators:  * Yong-Baek Kim (Univ of Toronto)

Refs: GC, Hermele, Radzihovsky, PRL 109, 016402, 2012 

Refs:  GC, Kim, unpublished    

triangle

hyperkagome

In the following part of the talk, I will discuss two materials, one is 
probably not QSL but still very intersting. The other is probably a 
QSL. 


The first work is in collaboration w/


The second work is in collaboration w/
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Ba3NiSb2O9-a spin-1 AFM
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FIG. 1: Powder XRD patterns (crosses) at 295 K for the Ba3NiSb2O9 polytypes: (a) 6H-A, (b)
6H-B, and (c) 3C. Solid curves are the best fits obtained from Rietveld refinements using FullProf.
Vertical marks indicate the position of the Bragg peaks, with the curves at the bottom showing
the difference between the observed and the calculated intensities. Schematic crystal structures for
the Ba3NiSb2O9 polytypes: (d) 6H-A, (e) 6H-B, and (f) 3C. Magnetic lattices composed of Ni2+

ions for the Ba3NiSb2O9 polytypes: (g) 6H-A, (h) 6H-B, and (i) 3C.

the c-axis. However, for the 6H-B phase, the nearest two layers of the Ni triangular lattice

are displaced with respect to each other in a way that the Ni ion in one layer is projected

towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite

in a Ba2MM’O6 model with the cubic space group Fm-3m having a lattice parameter a =

4
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towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite
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FIG. 2: (a) Temperature dependencies of the magnetic DC susceptibility (χ) for the Ba3NiSb2O9

polytypes. Inset: Temperature dependencies of 1/χ. The solid lines on 1/χ data represent Curie-
Weiss fits. For 6H-B phase, χ (open squares) is obtained by subtracting 1.7% Ni2+ orphan spin’s
contribution (crosses) from the as measured data (solid squares).

χ−1(T ) curves are basically parallel to each other. This value is close to the typical value

for Ni2+ ions. The θCW values obtained for the 6H-A, 6H-B, and 3C phases are -116.9(4) K,

-75.6(6) K, and -182.5(3) K, respectively, indicating dominant antiferromagnetic interactions

for all compounds.

The magnetic specific-heat (CM , Fig. 3) for each compound was obtained by subtracting

the heat capacity of the non-magnetic compound Ba3ZnSb2O9 ordered in the 6H-A, 6H-B,

and 3C phases, respectively, which are used here as lattice standards. For the 6H-B phase a

Schottky anomaly due to 1.7% of Ni2+ orphan spins was also subtracted, see Supplementary

Materials. For the 6H-A phase, CM shows a sharp peak around TN = 13.5 K. On the other

hand, for both the 6H-B and the 3C phases, CM which emerges from around 30 K, shows a
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FIG. 3: (a) Temperature dependencies for the magnetic specific heat (CM ) for all three Ba3NiSb2O9

polytypes. Solid lines are the fits as described in the main text. Inset: variation in magnetic entropy
∆S below 30 K for the Ba3NiSb2O9 polytypes.

broad peak around 13 K with no sign for long-range magnetic-order down to T = 0.35 K.

For the 6H-B and the 3C phases, CM is not at all affected by the application of a magnetic

field as large as H = 9 T. Below 30 K, the associated change in magnetic entropy (inset

of Fig. 3) is 5.0 J/mol-K, 3.7 J/mol-K, and 2.0 J/mol-K for the 6H-A, 6H-B, and the 3C

phase, respectively. These values correspond respectively, to 55%, 41%, and 22% of R ln(3)

for a S = 1 system, where R is the gas constant. The remarkable result is that CM at low

temperatures for all three phases follows a γT α behavior, but with a distinct value of α for

each phase. As shown in Fig. 3, a linear fit of CM plotted in a log-log scale yields respectively,

γ = 2.0(1) mJ/mol-K4 and α = 3.0(2) for the 6H-A phase in the range 1.8 ≤ T ≤ 10 K,

γ = 168(3) mJ/mol-K2 with α = 1.0(1) for the 6H-B phase when 0.35 ≤ T ≤ 7 K, and

γ = 30(2) mJ/mol-K3 with α = 2.0(1) for 3C phase within 0.35 ≤ T ≤ 5 K. Furthermore,

7

three high-pressure structures

spin susceptibility

heat capacity

J. Cheng, etc, PRL, 107,197204 (2011)
Balicas

last year, Dr. Balicas from high 
magnetic lab discovered three 
different structures of this 
material under high pressure. It 
is a spin-1 system. These are 
the exp data. 
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spin-1
system

structure T=0 
susceptibility

heat 
capacity explanation

6H-A A-A stacking const magnetic 
order

6H-B A-B stacking const QSL?

3C FCC with 1/3 
dilution const QSL?

Cv / T 3

Cv / T 2

Cv / T

Summary of experiments on Ba3NiSb2O9

Other’s work
Serbyn, Senthil, P. Lee, PRB 84,180403, 2011

* Z2 QSL with spinon Fermi surface
* Rely on large and positive biquadratic exchange

Xu, Wang, Qi, Balents, Fisher, PRL 108, 087204, 2012

* Z2 QSL with quadratic dispersive spinons
* Spinon MFT only has pairing
* Energetically favorable with negative ring exchange 
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the c-axis. However, for the 6H-B phase, the nearest two layers of the Ni triangular lattice

are displaced with respect to each other in a way that the Ni ion in one layer is projected

towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite

in a Ba2MM’O6 model with the cubic space group Fm-3m having a lattice parameter a =

4
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towards the center of the triangle formed by the Ni ions in adjacent layers along the c-axis,

as shown in Fig. 1(h). Battle et al. reported a similar structure for the 6H-B phase [17],

but with no physical characterization.

With increasing pressure we observed an additional phase transformation to a cubic

perovskite structure. This 3C phase was obtained under 9 GPa and at a temperature of

1000 ◦C kept for 30 min. Its XRD pattern (Fig. 1(c)) is best described as a double-perovskite

in a Ba2MM’O6 model with the cubic space group Fm-3m having a lattice parameter a =

4

K(Si · Sj)
2

h
(S1 · S2)(S3 · S4) + (S1 · S4)(S2 · S3)

�(S1 · S3)(S2 · S4)
i

1 2

34

Let me summary his experimental results in this table. 6H-A structure has A-A stacking of the triangles. 
all the traingular layers are identitical.   6H-B has A-B stacking. The neighboring triangular lyersare 
shifted like graphite. 3C is a FCC lattice with 1/3 site dilution.  


All the spin suscpt is constant at zero temp limit. The heat capacity is power like with different 
exponent. 6H-A has AF LRO, T^3 heat capacity is due to the gapless magnons. These two materials are 
hard to understand. Here I will focus on the 6H-B material. 


There are already two other works on 6H-B material. 


the first is by Mit group. senthil and patrick are proposing a Z2 QSL with spinon FS. This is many people 
‘s gutts feeling when they see const and linear T.

But this state needs a large and postive biquaer , and we know biqudatic exangei s always small and 
negative.  


the other is from SB, by CenKe Xu, L Balent, M Fisher. Their state is still a Z2 QSL but with a quadratic 
spinon dispersion. 

their state requires the a negative ring exchange. But we know the ring exchange is always positive. 
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Minimal model

2

interlayer exchange path goes through one more oxygen than
intralayer coupling, the multiplicity of the former is 6 times
larger than the latter. In addition, in a structurally similar
material 6H-A-Ba3NiSb2O9 with long range magnetic order
specific heat at low temperature is observed to behave as
Cv(T ) ⇤ T 3, which indicates non-negligible interlayer cou-
pling. Therefore, we also include the interlayer coupling for
6H-B. As we will show in the following, this interlayer cou-
pling plays an important role in understanding the thermody-
namics properties of the material. The resulting exchange
model is therefore given on the triangular multilayer with
Hamiltonian,

Hex = J1
⇧

⌃ij⌥⇥AB

Si · Sj + J2
⇧

⌃ij⌥⇥AA or BB

Si · Sj , (1)

in which, the first sum is for the interlayer exchange between
nearest neighboring (NN) sites on neighboring A and B lay-
ers, the second sum is for the intralayer exchange between
NN sites within the same layer. In contrast to Ref. 21, we do
not include the NN biquadratic exchange (that can arise from
high order perturbation of the Hubbard model or effectively
from spin-lattice interaction), that we expect to be strongly
subdominant to the exchange Hex. As illustrated in Fig. 1,
the interlayer (intralayer) exchange on a triangular bilayer can
be viewed as the nearest neighbor (next nearest neighbor) ex-
change on a single honeycomb layer.

Besides the exchange, we also add the single-ion
anisotropy. The magnetic ion Ni2+ carries a spin S = 1 which
admits single-ion anisotropy in a non-cubic environment. The
space group symmetry P63mc of 6H-B restricts the single-ion
anisotropy to have the following form,

Hani = D
⇧

i

(Sz
i )

2, (2)

where z direction is normal to the triangular plane. Since
an easy-axis anisotropy is more likely to favor magnetic or-
der, we then expect an easy-plane anisotropy with D > 0 for
6H-B. Furthermore, as the spin susceptibility is observed to
saturate at around 25K[20], with a high temperature mean-
field theory we establish that this saturation point is set by
the coupling D and thus expect D to be comparable to the
exchange that is related to Curie-Weiss temperature �CW =
�75.5K[20].

Minimal model for 6H-B—Our minimal model now
contains two competing terms, exchange and single-ion
anisotropy,

Hmin = Hex +Hani. (3)

For this minimal Hamiltonian, we implement high tempera-
ture series expansion and extract the Curie-Weiss tempera-
ture. We thereby find that �z

CW = �[4(J1 + J2) + D/3]
and �⇤

CW = �[4(J1 + J2) � D/6] for magnetic field ap-
plied along and perpendicular to the z axis, respectively. With
a powder sample in experiment[20], after a powder average

we have �av
CW = �4(J1 + J2) which is independent of the

anisotropy parameter D.
For the minimal Hamiltonian in Eq. (3), when the single-

ion anisotropy Hani dominates with D ⇧ J1, J2, the ground
state is a uniform quantum paramagnetic (QP) state with spin
state at each site |Sz = 0 . In the opposite limit of the dom-
inant exchange, we expect the ground state to be magneti-
cally ordered. Applying Luttinger-Tisza method[24] gives the
classical ground state spin configurations with the ordering
wavevector qz = 0 and spin orient in xy plane. With qz = 0,
the exchange is equivalent to a J1eff-J2 model on a 2D hon-
eycomb lattice with J1eff = 2J1[23]. When J1 > 3J2, the
classical ground state is a usual Néel state. When J1 < 3J2,
the classical ground state is degenerate with degenerate spin
spiral wavevectors q⇤ = (qx, qy) satisfying,

⇧

{b}

cos(q⇤ · b) = (
J1
J2

)2 � 3, (4)

in which, {b} are 6 next-nearest neighbor (NNN) lattice vec-
tors of the honeycomb lattice. The degenerate wavevectors
form contour curves in momentum space. Moreover, in the
limit of J1 ⌅ J2, this spin spiral reduces a commensurate
spiral state corresponding to the familiar 120o of the decou-
pled A and B triangle lattices. Quantum fluctuations lift the
degeneracy of these classical spin-spiral ground states, select-
ing states characterized by a discrete set of q’s around which
the quantum zero-point energy is minimized. Remarkably, the
classical ground states favored by the quantum fluctuation do
not vary upon introducing the single-ion anisotropy. The op-
timal spin spiral wavevectors are given by[23]

q⇤ =
⇤
0,

2↵
3
cos�1

�
(
J1
2J2

)2 � 5

4

⇥⌅
, if 1 <

J1
J2

< 3 (5)

q⇤ =
�
2 cos�1(

J1
2J2

+
1

2
),

2�↵
3

⇥
, if

J1
J2

< 1, (6)

the other five equivalent wavevectors are obtained by �/3 ro-
tations of the above results. Generally, these states are incom-
mensurate spin spirals.

Mean field theory from the ordered regime—Starting from
the magnetic ordered phase, the existence and properties of
the phase transition can be analyzed within a standard mean-
field theory (MFT). We decouple the exchange interaction into
an effective Zeeman field which is then self-consistently de-
termined for each sublattice. We parameterize the spin order
as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+ ⇥)x̂+ sin(q · r+ ⇥)ŷ]. (7)

in which, ⇥ is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2, the 120o state and the incom-
mensurate spin spiral state for J1 < 3J2. Zero-temperature

A

B

J1J2

Exchange between 2 neighboring 
triangular layers

* Exchange interaction

* Single-ion anisotropy allowed  
   by symmetry and S=1 

Hani = D
X

i

(Sz
i )

2

Exchange is already frustrated, the magnetic 
order would be very weak if there is any.

* Single-ion anisotropy would suppress the
  weak magnetic order and favors a trivial
  quantum paramagnetic state  

Y

i

|Sz
i = 0�

* Expect: J1, J2 � D

J1, J2 ⌧ D

weakly ordered state
quantum paramagnetic state

Here, we explain the seemingly QSL phenomenology by a conventional mechanism. To explain 
linear-T heat capacity is quite challenging as it requires a constant DOS at low energy. It is very hard 
to have a constant low energy DOS without introducing spinons. Here I provide the first example of 
such an explanation without introducing spinons.


In our theory, we consider a minimal model. The first interaction is the spin exchange. We include 
both intra and inter layer exchange. This exchange is frustrated, if it is orders, the ordering moment 
is going to be small. 


Then we add single-ion anisotropy allowed by symmetry. If anisotropy is large, a trivial quantum 
paramagnetic state is favored with the Sz=0 at every state. 


So we expect, when exchange dominant, we obtain weakly ordered state, when single-ion 
anisotropy is dominant, we obtain a quantum paramagnetic state. 
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Map spin to rotor

H
rotor

=

1

2

X

ij

Jij
h
2 cos(�i � �j) + ninj

i
+

X

i

Dn2

i

spin rotor

  XY spin order,    condensed boson, 

quantum paramagnet, uncondensed boson, 

Sz
i

S+
i

p
2ei�i

[⇥i, nj ] = i�ij

Sz = 0

[S+
i , S�

i ] = 2�ijS
z
i

ni(integer valued)

Equivalent rotor Hamiltonian

This is essentially an extended boson-Hubbard model 
and can be solved by standard methods.

Phase diagram
At dashed curve, quadratic 

dispersion is obtained, so is constant DOS.

3

the other five equivalent wavevectors are obtained by ⌥/3 ro-
tations about Brillouin zone (BZ) center from the above result.
Generally, these states are incommensurate spirals.

Weiss mean-field theory—Starting from the magnetically
ordered phase, the existence and properties of the phase tran-
sition can be analyzed within a standard mean-field theory
(MFT). We decouple the exchange interaction into an effec-
tive Zeeman field which is then self-consistently determined
for each sublattice. We parameterize the spin order as,

SA(r) = M [cos(q · r)x̂+ sin(q · r)ŷ],
SB(r) = M [cos(q · r+  )x̂+ sin(q · r+  )ŷ]. (7)

in which,  is the relative phase between two sublattices that
depends on J1/J2, and M is magnetic order parameter to be
determined self-consistently. This parameterization describes
both the Néel state for J1 > 3J2 and the incommensurate spin
spiral states for J1 < 3J2, with the 120o state as the limiting
case J1 ⌃ 3J2 of the triangular lattices. Zero-temperature
MFT yields that in the vicinity of the QCP the magnetic order
parameter is

M =
⌃

2(1�D/Dc) (8)

with the critical anisotropy parameter Dc = 12(J1 � J2) for
the Néel state when J1 > 3J2, Dc = 6J2 for the 120o state at
vanishing J1, and Dc = 6J2 + 2J2

1/J2 for the incommensu-
rate spin spiral state when J1 < 3J2. We expect that as usual
the mean-field analysis overestimates Dc (see Fig. 2).

Within this MFT, we also study the magnetization process
for the QP phase in external magnetic fields. For field applied
along z axis, the zero-temperature susceptibility vanishes. For
field applied along x (or y) axis, the zero-temperature spin
susceptibility saturates to a constant

⌦⇧
0 =

2µ0(gµB)2

D + 12J
. (9)

In a powder sample (studied in experiments), the zero-
temperature spin susceptibility averages to ⌦av

0 = 2⌦⇧
0 /3.

Mean-field theory from paramagnetic phase—It is conve-
nient to model this easy-plane system with rotor variables, by
introducing an integer-valued field ni and 2⌥-periodic phase
variable  i, which satisfy [ i, nj ] = i⇥ij . With the mapping,
Sz
i ⌥ ni and S+

i ⌥
�
2ei⇧i , the rotor Hamiltonian reads

Hrotor =
1

2

⌅

ij

Jij [2 cos( i �  j) + ninj ] +
⌅

i

Dn2
i , (10)

where Jij takes J1 (J2) for NN interlayer (intralayer) bonds.
Although ni only takes the values of ±1, 0 in the spin model,
due to the substantial anisotropy D, we expect that relaxing
this restriction is unlikely to have significant effects.

Using a standard coherent state path integral, we integrate
out the field ni and obtain the partition function,

Z =

⇧
D⇥D⌅ e�S�i

P
i

R
d⌅�i(|�i|2�1). (11)

Here,

S =

⇧
d�

⌅

k

(4DI+2Jk)
�1
µ⇤ ⇣⌅⇥

⇥
µ,k⇣⌅⇥⇤,�k+

⌅

ij

Jij⇥
⇥
i⇥j ,

(12)
we have represented ei⇧i by the unimodular field ⇥⇥

i , Jk is the
2⇤ 2 exchange coupling matrix written in momentum space,
µ, ⌃ are the sublattice indices, and I is a 2⇤ 2 identity matrix.
The unimodular constraint on ⇥i is enforced by the Lagrange
multiplier fields ⌅i. We proceed by introducing a saddle-point
approximation; by assuming i⌅i = ��(T ) at the saddle point,
we integrate out the ⇥ field and obtain the saddle-point equa-
tion (SPE) for �(T ) in QP phase,

⌅

i=±

⇧

k⌅BZ

d3k

uBZ

2D + si,k
⇤i,k

coth(
�⇤i,k
2

) = 2, (13)

where uBZ = 16⌥3/
�
3 is the volume of 3D BZ, s±,k ⇧

±2|J1 cos(kz
2 )|

⌥
3 +

⇤
{b} cos(k · b) + J2

⇤
{b} cos(k · b)

are the eigenvalues of Jk, and ⇤±,k are the two spin excitation
modes,

⇤±,k =
⌥

(4D + 2s±,k)(�(T ) + s±,k)

=

�
2
�
(s±,k +D +

�(T )

2
)2 � (D � �(T )

2
)2
⇥
(14)

J1/J2

D

J
Quantum Paramagnet

Spin Spirals
Néel
State

0 1 2 3 40

1

2

3

4

FIG. 2. (Color online) Zero-temperature phase diagram determined
from the SPE in Eq. (13). Dashed (red) curve indicates the location
where D = �0/2, which is important in the discussion of T -linear
Cv(T ) below. J � J1 + J2.

When the left hand side (LHS) of the SPE Eq. (13) is less
than 2 for any choice of �(T ), the rotor is condensed which
signals the presence of magnetic order. Therefore, besides
the transition temperature from the high-temperature param-
agnetic phase to the low-temperature spin spirals, we also ob-
tain the critical Dc that separates spin spirals from QP phase
and the phase diagram at T = 0 (see Fig. 2). As expected,
Dc obtained here is smaller than the one determined previ-
ously from the Weiss MFT. In particular, Dc/J is minimal at
J1 = J2 corresponding to the largest frustration at this point.
Right at the QCP and T = 0, �(0) ⇧ �0 = 3J2 + J2

1/J2

D

J1 + J2

hS+i 6= 0 hei�i 6= 0

hei�i = 0

To solve our minimal model, we simplify the problem and map spin to 
rotor variable . 

Sz map to rotor, S+ map to this phase variables. Spin ordering 
corresponds the boson condensation of rotor. The quantum paramagnet 
corresponds to a uncondensed rotor. 


This is the equivalent rotor Hamiltonain. This is essentially a extended 
Bose-Hubbard model and can be solved by standard method. 


Both the phase diagram and low energy spin excitation can be obtained. 


The presence of inter-site density-density interaction modifies the low 
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Prediction

�z = 0
�av =

2

3
�?
0

* Spin susceptibility

�?
0 =

2µ0(gµB)2

D + 12(J1 + J2)
field in the plane,

field normal to the plane,

Powder average

Experimental check: susceptibility on single-crystal sample.

* Linear-T heat capacity: due to an emergent
  quadratic spin excitation near the criticality

⇠ T

J1 = J2, 0.7J2, 1.5J2, 1.8J2, 0.3J2, 0 with D ⇡ Dc and

D = 1.24J, 1.311J, 1.36J, 1.472J, 1.576J, 2.01J, respectively.

4

�

M

M

��
J

��
J

C C

M

kx
kx

kxkx kyky

ky ky

(a) (b)

(c) (d)

(e)

FIG. 3. (Color online) The evolution of the low-energy spin ex-
citations in kx-ky plane with kz = 0 at the QCP. The parame-
ters used in the figures are (a) J1 = 1.5J2, Dc = 1.357J , (b)
J1 = J2, Dc = 1.226J , (c) J1 = 0.8J2, Dc = 1.274J , (d)
J1 = 0, Dc = 2.01J . The low-energy gapless contours are marked
with thick black lines in (a-c), while in (d) the low-energy gapless
points are marked with black dots. Lattice constants in xy plane are
set to 1. (e) is the Brillouin zone (BZ) of the honeycomb lattice.
For J1 > J2, the contour line is centered in the middle of BZ. For
J1 < J2, the contour lines are centered around and eventually shrink
to the corners of BZ in the limit J1 � 0. The “3” points in (b)
correspond to “M” points in (e) with kz = 0.

and the low-energy spin mode ⇥�,k develops gapless excita-
tions. As shown in Fig. 3(a-d), the momenta of the gapless
excitations form contour lines that are identical to the con-
tours of degenerate classical ground state spiral wavevectors
in Eq. (4). Moreover, as J1/J2 increases from 0, the contour
lines around the BZ corners gradually expand and meet at M
points when J1 = J2.

In the vicinity of QCP with T ⇧ J—At finite T , �(T ) in-
creases with temperature and we define �(T ) ⇥ �0+�1(T ).
The spin excitation ⇥±(k) also picks up a self-energy via the
temperature dependence of �(T ). By numerically solving
the SPE, we find that, near the QCP �1(T ) ⌥ T 2 at very
low temperatures with T ⇧ J . Here, we provide an analyti-
cal argument; a similar argument is readily formulated for the
quasi-2D limit with J1 ⇧ J2. At T ⇧ J , the low-energy spin
excitation near the contour lines can be approximated with the
dispersion,

⇥�,k ⌅
⇤

A�1(T ) + v2⇤,k0
k2⇤ + v2z,k0

k2z (15)

where A = 4Dc � 2�0, k0 is a momentum coordinate run-
ning along the contour lines, k⇤ is normal to the tangent of the
contour line at k0, and we have neglected the weak tempera-
ture dependence of the speeds v2⇤, v

2
z . Eq. (15) is expected to

be a good approximation for ⇥�(k) less than a cutoff energy

⇤ with T ⇧ ⇤⇧ J . The SPE can be approximated as

� ⇥

k0,k?,kz

A coth(�2
⇥
A�1(T ) + v2⇤k

2
⇤ + v2zk

2
z)

2
⇥

A�1(T ) + v2⇤k
2
⇤ + v2zk

2
z

+ b = 2,

(16)
where the integral is over the region around the contour
lines with |k⇤|, |kz| . ⇥, and b is the approximately T -
independent contribution from outside this region. At low
temperature, the temperature-dependent part of the integral
becomes independent of the cutoff ⇤, and only depends on
T via the dimensionless parameter A�1(T )

T 2 . In order for
the integral to be constant in temperature, we thus expect
�1(T ) ⌥ T 2 in the limit T ⇧ ⇤. This result immediately
leads to the internal energy, which can be approximated as

E ⇤
� ⇥

k0,k?,kz

⇥
A�1(T ) + v2⇤k

2
⇤ + v2zk

2
z

e�
 

A�1(T )+v2
?k2

?+v2
zk

2
z � 1

⌥ T 3 (17)

for T ⇧ ⇤. This gives Cv ⌥ T 2 in this temperature regime.
This T 2-Cv regime at low temperatures is confirmed by our
numerical results which are shown in Fig. 4(a).

In Fig. 4(a), we also find that, as J1/J2 moves to the point
J1 = J2 from either side, the temperature range of the T 2-
Cv regime diminishes. We attribute this to the observation
that the T = 0 DOS at the QCP increases with energy, then
saturates to a roughly constant value. This saturation energy
(in units of J) is found to be lowest when J1 = J2.

Linear-T specific heat at intermediate T—In Fig. 4(a) and
(b), we find an intermediate temperature regime with Cv ⌅
c1T + c0. To account for this regime, we first note that when
D ⌅ �(T )

2 , the low-energy spin excitation is approximately
the square root of a perfect square:

⇥�,k ⌅
 
2|s�,k +D +

�(T )

2
|

⌅
 
2(D +

�1(T )��0

2
) +

k2⇤
2m⇤,k0

+
k2z

2mz,k0

.(18)

If D = �0
2 , such dispersion on contour lines in 3D gives

a constant DOS at low energies and, because �(T ) is only
weakly T -dependent in this case, this leads to Cv ⌥ T at
low temperatures. This conclusion also holds in the 2D limit
J1 ⇧ J2. As shown in Fig. 2, Dc is slightly greater than �0

2

and the system at D = �0
2 is magnetically ordered at very

low temperatures. Once the system enters into the paramag-
netic phase, a linear-T Cv is obtained, which is shown as the
top curve in Fig. 4(b). Moreover, this linear-T Cv regime per-
sists even when D is increased to or slightly beyond Dc.

Discussion—Here we discuss the experiments of Ref. 15 in
terms of our proposal that the system is proximate to a QCP.
The spin susceptibility is observed to saturate to a constant
below 25K, which is consistent with our theoretical predic-
tion in Eq. (9). Experiments also find a power-law specific
heat Cv(T ) ⌃ �T ⇥ with ⇤ ⌅ 1.0(1) for 0.35K < T < 7K
(or 0.02J < T < 0.34J)[15]. Determination of both these
behaviors relies on the subtraction of a magnetic impurity

Evolution of low energy spin excitation 
at the critical point as  J2/J1 increases.

Experimental check: dynamical spin structure factor 
from inelastic neutron scattering.  

(J = J1 + J2)

Since the model still has U(1) symmetry, i.e. rotation around z axis, the spin susce for field 
along z direction si zero. However, if the  fiedl is in plane ,the spn susc is finite. The sampe is 
powder sample, so spins sus is constant. To check the validity of our model, one should try 
single crystal smapela and measure suscpet for field in the normal and nrmal to the palne. 


From the low-energy spin excitation, we can compute the heat capacity.  This is a plot of heat 
capacity at the quantum criticality. There is a broad linear-T heat capacity regime at 
intermediate temperature. That’s due to the quadratic dispersion, which enhances the DOS. At 
very low temperature, the dispersion become linear, the heat capacity crossover to T^2 
behavior. The crossover temperature is controlled by inter- and intra- layer coupling. 


This is a plot of low energy spin excitation at quantum criticality for different inter- and intra- 
layer coupling. And these contours have gapless excitations. One can confirm this by inelastic 
neutron scattering. 
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Na4Ir3O8-a promising QSL candidateNa4Ir3O8 has a hyperkagome sublattice of Ir ions. 

Ir3: regular triangle 

5d5 LS 

Ir4+ 

S = 1/2 

pyrochlore 

IrO6 

Na 

hyperkagome Na4Ir3O8 

! : Ir, " : Na 

Ir Na 

kagome garnet 
all Ir-Ir bonds: equivalent 

(slightly distorted) 
hyperkagome

corner-sharing triangles in 3D
kagome

Na4Ir3O8 has a hyperkagome sublattice of Ir ions. 

Ir3: regular triangle 

5d5 LS 

Ir4+ 

S = 1/2 

pyrochlore 

IrO6 

Na 

hyperkagome Na4Ir3O8 

! : Ir, " : Na 

Ir Na 

kagome garnet 
all Ir-Ir bonds: equivalent 

(slightly distorted) very little disorder

Na-NMROkamoto, etc, Phys. Rev. Lett. 99, 137207 (2007)

Takagi

Now I want to discuss this material Na4Ir3O8, which is a promising 
candidate for qsl. Ir atom carries the moment. Ir forms a lattice called 
hyperkagome, which is a corner sharing triangular structure in 3 
dimension. Kagome is a corner sharing triangular structure in 2d.  this 
is spin sucsptibyu, heat capacity, and NMR data. No ordering is 
found. 
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spinons are inherently 1D, they are confined to the chains, and to take 
advantage of the transverse exchange, they must be bound into S = 1 
‘triplon’ bound states (Fig. 3b). These triplons move readily between 
chains and are responsible for the transverse dispersion observed in 
the experiment. Thus, the observation of triplons provides a means to 
distinguish 1D spinons from their higher-dimensional counterparts. 
A quantitative theory of this physics agrees well with the data, with no 
adjustable parameters. It is therefore understood that Cs2CuCl4 is an 
example of ‘dimensional reduction’ induced by frustration and quan-
tum fluctuations. This phenomenon was unexpected and might have a 
role in other correlated materials. Perhaps it is related to the cascade of 
phases that is observed in the isostructural material Cs2CuBr4 in applied 
magnetic fields75.

Spin–orbital quantum criticality in FeSc2S4
Among the entries in Table 1, FeSc2S4 stands out as a material that has 
not only spin degeneracy but also orbital degeneracy. This is common 
in transition-metal-containing compounds76,77. It is possible to imagine 
a quantum orbital liquid78–80, analogous to a QSL. Like the more familiar 
(theoretically) QSL, the quantum orbital liquid is experimentally elu-
sive. Nevertheless, experimen talists have observed that FeSc2S4, which 
has a twofold orbital degeneracy, evades order down to T = 50 mK, and 
on this basis it was characterized as a spin–orbital liquid81–83.

Recently, it was suggested that this liquid behaviour is due not to frus-

tration but to a competition between spin–orbit coupling and magnetic 
exchange84. Microscopic estimates of the spin–orbit interaction, λ, 
indeed show that its strength, λ/kB = 25–50 K, is comparable to the Curie–
Weiss temperature, 45 K. As a result, the material is serendipitously close 
to a quantum crit ical point between a magnetically ordered state and 
a ‘spin–orbital sin glet’, induced by spin–orbit coupling84 (Fig. 5). This 
picture seems to explain data from a variety of experiments, including 
NMR81, neutron-scattering82, spin susceptibility83 and specific-heat83 
measurements. Most notably, the anomalously small excitation gap of 
2 K that was measured in neutron-scattering82 and NMR81 experiments 
is understandable — this gap vanishes on approaching the quantum 
critical point. If the theory is correct, FeSc2S4 can be viewed as a kind of 
spin–orbital liquid with significant long-distance entanglement between 
spins and orbitals. Because the material is not precisely at the quantum 
critical point, however, there is a finite correlation length; therefore, this 
entanglement does not persist to arbitrarily long distances, as would be 
expected in a true RVB state.

Future directions
I have only touched the surface of the deep well of phenomena to 
be ex plored, experimentally and theoretically, in frustrated magnets 
and spin liq uids. In spin ice, there are subtle correlations, collective 
excitations and emergent magnetic monopoles, all of which are highly 
amenable to laboratory studies. In sev eral frustrated magnets with spin 

Figure 4 | Excitations of quantum antiferromagnets. a, In a quasi-1D 
system (such as the triangular lattice depicted), 1D spinons are formed as 
a domain wall between the two antiferromagnetic ground states. Creating 
a spinon (yellow arrow) thus requires the flipping of a semi-infinite line 
of spins along a chain, shown in red. The spinon cannot hop between 
chains, because to do so would require the coherent flipping of an infinite 

number of spins, in this case all of the red spins and their counterparts on 
the next chain. b, A bound pair of 1D spinons forms a triplon. Because a 
finite number of spins are flipped between the two domain walls (shown 
in red), the triplon can coherently move between chains, by the flipping of 
spins along the green bonds. c, In a 2D QSL, a spinon is created simply as an 
unpaired spin, which can then move by locally adjusting the valence bonds.

Table 1 | Some experimental materials studied in the search for QSLs
Material Lattice S ΘCW (K) R* Status or explanation 

κ-(BEDT-TTF)2Cu2(CN)3 Triangular† ½ −375‡ 1.8 Possible QSL
EtMe3Sb[Pd(dmit)2]2 Triangular† ½ −(375–325)‡ ? Possible QSL  
Cu3V2O7(OH)2•2H2O (volborthite) Kagomé† ½ −115 6 Magnetic
ZnCu3(OH)6Cl2 (herbertsmithite) Kagomé ½ −241 ? Possible QSL 
BaCu3V2O8(OH)2 (vesignieite) Kagomé† ½ −77 4 Possible QSL  
Na4Ir3O8 Hyperkagomé ½ −650 70 Possible QSL  
Cs2CuCl4 Triangular† ½ −4 0 Dimensional reduction 
FeSc2S4 Diamond 2 −45 230 Quantum criticality
BEDT-TTF, bis(ethylenedithio)-tetrathiafulvalene; dmit, 1,3-dithiole-2-thione-4,5-ditholate; Et, ethyl; Me, methyl. *R is the Wilson ratio, which is de fined in equation (1) in the main text. For EtMe3Sb[Pd(dmit)2]2 
and ZnCu3(OH)6Cl2, experimental data for the intrinsic low-temperature specific heat are not available, hence R is not determined. †Some degree of spatial anisotropy is present, implying that Jʹ#�#J in Fig. 1a. ‡A 
theoretical Curie–Weiss temperature (ΘCW) calcu lated from the high-temperature expansion for an S#=#½ triangular lattice; ΘCW#=#3J/2kB, using the J fitted to experiment. 
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Wilson Ratio

30-40

~1.0-3.0

Experiments on polycrystal sample

* spin-1/2 moment on hyperkagome lattice
*                          , no ordering down to 2K, 
* very large T=0 spin susceptibility
* linear-T heat capacity

�CW = �650K f > 325

Wilson Ratio W ⌘ ⇥2

3

⇤/µ2
B

�/k2B
� � Cv

T
|T!0 W =35 in polycrystal Na4Ir3O8

Wilson Ratio quantifies spin fluctuations that enhance the susceptibility.

Free electron gas
He-3 (almost localized fermi liquid)
Fe-Superconductor (Fe1.04Te0.67Se0.33)

W = 1

W = 4
W = 5.7

Basic physics in Na4Ir3O8

- Strong spin-orbit coupling (Z=77)
- Multi-orbital bands, 3 t2g orbitals
- Close to metal-insulator transition    
  (true for almost all iridates under
     current investigation )L. Balents, Nature 464, 199 (2010)

GC, et al, Phys. Rev. Lett. 102, 096406 (2009)
D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984)
J. Yang, et al, JPSJ, 79, 074704, (2010)

Any reasonable modeling should capture these three physics!

the spin moment is spn 1/2, CW temp is 650K, no ordeing down to 2K, frusta 
parameter is avery large. spins scuspt is const, heat capac is linear in 
temperature. 


Using the heat capacity and spin scuspt, one can compute hte Wilons ratio. 
Which is quite large W=35. To give you a feeling about the magnetic of this wilson 
ratio, let’s look at wilson ratio of some other qsl. in this table, the wilson ratio of all 
other qsl candiate is of order of unity.


Let’s also look at some other systems. Free fermi gas has wilson ratio equal to 1. 
He-3, which is interpret as 

an almost localized fL has wilson ratio 4. 

Fe-SC, which is believed to be a mutli orbital systel has wilson ratio 5.7. 


What distinguish NIO from these other materials 

are the following three basic physics. 


it has strong soc 

it is mutli-obital band, all 3 t2g bands are invovled

it is close to metal-insualtor xtion.


Other qsl candidates are described either by single-band hubbard model or 
heisenberg model with spin-rotational symmetry. 


He-3 is close to Mott insulator xiton, but it is also a single-band model. Fe-SC is 
believed to be a multi-band system, but it does not have strong SOC. Gang Chen’s theory group 

Gang Chen’s theory group



Iridium is very heavy!

xy,xz,yz

J=1/2
J=3/2

SOC

Formation of local moment in the strong Mott regime
eg

t2g

crystal field splitting

IrO6

Ir4+, d5

GC, Balents, PRB 2008

Ir is very heavy, so there is a large soc. 
the local moment in the mott regime was 
first pointed out in this work.


d electron orbital split into upper eg and 
low t2g. The lower t2g is further spit by 
soc into upper spin j=1/2 and lower j=3/2. 
Four electrons completely fill j=3/2, and 
one electron fill j=1/2 and give a spin-1/2 
local moment.

Gang Chen’s theory group 
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Unpublished new expts

Small change (~18%) in 
linear-T heat capacity

C/T

T 2(K2)
4 40

Large enhancement of magnetic susceptibility.
Susceptibility increases with resistivity 
(several other single-crystal samples)

0 300
T (K)

�

  Polycrystal insulating sample (Okamoto, et al, PRL 2007)

Single-crystal metallic sample (R. Perry, et al, unpublished, Prof. Takagi’s 
group) 

Now we have single crystal sample. Depending 
on the pprepation, thie signle cystralt sometime 
is metallic, some time is insuator. And 
experimental list found, as the sytem moves 
from metal to insualtor, thersei s very little 
change in heat capacity, but there is a huge 
increase in spin suscpetiblity.  

Gang Chen’s theory group 
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Summary of the new expts:  
schematic plots

�

0
Mott 

transition

Metal
Insulator

(QSL)
0

Mott 
transition

Metal

�

control
parameter

0

Mott 
transition

Metal control
parameter

W

Wilson Ratio W ⌘ ⇥2

3

⇤/µ2
B

�/k2B

5

35 Q1: Why is W ( or �) enhanced in the insulating phase? 
Q2: Why is W ( or �) so sensitive to Mott transition? 

Insulator
(QSL)

� � Cv

T
|T!0

control parameter: carrier 
concentration, chemical pressure, etc.

Let me sumarize the new expts with the following schematic 
plots. I imagnore there is a control prameter for the metal 
insuatlr xtion. this prameter can be chemical pressure,  or 
somethign else which we don’t know. 


As the system cross the metal insuatlro xtion, the heat capacity 
has little cahange,

 but suscept is strong enhanaced, so is the wilson ratio. It rise 
from 5 to 35. 


We are going to address the following two question: 

why is enhaced in the niuslating phase

why is so sentistive to mott xtion.


Gang Chen’s theory group 
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Theoretical proposals

U(1) QSL?

Z2 QSL (less likely)

VBS (less likely) Phys. Rev. Lett. 105, 237202 (2010)R. Moessner, etc.

Phys. Rev. Lett. 101, 197201 (2008)Y. Zhou, P. Lee, etc

Suppress Cv by spinon pairing to enhance W (interesting)

Explain the susceptibility remaining constant by large SOC 

Kanoda’s group 2003-

�� (ET )2Cu2(CN)3

The issue of spin frustration has long been a central subject in the study of magnetism. In

particular, the possible spin liquid on triangular lattices has been of keen interest as a novel

quantum phase of matter and has become increasingly attractive with the idea that this state is

possibly behind high-Tc superconductivity (109). However, the triangular-lattice Heisenberg

model was found to have the 120-degree-oriented Néel ground state instead of any quantum-

disordered state (54). In such a situation, however, it is found that spin states without magnetic

ordering, which should be called spin liquid, were found in the two organic Mott insulators,

k-(ET)2Cu2(CN)3 and EtMe3Sb[Pd(dmit)2]2, which reside near the Mott transition. With the

use of chemical/physical pressure and intense theoretical works, the series of experiments

showed that the spin liquid is realized in a range of anisotropy of triangular lattices and in the

intermediately correlated regime on the verge of Mott transition, not in the strongly correlated

regime; namely, the electron itinerancy in the Mott insulator is key to realizing spin liquid on

quasi-triangular lattices. How the spin liquid connects to the metallic and superconducting

phases is a problem to consider in the future.

The nature of spin liquid in the two materials is mysterious. The excitation gap in

k-(ET)2Cu2(CN)3 is controversial; specific heat points to a gapless ground state, whereas

thermal conductivity behaves as though gapped by 0.46 K. The NMR relaxation rate exhibits

a power-law temperature dependence, which is in between the two extreme behaviors. As for

EtMe3Sb[Pd(dmit)2]2, both thermodynamic measurements are consistent with gapless excita-

tions, while the NMR relaxation rate may suggest a nodal gap. The result of thermal conduc-

tivity showing a T-linear term with a long mean-free path of mm will strongly constrain

theoretical models. Appearance of anomalies at finite temperatures can be a signature of some

kind of symmetry breaking. In this sense, the 5–6 K anomaly observed in NMR, specific heat,

and thermal conductivity in k-(ET)2Cu2(CN)3 points to this possibility. Interestingly, 1 K is the

characteristic temperature in the NMR relaxation rate for both materials, whereas it is not so
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Figure 17

Phase diagram for the b0-Pd(dmit)2 salts. Abbreviations: FP, frustrated paramagnetic (state); AFLO, antifer-
romagnetic long-range ordered (state); CO, charge-ordered (state); QSL, quantum spin liquid (state).
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Mott Transition from a Spin Liquid to a Fermi Liquid in the Spin-Frustrated Organic Conductor
!-!ET"2Cu2!CN"3

Y. Kurosaki,1 Y. Shimizu,1,2,* K. Miyagawa,1,3 K. Kanoda,1,3 and G. Saito2

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Division of Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan

3CREST, Japan Science and Technology Corporation, Kawaguchi 332-0012, Japan
(Received 15 October 2004; revised manuscript received 6 April 2005; published 18 October 2005)

The pressure-temperature phase diagram of the organic Mott insulator !-!ET"2Cu2!CN"3, a model
system of the spin liquid on triangular lattice, has been investigated by 1H NMR and resistivity
measurements. The spin-liquid phase is persistent before the Mott transition to the metal or super-
conducting phase under pressure. At the Mott transition, the spin fluctuations are rapidly suppressed and
the Fermi-liquid features are observed in the temperature dependence of the spin-lattice relaxation rate
and resistivity. The characteristic curvature of the Mott boundary in the phase diagram highlights a crucial
effect of the spin frustration on the Mott transition.

DOI: 10.1103/PhysRevLett.95.177001 PACS numbers: 74.25.Nf, 71.27.+a, 74.70.Kn, 76.60.2k

Magnetic interaction on the verge of the Mott transition
is one of the chief subjects in the physics of strongly
correlated electrons, because striking phenomena such as
unconventional superconductivity emerge from the mother
Mott insulator with antiferromagnetic (AFM) order.
Examples are transition metal oxides such as V2O3 and
La2CuO4, in which localized paramagnetic spins undergo
the AFM transition at low temperatures [1]. The ground
state of the Mott insulator is, however, no more trivial
when the spin frustration works between the localized
spins. Realization of the spin liquid has attracted much
attention since a proposal of the possibility in a triangular-
lattice Heisenberg antiferromagnet [2]. Owing to the ex-
tensive materials research, some examples of the possible
spin liquid have been found in systems with triangular and
kagomé lattices, such as the solid 3He layer [3], Cs2CuCl4
[4], and !-!ET"2Cu2!CN"3 [5]. Mott transitions between
metallic and insulating spin-liquid phases are an interesting
new area of research.

The layered organic conductor !-!ET"2Cu2!CN"3 is the
only spin-liquid system to exhibit the Mott transition, to
the authors’ knowledge [5]. The conduction layer in
!-!ET"2Cu2!CN"3 consists of strongly dimerized ET
[bis(ethlylenedithio)-tetrathiafulvalene] molecules with
one hole per dimer site, so that the on-site Coulomb
repulsion inhibits the hole transfer [6]. In fact, it is a
Mott insulator at ambient pressure and becomes a metal
or superconductor under pressure [7]. Taking the dimer as a
unit, the network of interdimer transfer integrals forms a
nearly isotropic triangular lattice, and therefore the system
can be modeled to a half-filled band system with strong
spin frustration on the triangular lattice. At ambient pres-
sure, the magnetic susceptibility behaved as the triangular-
lattice Heisenberg model with an AFM interaction energy
J# 250 K [5,8]. Moreover, the 1H NMR measurements
provided no indication of long-range magnetic order down
to 32 mK. These results suggested the spin-liquid state at

ambient pressure. Then the Mott transition in
!-!ET"2Cu2!CN"3 under pressure may be the unprece-
dented one without symmetry breaking, if the magnetic
order does not emerge under pressure up to the Mott
boundary.

In this Letter, we report on the NMR and resistance
studies of the Mott transition in !-!ET"2Cu2!CN"3 under
pressure. The result is summarized by the pressure-
temperature (P-T) phase diagram in Fig. 1. The Mott

Superconductor

(Fermi liquid)

Crossover

(Spin liquid) onset TC

R = R0 + AT2

T1T = const.

(dR/dT)max

(1/T1T)max

Mott insulator

Metal

Pressure (10-1GPa)

FIG. 1 (color online). The pressure-temperature phase diagram
of !-!ET"2Cu2!CN"3, constructed on the basis of the resistance
and NMR measurements under hydrostatic pressures. The Mott
transition or crossover lines were identified as the temperature
where 1=T1T and dR=dT show the maximum as described in the
text. The upper limit of the Fermi-liquid region was defined by
the temperatures where 1=T1T and R deviate from the Korringa’s
relation and R0 $ AT2, respectively. The onset superconducting
transition temperature was determined from the in-plane resis-
tance measurements.
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K. Kanoda group (2003-)

#’-Pd(dmit)2

R. Kato group (2008-)

2 3 4 5
1

10

100

200

PressureExpect superconductivity in conducting side just like kappa-ET organics
if no SC, expect suppressed Cv from metal to QSL.

Similar series expansion like Huse+Singh’s work on kagome

Complicated ground state: 72 sites in one cell

a bit hard to explain power-law Cv and constant        over a large temperature range

� � �

Phys. Rev. Lett. 101, 197202 (2008)M. Lawler, Kim, Balents, etc  

Spinon fermi surface: (nearly) linear-T Cv, constant �
If other interactions are included to break 
spin-rotational symmetry, large W might be obtained for this 
state.

(Heisenberg model)

�

all the three proposals are based on Heisenberg model. We know 
Heisenberg model is not appropriate for this material. In particular, in the 
first proposal (given by my collaborator ,YBKim and L Balents), they propose 
a U(1) QSL with SF. This state should have Wilson ratio of order of unity. 


The second proposal is given Patrick Lee and his collaborators. it is a Z2 
QSL, with spinon pairing.

The proximate conducting state should have electron pairing because 
spinon binds charge boson., which means superductivity. But we don’t 
observe that. However, this proximate SC phase was observed in kappa-ET 
organics. 


The third proposal is given by Prof Roderich Moessner. It is VBS. This state 
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Extended Hubbard model

H = H
hop

+H
soc

+H
ion

+H
int

H
hop

H
soc

H
ion

Hint

-  Tight-binding model

-  Atomic spin-orbit coupling

-  single-ion (crystal field) term due to IrO6 distortion
(drive transition from TBI to metal in 227 iridates)

-  Multiorbital interactions 

Na4Ir3O8 has a hyperkagome sublattice of Ir ions. 

Ir3: regular triangle 

5d5 LS 

Ir4+ 

S = 1/2 

pyrochlore 

IrO6 

Na 

hyperkagome Na4Ir3O8 

! : Ir, " : Na 

Ir Na 

kagome garnet 
all Ir-Ir bonds: equivalent 

(slightly distorted) 

Na4Ir3O8 has a hyperkagome sublattice of Ir ions. 

Ir3: regular triangle 

5d5 LS 

Ir4+ 

S = 1/2 

pyrochlore 

IrO6 

Na 

hyperkagome Na4Ir3O8 

! : Ir, " : Na 

Ir Na 

kagome garnet 
all Ir-Ir bonds: equivalent 

(slightly distorted) 

Basic physics in Na4Ir3O8

- Strong spin-orbit coupling (Z=77)
- Multi-orbital bands, 3 t2g orbitals
- Close to metal-insulator transition    
  (true for almost all iridates under current investigation )

Here, we want to write down a 
honest model to capture the three 
basis physics of NaIO. We 
consider an extended Hubbard 
model.  in the hamiltonian. 

kinetic term, describing hopping,

soc coupling

single ion anisotropy due to the 
distortion of IrO6 octhadron. 


Gang Chen’s theory group 
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Wilson ratios in non-interacting limit

�/t�

W

D/t�

W

D = 0

D = 0.4

� = 1.1
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� = 0

0.0 0.5 1.0 1.5
0

1
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3

4

5

Same reason why Heisenberg 
model is relevant for Sr2IrO4 

is because of the hybridization
of different orbitals

W 6= 1

Mi ⌘ µB(Li + 2Si)

Phys. Rev. B 78, 094403, (2008)G. Chen, et al
G. Jackeli, et al Phys. Rev. Lett. 102, 017205, (2009)
F. Wang, et al Phys. Rev. Lett. 106, 136402, (2011)

two anisotropic parameters

Wilson Ratio is 5 at most.

� -SOC
t� -hopping parameter

Let’s first look the non interacting limit


WIslon raito against spinon orbit, t simga is the 
hopping parameter


spin susc not only has contribution frm FS and 
from non-FS contribuiton.

Gang Chen’s theory group 
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Multi-orbital interaction

U = U 0 + J + J 0

J = J 0

U is the energy scale for excessive electron/charge occupation.
J is the energy scale for electron distribution 
among different spin and orbital states. 
              is like an onsite exchange interaction in the 
Kugel-Khomskii picture.

H
int

= H
c�int

+H
ex�int

Hint = U
X

i,m

n̂i,m,�n̂i,m,⇥ +
U ⇤

2

X

i,m ⌅=m0

n̂i,mn̂i,m0

+
J

2

X

i,m ⌅=m0

d†im�d
†
im0�dim�0dim0� +

J ⇤

2

X

i,m ⌅=m0

d†im�d
†
im⇥dim0⇥dim0�

In atomic limit,

Hc�int =
U

2

X

i

(n̂i � 5)2

Hex�int = �J
X

i,m ⌅=m0

n̂i,mn̂i,m0 +
J

2

X

i,m ⌅=m0

d†im�d
†
im0�dim�0dim0�

+
J

2

X

i,m ⌅=m0

d†im⇥d
†
im⇤dim0⇤dim0⇥

Rewrite interaction,

W. Ko, P.A. Lee,  Phys. Rev. B. 83, 134515 (2011)

H
ex�int

i is a position index.

m is an orbital index.

There are four terms in the mutliorbiatal interaction. 

m is the orbital inddex, i is the lattice site. sigme is the spin. 


intraorbital coulomb

interobital  comblomg

hunds

pair hopping


in atomic limit, we have this realtion. I am going to use this relation.

 


I rewrite the inteaction into two parts, the charge intercation and  spin-robita 
exchange.The two terms have different physics. the first term describe the 
charge interaction. U si the energy scale for excissive electron/charge 
orccupation while the second part is the spin/orbital exchagne,


Sicne these two parts descaribe iddferent physica, we should treat them 
diferetnely. 
Gang Chen’s theory group 
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Strong-coupling MFT: slave-Rotor

S. Florens and A. Georges, 
Phys. Rev. B. 70, 035114 (2004)

Li(R) =
X

m⇥

f†
im�(R)fim�(R)� 5

dim� = e�i⇥ifim�

[�i, Li] = i

Slave-rotor approach to obtain fermionic spinons

spin and charge are confined, we have a “correlated FL”. he�i�ii 6= 0, Z 6= 0,

he�i�ii = 0, Z = 0, we have a “U(1) QSL”. 

D. Pesin, L. Balents, Nature Physics 6, 376 (2010)

Original electron Hamiltonian (with 
the Hubbard-U interaction only )

Hhop =
X

Rim,R0i0m0

tii
0

mm0d
†
im�(R)dim0�(R

�) + h.c.

Hc�int =
U

2

X

Ri

⇣X

m,�

d†im�(R)dim�(R)� 5
⌘2

Hsoc =
�

2

X

Ri

Lmn · ��⇥d
†
im�(R)din⇥(R)

Hion = D
X

Ri�

(Lµ
i )

2
mnd

†
im�(R)din�(R)

Slave-rotor mean field Hamiltonian

Hf = Qf

X

Rim,R0i0m0

(tii
0

mm0f
†
im�(R)fim0�(R

�) + h.c.)

+D
X

Ri�

(Lµ
i )

2
mnf

†
im�(R)fin�(R)+

�

2

X

Ri

Lmn · ��⇥f
†
im�(R)fin⇥(R)

HL =
U

2

X

Ri

L2
i (R) +

X

Ri

(hLi(R) + 5h) +Qr

X

Ri,R0i0

ei�i(R)�i�i0 (R
0) + h.c.

Qf ⌘ hei�i(R)�i�i0 (R
0)i� Qr ⌘

X

mm0�

tmm0hf†
im�fi0m0�(R)if

vs dim� = bifim�

First I want to treat the charge interaction/hubbard U interaction, sicne it 
is the largest enrgy scale and is responsibel for charge localization. 


To desribe the metal insulato transtion, we use the following slator rotor 
appraoch, this similar as the slave bson approach used in the kappa ET 
organics dicscueed i nthe itnrudction. The rotr carry charge, f spinon 
cary spin. Rotor condenson corresponds metallic phase, uncondsend 
torotr corresond to the QSL. 


The hubbard model can be solved by this self consistent MFT  
calcualation. 
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Phase diagram

Two observations:
1. SOC enhances correlation effects.

2. Correlation effects enhance SOC.

Strong correlation physics may be  
seen in 4d/5d electron system.

SOC may be also important even in 3d  
electron system in certain cases.

Three energy scales: SOC, correlation, bandwidth

D = 0.8t� D = 0.4t�
U(1) QSL

Correlated  
FL with SOC

�/t�

U/t�0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0
From left to right, the single-ion anisotropies are 

D = 0.2t� D = 0

D. Pesin, L. Balents, Nature Physics 6, 376 (2010)

This is the mft phase diagram. 


illustrate point 1,

 4d,5d have strong soc, weak correaltion, but soc 
suppress bw, and enhance correlation.


pt 2, soc is weak in 3d, correaltion suppress bw and 
then enehance soc 
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Onsite exchange
We put the onsite exchange interaction in the spinon mean field hamiltonian.

Hex�int =
X

i

⇥
� J

X

m ⌅=m0

f†
im�fim�f

†
im0�0fim0�0 +

J

2

X

m ⌅=m0

f†
im�f

†
im0�0fim�0fim0�

+
J

2

X

m ⌅=m0

f†
im⇥f

†
im⇤fim0⇤fim0⇥

⇤

H
f

! H
f

+H
ex�int

Study Wilson ratio 
along the dashed line

Mi ⌘ µB(Li + 2Si)U(1) QSL

Correlated  
FL with SOC
0 1 2 3 4 5 60.0

0.5

1.0

1.5

2.0

2.5

3.0
�/t�

U/t�

W. Ko, P.A. Lee,  Phys. Rev. B. 83, 134515 (2011)
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Summary for Na4Ir3O8

* Na4Ir3O8 is likely to be a U(1) quantum spin liquid with spinon fermi 
surfaces.

* The large Wilson ratio might arise from the combined effect of spin-orbit 
coupling, correlation and onsite spin-orbital exchange. 

* Other experiments: resonant inelastic x-ray scattering (planned), thermal 
conductivity (seems like a metal), quantum oscillations (too soft gauge field? O. 
Motrunich, PRB 2005)

* Can similar physics be observed in related materials? 
e.g. nonmagnetic R2Ir2O7 (pyrochlore lattice), etc

For experiments,Gang Chen’s theory group 
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Summary and outlook

• I introduce the basis theoretical concepts and experiments related to 
QSLs.

• I review QSL candidate materials and explain the physics in both 
failed and promising examples. 

• Searching for QSL in real materials provides a lot of opportunities 
for theoretical innovation, material synthesis, and experimental 
efforts. 

Gang Chen’s theory group 
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