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Fractionalized charge excitation

FQHE is arguably the only existing topological order so far.

Chiral (Abelian) topological order 

Fractionalization: fractionalized & deconfined excitation  
Chern-Simon gauge structure

with charge U(1) symmetry: 
charge conservation

Symmetry makes topological order more visible in experiments. 
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What is the sharp physical observable for the U(1) QSL  
in quantum spin ice?
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heat capacity (Savary&Balents: 1000 times larger than phonon!) and spinon continuum

low energy scale 
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One answer: 

the spectral periodicity of the spinon continuum
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
relator via the INS. From the relation

hS+
i

S�
j

i ⇠ h�†
ri
�r0

i
e
iArir

0
i�rj

�†
r0
j
e
�iArir

0
j i

' h�†
ri
�rj

ih�r0
i
�†

r0
j
iheiĀrir
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where r
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)
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a sharp signature for the experimental observation. Since
the U(1)

⇡
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Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
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Enlarged periodicity is like the fractional charge in FQHE.

Gang Chen, arXiv 1704.02734, 2017

Gang Chen’s theory group 

Gang Chen’s theory group



Realistic models
• Usual Kramers’ doublet and non-Kramers’ doublet  

 

•  Dipole-octupole doublet

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X
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where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Use the XXZ model to illustrate the universal physics

J?
JzU(1) QSL

Transverse
spin order

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
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⌫

(µ 6= ⌫), commute with each other with T
µ
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⌫

=
T
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T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s
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T s
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= ±T s
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Let there be light: emergent photonExcitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon
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Collective spin dynamics

Here, “monopole” is a spinon !
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Frustrated regime: early theoretical study

J?
JzU(1)0 QSL

Transverse
spin order|

U(1)pi QSL

PHYSICAL REVIEW B 86, 104412 (2012)

Generic quantum spin ice

SungBin Lee,1 Shigeki Onoda,2 and Leon Balents3

1Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
2Condensed Matter Theory Laboratory, RIKEN, 2-1, Hirosawa, Wako 351-0198, Saitama, Japan

3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-9530, USA
(Received 4 May 2012; revised manuscript received 7 August 2012; published 10 September 2012)

We consider possible exotic ground states of quantum spin ice as realized in rare earth pyrochlores. Prior work
[Savary and Balents, Phys. Rev. Lett. 108, 037202 (2012).] introduced a gauge mean-field theory (gMFT) to
treat spin or pseudospin Hamiltonians for such systems, reformulated as a problem of bosonic spinons coupled
to a U (1) gauge field. We extend gMFT to treat the most general nearest-neighbor exchange Hamiltonian, which
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extension of gMFT, which we provide. As an application, we focus especially on the non-Kramers materials
Pr2T M2O7 (T M = Sn, Zr, Hf, and Ir), for which the additional term is especially important, but for which an
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I. INTRODUCTION

The quest for quantum spin liquid (QSL) ground states,
exotic phases of matter with emergent gauge structure
and quasiparticles carrying fractional quantum numbers,1 is
an ongoing endeavour in condensed-matter physics. Well-
studied candidates include some two-dimensional organic
crystals2 and some inorganic kagome systems such as
herbertsmithite.3 Among three-dimensional materials, experi-
mental candidates include several magnetic pyrochlore oxides4

and hyperkagome-lattice magnets.5 Classical spin liquids have
been realized in the spin ices,6 in which the spins reside on a
pyrochlore lattice and interact via a dominant classical Ising
coupling. It has been shown theoretically that a weak quantum-
mechanical perturbation does not produce long-range order in
the ground state.7 Instead, it lifts the macroscopic degeneracy
of the spin-ice manifold, leaving gapless photon excitations
describable by an emergent U (1) gauge field. The photon
exists in a so-called Coulomb phase or U (1) spin liquid
phase, which is stable to all weak perturbations, at zero
temperature.

To describe the low-energy physics of magnetic py-
rochlore oxides associated with local magnetic doublets of
rare-earth ions, a minimal pseudospin-1/2 model can be
introduced on symmetry grounds8 [see Eq. (1)]. It has also
been derived microscopically using superexchange theory
for various materials.9–11 This model successfully explains
spin correlations experimentally observed in Yb2Ti2O7.

8,12

As can be seen from the general form of Eq. (1), these
comparisons between theory and experiment also reveal that
putative continuous rotational symmetry of the pseudospins is
broken by a significant level of magnetic anisotropy. Moreover,
at least for Yb2Ti2O7 and possibly for other materials, the Ising
interaction remains dominant, in which case the physics is that
of a quantum variant of spin ice.13 At a phenomenological

level, recent experimental findings suggest the relevance of the
Coulomb phase physics in real rare-earth magnetic pyrochlore
oxides.8,12,14

Based on this observation, detailed analyses of the non-
perturbative stability of the Coulomb phase and the possible
existence of other phases and phase transitions are called
for. It must be noted that this is a very complex problem;
the general pseudospin Hamiltonian in Eq. (1) contains
four exchange constants: the Ising exchange Jzz, and three
quantum terms J±, Jz±, and J±±. Assuming we start from
the classically frustrated spin-ice case Jzz > 0, one then has
three dimensionless couplings J±/Jzz, Jz±/Jzz, and J±±/Jzz,
forming a three-dimensional (3D) phase space even at zero
temperature. The development of a comprehensive theory of
this full 3D phase space is a challenging task.

A method for analysis of this problem was developed in
Ref. 15, based on a gauge theory reformulation of the problem
on a dual diamond lattice. There, the original Hamiltonian was
re-expressed as a problem of bosonic spinons hopping in the
background of a fluctuating compact U (1) gauge field. This
problem was subsequently approximated using a mean-field
theory. In that work, this gauge mean-field theory (gMFT)
was applied to the corner of the phase diagram approximately
appropriate to Yb2Ti2O7, with, in our (and their) notation,
J±± = 0, and J± > 0. Both the expected U (1) QSL phase
and an additional exotic state, a Coulomb ferromagnet,
were found, though somewhat limited in their domain of
stability.

Here we extend the theoretical formalism to allow us to
fully treat the most generic nearest-neighbor pseudospin-1/2
Hamiltonian [i.e., the fully general form of Eq. (1)]. This
requires some significant technical extensions to the analysis
in Ref. 15. In particular, the term J±± induces interactions
amongst the spinons, which may induce pairing and other
effects. Furthermore, in the case J± < 0, a nonzero average
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Figure 1. (a) Finite–temperature phase diagram of the XXZ model on a pyrochlore lattice, H
QSI

[Eq. (1)]. The model posses
three distinct spin–liquid phases (SL), as well as ground states with easy–plane antiferromagnetic (AF?) and spin–nematic
(Q?) order. Associated crossover temperatures (phase transitions) are indicated with dashed (solid) lines. For J±/Jzz

= �1/2
(dash–dotted line), the model is thermodynamically equivalent to the Heisenberg antiferromagnet on a pyrochlore lattice.
Results are taken from classical Monte Carlo simulation of a cubic cluster of N = 8192 spins. (b) Representative configuration
of quadrupoles in the Q? phase with nematic order (c) “Two in, two out” configuration of spins in the spin ice regime (SLI).
(d) Representative configuration of spin dipoles in the ordered AF? phase.

(QMC) simulation. In this case, the phase diagram is
already well–established [13, 20, 21]. For J±/Jzz . 0.05,
QMC simulations find a crossover from a conventional
paramagnet into a classical spin–liquid (spin ice) at a
temperature T

⇤
/J

zz

⇠ 0.2, and a second crossover into
a quantum spin liquid (QSL) at a much lower temper-
ature T

⇤
QSL

/J

zz

⇠ (J±/Jzz)
3. In the low temperature

quantum spin liquid regime, the magnetic monopoles of
classical spin ice become dynamic, fractional, spin exci-
tations (spinons), while the spectrum of the model also
includes gapless photons [12, 15]. For J±/Jzz & 0.05, the
U(1) QSL gives way to easy–plane antiferromagnetic or-
der (AF?), in which spins lie in the plane perpendicular
to the local Sz–axis [13, 20, 21].

Very little is known about the properties of H
QSI

for
J± < 0 [9, 17, 38]. On perturbative grounds, it is ex-
pected that the ground state for |J±|/Jzz ⌧ 1 will also
be a U(1) QSL [12], albeit one with a modified spinon dis-
persion [17, 45]. Gauge Mean–field calculations suggest
that this QSL persists over a broad range of parameters,

�4.13 . J±/Jzz < 0 [17]. But the nature of competing
ordered — or disordered — phases for J± < 0 remains
an open question.

There are many reasons to believe that the properties
of the quantum spin ice model, H

QSI

[Eq. (1)] for frus-
trated coupling J± < 0, could be even richer than for
J± > 0. In particular, for J±/Jzz = � 1

2 , H
QSI

[Eq. (1)]
is equivalent (up to a site–dependent spin–rotation), to
the Heisenberg antiferromagnet (HAF) on a pyrochlore
lattice. Like spin ice, the HAF is known to support a
classical spin liquid [46–49], and it has also been argued
to support a QSL ground state [50–53]. And, crucially,
both the classical and quantum spin liquids in the HAF
have a qualitatively different character from those found
in spin ice. This sets up a competition between two differ-
ent kinds of spin liquid, namely spin ice for J±/Jzz ⇡ 0,
and a state homologous to the HAF for J±/Jzz ⇡ � 1

2 . It
also opens the door for yet more novel magnetic phases
for J±/Jzz < � 1

2 .

complementary study in the classical regime: 
three classical spin liquids
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the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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ing part of the paper. In the regime with |J?| ⌧ J
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the third-order degenerate perturbation theory yields an
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes
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space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
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dition leads to the symmetry fractionalization for the
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tion, we have
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for quantum Monte Carlo simulation and is thus less ex-
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stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
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QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
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QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
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regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

⇡
3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

= ±1

If K < 0, curlA = ⇡

If K > 0, curlA = 0
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫
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µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s
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⌫
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⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
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⌫
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⌫
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µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where
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where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
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|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)
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QSL, we have
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because of the ⇡ flux and the translational symmetry
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QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.
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Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)
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QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)
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QSL extends to the
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tinct physical meaning of three spin components in the
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QSL. It is likely that the Heisenberg point is a
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⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
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with J? < 0, each elementary hexagon plaquette of the
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created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
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path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s
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We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)
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QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q
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i, where q
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bels the total crystal momentum and z
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refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q
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a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T
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acts on the state as
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where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,
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where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)
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QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)
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Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
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Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)
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QSL. We focus on the
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ied. It was shown that the U(1)
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QSL extends to the
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zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡
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Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

But elastic neutron scattering will NOT see extra Bragg peak.

Gang Chen’s theory group 

Gang Chen’s theory group



Calculation to demonstrate the above prediction
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
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2 I, r0
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
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+
i

S�
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+ S�
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S+
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), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
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S+
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+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9

!I,±(k) =
q

2J
zz

�
�± J?(c2

y

c2
z

+ s2
x

s2
y

+ c2
x

s2
z

)
1
2

�
,(18)

!II,±(k) =
q

2J
zz

�
�± J?(s2

y

s2
z

+ c2
x

c2
y

+ s2
x

c2
z

)
1
2

�
,(19)

where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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where r
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =
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rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)
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where c
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/2), s
µ
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µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.
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2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)
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QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J
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V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J
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the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes
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and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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Motivated by the rapid experimental progress of quantum spin ice materials, we study the dy-
namical properties of pyrochlore spin ice in the U(1) spin liquid phases. In particular, we focus on
the spinon excitations that appear in high energies and show up as an excitation continuum in the
dynamic spin structure factor. The keen connection between the crystal symmetry fractionalization
of the spinons and the spectral periodicity of the spinon continuum is emphasized and explicitly
demonstrated. The enhanced spectral periodicity of the spinon continuum provides a sharp physical
observable to detect the spin quantum number fractionalization and U(1) spin liquid. Our prediction
can be immediately examined by inelastic neutron scattering experiments among quantum spin ice
materials with Kramers’ doublets. Further application to the non-Kramers’ doublets is discussed.

I. INTRODUCTION

The three-dimensional (3D) U(1) quantum spin liquid
(QSL) is an exotic quantum state of matter and is charac-
terized by fractionalized spinon excitation and emergent
U(1) gauge structure1. Since the spinons are gapped, the
low-energy property of the state is described by a com-
pact U(1) quantum electrodynamics in 3D1. This inter-
esting state was proposed more than one decade ago1–3.
Recently, there has been a very active search of this ex-
otic state among the rare-earth pyrochlore quantum spin
ice (QSI)4 materials5–39. Despite the abundance of QSI
materials and possible experimental evidences, the iden-
tification of U(1) QSL has not been achieved in any can-
didate material.

To confirm the U(1) QSL, one needs to identify
the emergent gauge structure and/or the fractionalized
spinon excitation. From the theoretical perspective,
these two things are related since the fractionalized ex-
citation naturally emerges in the deconfined phase of
the lattice gauge theory. Thus, identifying the emer-
gent gauge structure and finding the fractionalized spinon
excitations are equivalent. For the realistic pyrochlore
QSIs, the gauge photon and the spinon have drastically
di↵erent energy scales1,8,9. The gauge photon is the very
low energy excitation that operates on the spin ice man-
ifold28,35, while the spinons are the much higher energy
excitations that violate the spin ice rule1. Practically
speaking, the large energy-scale di↵erence between the
gauge photon and spinons suggests that the spinon exci-
tation might be a better experimental direction to search
for. Therefore, we focus on the experimental signature
of the spinon excitation and explore the spectral struc-
ture of the spinon continuum in the U(1) QSL in this
paper. In particular, we point out that the emergent
background U(1) gauge flux of the ground state enriches
the U(1) QSLs by creating distinct translational symme-
try fractionalization for the spinons. In the case that the
spinon experiences a ⇡ background flux, there is an en-
hanced spectral periodicity in the spinon continuum that
can be revealed by the dynamic spin structure factor in

an inelastic neutron scattering (INS) measurement. The
enhanced spectral periodicity is certainly not a property of
a conventional paramagnet and thus represents an unique

experimental signature of the U(1) QSL with ⇡ flux.
The following part of the paper is organized as follows.

In Sec. II, we introduce the XXZ model as the parent
model to extract the ⇡-flux U(1) QSL in the frustrated
and perturbative regime. In Sec. III, we explain the
translational symmetry fractionalization and predict its
consequence on the spectral periodicity of the spinon con-
tinuum. In Sec. IV, we explictly compute the spinon con-
tinuum with the parton-gauge contruction for the XXZ
model. In Sec. V, we discuss the candidate materials and
the related experimental consequences.

II. MODEL HAMILTONIAN AND
PERTURBATIVE ANALYSIS

We start with the spin-1/2 XXZ model on the py-
rochlore lattice. This model is the parent model for

FIG. 1. (Color online.) The schematic phase diagram of the
XXZ model on the pyrochlore lattice. The AFM0 stands for
the magnetic ordered state that is proximate to the U(1)0
QSL40. The colored region refers to the QSI regime. The solid
lines indicate a finite temperature magnetic ordering transi-
tion. The dashed line indicates the crossover temperature to
the spin ice regime. See the main text and Tab. I for details.

For usual Kramers’ doublet, spinon  
continuum is detectable by INS.  

Lucile & Kate: Yb2Ti2O7 is either in or  
proximate to 0-flux.  

So Yb2Ti2O7 does not have enhanced  
spectral periodicity. 

For non-Kramers’ doublet, spinon continuum  
cannot be detected by INS. But the proximate  
quadrupolar order would break translation  
symmetry, and can however be detectable.  
 
Lee, Onoda, Balents: Pi flux state is more  
robust. This is great !  
 
This means it is more likely for a candidate  
material to have spectral periodicity  
enhancement.
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