
Fractionalized charge excitations in a quantum charge liquid on partially-filled pyrochlore lattice

Gang Chen (UofT)

in collaboration with Hae-Young Kee and Yong Baek Kim

arXiv:1402.5425

Triangular lattice Hubbard model at half filling

• Weak Mott insulator spin liquids

from insulating side, perturbation in t/U, competing exchanges

$$H_{\text{pert}} = \sum_{ij} J_{ij} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + K \sum_{1234} (P_{1234} + P_{1234}^{-1}) + \cdots$$

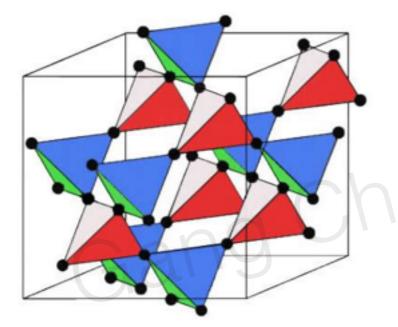
$$4\text{-site ring exchange}$$
A slave particle formalism/description
$$c_{i\sigma} = e^{-i\theta_{i}} f_{i\sigma}$$

$$c_{harge-q_{e}} \qquad c_{harge-0}$$

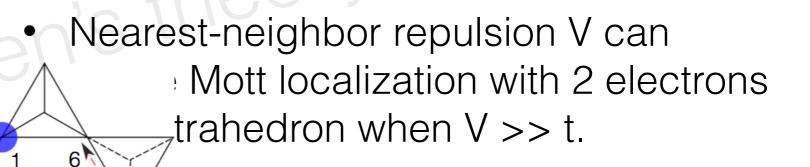
$$spin-0 \text{ boson}$$
Fermi liquid: rotor is condensed
QSL Mott insulator: rotor is gapped
Low energy effective theory of QSL: spinon Fermi surface coupled with
a fluctuating U(1) gauge theory

S.S. Lee, 2008

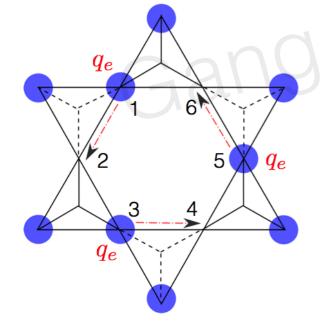
My goal of this talk


- Provide a possible example of quantum spin liquid whose charge excitations are also fractionalized.
- Introduce a (slave-particle) formalism to describe this phase and the related Mott transition.
- Suggest a meaningful physical quantity to measure in a real experiment.

• The extended Hubbard model on a pyrochlore lattice


$$H = -t \sum_{\langle ij \rangle, \sigma} (c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + V \sum_{\langle ij \rangle} n_i n_j + U \sum_i n_{i\uparrow} n_{i\downarrow}$$

 q_e


5

- The electron filling is 1/4 (or 1/8), i.e. two electrons per tetrahedron
- Hubbard U does not cause Mott localization. U is set to be large.

ect: t>>V, Fermi liquid metal t<<V, Mott insulator

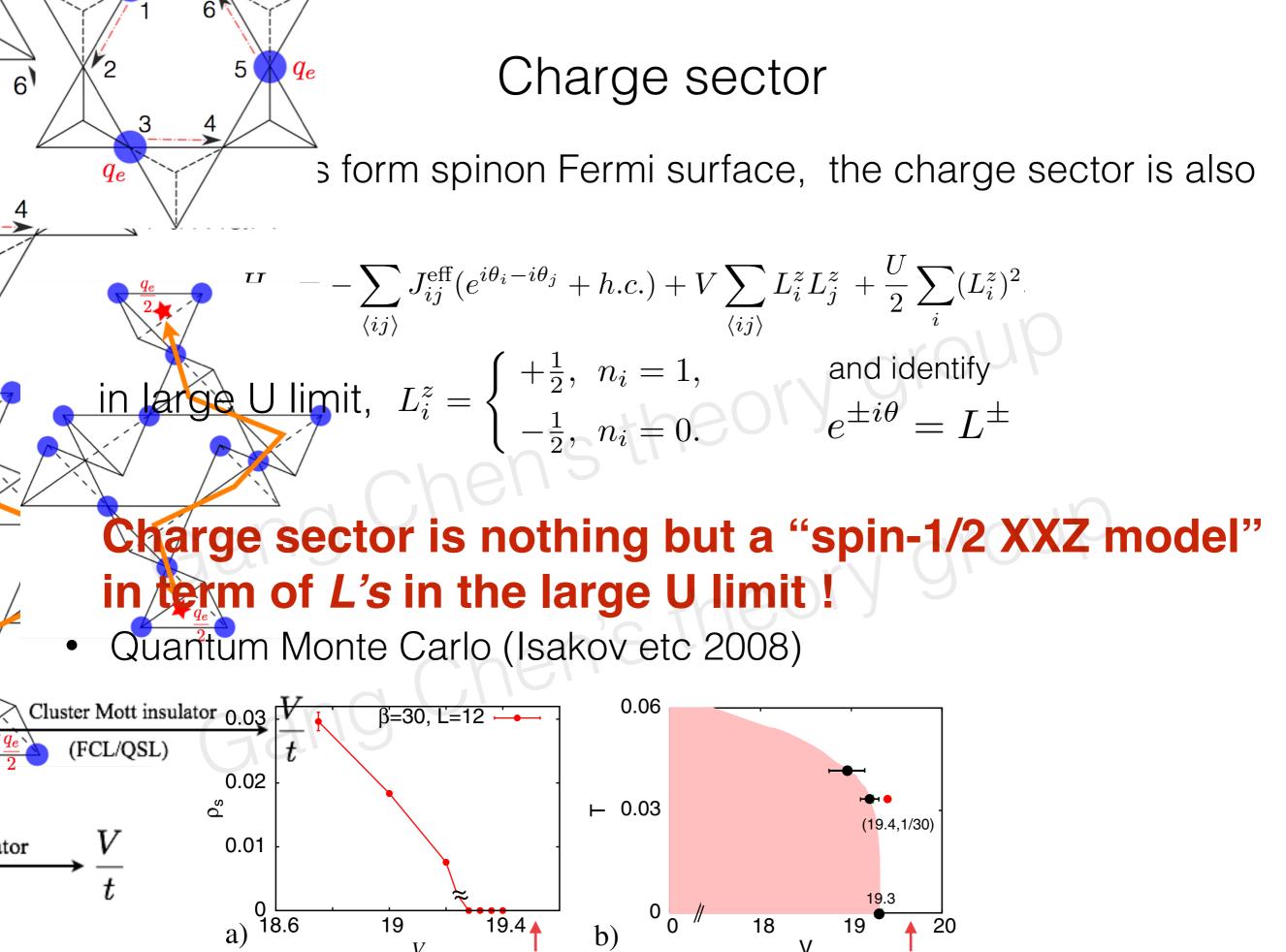
Slave particle formalism/description

• First, rewrite the Hubbard model with slave-rotor form

$$c_{i\sigma} = e^{-i\theta_i} f_{i\sigma}$$
bert space constraint $L_i^z = (\sum_{\sigma} f_i^{\dagger} f_{i\sigma}) - \frac{1}{2}$,
$$L_i^z = (\sum_{\sigma} f_i^{\dagger} f_{i\sigma}) - \frac{1}{2}$$

$$f_{i\sigma}^{\dagger} f_{i\sigma} + \frac{1}{2}$$

$$f_{i\sigma}^{\dagger} f_{i\sigma} + \frac{1}{2}$$

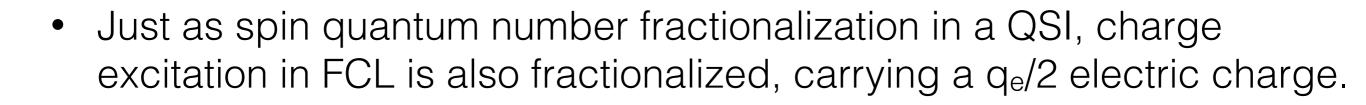

$$H_{sp} = -\sum_{\langle ij \rangle, \sigma} t_{ij}^{eff} (f_i^{\dagger} f_{j\sigma} + h.c.) - \sum_{i,\sigma} (\mu + h_i) f_i^{\dagger} f_{i\sigma}$$

$$H_{ch} = -\sum_{\langle ij \rangle} J_{ij}^{eff} (e^{i\theta_i - i\theta_j} + h.c.) + V \sum_{\langle ij \rangle} L_i^z L_j^z$$

$$+3V \sum_i L_i^z + \sum_i h_i (L_i^z + \frac{1}{2}) + \frac{U}{2} \sum_i (L_i^z)^2$$

$$H_{ij}^{eff} = t \langle e^{i\theta_i - i\theta_j} \rangle \equiv |t_{ij}^{eff}| e^{ia_{ij}}, J_{ij}^{eff} = t \sum_{\sigma} \langle f_{i\sigma}^{\dagger} f_{j\sigma} \rangle \equiv |J_{ij}^{eff}| e^{-ia_{ij}}$$

$$f_{i\sigma}^{\dagger} \to f_{i\sigma}^{\dagger} e^{-i\chi_i}, \theta_i \to \theta_i + \chi_i \text{ and } a_{ij} \to a_{ij} + \chi_i - \chi_j.$$


quantum spin ice quantum spin ice

itation⁶harge fractionalization

From the properties of quantum spin ice, we can identify the corresponding properties for the charge sector !

Quantum spin ice in L = fractional charge liquid in charge sector

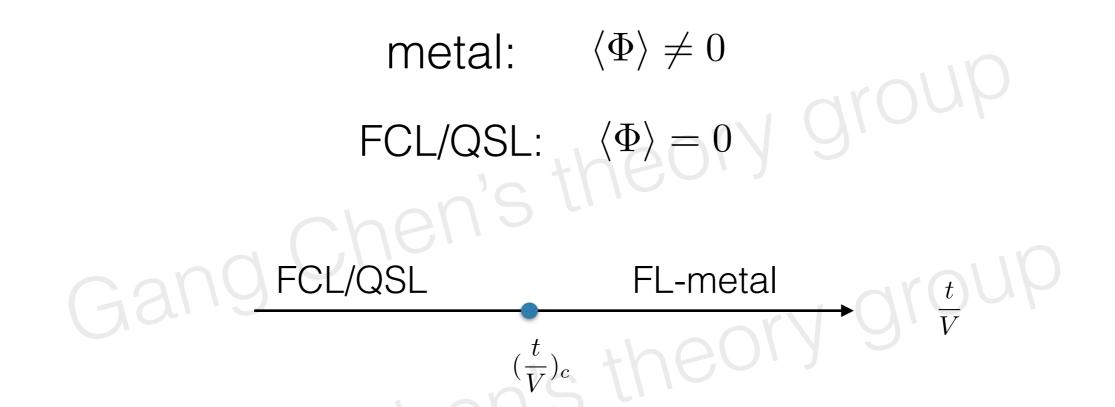
 Low-energy physics is described by an emergent (compact) quantum electrodynamics in 3+1D, indicating an additional U(1) gauge structure in the charge sector.

Slave particle description

 $\frac{charge}{boson} = \frac{q_e}{2}$

rotor excitation fractionalizes into two bosons, each carries half the charge quantum number.

The charge sector becomes


$$\begin{split} H_{\rm ch} &= -J^{\rm eff} \sum_{\mathbf{r}, \mu \neq \nu} \Phi^{\dagger}_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}} l_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\mu}}^{-\eta_{\mathbf{r}}} l_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{\nu}}^{+\eta_{\mathbf{r}}} \\ &+ \frac{V}{2} \sum_{\mathbf{r}} (Q^{\rm ch}_{\mathbf{r}})^2, \end{split}$$

Cartoon of electron fractionalization in the Mott regime

This describes the hopping of charge bosons which minimally couple to the $U(1)_{ch}$ gauge field (*l*) on the dual diamond lattice (i.e. centres of the tetrahedra)

Mott transition

Mott transition occurs when the charge boson condenses

When the charge bosons are condensed, the U(1)_{ch} gauge field is gapped from the Higgs' mechanism. The charge fractionalization is then destroyed. The charge rotor is also condensed from which the U(1)_{sp} gauge field picks up a mass. The spinon and charge rotor are then combined back into a full electron in the Fermi liquid metal phase.

 (Inelastic) X-ray scattering measures U(1)_{ch} gauge field correlation attering Im $[E^{\alpha}_{-\mathbf{k},-\omega}E^{\beta}_{\mathbf{k},\omega}] \propto [\delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{\mathbf{k}^{2}}]\omega\,\delta(\omega - v|\mathbf{k}|),$ $\mathbf{E}_{\mathbf{r}+\frac{1}{2}\mathbf{e}_{\mu}} \equiv L^{z}_{\mathbf{r},\mathbf{r}+\mathbf{e}_{\mu}} \frac{\mathbf{e}_{\mu}}{|\mathbf{e}_{\mu}|} = (n_{\mathbf{r}+\frac{1}{2}\mathbf{e}_{\mu}} - \frac{1}{2}) \frac{\mathbf{e}_{\mu}}{|\mathbf{e}_{\mu}|}$ O Benton et al, 2012 States al, 2012 $\frac{\omega/(ca_0^{-1})}{\sim}$ Materials & Magnetism 8.5 1.0 $\mathbf{k} = (h, h, h)$ l(w $\langle E^{\alpha}_{-\mathbf{k}} E^{\beta}_{\mathbf{k}} \rangle \propto \delta_{\alpha\beta} - \frac{k_{\alpha}k_{\beta}}{\mathbf{k}^2}$

Pinch points in equal-time charge structure factor

Pyrochlore Mott insulators with fractional electron filling

VOLUME 93, NUMBER 12

PHYSICAL REVIEW LETTERS

week ending 17 SEPTEMBER 2004

Transition from Mott Insulator to Superconductor in GaNb₄Se₈ and GaTa₄Se₈ under High Pressure

GaTa₄Se₈ (with Ta^{3.25+}: $d^{1.75}$) M. M. Abd-Elmeguid,¹ B. Ni,¹ D. I. Khomskii,^{1,*} R. Pocha,² D. Johrendt,² X. Wang,³ and K. Syassen³ ¹II. Physikalisches Institut, Universität zu Köln, Zülpicher Strasse 77, 50937 Köln, Germany ²Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13 (Haus D), 81377 München, Germany ³Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, 70569 Stuttgart, Germany (Received 30 April 2004; published 16 September 2004) 's theor

VOLUME 85, NUMBER 5

PHYSICAL REVIEW LETTERS

31 JULY 2000

LiV₂O₄ Spinel as a Heavy-Mass Fermi Liquid: Anomalous Transport and Role of Geometrical Frustration

C. Urano,¹ M. Nohara,¹ S. Kondo,¹ F. Sakai,² H. Takagi,^{1,3} T. Shiraki,⁴ and T. Okubo⁴ ¹Department of Advanced Materials Science and Department of Superconductivity, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ²Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8581, Japan ³CREST, Japan Science and Technology Corporation, Japan ⁴Department of Chemical System Engineering, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan (Received 27 January 2000)

LiV_2O_4 (with $V^{3.5+}:d^{1.5}$)

and many others

Summary

- We propose an interesting exotic state with both spin and charge quantum number fractionalizations.
- We develop a slave-particle formalism to describe this exotic phase and the Mott transition.
- We suggest some physical quantity to measure the internal gauge structure.