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Triangular lattice Hubbard model at half filling

U/t
Fermi liquid 

metal

U(1) quantum spin liquid 

with spinon Fermi surface
120-degree  

magnetic order

Hubbard Model : parent model of many 
phases (Metal, SC, AF, Spin Liquid, …)

Heisenberg model
120° AF order U/t

Fermi Liquid
Mott

transition

Metal I n s u l a t o r

Charge fluctuations / geometrical frustration may disrupt spins from 
ordering even at T=0 near the metal-insulator transition.

Mott  
transition
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such a regime is  
supported by various  

numerical studies
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• A slave particle formalism/description

• Weak Mott insulator spin liquids
from insulating side,  perturbation in t/U, competing exchanges

Hpert =
X

ij

JijSi · Sj +K
X

1234

(P1234 + P�1
1234) + · · ·

Motrunich 2005
4-site ring exchange

ci� = e�i✓ifi�

charge-qe 
spin-0 boson 

charge-0 
spin-1/2 fermion 

Fermi liquid: rotor is condensed 
QSL Mott insulator: rotor is gapped 
Low energy effective theory of QSL: spinon Fermi surface coupled with  
                                                          a fluctuating U(1) gauge theory

S.S. Lee, 2008
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My goal of this talk

• Provide a possible example of quantum spin liquid  
whose charge excitations are also fractionalized. 

• Introduce a (slave-particle) formalism to describe  
this phase and the related Mott transition.

• Suggest a meaningful physical quantity to measure  
in a real experiment. 
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• The extended Hubbard model on a pyrochlore lattice

• The electron filling is 1/4 (or 1/8),  
i.e. two electrons per tetrahedron 

• Hubbard U does not cause Mott  
localization. U is set to be large. 

• Nearest-neighbor repulsion V can  
cause Mott localization with 2 electrons  
per tetrahedron when V >> t.  

We expect: t>>V, Fermi liquid metal 
                    t<<V, Mott insulator
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FIG. 1. (Color online) The ring hopping processes of charge
rotors around a hexagon in the cluster Mott insulator, for the
1
4 - and

1
8 -filled cases shown in (a) and (b). As shown in (c),

r and r0 are located on the center of the tetrahedra and form
a dual diamond lattice. We use “r, r0” (“i, j”) to label the
diamond (pyrochlore) lattice sites. In (c), r 2 A diamond
sublattice and eµ are four vectors connecting A sublattice
sites to the four neighboring B sublattice sites. In (d), the
electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4 - or
1
8 -filling is

plotted in (e). Here, (Vt )c = 1.65(0.98) for the 1
4 (

1
8 )-filling in

the mean-field theory. There are only two phases: a Fermi
liquid metal and a cluster Mott insulator (FCL/QSL).

carry half the electron charge. The transition to a Fermi
liquid metal occurs when the fractionally-charged bosons
condense. We also discuss thermodynamic and spec-
trascopic properties of this novel Mott insulating phase.

Weak Mott regime for

1

4

filling. We start with the 1

4

filled case. The model has a Fermi liquid ground state for
V ⌧ t [17] and a Mott insulating ground state for V � t.
To study the Mott transition of this Hubbard model, we
first introduce the usual slave rotor formalism[3, 18] and
express the electron operator as c†i� = ei✓if†

i�, where ei✓i

is the bosonic rotor operator carrying electric charge qe
and f†

i� is the charge-neutral fermionic spinon operator.
To preserve the physical Hilbert space, we impose the

gauge constraint Lz
i = (

P
� f

†
i�fi�) � 1

2

, where Lz
i is the

conjugate operator of ✓j with [✓i, Lz
j ] = i�ij . Via a decou-

pling of the electron hopping term, the original Hubbard
model is reduced to two coupled Hamiltonians H

sp

and
H

ch

for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i ⌘ |te↵ij |eiaij , Je↵

ij = t
P

�hf
†
i�fj�i ⌘

|Je↵

ij |e�iaij and hi is the Lagrange multiplier that imposes
the Hilbert space constraint. With this reformulation of
the Hubbard model, the Hamiltonians H

sp

and H
ch

are
now invariant under an internal U(1) gauge transforma-
tion f†

i� ! f†
i�e

�i�i , ✓i ! ✓i+�i and aij ! aij +�i��j .
This internal U(1) gauge structure will be referred as
U(1)

sp

in the following.
In the half-filled case, the electrons are localized on

the lattice sites in the Mott insulator. In the slave ro-
tor formulation, the QSL Mott insulator corresponds to
the deconfined phase of the U(1)

sp

gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor[3, 18]. The situation for 1

4

filling is somewhat di↵erent, even though the spin sector
behaves similarly and forms a U(1)

sp

QSL with a spinon
Fermi surface in the Mott regime. For the charge sector,
the strong inter-site repulsion V

2

P
tet

(
P

i2tet

Lz
i )

2+const
(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads
to charge localization on the cluster. Hence, the total
charge number on each tetrahedra is constrained to be
two, or equivalently, satisfies the “charge ice constraint”P

i2tet

Lz
i = 0, which is reminiscent of the spin ice con-

straint in the classical spin ice[15, 19–23]. Similarly to
the classical spin ice [15], the classical charge ice con-
figurations in the infinite V limit are macroscopically
degenerate[14, 24]. These features drastically modify the
charge sector physics.
We now adopt a self-consistent mean-field approach

and assume a uniform slave-rotor mean-field solution
such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵ and hi ⌘ h. In the

cluster Mott insulator, the rotor hopping Je↵ introduces
quantum fluctuations and lifts the extensive charge ice
degeneracy, which is captured by a standard perturbative
treatment of Je↵. We preserve the charge ice constraint
in the ground state and obtain an e↵ective ring rotor hop-
ping model from the third-order degenerate perturbation
theory,

H
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Slave particle formalism/description

ci� = e�i✓ifi�

• First, rewrite the Hubbard model with slave-rotor formalism

• The Hubbard model is reformulated as two coupled spinon and rotor 
Hamiltonians

with a Hilbert space constraint 

2

ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz

i = (
P

� f
†
i�fi�) � 1

2

,
where [✓i, Lz

j ] = i�ij .

Via a decoupling of the electron tunneling term, the
cluster Hubbard model is reduced to two Hamiltonians
H

S

and H
C

for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i, Je↵

ij = t
P

�hf
†
i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H

C

and H
S

are
invariant under the U(1) gauge transformation f†

i� !
f†
i�e

�i�i , ✓i ! ✓i + �i and te↵ij ! te↵ij e
i(�i��j), Je↵

ij !
Je↵

ij e
�i(�i��j).

In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.

to the interaction,

H
C,e↵ = �J

ring

X

hexagon

cos(✓
1

� ✓
2

+ ✓
3

� ✓
4

+ ✓
5

� ✓
6

)

+
U

2

X

i

(Lz
i )

2, (3)

where J
ring

= 24(Jeff
)

3

V 2 is the ring charge tunneling around
a hexagon plaquette (see Fig. 1). This low-energy e↵ec-
tive model is identical to the one obtained in the con-
text of quantum spin ice[? ] and the 1

2

-magnetization
plateau of the XXZ model[? ] on pyrochlore lattice ex-
cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
over, the original charge-qe bosonic rotor fractionalizes
into two fractionally-charged bosons (�r) that carry half
the electron charge. As shown in Table. I, these two
fractionally charged bosons also carry the U(1)

sc

gauge
charge Qsc

i =
P

� f
†
i�fi� � Lz

i as well as the U(1)
c

gauge
charge Qc

r = ⌘r(
P

µ L
z
r,r+⌘reµ

) + ⌘r. Here, ⌘r = +1(�1)
for r on the I (II) sublattice of the dual diamond lattice
and eµ are the four nearest-neighbor vector from the I
sublattice sites. The charge- qe

2

bosons are fully gapped in
the Mott insulator. As the electron hopping t increases,
the gap of the charge bosons diminishes, and eventually
the charge gap close and charge bosons condense. The
condensation of charge- qe

2

bosons higgs out the two inter-
nal gauge fields (U(1)

c

and U(1)
sc

) simutanesouly, and
drives a phase transition from the Mott insulator to the
Fermi liquid metal.
To manifest the U(1) gauge structure of the charge sec-

tor, we implement the gauge mean-field approach that
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FIG. 1. (Color online) The ring hopping processes of charge
rotors around a hexagon in the cluster Mott insulator, for the
1
4 - and

1
8 -filled cases shown in (a) and (b). As shown in (c),

r and r0 are located on the center of the tetrahedra and form
a dual diamond lattice. We use “r, r0” (“i, j”) to label the
diamond (pyrochlore) lattice sites. In (c), r 2 A diamond
sublattice and eµ are four vectors connecting A sublattice
sites to the four neighboring B sublattice sites. In (d), the
electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4 - or
1
8 -filling is

plotted in (e). Here, (Vt )c = 1.65(0.98) for the 1
4 (

1
8 )-filling in

the mean-field theory. There are only two phases: a Fermi
liquid metal and a cluster Mott insulator (FCL/QSL).

carry half the electron charge. The transition to a Fermi
liquid metal occurs when the fractionally-charged bosons
condense. We also discuss thermodynamic and spec-
trascopic properties of this novel Mott insulating phase.

Weak Mott regime for

1

4

filling. We start with the 1

4

filled case. The model has a Fermi liquid ground state for
V ⌧ t [17] and a Mott insulating ground state for V � t.
To study the Mott transition of this Hubbard model, we
first introduce the usual slave rotor formalism[3, 18] and
express the electron operator as c†i� = ei✓if†

i�, where ei✓i

is the bosonic rotor operator carrying electric charge qe
and f†

i� is the charge-neutral fermionic spinon operator.
To preserve the physical Hilbert space, we impose the

gauge constraint Lz
i = (

P
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†
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2

, where Lz
i is the

conjugate operator of ✓j with [✓i, Lz
j ] = i�ij . Via a decou-

pling of the electron hopping term, the original Hubbard
model is reduced to two coupled Hamiltonians H

sp

and
H
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for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i ⌘ |te↵ij |eiaij , Je↵

ij = t
P

�hf
†
i�fj�i ⌘

|Je↵

ij |e�iaij and hi is the Lagrange multiplier that imposes
the Hilbert space constraint. With this reformulation of
the Hubbard model, the Hamiltonians H

sp

and H
ch

are
now invariant under an internal U(1) gauge transforma-
tion f†

i� ! f†
i�e

�i�i , ✓i ! ✓i+�i and aij ! aij +�i��j .
This internal U(1) gauge structure will be referred as
U(1)

sp

in the following.
In the half-filled case, the electrons are localized on

the lattice sites in the Mott insulator. In the slave ro-
tor formulation, the QSL Mott insulator corresponds to
the deconfined phase of the U(1)

sp

gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor[3, 18]. The situation for 1

4

filling is somewhat di↵erent, even though the spin sector
behaves similarly and forms a U(1)

sp

QSL with a spinon
Fermi surface in the Mott regime. For the charge sector,
the strong inter-site repulsion V

2

P
tet

(
P

i2tet

Lz
i )

2+const
(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads
to charge localization on the cluster. Hence, the total
charge number on each tetrahedra is constrained to be
two, or equivalently, satisfies the “charge ice constraint”P

i2tet

Lz
i = 0, which is reminiscent of the spin ice con-

straint in the classical spin ice[15, 19–23]. Similarly to
the classical spin ice [15], the classical charge ice con-
figurations in the infinite V limit are macroscopically
degenerate[14, 24]. These features drastically modify the
charge sector physics.
We now adopt a self-consistent mean-field approach

and assume a uniform slave-rotor mean-field solution
such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵ and hi ⌘ h. In the

cluster Mott insulator, the rotor hopping Je↵ introduces
quantum fluctuations and lifts the extensive charge ice
degeneracy, which is captured by a standard perturbative
treatment of Je↵. We preserve the charge ice constraint
in the ground state and obtain an e↵ective ring rotor hop-
ping model from the third-order degenerate perturbation
theory,

H
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• U(1) gauge transformation (both spinon and charge rotor are involved)
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FIG. 1. (Color online) The ring hopping processes of charge
rotors around a hexagon in the cluster Mott insulator, for the
1
4 - and

1
8 -filled cases shown in (a) and (b). As shown in (c),

r and r0 are located on the center of the tetrahedra and form
a dual diamond lattice. We use “r, r0” (“i, j”) to label the
diamond (pyrochlore) lattice sites. In (c), r 2 A diamond
sublattice and eµ are four vectors connecting A sublattice
sites to the four neighboring B sublattice sites. In (d), the
electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4 - or
1
8 -filling is

plotted in (e). Here, (Vt )c = 1.65(0.98) for the 1
4 (

1
8 )-filling in

the mean-field theory. There are only two phases: a Fermi
liquid metal and a cluster Mott insulator (FCL/QSL).

carry half the electron charge. The transition to a Fermi
liquid metal occurs when the fractionally-charged bosons
condense. We also discuss thermodynamic and spec-
trascopic properties of this novel Mott insulating phase.

Weak Mott regime for

1

4

filling. We start with the 1

4

filled case. The model has a Fermi liquid ground state for
V ⌧ t [17] and a Mott insulating ground state for V � t.
To study the Mott transition of this Hubbard model, we
first introduce the usual slave rotor formalism[3, 18] and
express the electron operator as c†i� = ei✓if†

i�, where ei✓i

is the bosonic rotor operator carrying electric charge qe
and f†

i� is the charge-neutral fermionic spinon operator.
To preserve the physical Hilbert space, we impose the

gauge constraint Lz
i = (

P
� f

†
i�fi�) � 1

2

, where Lz
i is the

conjugate operator of ✓j with [✓i, Lz
j ] = i�ij . Via a decou-

pling of the electron hopping term, the original Hubbard
model is reduced to two coupled Hamiltonians H

sp

and
H
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for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i ⌘ |te↵ij |eiaij , Je↵

ij = t
P

�hf
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i�fj�i ⌘

|Je↵

ij |e�iaij and hi is the Lagrange multiplier that imposes
the Hilbert space constraint. With this reformulation of
the Hubbard model, the Hamiltonians H

sp

and H
ch

are
now invariant under an internal U(1) gauge transforma-
tion f†

i� ! f†
i�e

�i�i , ✓i ! ✓i+�i and aij ! aij +�i��j .
This internal U(1) gauge structure will be referred as
U(1)

sp

in the following.
In the half-filled case, the electrons are localized on

the lattice sites in the Mott insulator. In the slave ro-
tor formulation, the QSL Mott insulator corresponds to
the deconfined phase of the U(1)

sp

gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor[3, 18]. The situation for 1

4

filling is somewhat di↵erent, even though the spin sector
behaves similarly and forms a U(1)

sp

QSL with a spinon
Fermi surface in the Mott regime. For the charge sector,
the strong inter-site repulsion V

2
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(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads
to charge localization on the cluster. Hence, the total
charge number on each tetrahedra is constrained to be
two, or equivalently, satisfies the “charge ice constraint”P

i2tet

Lz
i = 0, which is reminiscent of the spin ice con-

straint in the classical spin ice[15, 19–23]. Similarly to
the classical spin ice [15], the classical charge ice con-
figurations in the infinite V limit are macroscopically
degenerate[14, 24]. These features drastically modify the
charge sector physics.
We now adopt a self-consistent mean-field approach

and assume a uniform slave-rotor mean-field solution
such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵ and hi ⌘ h. In the

cluster Mott insulator, the rotor hopping Je↵ introduces
quantum fluctuations and lifts the extensive charge ice
degeneracy, which is captured by a standard perturbative
treatment of Je↵. We preserve the charge ice constraint
in the ground state and obtain an e↵ective ring rotor hop-
ping model from the third-order degenerate perturbation
theory,
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with te↵ij = thei✓i�i✓j i ⌘ |te↵ij |eiaij , Je↵
ij = t
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Charge sector
While spinons form spinon Fermi surface,  the charge sector is also 
non-trivial !
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FIG. 1. (Color online) The ring hopping processes of charge
rotors around a hexagon in the cluster Mott insulator, for the
1
4 - and

1
8 -filled cases shown in (a) and (b). As shown in (c),

r and r0 are located on the center of the tetrahedra and form
a dual diamond lattice. We use “r, r0” (“i, j”) to label the
diamond (pyrochlore) lattice sites. In (c), r 2 A diamond
sublattice and eµ are four vectors connecting A sublattice
sites to the four neighboring B sublattice sites. In (d), the
electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4 - or
1
8 -filling is

plotted in (e). Here, (Vt )c = 1.65(0.98) for the 1
4 (

1
8 )-filling in

the mean-field theory. There are only two phases: a Fermi
liquid metal and a cluster Mott insulator (FCL/QSL).

carry half the electron charge. The transition to a Fermi
liquid metal occurs when the fractionally-charged bosons
condense. We also discuss thermodynamic and spec-
trascopic properties of this novel Mott insulating phase.

Weak Mott regime for
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filling. We start with the 1
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filled case. The model has a Fermi liquid ground state for
V ⌧ t [17] and a Mott insulating ground state for V � t.
To study the Mott transition of this Hubbard model, we
first introduce the usual slave rotor formalism[3, 18] and
express the electron operator as c†i� = ei✓if†

i�, where ei✓i
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ij |e�iaij and hi is the Lagrange multiplier that imposes
the Hilbert space constraint. With this reformulation of
the Hubbard model, the Hamiltonians H

sp

and H
ch

are
now invariant under an internal U(1) gauge transforma-
tion f†

i� ! f†
i�e

�i�i , ✓i ! ✓i+�i and aij ! aij +�i��j .
This internal U(1) gauge structure will be referred as
U(1)

sp

in the following.
In the half-filled case, the electrons are localized on

the lattice sites in the Mott insulator. In the slave ro-
tor formulation, the QSL Mott insulator corresponds to
the deconfined phase of the U(1)

sp

gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor[3, 18]. The situation for 1

4

filling is somewhat di↵erent, even though the spin sector
behaves similarly and forms a U(1)

sp

QSL with a spinon
Fermi surface in the Mott regime. For the charge sector,
the strong inter-site repulsion V

2

P
tet

(
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Lz
i )

2+const
(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads
to charge localization on the cluster. Hence, the total
charge number on each tetrahedra is constrained to be
two, or equivalently, satisfies the “charge ice constraint”P

i2tet

Lz
i = 0, which is reminiscent of the spin ice con-

straint in the classical spin ice[15, 19–23]. Similarly to
the classical spin ice [15], the classical charge ice con-
figurations in the infinite V limit are macroscopically
degenerate[14, 24]. These features drastically modify the
charge sector physics.
We now adopt a self-consistent mean-field approach

and assume a uniform slave-rotor mean-field solution
such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵ and hi ⌘ h. In the

cluster Mott insulator, the rotor hopping Je↵ introduces
quantum fluctuations and lifts the extensive charge ice
degeneracy, which is captured by a standard perturbative
treatment of Je↵. We preserve the charge ice constraint
in the ground state and obtain an e↵ective ring rotor hop-
ping model from the third-order degenerate perturbation
theory,
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FIG. 1. (Color online) The ring hopping processes of charge
rotors around a hexagon in the cluster Mott insulator, for the
1
4 - and

1
8 -filled cases shown in (a) and (b). As shown in (c),

r and r0 are located on the center of the tetrahedra and form
a dual diamond lattice. We use “r, r0” (“i, j”) to label the
diamond (pyrochlore) lattice sites. In (c), r 2 A diamond
sublattice and eµ are four vectors connecting A sublattice
sites to the four neighboring B sublattice sites. In (d), the
electron charge fractionalization in the FCL/QSL phase is
illustrated. The two end charge defects are connected by a
fictitious string. The phase diagram at the 1

4 - or
1
8 -filling is

plotted in (e). Here, (Vt )c = 1.65(0.98) for the 1
4 (

1
8 )-filling in

the mean-field theory. There are only two phases: a Fermi
liquid metal and a cluster Mott insulator (FCL/QSL).

carry half the electron charge. The transition to a Fermi
liquid metal occurs when the fractionally-charged bosons
condense. We also discuss thermodynamic and spec-
trascopic properties of this novel Mott insulating phase.

Weak Mott regime for

1

4

filling. We start with the 1

4

filled case. The model has a Fermi liquid ground state for
V ⌧ t [17] and a Mott insulating ground state for V � t.
To study the Mott transition of this Hubbard model, we
first introduce the usual slave rotor formalism[3, 18] and
express the electron operator as c†i� = ei✓if†
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is the bosonic rotor operator carrying electric charge qe
and f†

i� is the charge-neutral fermionic spinon operator.
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the Hubbard model, the Hamiltonians H
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and H
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are
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tion f†
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This internal U(1) gauge structure will be referred as
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in the following.
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the lattice sites in the Mott insulator. In the slave ro-
tor formulation, the QSL Mott insulator corresponds to
the deconfined phase of the U(1)
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gauge theory, and its
transition to the metallic phase is induced by the con-
densation of the charge rotor[3, 18]. The situation for 1
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filling is somewhat di↵erent, even though the spin sector
behaves similarly and forms a U(1)
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QSL with a spinon
Fermi surface in the Mott regime. For the charge sector,
the strong inter-site repulsion V
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(where tet refers to a tetrahedron) penalizes single charge
motion from one tetrahedral cluster to another and leads
to charge localization on the cluster. Hence, the total
charge number on each tetrahedra is constrained to be
two, or equivalently, satisfies the “charge ice constraint”P

i2tet
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i = 0, which is reminiscent of the spin ice con-

straint in the classical spin ice[15, 19–23]. Similarly to
the classical spin ice [15], the classical charge ice con-
figurations in the infinite V limit are macroscopically
degenerate[14, 24]. These features drastically modify the
charge sector physics.
We now adopt a self-consistent mean-field approach

and assume a uniform slave-rotor mean-field solution
such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵ and hi ⌘ h. In the

cluster Mott insulator, the rotor hopping Je↵ introduces
quantum fluctuations and lifts the extensive charge ice
degeneracy, which is captured by a standard perturbative
treatment of Je↵. We preserve the charge ice constraint
in the ground state and obtain an e↵ective ring rotor hop-
ping model from the third-order degenerate perturbation
theory,
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II. V2 = 0 PHASE DIAGRAM: SLAVE-ROTOR
FORMALISM AND SUPER-ROTOR

DESCRIPTION

The extended Hubbard model in Eq.1 contains many
coupling parameters. To attack this model, we first con-
sider the limiting case of the model with V

2

= 0. In this
limit, there is no interaction energy penalty to place more
than one electron in the down tetrahedral cluster. In the
following we analyze the phase diagram for this limiting
case.

In the absence of any interaction, the model is in the
Fermi liquid metal phase. The kinetic part of the model is
easily diagonalized and the four bands are (from bottom
to top) given as

✏
1,2

(k) = �t
1

� t
2

⌥ [4t2
1

� 4t
1

t
2

+ 4t2
2

+t
1

t
2

12X

i=1

cos(k · b
i

)]
1
2 , (2)

✏
3,4

(k) = t
1

+ t
2

, (3)

where {b
i

} are the twelve nearest-neighbor vectors of the
underlying FCC Bravais lattice of the pyrochlore lattice.
The lowest band ✏

1

(k) is well separated from other higher
bands when t

1

6= t
2

. Even when t
1

= t
2

, the lowest
two bands only have line band touchings in the Brillouin
zone [xxx]. With 1/8 electron filling in our problem, the
electrons only fill half the lowest band and the resulting
state has a Fermi surface.

As we introduce the neareast-neighbor interaction (V
1

)
on the up tetrahedral clusters, it is less favorable to have
more than one electron residing on the up tetrahedral
clusters. In the large V

1

limit, the electrons are localized
on the up tetrahedral clusters and the electron number
on these clusters are fixed to be 1. This is a cluster Mott
insulating state. Even though the electrons are localized
on the up tetrahedral clusters, the electron numbers on
the down tetrahedral clusters are still fluctuating strongly
due to the absence of the nearest-neighbor repulsion be-
tween them. Therefore, the cluster Mott insulating in
V
2

= 0 limit is a type-I Mott insulator.
To describe the Mott transition from the Fermi liquid

metal to the type-I Mott insulator, we here introduce the
standard slave-rotor formalism for the extended Hubbard
model. We first represent the electron operator as

c†
i�

= f†
i�

ei✓i , (4)

where the spinless bosonic rotor (ei✓i) carries the electron
charge q

e

and the charge-neutral fermionic spinon (f†
i�

)
carries the spin quantum number. To constrain the en-
larged Hilbert space back to the physical one, we impose
the constraint
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f
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2
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and Lz

i

is conjugate with the angular variable of the rotor
with [✓

i

, Lz

j

] = i�
ij

. Due to the dominant on-site repul-
sive interaction U , the double occupation of the electrons
on a single lattice site is always prohibited. Hence, the
choices of Lz

i

are primarily given by
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=

(
+ 1

2

, n
i

= 1,

� 1

2

, n
i

= 0.
(6)

Via the standard decoupling of the electron kinetic
term into the spinon and rotor sectors, we obtain the
two coupled spinon and rotor Hamiltonians,
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where

te↵
ij

= t
ij

hei(✓i�✓j)i, (9)
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and the parameter h
i

is the Lagarange multiplier that
imposes the Hilbert space constraint. This slave-rotor re-
formulation of the extended Hubbard model introduces a
hidden internal U(1) gauge structure. The Hamitonians
H

sp

and H
ch

are invariant under the U(1) gauge trans-
formation
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where this internal U(1) gauge field a
ij

is the phase fac-
tor of the rotor and fermion hoppings with te↵

ij

⌘ |te↵
ij

|eiaij

and Je↵

ij

= |Je↵

ij

|e�iaij . To distinguish it from the internal
U(1) gauge structure in the charge sector for the type-II
Mott insulator, we refer this internal U(1) gauge struc-
ture as U(1)

sp

in the following.
To manifest the relevant degrees of freedom for the

Mott transition, we rewrite the charge sector Hamilto-
nian as
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Here we have made the usual approximation te↵
ij

= t
1

(t
2

)

and Je↵

ij

= J
1

(J
2

) for nearest-neighbor sites on the up
(down) tetrahedral clusters. The resulting Hamiltonians
repect all the symmetries of the Fermi liquid metal phase.

in large U limit,

• Quantum Monte Carlo (Isakov etc 2008) 

peared as our study was underway provides a viable pre-
scription for experimentally realizing such an optical lat-
tice [17]. Furthermore, the simplicity of the interactions
means that they can be realized in state-of-the art cold-
atom experiments for a wide range of values of parameters
[14] including the ‘‘hard-core’’ limit (ni ! 0, 1) of very
large U. We therefore focus on this hard-core limit in some
detail here, setting t ! 1 and ! ! 0 in what follows. [In
this hard-core limit, Eqn. (1) may also be written in spin
S ! 1=2 language via the mapping Szi ! ni " 1=2, Jz !
V, J? ! "2t.]

In this hard-core limit, with ! ! 0 to enforce density
1=2 per site, the physics at small V is readily tractable: As
the hopping t is unfrustrated, there is a stable superfluid
phase at small V—indeed a reasonable variational wave
function for the ground state in this regime may be easily
written down in spin language as j!i ! Q

ijSxi ! #1=2ii.
What is the low temperature state in the opposite, large V
limit? To answer this, we use the well-documented [18]
stochastic series expansion (SSE) QMC method (at large
values of V, modifications developed recently [19] are
crucial to maintain ergodicity—for a review, see
Ref. [20]).

Numerics.—Most of our results are on L$ L$ L (L,
the number of up pointing tetrahedra that fit in one side-
length) samples with periodic boundary conditions and
even L ranging from L ! 6 to L ! 12, and inverse tem-
perature " ranging from 6 to 120 (with the largest "
employed for the largest size). We use standard SSE esti-
mators [18] to calculate the specific heat, the superfluid
stiffness #s, the bond (kinetic) energy correlations, and the
equal time C$$

0%q; % ! 0& ! hn$%q&n$0%"q&i and static
correlators S$$

0%q; !n ! 0& ! R"
0 d%C

$$0%q; %& of the den-
sity n$i (here $,$0 refer to different basis sites in a unit cell,
and all site types [Fig. 1(a)] are assigned coordinates of
site-type 0).

As is clear from Fig. 2(a), we see a distinct transition
from a superfluid state at small V, to an insulating state at
large V for a sequence of low temperatures. This transition
is first-order at nonzero temperature [Fig. 2(a)], and while
the first order nature is less prominent in lower temperature
scans, a scaling analysis suggests that the transition re-
mains first order even in the zero temperature limit [21].
We estimate that this zero temperature transition is at
%V=t&c ' 19:3 [Fig. 2(b)].

In the insulator, we see absolutely no Bragg peaks that
would correspond to spatial ordering in either the local
density or the local bond energy. The insulator is thus, in
this specific sense, a liquid state of matter; this is illustrated
in Fig. 3 with several scans of density correlators in q space
at a representative point at very low temperature above the
insulating ground state. This absence of spatial ordering in
the insulating state of an interacting boson system at 1=2
filling is one of our striking results, for such featureless
insulating states are more typical of insulators with integer
density per site.

Interpretation.—Theoretical interpretation of this strik-
ing result is facilitated by noting that our Hamiltonian in
this hard-core limit is closely related to that studied in
Ref. [22]: Hermele et al. considered the S ! 1=2 XXZ
antiferromagnet on the pyrochlore lattice. By an analysis of
a related effective model of planar rotors (with additional
terms added by hand to ensure better theoretical control),
they argued that a U%1& deconfined phase was a theoreti-
cally consistent possibility in the limit of extremely aniso-
tropic exchange Jz ( J? > 0—however, since the
positive sign of J? introduces a sign problem in quantum
Monte-Carlo treatment of such models, their work stopped

 0

 0.03

 0.06

 0  18  19  20

T

V

 0

 0.01

 0.02

 0.03

 18.6  19  19.4

ρ s

V

β=30, L=12

a) b)
 ~.~

(19.4,1/30)

19.3

FIG. 2 (color online). (a) Superfluid density at " ! 30—the
break around V ! 19:2 indicates observed hysteresis near the
(weakly) first-order transition. (b) Schematic phase diagram:
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quantum spin icequantum spin ice

Charge sector is nothing but a “spin-1/2 XXZ model” 
in term of L’s in the large U limit !

e±i✓ = L±
and identify

Gang Chen’s theory group 

Gang Chen’s theory group



Charge fractionalization

Quantum spin ice in L  =  fractional charge liquid in charge sector

• Low-energy physics is described by an emergent (compact) quantum  
electrodynamics in 3+1D, indicating an additional U(1) gauge  
structure in the charge sector.  

• Just as spin quantum number fractionalization in a QSI, charge  
excitation in FCL is also fractionalized, carrying a qe/2 electric charge.

From the properties of quantum spin ice, we can identify the  
corresponding properties for the charge sector !

Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004
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Slave particle description

2

ism and express the electron operator c†i� = ei✓if†
i�, in

which ei✓i is the charge bosonic rotor with electric charge
qe and f†

i� is the charge-neutral fermionic spinon opera-
tor.[? ] To preserve the physical Hilbert space, we need
to impose the gauge constraint Lz

i = (
P

� f
†
i�fi�) � 1

2

,
where [✓i, Lz

j ] = i�ij .

Via a decoupling of the electron tunneling term, the
cluster Hubbard model is reduced to two Hamiltonians
H

S

and H
C

for the spin and charge sectors, respectively,
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Here, te↵ij = thei✓i�i✓j i, Je↵

ij = t
P

�hf
†
i�fj�i and hi is

the Lagrange multiplier that imposes the Hilbert space
constraint. With this reformulation of the cluster Hub-
bard model, the above Hamiltonians H

C

and H
S

are
invariant under the U(1) gauge transformation f†

i� !
f†
i�e

�i�i , ✓i ! ✓i + �i and te↵ij ! te↵ij e
i(�i��j), Je↵

ij !
Je↵

ij e
�i(�i��j).

In the previous understanding of the Mott transition
from Fermi liquid metal to a quantum spin liquid Mott
insulator at half-filling, the condensation fo the charge ro-
tor in the metallic phase higgses out the emergent U(1)
gauge field which then binds the fermionic spinon and
the charge rotor into the original electron.[? ] The spin-
charge separation occurs at the Mott transition of the
quantum XY type.[? ] In the Mott insulator, the charges
are localized to the lattice sites, and the fermionic spinons
form a spinon Fermi surface. The situation here is some-
what di↵erent, even though the physics in the spin sector
behaves rather similarly and forms a U(1) quantum spin
liquid with a spinon Fermi surface in the Mott insulator.
For the charge sector, the strong nearest-neighbor repul-
sive interaction V penalizes the charge tunneling from
one tetrahedral cluster to another and leads to charge lo-
calization inside the cluster. Therefore, the total charge
number in every tetrahedral cluster is demanded to be
unity, i.e.

P
i2tetrahedron

Lz
i = �1. Similar as the clas-

sical spin ice state,[? ] such “classical” charge config-
urations are highly degenerate. As we show below, the
quantum charge tunneling e↵ect lifts the degeneracy and
leads to another U(1) gauge theory at low energies.

To quantitatively describe the Mott transition and
Mott insulating phase, we now adopt a self-consistent
mean-field analysis. In order to smoothly connecting to
the Fermi liquid metal phase, a uniform slave-rotor mean-
field solution is assumed such that te↵ij ⌘ te↵, Je↵

ij ⌘ Je↵

and hi ⌘ h. The low-energy theory for the charge sector
is obtained by treating Je↵ tunneling as a perturbation

FIG. 1. (Color online.) Left: the ring hopping of the charge
rotors around a hexagon. Right: the electron fractionalizes
into two qe

2 charge bosons, one fermionic spinon and an open
string in the coexistent quantum charge liquid and quantum
spin liquid phase.

to the interaction,
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where J
ring

= 24(Jeff
)

3

V 2 is the ring charge tunneling around
a hexagon plaquette (see Fig. 1). This low-energy e↵ec-
tive model is identical to the one obtained in the con-
text of quantum spin ice[? ] and the 1

2

-magnetization
plateau of the XXZ model[? ] on pyrochlore lattice ex-
cept that we have a large and finite interaction strength
U and Lz can take the values of ±1/2 and 3/2 at the
lattice length scale. Despite these small di↵erences, the
universal properties of our model HC,e↵ should be iden-
tical to the previous ones and are described by a com-
pact U(1) quantum electrodynamics in 3+1 dimensions.
Therefore, we expect a gapless and linearly dispersive
gauge photon mode to appear at low energies. More-
over, the original charge-qe bosonic rotor fractionalizes
into two fractionally-charged bosons (�r) that carry half
the electron charge. As shown in Table. I, these two
fractionally charged bosons also carry the U(1)

sc

gauge
charge Qsc

i =
P

� f
†
i�fi� � Lz

i as well as the U(1)
c

gauge
charge Qc

r = ⌘r(
P

µ L
z
r,r+⌘reµ

) + ⌘r. Here, ⌘r = +1(�1)
for r on the I (II) sublattice of the dual diamond lattice
and eµ are the four nearest-neighbor vector from the I
sublattice sites. The charge- qe

2

bosons are fully gapped in
the Mott insulator. As the electron hopping t increases,
the gap of the charge bosons diminishes, and eventually
the charge gap close and charge bosons condense. The
condensation of charge- qe

2

bosons higgs out the two inter-
nal gauge fields (U(1)

c

and U(1)
sc

) simutanesouly, and
drives a phase transition from the Mott insulator to the
Fermi liquid metal.
To manifest the U(1) gauge structure of the charge sec-

tor, we implement the gauge mean-field approach that

Cartoon of electron  
fractionalization 

in the Mott regime

3

Operator Qem Qsc Qc

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 I qe/2 �1/2 1

�†
r, r 2 II �qe/2 1/2 1

TABLE I. The di↵erent gauge charges carried by di↵erent op-
erators. Qem, Qsc and Qc refer to the gauge charge for the
external electromagnetic field, the U(1)sc gauge field (that is
responsible for spin charge separation) and the U(1)c gauge
field (that is responsible for charge fractionalization), respec-
tively. qe is the charge of the electron.

was recently developed to study the Higgs’ transition of
quantum spin ices.[? ] We enlarge the Hilbert space by
the mapping ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 , where r, r0 label

the dual diamond lattice sites such that r (r0) belongs
to the I (II) sublattice and pyrochlore lattice site i is
also the link (rr0) on the dual diamond lattice. Here,
lzrr0 and l+rr0 ⌘ �rr0e

iArr0 are the U(1)c gauge fields on
the links of the dual diamond lattice. To constrain the
enlarged Hilbert space, we make the following identifica-
tion, [�r, Q

c

r] = �r and [�†
r, Q

c

r] = ��†
r. With the above

mapping, the charge sector Hamiltonian is transformed
into

H
C

= �Je↵

X

r,µ 6=⌫

�†
r+⌘reµ

�r+⌘re⌫
l�⌘r
r,r+⌘reµ

l+⌘r
r,r+⌘re⌫

+
V

2

X

r

(Qc

r)
2, (4)

where we have dropped the residual Zeeman coupling
because of the particle-hole symmetry at the transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

c

gauge field on the dual diamond lattice.
Within the gauge mean-field approximation, the Mott

transition occurs at (J
eff

V )c ⇡ 0.192 where the charge
bosons develop an energy gap. Together with the self-
consistent mean-field theory for H

S

, we obtain a con-
tinous Mott transition at ( t

V )c ⇡ 0.511 at the level of
mean-field.

In the Mott insulating phase, the electron fraction-
alizes into two charge-qe/2 bosons and one fermionic
spinon (see Fig. 1), i.e. c†i� = �†

r�r0 l
+

rr0f
†
i�. There-

fore, at mean field level we have for the electron Green’s
function Ge,↵�(i, j; ⌧) = �hTci↵(⌧)c

†
j�(0)i = �2G

I

(ri �
rj , ⌧)G

II

(r0j � r0i,�⌧)Gf,↵�(i, j; ⌧), where � ⌘ �ij for a
uniform gauge choice with a zero background gauge flux
and the sites i and j correspond to the links (rir0i) and
(rjr0j), respectively. GI

, G
II

and Gf are the Green’s func-
tions of charge bosons on I, II sublattices and spinons, re-
spectively. Unlike the existence of Landau quasiparticle
peak in the Fermi liquid metal for U < Uc, we find the

electron spectral function for U � Uc is given by convo-
luting the bosonic (A

I

, A
II

) and fermionic (Af ) spectral
functions

Ae(k,!) =
X

k1,k2

Z

E1,E2

f(E
1

)[n(E
1

+ E
2

� !)� n(E
2

)]

⇥ �2A
I

(k
2

, E
2

)A
II

(k
1

+ k
2

� k, E
1

+ E
2

� !)

⇥ Af (k1

, E
1

), (5)

where n and f are the Bose and Fermi distribution
function, respectively. Due to the electron fractional-
ization, there is a strong suppression of spectral weight
at the Mott transition which is manifested in the low
frequency dependence of the single-particle tunneling
density N crit

tunn

(!) ⇠ !4 instead of !2 for the case in
Ref.[XXX] at the critical point. For the Mott insu-
lating phase at V > Vc, the tunneling density is fur-
ther suppressed by the presence of the charge boson gap
m ⇠ (V �Vc)

1
2 and is characterized by an Arrhenius type

of temperature dependence with an activation gap that
is twice of the single charge boson gap.
Crossovers in the vincinity of Mott transition. To go

beyond mean-field theory, we include gauge fluctuations
into the mean-field description of the Mott transition.
After coarse-graining, we obtain the low-energy e↵ective
field theory that is described by the minimal couplings
of the fractionally charged bosons and fermionic spinons
with the dynamical U(1)

sc

and U(1)
c

gauge fields. The
e↵ective action of the low-energy theory in the vincinity

of the Mott transition is written as S =
R �
0

d⌧L, where
the Lagrangian L is given as

L = L
�

+ Lf + LA + La + Lbf (6)

L
�

=
��[@µ � i(Aµ � aµ

2
)]�

I

��2 +
��[@µ � i(Aµ +

aµ
2
)]�

II

��2

+ m2[|�
I

|2 + |�
II

|2] + u[|�
I

|4 + |�
II

|4] + v|�
I

|2|�
II

|2

Lf =  †
�(@⌧ � ia

0

� µf ) � +
1

2mf
|(r� ia) �|2

LA =
1

4g2A
(@µA⌫ � @⌫Aµ)

2, La =
1

4g2a
(@µa⌫ � @⌫aµ)

2

Lf� = �| �|2(|�I

|2 + |�
II

|2).

Here, �
I

(�
II

) is the fractionally charged bosonic field
of the I (II) sublattice of the dual diamond lattice,  �

is the fermionic spinon field, and aµ (Aµ) is the U(1)
sc

(U(1)
c

) gauge field for the spin-charge separation (charge
fractionalization).
First we consider the renormalized Lagrangian for the

U(1)
sc

gauge field aµ by integrating out the matter fields.
Under the Coulomb gauge r · a = 0, the temporal com-
ponent a

0

is screened by the gapless spinons, while the
unscreened transverse component a is strongly renor-
malized and its inverse proprogator is renormalized to
D�1(q, i⌫n) = ⇧f (q, i⌫n)+⇧I

(q, i⌫n)+⇧II

(q, i⌫n) under
a random-phase approximation. Here ⇧f , ⇧I

and ⇧
II

are
fermion and boson polarization functions, respectively.

c†i� = ei✓if†
i�

rotor excitation fractionalizes into two  
bosons, each carries half the charge  
quantum number.

The charge sector becomes

3

+
U

2

X

i

(Lz
i )

2, (4)

where J
ring

= 24(Je↵)3/V 2 is the ring rotor-hopping am-
plitude around a hexagon plaquette (see Fig. 1(a)). This
low-energy e↵ective model acts on the charge ice mani-
fold and is analogous to the one obtained in the context
of the quantum spin ice in the XXZ model[22] on the
pyrochlore lattice except that we have a large and finite
interaction U and Lz can take the values of ± 1

2

and 3

2

at
the lattice length scale. Despite these small di↵erences,
the current model does share the same internal symme-
tries as the quantum spin ice models and thus the uni-
versal properties of our model H

ch,e↵ is identical to the
quantum spin ice in the low energy limit with Lz = ± 1

2

.
Therefore, the ground state of the charge sector is a
U(1) quantum charge ice. The low energy U(1) gauge
structure is obtained by introducing lattice electric field
Lz
i ⇠ Err0 and lattice vector potential ei✓i ⇠ eiArr0 , where

r(r0) lies on the A(B) diamond sublattice (Fig. 1(c)) and
Err0 = �Er0r, Arr0 = �Ar0r. To distinguish it from the
U(1)

sp

gauge field, we label this as U(1)
ch

gauge field for
the charge sector. The cluster Mott insulator is in the de-
confined phase of this compact U(1)

ch

gauge theory and
we expect a gapless and linearly dispersing U(1)

ch

gauge
photon to appear at low energies.

Beyond the low energy regime, the rotor operator ei✓i

creates a gapped charge-qe excitation that violates the
charge ice constraints on the two neighboring tetrahedra
centered at r and r0. Just like the spin-1

2

bosonic spinon
excitations in quantum spin ice, this defect charge-qe
excitation can be separated into two deconfined charge
bosons (�†) in arbitrary distances, each carrying half the
electron charge. Therefore, the quantum charge ice state
is a U(1) fractionalized charge liquid (FCL). As shown in
Table. I, these two fractionally charged bosons also carry
the U(1)

sp

gauge charge (Qsp) and U(1)
ch

gauge charge
(Qch). Here the U(1)

sp

gauge charge is defined on the

pyrochlore lattice site as Qsp

i =
P

� f
†
i�fi� � Lz

i and the
local U(1)

ch

gauge charge is defined on the dual diamond
lattice site (see Fig. 1(c)) asQch

r = ⌘r
P

µ L
z
r,r+⌘reµ

where
⌘r = +1(�1) for r on the A(B) sublattice of the dual dia-
mond lattice and eµ are the four nearest-neighbor vectors
from the A sublattice sites (see Fig. 1(c)). The charge-
qe
2

bosons are fully gapped in the Mott insulator. As
the electron hopping t increases, the charge excitation
gap becomes smaller and the charged bosons condense
upon closing the gap. The condensation of charge- qe

2

bosons would make the two internal gauge fields (U(1)
sp

and U(1)
ch

) massive simultaneously, and drives a phase
transition to a Fermi liquid metal (see Fig. 1(e)). There-
fore, there are only two phases in the phase diagram (see
Fig. 1(e)), which is consistent with the quantum Monte
Carlo simulation results for an interacting hardcore bo-
son model at the half-filling on the pyrochlore lattice[25].

In order to clearly represent both the U(1)
ch

gauge

Operator Qem Qsp Qch

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 A qe/2 �1/2 1

�†
r, r 2 B �qe/2 1/2 1

TABLE I. Di↵erent kinds of gauge charges carried by various
excitations. Qem, Qsp and Qch refer to the electric charge,
U(1)sp gauge charge and U(1)ch gauge charge, respectively.
qe is the charge of the electron.

structure and charge fractionalization, and to study the
boson condensation transition for the charge sector H

ch

,
we employ the parton-gauge construction that was re-
cently developed for the quantum spin ice[23, 26–28]. We
include both the fractionalized charge bosons and a gauge
field in the rotor variable as ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 ,

where the pyrochlore lattice site i = r + eµ

2

is the mid-
point of the link (rr0) on the dual diamond lattice and
r(r0 = r + eµ) belongs to the A(B) diamond sublattice.
Here, lzrr0 ⌘ Err0 and l±rr0 ⌘ �rr0e

±iArr0 (�rr0 ⌘ |l±rr0 |)
represent the lattice U(1)

ch

gauge fields on the links of the
dual diamond lattice. To constrain the enlarged Hilbert
space, we need [�r, Q

ch

r ] = �r and [�†
r, Q

ch

r ] = ��†
r. Now

it is clear that the electron in the cluster Mott insulator
fractionalizes into two charge- qe

2

bosons and a fermionic
spinon (with an open string operator l+r,r+eµ

connecting
two bosons, see Fig. 1(d)),

c†
r+

eµ
2 ,�

= f†
r+

eµ
2 ,�

�†
r�r+eµ

l+r,r+eµ
, (5)

where r 2A sublattice. With the above construction, the
charge sector Hamiltonian can be written as

H
ch

= �Je↵

X

r,µ 6=⌫

�†
r+⌘reµ

�r+⌘re⌫
l�⌘r
r,r+⌘reµ

l+⌘r
r,r+⌘re⌫

+
V

2

X

r

(Qch

r )2, (6)

where we have dropped the linear Lz term because of
the emergent particle-hole symmetry at the Mott transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

ch

gauge field on the dual diamond lat-
tice. Within the gauge mean-field approximation[23], we
show that the Mott transition occurs at (V/Je↵)c ⇡ 5.21,
where the charge bosons develop an energy gap. In this
calculation, we have treated Lz and lz as spin- 1

2

vari-
ables, which is a good approximation since double occu-
pancy (or Lz = 3

2

) configuration is strongly suppressed
by the large on-site interaction U . Together with the self-
consistent mean-field theory for H

sp

, we obtain a contin-
uous Mott transition at (V/t)c ⇡ 1.65 (see Fig. 1(e)).
Weak Mott regime for

1

8

filling. For the cluster Mott
insulator with 1

8

eletron filling, the main di↵erence is that

3

+
U

2

X
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(Lz
i )

2, (4)

where J
ring

= 24(Je↵)3/V 2 is the ring rotor-hopping am-
plitude around a hexagon plaquette (see Fig. 1(a)). This
low-energy e↵ective model acts on the charge ice mani-
fold and is analogous to the one obtained in the context
of the quantum spin ice in the XXZ model[22] on the
pyrochlore lattice except that we have a large and finite
interaction U and Lz can take the values of ± 1
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and 3
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at
the lattice length scale. Despite these small di↵erences,
the current model does share the same internal symme-
tries as the quantum spin ice models and thus the uni-
versal properties of our model H

ch,e↵ is identical to the
quantum spin ice in the low energy limit with Lz = ± 1
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.
Therefore, the ground state of the charge sector is a
U(1) quantum charge ice. The low energy U(1) gauge
structure is obtained by introducing lattice electric field
Lz
i ⇠ Err0 and lattice vector potential ei✓i ⇠ eiArr0 , where

r(r0) lies on the A(B) diamond sublattice (Fig. 1(c)) and
Err0 = �Er0r, Arr0 = �Ar0r. To distinguish it from the
U(1)

sp

gauge field, we label this as U(1)
ch

gauge field for
the charge sector. The cluster Mott insulator is in the de-
confined phase of this compact U(1)

ch

gauge theory and
we expect a gapless and linearly dispersing U(1)

ch

gauge
photon to appear at low energies.

Beyond the low energy regime, the rotor operator ei✓i

creates a gapped charge-qe excitation that violates the
charge ice constraints on the two neighboring tetrahedra
centered at r and r0. Just like the spin-1

2

bosonic spinon
excitations in quantum spin ice, this defect charge-qe
excitation can be separated into two deconfined charge
bosons (�†) in arbitrary distances, each carrying half the
electron charge. Therefore, the quantum charge ice state
is a U(1) fractionalized charge liquid (FCL). As shown in
Table. I, these two fractionally charged bosons also carry
the U(1)

sp

gauge charge (Qsp) and U(1)
ch

gauge charge
(Qch). Here the U(1)

sp

gauge charge is defined on the

pyrochlore lattice site as Qsp

i =
P

� f
†
i�fi� � Lz

i and the
local U(1)

ch

gauge charge is defined on the dual diamond
lattice site (see Fig. 1(c)) asQch
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r,r+⌘reµ

where
⌘r = +1(�1) for r on the A(B) sublattice of the dual dia-
mond lattice and eµ are the four nearest-neighbor vectors
from the A sublattice sites (see Fig. 1(c)). The charge-
qe
2

bosons are fully gapped in the Mott insulator. As
the electron hopping t increases, the charge excitation
gap becomes smaller and the charged bosons condense
upon closing the gap. The condensation of charge- qe

2

bosons would make the two internal gauge fields (U(1)
sp

and U(1)
ch

) massive simultaneously, and drives a phase
transition to a Fermi liquid metal (see Fig. 1(e)). There-
fore, there are only two phases in the phase diagram (see
Fig. 1(e)), which is consistent with the quantum Monte
Carlo simulation results for an interacting hardcore bo-
son model at the half-filling on the pyrochlore lattice[25].

In order to clearly represent both the U(1)
ch

gauge

Operator Qem Qsp Qch

c†i� qe 0 0

f†
i� 0 1 0

ei✓i qe �1 0

�†
r, r 2 A qe/2 �1/2 1

�†
r, r 2 B �qe/2 1/2 1

TABLE I. Di↵erent kinds of gauge charges carried by various
excitations. Qem, Qsp and Qch refer to the electric charge,
U(1)sp gauge charge and U(1)ch gauge charge, respectively.
qe is the charge of the electron.

structure and charge fractionalization, and to study the
boson condensation transition for the charge sector H

ch

,
we employ the parton-gauge construction that was re-
cently developed for the quantum spin ice[23, 26–28]. We
include both the fractionalized charge bosons and a gauge
field in the rotor variable as ei✓i = �†

r�r0 l
+

rr0 , L
z
i = lzrr0 ,

where the pyrochlore lattice site i = r + eµ
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is the mid-
point of the link (rr0) on the dual diamond lattice and
r(r0 = r + eµ) belongs to the A(B) diamond sublattice.
Here, lzrr0 ⌘ Err0 and l±rr0 ⌘ �rr0e

±iArr0 (�rr0 ⌘ |l±rr0 |)
represent the lattice U(1)
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gauge fields on the links of the
dual diamond lattice. To constrain the enlarged Hilbert
space, we need [�r, Q
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r ] = �r and [�†
r, Q
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r ] = ��†
r. Now

it is clear that the electron in the cluster Mott insulator
fractionalizes into two charge- qe

2

bosons and a fermionic
spinon (with an open string operator l+r,r+eµ

connecting
two bosons, see Fig. 1(d)),

c†
r+

eµ
2 ,�

= f†
r+

eµ
2 ,�

�†
r�r+eµ

l+r,r+eµ
, (5)

where r 2A sublattice. With the above construction, the
charge sector Hamiltonian can be written as
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r+⌘reµ
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r,r+⌘reµ

l+⌘r
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X
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(Qch

r )2, (6)

where we have dropped the linear Lz term because of
the emergent particle-hole symmetry at the Mott transi-
tion. The above charge Hamiltonian describes the mini-
mal coupling of the fractionally charged bosons with the
emergent U(1)

ch

gauge field on the dual diamond lat-
tice. Within the gauge mean-field approximation[23], we
show that the Mott transition occurs at (V/Je↵)c ⇡ 5.21,
where the charge bosons develop an energy gap. In this
calculation, we have treated Lz and lz as spin- 1

2

vari-
ables, which is a good approximation since double occu-
pancy (or Lz = 3

2

) configuration is strongly suppressed
by the large on-site interaction U . Together with the self-
consistent mean-field theory for H

sp

, we obtain a contin-
uous Mott transition at (V/t)c ⇡ 1.65 (see Fig. 1(e)).
Weak Mott regime for

1

8

filling. For the cluster Mott
insulator with 1

8

eletron filling, the main di↵erence is that
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which minimally couple to the U(1)ch gauge 
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When the charge bosons are condensed, the U(1)ch gauge field 
is gapped from the Higgs’ mechanism. The charge fractionalization 
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the U(1)sp gauge field picks up a mass. The spinon and charge rotor 
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phase. 
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• (Inelastic) X-ray scattering measures U(1)ch gauge  
field correlation

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.
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• It gives a sharp, gapless 
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FIG. 2: (Color online). An illustration of the simplest tunnelling
process between different spin-ice configurations. The ice rules dic-
tate that each tetrahedron within the lattice has two spins which point
“in”, and two which point “out”. Where these spins form a closed
loop on a hexagonal plaquette — here shaded red — the sense of
each spin within the loop can be reversed to give a new configuration
which also obeys the ice rules.

where

δHµ = µ
∑

!

[

|!⟩⟨! |+ |"⟩⟨" |
]

. (5)

This makes it possible to fine-tune the model to an exactly sol-
uble Rokhsar-Kivelson (RK) point g = µ, where the ground
state wave is an equally-weighted sum of all possible ice
(dimer) configurations46. The authors then argued, by con-
tinuity, that a quantum liquid phase would occur for a finite
range of parameters µ # 1 bordering on the RK point43,44.
The most striking feature of this quantum liquid is “light”.

The ice rules constraint Eq. (1) is most conveniently resolved
as

B(r) = ∇×A(r) , (6)

and the new feature which enters where there is tunnelling be-
tween ice configurations is the fluctuation in time of the gauge
field A(r). In conventional electromagnetism, this gives rise
to an electric field

E(r) = −
∂A(r)

∂t
. (7)

The bold conjecture of Moessner and Sondhi43, put on a mi-
croscopic footing by Hermele et al.44, and Castro-Neto et
al.45, was that tunnelling between dimer (ice) configurations
could give rise to a state governed by the Maxwell action

SMaxwell =
1

8π

∫

dtd3r

[

E(r)2 − c2B(r)2
]

(8)

Such a state would automatically support linearly-dispersing
transverse excitations of the gauge fieldA— “photons”, with
a speed of “light” c. On the lattice, such a magnetic photon
would have a dispersion ω(k) of the form illustrated in Fig. 3.

FIG. 3: (Color online). Ghostly magnetic “photon” excitation as
it might appear in an inelastic neutron scattering experiment on a
quantum spin ice realising a quantum ice ground state. The photon
dispersion ω(k) is taken from lattice gauge theory developed in Sec-
tion II C of this paper, convoluted with a Gaussian representing the
finite energy resolution of the instrument. The intensity of scattering
vanishes as I ∝ ω(k) at low energies.

Moreover, the fact that the spins now fluctuate in time, as
well as space, introduces an additional power of k in spin cor-
relations44,45,

⟨Sµ(−k)Sν(k)⟩quantum ∝ k

(

δµν −
kµkν
k2

)

, (9)

which serves to eliminate the pinch points seen in neutron
scattering [Fig. 1(b)]47 . More formally, this theory is a com-
pact, frustrated U(1) gauge theory on a diamond lattice, and
we will refer to the liquid state it describes as the quantum
U(1) liquid below.
The degree of fine-tuning involved in these arguments

might seem to render them of purely academic interest. How-
ever the idea of a quantum U(1) liquid found strong support
in finite-temperature quantum Monte Carlo simulations of an
ice-type model of frustrated charge order on the pyrochlore
lattice48. Subsequently, it has proved possible to determine
the ground state phase diagrams of both the quantum dimer
model on diamond lattice, and the quantum ice model of Her-
mele et al., from zero-temperature quantumMonte Carlo sim-
ulations47,49,50. Both models contains extended regions of a
quantum liquid phase, connecting to the RK point. In both
cases, this quantum liquid has low energy excitations which
are described by a lattice analogue of quantum electromag-
netism47,49,50. Significantly, in the case of the quantum ice
model, this quantum liquid phase encompasses the “physical”
point of the model µ = 0, and so does not require any fine-
tuning [Fig. 4]47.
The theoretical possibility of a three-dimensional spin-

liquid state with excitations described by a lattice analogue
of quantum electromagnetism is now well-established. What
remains is to connect these ideas with experiments. The pur-
pose of this paper is therefore to set out predictions for the
correlations which would be measured in neutron scattering
experiments, if such a state were realised in a spin-ice ma-
terial. For concreteness, we work with the minimal lattice

I(ω) ~ ω

O
. B

en
to

n 
et

 a
l, 

20
12

L. Savary + LB, 2012

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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LiV2O4 Spinel as a Heavy-Mass Fermi Liquid: Anomalous Transport
and Role of Geometrical Frustration
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Transport and specific heat measurements on hydrothermally grown single crystals reveal the formation
of a heavy-mass Fermi liquid in the LiV2O4 spinel, below a coherence temperature of T! ! 20 30 K.
A few observations which illustrate the uniqueness of this spinel are discussed in connection with the
origin of the heavy mass, such as the anomalous absence of resistivity saturation above T! and the close
proximity to a spin glass phase where the influence of the magnetic frustration is evident.

PACS numbers: 71.27.+a, 75.20.Hr

Among the variety of structural categories of oxides, the
spinel, generally denoted by the chemical formula AB2O4,
has been one of the most familiar structures along with
the well-known perovskite. The spinel structure consists
of two basic units, AO4 tetrahedron and BO6 octahedron.
The latter is connected with each other by the edges. One
of the unique features of the spinel structure is that the B
ions form a sublattice of corner-shared tetrahedra. When
the B cations are magnetic and the magnetic coupling be-
tween them is antiferromagnetic (AF), this lattice gives
rise to a strong magnetic frustration [1]. Therefore, if a
metallic spinel is located in the vicinity of a correlation-
driven metal-insulator transition, a novel interplay between
the charge carriers and the frustrated spin degree of free-
dom might be expected. Most spinel oxides, however, are
known to be insulating and, to date, only two spinel oxides,
LiTi2O4 and LiV2O4, have been reported to be conducting.
LiTi2O4 is a well-known BCS superconductor with a tran-
sition temperature Tc ! 13.7 K [2].

In LiV2O4, the formal oxidation state of the V ion is
3.51 and consequently, almost triply degenerate t2g or-
bitals in the nearly cubic crystal field accommodate 1.5
electrons per V ion. LiV2O4 remains cubic down to low
T [3] and no magnetic ordering occurs above 20 mK [4,5],
indicating that all V sites are crystallographically equiva-
lent. Therefore, if the material is clean enough, a metallic
ground state is expected. Recently, Kondo, Johnston, and
co-workers measured specific heat C!T " and magnetic sus-
ceptibility x!T " on polycrystalline LiV2O4 samples [6–8].
They found an extremely large quasiparticle specific heat
coefficient g # 420 mJ$mol K2, comparable to that of
the heavy fermion intermetallic UPt3 [9]. Combining
the g and the T ! 0 limit x!0", a Wilson ratio, RW !
1.7, was obtained which is reasonable for a strongly cor-
related Fermi liquid. From these results, Kondo et al.
concluded that LiV2O4 is the first heavy fermion tran-
sition metal oxide. Since it contains only d electrons,

the origin of the large g has been a subject of ongoing
debate.

Since the very early single crystal study performed more
than three decades ago [10], all works on this intriguing
compound had been performed using ceramic samples, in-
cluding the pioneering work of Kondo et al. To our knowl-
edge, however, the resistivity r!T " of all polycrystalline
LiV2O4 reported thus far exhibits insulating behavior and
tends to diverge towards the T ! 0 limit [11,12], while
metallic behavior was reported by the early single crys-
tal study [10]. It is not clear whether this metallic single
crystal yields a large g as observed in ceramic samples.
Besides, low-T transport measurements have not yet been
performed on single crystalline samples [10].

With these features in mind, we have grown single crys-
tals of LiV2O4 and have measured their transport proper-
ties, magnetization, and specific heat. In this Letter, we
first present evidences, mainly from the low-T transport
properties, that the ground state of LiV2O4 is indeed an
extraordinarily heavy-mass Fermi liquid [13]. We then
address a few basic issues such as the high-T incoher-
ent transport behavior and a role of geometric frustration,
which, we believe, is closely linked with the origin of the
heavy quasiparticle mass.

Single crystals of LiV2O4 were grown by a hydrother-
mal technique [10]. No evidence for cation nonstoichiom-
etry was found by inductively coupled plasma analysis
within a given resolution (1%). Polycrystalline samples of
LixZn12xV2O4 were prepared by a conventional solid state
reaction [14]. The T -dependent resistivity was measured
by a four-probe technique with an ac resistance bridge.
A thermal relaxation calorimeter was used to measure the
C!T " of tiny single crystalline samples, while an adiabatic
calorimeter was used for the polycrystalline samples.

Figure 1 summarizes all the physical properties we have
measured on single crystals. As clearly seen in Fig. 1(a),
r!T " of the single crystal is metallic down to 300 mK, in
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tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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Electronic conduction in GaM4Se8 (M ! Nb;Ta) compounds with the fcc GaMo4S8-type structure
originates from hopping of localized unpaired electrons (S ! 1

2 ) among widely separated tetrahedral
M4 metal clusters. We show that under pressure these systems transform from Mott insulators to a
metallic and superconducting state with TC ! 2:9 and 5.8 K at 13 and 11.5 GPa for GaNb4Se8 and
GaTa4Se8, respectively. The occurrence of superconductivity is shown to be connected with a pressure-
induced decrease of the MSe6 octahedral distortion and simultaneous softening of the phonon
associated with M-Se bonds.
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Superconductivity in the presence of strong electron
correlations has attracted considerable attention, espe-
cially after the discovery of high-TC superconductors.
Usually superconductivity is obtained in such systems
by doping Mott insulators, as in cuprates [1] or in
NaxCoO2 " yH2O [2]. Another option is to study the oc-
currence of superconductivity under high pressure in stoi-
chiometric systems in the proximity to a Mott transition.
The advantage in this case is the absence of disorder.
Unfortunately, there are very few such systems known
(e.g., !-Na0:33V2O5 [3] and recent theoretical discus-
sion [4]).

In this work we show that cluster compounds GaM4Se8
(M ! Nb;Ta), which are nonmagnetic Mott insulators at
ambient pressure, transform to a metallic and supercon-
ducting state at pressures of 13 and 11.5 GPa with critical
temperatures TC ! 2:9 and 5.8 K, respectively. We show
that the Mott transition itself is apparently connected
with internal distortions of the clusters rather than a
change of the lattice symmetry. We also observed a rather
strong softening of one of the phonon modes, which
correlates with the appearance of superconductivity.

Ternary chalcogenides AM4X8 (A ! Ga;Ge; M ! V;
Mo;Nb;Ta; X ! S; Se) belong to an interesting class of
transition metal systems which exhibit strong electronic
correlation effects. The origin of the electronic correla-
tion in these systems is a consequence of their peculiar
crystal structure, shown in Fig. 1(a). This fcc structure
(GaMo4S8-type) can be described as a deficient spinel
A0:5M2X4 [5,6], in which the ordering of the tetrahedral
A ions reduces the symmetry from Fd3m to F43m. As a
result, the M (transition metal) atoms are shifted off the
centers of the S=Se octahedral, see Fig. 1(b), forming
tetrahedral M4 clusters with typical intracluster M#M
distances $dM% of &3 !A. At the same time the M#M
distances $dC% between the M4 clusters become large
(>4 !A), which results in a formation of localized elec-

tronic states in the clusters. This leads to unusual trans-
port and magnetic properties. None of these compounds
show metallic conductivity; instead the electronic con-
duction takes place by hopping of carriers between the
clusters [7–10]. Simultaneously, magnetic susceptibility is
typical for localized spins. Thus, this class of systems can
be considered as Mott insulators.

The ground state properties of these compounds
strongly depend on the local electronic structure of the
M4 cluster (actually M4X4 clusters) which is mainly
determined by the number of valence electrons per cluster
[9–11]. According to MO calculations, the d orbitals

FIG. 1. (a) Linkage of the Ta4Se4 cluster units via bridging
Se2 atoms and their connection with the GaSe4 tetrahedra in
the fcc GaMo4S8 structure. (b) (Ta,Nb) atoms shifted off the
centers of distorted edge-sharing Se6 octahedra (dTa-Se1 !
2:508 !A; dTa-Se2 ! 2:643 !A). (c) Molecular orbital (MO)
scheme for the M-M bonding orbitals of a M4 cluster with
ideal Td symmetry for seven electrons per cluster.
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the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵
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ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�
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†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.
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-filling, there ex-
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ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
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is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)
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gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)
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gauge fields, and the fermionic spinons coupled to the
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gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)
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) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
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gauge field originates from
the electron charge fluctuations and may be probed by
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the quantum coherence around a temperature T ⇤ ⇠
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, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
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Summary

• We propose an interesting exotic state with both  
spin and charge quantum number fractionalizations. 

• We develop a slave-particle formalism to describe this  
exotic phase and the Mott transition.  

• We suggest some physical quantity to measure the  
internal gauge structure.  
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