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e n e r g i e s  ex t rapo la te  r a t h e r  smooth ly  to 

E r a i l r o a d  ~ -0 .490  NJ + 0. 005 (13) 

which should be quite a c c u r a t e  and is u n m i s t a k e a b l y  be t t e r  than the sp in -wave  

resu l t .  

A l e s s  a c c u r a t e  ex t r apo la t ion  may  be made  f rom the l inea r  chain  via 

the r a i l r o a d  t r e s t l e  to the en t i r e  t r i ang le  la t t ice .  One finds 

E A ~- -(0. 54 .+. 0 . 0 1 ) N J .  (14) 

This  is n e a r l y  20% lower  than the sp in -wave  ene rgy  (11) of the Ndel s tate.  It 

s e e m s  a l m o s t  c e r t a i n  that it 
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We note that w h e r e v e r  two 
bonds a r e  pa ra l l e l  ne ighbors ,  FIG. 3 

such as  (12) and (34) in Fig.  3a, Random a r r a n g e m e n t s  of pa i r  bonds on a 
t r i ang le  la t t ice .  (a) Shows a r e g u l a r  a t -  

e i t he r  (S 1" S 2) or  (S 3 • $4) p ro -  r a n g e m e n t  with 2N/4 a l t e r n a t i v e  d i s t inc t  
v ides  a m a t r i x  e l e m e n t  to the pa i r ings  ( " rhombus"  approx imat ion) .  
d e g e n e r a t e  conf igura t ion  (23)(41), (b) An a r b i t r a r y  a r r a n g e m e n t .  

while  only (S1S3) g ives  a m a t r i x  e l e m e n t  of opposi te  sign. Thus  we can a lways  
gain ene rgy  by l inea r ly  combin ing  d i f fe ren t  conf igura t ions  in which such bonds 
a r e  in t e rchanged .  Since t h e r e  a r e  in any r a n d o m  conf igura t ion  like Fig. 3b 

g r e a t  n u m b e r s  of s e t s  of pa ra l l e l  bonds,  one can a r r i v e  at any conI igu ra t ion  
f r o m  any other ;  and r e t u r n  to the o r ig ina l  one by ve ry  many paths.  What is 

not c l e a r  is that one wil l  r e t u r n  to the s ame  s ta te  in the s a m e  phase by t r a -  
ve r s ing  d i f f e ren t  paths. If one did,  the s ta te  would be e s s e n t i a l l y  a Bose  con-  
densed  s ta te  of pa i r -bonds  with a f o rm  of ODLRO. This would be c lo se ly  r e -  
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energies extrapolate rather smoothly to 

Erailroad ~ -0.490 NJ + 0. 005 (13) 

which should be quite accurate and is unmistakeably better than the spin-wave 

result. 

A less accurate extrapolation may be made from the linear chain via 

the railroad trestle to the entire triangle lattice. One finds 

E A ~- -(0. 54 .+. 0.01)NJ. (14) 

This is nearly 20% lower than the spin-wave energy (11) of the Ndel state. It 

seems almost certain that it 3 4 
represents the energy of a ,r ,, ,, /, ,. ,, ,, ? I / l t / l / 
qualitatively different state. I 2 

jr ir iw iw /i Sw lit iv Z ii w 
I I S I O~ nS n' I' I e d S ~ f • I 

Let us make some 

brief comments about the nature 

of this state. A disclaimer is / 

in order: we really know very / / / ~kk ~k / 

little about it. On the other -- 

hand, there are a few very / / / ~k ~k / / / 
basic things which can be said. b) -- / / / 

We note that wherever two 
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such as (12) and (34) in Fig. 3a, Random arrangements of pair bonds on a 
triangle lattice. (a) Shows a regular at- 

either (S 1" S 2) or (S 3 • $4) pro- rangement with 2N/4 alternative distinct 
vides a matrix element to the pairings ("rhombus" approximation). 
degenerate configuration (23)(41), (b) An arbitrary arrangement. 

while only (S1S3) gives a matrix element of opposite sign. Thus we can always 
gain energy by linearly combining different configurations in which such bonds 
are interchanged. Since there are in any random configuration like Fig. 3b 

great numbers of sets of parallel bonds, one can arrive at any conIiguration 
from any other; and return to the original one by very many paths. What is 

not clear is that one will return to the same state in the same phase by tra- 
versing different paths. If one did, the state would be essentially a Bose con- 
densed state of pair-bonds with a form of ODLRO. This would be closely re- 
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The idea of quantum spin liquid (1973)

P. W. Anderson
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RESONATING VALENCE BONDS" A NEW KIND OF INSULATOR?*  

P. W. A n d e r s o n  
Bel l  L a b o r a t o r i e s ,  M u r r a y  Hill, New J e r s e y  07974 
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C a v e n d i s h  L a b o r a t o r y ,  C a m b r i d g e ,  England  
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A B S T R A C T  
The p o s s i b i l i t y  of a new kind of e l e c t r o n i c  s ta te  is poin ted  out, 
c o r r e s p o n d i n g  rough ly  to P a u l i n g ' s  idea of " r e s o n a t i n g  v a l e n c e  
bonds"  in m e t a l s .  As  o b s e r v e d  by Pau l ing ,  a pure  s ta te  of th i s  
type  would be insu la t ing ;  it would r e p r e s e n t  an a l t e r n a t i v e  s ta te  
to the  N6el  a n t t f e r r o m a g n e t i c  s ta te  for  S = 1/2.  An e s t i m a t e  of 
i ts  e n e r g y  is m a d e  in one case .  

Many y e a r s  ago Pau l i ng  gave a " r e s o n a t i n g  va l ence  bond" t h e o r y  of 

m e t a l s  (1) which  v i r t ua l l y  ignored  the  e l e c t r o n  gas  na tu re  of the  m e t a l l i c  s ta te  

and in s t ead  t r i e d  to r e l a t e  the  b inding  e n e r g i e s  s e m i q u a n t i t a t i v e l y  to known 

v a l e n c e  bond c o n c e p t s .  Only r e c e n t l y  ha s  the  conven t iona l  F e r m i  gas  t h e o r y  

begu n  to a d d r e s s  i t se l f  m o r e  a n a l y t i c a l l y  to the s a m e  p r o b l e m s .  But P a u l i n g ' s  

a t t e m p t  l e a v e s  behind  a ve ry  i n t e r e s t i n g  p r o b l e m  of p r inc ip l e :  i s  a s ta te  in 

which  va lence  bonds  move  a r o u n d  f r e e l y  b e t w e e n  p a i r s  of a t o m s  a m e t a l  in 

fact  ? Does  it conduc t  e l e c t r i c i t y  in the c h a r a c t e r i s t i c  m e t a l l i c  w a y ?  More  

*Work  at the C a v e n d i s h  L a b o r a t o r y  s u p p o r t e d  in pa r t  by the A i r  F o r c e  Office 
of Sc ien t i f i c  R e s e a r c h  Office of A e r o s p a c e  R e s e a r c h ,  U. S. A i r  F o r c e  
u n d e r  g r a n t  No. 1052-69. 

**Th i s  p a p e r  was  o r i g i n a l l y  in tended  for  the Pau l ing  F e s t s c h r i f t ,  V o l u m e  7, 
N u m b e r  11 ( N o v e m b e r  1972). 
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High temperature superconductivity (1986)

The idea is to view Mott insulator (QSL) as the parent state of high-temperature superconductor.  
In the QSL, there are preformed Cooper pairs. Doping it allows to Cooper pairs to condense and  
lead to superconductivity. 
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Two milestones of 20th century  
condensed matter physics

Landau

Landau Fermi liquid theory Landau symmetry breaking theory

These two paradigms break down after the  
discovery of fractional quantum Hall effect in 1980s. 
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Quantum spin liquid

•  Quantum spin liquid is a new quantum phase of matter, and cannot be 
characterized by Landau symmetry breaking, instead by emergent gauge 
structure and deconfined fractionalized excitations. 

QSL is robust against any local perturbation. So it should exist in Nature ! 

•  QSL, its existence, is very clear, at least at the level of theory.  
 
  - Exactly solvable model with QSL ground state: e.g. Kitaev model and extension.  
  - Classification of QSLs: many distinct symmetry enriched QSLs (XG Wen etc).  
  - Numerical solutions: DMRG, QMC, exact diagonalization, etc.
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QSL: existing experiments

organics: kappa-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, κappa−H3(Cat-EDT-TTF)2   
herbertsmithite (ZnCu3(OH)6Cl2), Ba3NiSb2O9, Ba3CuSb2O9, LiZn2Mo3O8, ZnCu3(OH)6Cl2 
volborthite (Cu3V2O7(OH)2), BaCu3V2O3(OH)2, [NH4]2[C7H14N][V7O6F18], Na2IrO3, CsCu2Cl4,  
CsCu2Br4, NiGa2S4, He-3 layers on graphite, etc 

Na4Ir3O8, IrO2, Ba2YMoO6, Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7, Tb2Ti2O7, Nd2Zr2O7, FeSc2S4, etc

• 2D triangular and Kagome lattice

• 3D pyrochlore, hyperkagome, FCC lattice, diamond lattice, etc

• Ultracold atom and molecules on optical lattices: temperature is too high now. 

Some candidate materials have already been ruled out. 
Not being a QSL does not necessarily mean the physics is not interesting ! 
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•  Spinon Fermi surface U(1) quantum spin liquid



Any guiding rule to find QSL? Not really. 

Frustrated lattice?           Honeycomb Kitaev model. 
Frustrated interaction?    We do not really know unless we identify the interaction. 
Low dimensionality?       3D lattice also has QSL.  
Odd electrons per cell?  Many QSLs have even electrons per cell. 

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2016).

Lieb Oshikawa Hastings Vishwanath
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A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Dr. Yuesheng Li  
Renmin Univ -> MPI, Germany

This part is in collaboration with experimentalists  

Dr. Yuesheng Li (Renmin Univ, Beijing) 
Prof. Qingming Zhang (Renmin Univ, Beijing) 
Wei Tong (High Magnetic field Lab, Hefei) 
Pi Li (High Magnetic field Lab, Hefei) 
Juanjuan Liu (Renmin Univ, Beijing) 
Zhaorong Yang (Institute of Solid-State Physics, Hefei) 
Xiaoqun Wang (Renmin, Shanghai Jiaotong)

YS Li, GC*,…., QM Zhang* 
PhysRevLett 2015
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4

Yuesheng Li,1 Gang Chen,2, 3, ⇤ Wei Tong,4 Li Pi,4 Juanjuan Liu,1

Zhaorong Yang,5 Xiaoqun Wang,1, 6 and Qingming Zhang1, 6, †

1Department of Physics, Renmin University of China, Beijing 100872, P. R. China
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Department of Physics, Fudan University, Shanghai 200433, China
3Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, 200433, China
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(Dated: September 16, 2015)

YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

• This is the first strong spin-orbit coupled QSL with odd number of electrons and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. 
•  We understand the microscopic Hamiltonian and the physical mechanism.
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• Entropy: effective spin-1/2 local moments
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Yb3+ ion: 4f13 has J=7/2 due to SOC.
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T ⌧ �At              , the only active DOF is the ground state  
doublet that gives rise to an effective spin-1/2. 
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Can this kind of system support a QSL ground state?  Yes.

Filling constraints for spin-orbit coupled insulators in symmorphic and

non-symmorphic crystals

Haruki Watanabe,1 Hoi Chun Po,1 Ashvin Vishwanath,1, 2 and Michael P. Zaletel3

1
University of California, Berkeley, California 94720.

2
Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley CA 94720

3
Station Q, Microsoft Research, Santa Barbara, California, 93106-6105

We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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What is the physical origin of the QSL?

Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X
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⇥
J
zz

Sz

i

Sz

j

+ J±(S
+

i

S�
j

+ S�
i

S+

j

)

+J±±(�ijS
+

i

S+

j

+ �⇤
ij

S�
i

S�
j

)

� iJ
z±
2

(�⇤
ij

S+

i

Sz

j

� �
ij

S�
i

Sz

j

+ hi $ ji)
⇤
, (1)

where S±
i

= Sx

i

± iSy

i

, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
2

,a
3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order
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4f electron is very localized, and dipolar interactions weak. 

The spin-1/2 XXZ model supports conventional order. 

(Yamamoto, etc, PRL 2014)
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4

A. Luttinger-Tisza method

Here we treat the e↵ective spin Si as a classical vector
that satisfies the hard spin constraint |Si| = 1/2. Follow-
ing Luttinger and Tisza18, we first replace the hard spin
constraint with a global constraint such that

X

i

|Si|2 =
N

4
, (3)

where N is the total number of spins. The classical spin
Hamiltonian is then minimized under this global con-
straint. If the energy minimum turns out to satisfy the
local hard spin constraint as well, then this energy mini-
mum is the true classical ground state.

There are four parameters, Jzz, J±, J±±, Jz±, in the
generic spin model. We first consider the parameter
regime when the anisotropic interaction vanishes with
J±± = 0 and Jz± = 0. In this regime the spin model
reduces to the XXZ model. From the Curie-Weiss tem-
perature results on single crystal YbMgGaO4 samples3,
one finds that both Jzz and J± are antiferromagnetic and
J±/Jzz ⇡ 0.915 which is fixed to this value throughout
the paper. The ground state of this XXZ model is simply
the well-known 120� ordered state with the spins orient-
ing in the xy plane. The ordering wavevector of the 120�

state is at

kc =

✓
4⇡

3
, 0

◆
, (4)

or its symmetry equivalent wavevectors.
Now we discuss the e↵ect of the anisotropic spin in-

teractions. With a small |J±±|, the minimum of the
classical Hamiltonian under the global constraint slightly
deviates from the 120� state and occurs at incommen-
surate wavevectors. In strong spin-orbit coupled insu-
lators, however, the incommensurate ordering is generi-
cally not favored. Because of the intrinsic spin anisotropy
that originates from the strong spin-orbit coupling19, to
optimize the spin anisotropy, the ordered spin moments
cannot orient freely like the case for an incommensurate
state. As a result, we generically have the commensurate
spin orders in the strong spin-orbit coupled insulators.
Apart from the general understanding, we here provide
more specific reasons. Due to the low symmetry of the
spin Hamiltonian, the eigenstate that corresponds to the
minimum is generically unique, hence one cannot find two
orthogonal eigenvectors to construct an incommensurate
spiral state that satisfies the hard spin constraint on ev-
ery lattice site. Therefore, the incommensurate state can-
not be a true classical ground state, and we tentatively
regard the 120� state as the candidate classical ground
state in the regime with a small J±±.

With a large |J±±| and/or a large |Jz±|, the minimum
of the classical spin Hamiltonian occurs at

ks =

✓
0,

2⇡p
3

◆
, (5)
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FIG. 4. (Color online.) (a) The classical phase diagram in
the zero temperature limit. The solid phase boundaries de-
termined by the Luttinger-Tisza method, and the colored re-
gions are determined by classical Monte Carlo simulation. (b)
Ordering wave vectors kc and ks drawn in the first Brillouin
zone (the hexagon) for the three phases. (c) The 120� or-
der in regin I with spins pointing in the xy plane. (d) The
stripe order in regin II with spins pointing in the yz plane.
(e) The stripe order in region III with spins pointing along
the x direction.

or its symmetry equivalent wavevectors. Remarkably,
this minimum state satisfies the hard spin constraint and
is thus a true ground state. The spin configuration with
this ordering wavevector has a stripe order, i.e., the spins
order ferromagnetically along one lattice direction and
antiferromagnetically along the remaining two lattice di-
rections. To obtain the classical phase diagram in Fig. 4a,
we compare the energies of the 120� state and the stripe
ordered phases. In the region I of the phase diagram,
the 120� state is obtained. In the region II and III, we
find two stripe ordered phases with di↵erent spin orien-
tations. Without loss of generality, we fix the ordering
wavevector of the stripe phase to be ks = (0, 2⇡/

p
3).

Due to the locking of the spin orientation and the or-
dering wavevector, the spin configuration is fixed as well.
With this choice of the ordering wavevector, the spins
are pointing in the yz plane20 and x direction in region
II and region III, respectively (see Fig. 4).

Here we elucidate the structure of the classical ground
state phase diagram. The magnetic phases for a negative

8

ha†ia†iaiaji = 2ha†iai iha†iaji+ ha†ia†i ihaiaji, (25)

ha†ia†iaia†ji = 2ha†iai iha†ia†ji+ ha†ia†i ihaia†ji, (26)

ha†iaia†jaji = ha†iai iha†jaji+ ha†ia†jihaiaji
+ha†iajiha†jai i, (27)

ha†iaia†ja†ji = ha†iai iha†ja†ji+ 2ha†ia†jihaia†ji, (28)

ha†ia†ia†jaji = 2ha†ia†jiha†iaji+ ha†ia†i iha†jaji, (29)

ha†ia†ia†ja†ji = 2ha†ia†jiha†ia†ji+ ha†ia†i iha†ja†ji. (30)

The decoupling of the cubic and quintic terms leads
to linear terms in the Dyson-Maleev bosons that should
all cancel out by the stability requirement of the classical
ground state. Therefore, the decoupling of the cubic and
quintic terms does not introduce extra quadratic terms
into the spin-wave Hamiltonian.

After defining the Fourier transform of the Dyson-
Maleev boson operators, the quadratic spin-wave Hamil-
tonian can be organized as

Hsw =
X

k2BZ0

(A†
k, A�k)

✓
Fk G†

k
Gk F�k

◆✓
Ak

A†
�k

◆
, (31)

where Ak = (a1k, a2k) is the vector of the Dyson-Maleev
boson annihilation operator, the subindices “1” and “2”
label the two sublattices of the magnetic unit cell, and
BZ0 is the magnetic Brioullin zone of the stripe ordered
phase. Fk and Gk are 2 ⇥ 2 matrices and depend on
the mean field parameters that were introduced as bo-
son bilinears. The quadratic spin wave Hamiltonian is
diagonalized by the standard Bogoliubov transformation
Qk

33,

✓
Bk

B†
�k

◆
= Qk

✓
Ak

A†
�k

◆
, (32)

where Bk = (b1k, b2k) refers to the set of Bogoliubov
bosons, and Qk is a 4 ⇥ 4 matrix that defines the Bo-
goliubov transformation. From the ground state of the
quadratic spin wave Hamiltonian, we evaluate the mean-
field boson bilinears (ha†iai i, ha†iaji, ha†ia†i i, and ha†ia†ji).
As the spin wave Hamiltonian depends on these boson
bilinears, so we solve for them self-consistently by an it-
eration method.

The quantum correction to the magnetic order is eval-
uated by

�m = ha†iai i =
1

N

X

i

ha†iai i

=
1

2
{ 1

N

X

k

2X

i=1

[Q†
kQk]ii � 1}, (33)

where N is the nubmer of lattice sites and we have used
the simple fact that the state in region III is invariant
under the combined operation of time reversal and the
translation T2. If �m > S, the quantum fluctuation is
very strong and completely melts the magnetic order.
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FIG. 8. (Color online.) Quantum correction (�m) to the
magnetic orders that is calculated within the self-consistent
spin wave theory on a 80⇥ 80 lattice. The region near phase
boundary where �m exceeds the spin magnitude with �m �
1/2 is marked in beige.

As we show in Fig. 8, the quantum fluctation is indeed
quite strong and melts the magnetic order in the regions
near the phase boundary. This suggests the ground state
is likely to be disordered in these regions.

V. MAGNETIC EXCITATIONS WITH AND
WITHOUT EXTERNAL MAGNETIC FIELDS

In this section, we study the properties of the magnetic
excitations in di↵erent ordered phases as well as in the
presence of strong magnetic fields.

A. Linear spin wave theory for the three ordered
phases

Since the quantum fluctuation is found to be very weak
deep inside each ordered phases, it is legitimate to apply
the linear spin wave theory to study the magnetic exci-
tation in the strongly ordered regimes. In Fig. 9, we plot
the representative spin wave dispersions for the three or-
dered phases. Due to the anisotropic spin interaction,
the system does not have any continuous symmetry, so
generically the spin wave spectrum is fully gapped. This
is indeed the case for the two stripe ordered phase in
Fig. 9a,b. In Fig. 9c, the parameters are chosen that the
spin model reduces to a XXZ model. Due to the continu-
ous U(1) symmetry breaking, the spin wave spectrum has
one gapless mode. As one moves away from this special
point, we expect the spectrum should be gapped.

B. Polarized phases and strong magnetic fields

For the rare earth magnets, the 4f electrons are very
localized. As a result, the exchange interaction between
the rare earth local moments are usually very small. For

Anisotropic spin interaction  
could potentially stabilize QSL.
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Spinon Fermi surface U(1) QSL 
in organic magnets?

formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is

(a) 

b 

c 
0 

(b) 

(c) 

t' t 

c 

0 
a* 
a 

FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  
kappa−H3(Cat-EDT-TTF)2 a new one!
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Low energy property of spinon Fermi surface U(1) QSL: 
spinon non-Fermi liquid

Classes of QSLs

• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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dual to extremal/charged black hole?

Spinon Fermi surface coupled 
with dynamical U(1) gauge field: 
instanton event is suppressed. 

   Sung-Sik Lee, PRB 78, 085129(08).

   Hermele et al., PRB 70, 214437 (04)

ons parametrized by the direction of their velocities !or an-
gular momentum" and each fermion contributes a finite
scaling dimension to the total scaling dimension of the in-
stanton operator. In the second part !Sec. IV", the fluctua-
tions of the noncompact gauge field are considered together
with instantons. To control the gauge fluctuations, we con-
sider a large N limit. In this case, vertex corrections are neg-
ligible and we can obtain a definite scaling transformation
under which the low-energy theory remains invariant. The
key difference from the previous studies19,21 is that in the
present approach all points on the Fermi surface are treated
on the equal footing rather than focusing on a local patch in
the momentum space. This enables us to define the scaling
dimension of the instanton operator, taking into account the
whole Fermi surface. With the fluctuating noncompact gauge
field, fermion modes—which have different Fermi
velocities—are no longer decoupled, and we cannot simply
sum the scaling dimensions of different modes as we did in
the noninteracting case. However, in the low-energy limit,
only small-angle scatterings are important because momenta
of the gauge field are scaled down while the circumference
of the Fermi surface is unchanged under the scale transfor-
mation. This implies that two fermion fields on different
points on the Fermi surface are essentially decoupled at low
energies. Therefore, there are still infinitely many indepen-
dent 1+1D fermion modes, which contribute to the scaling
dimension of instanton at low energies. By using this prop-
erty, we can argue that the scaling dimension of an instanton
is infinite also at the interacting fixed point. Finally, in Sec.
V, we consider the case with a small N of the order of 1,
which is directly pertinent to the U!1" spin liquid state with
two flavors !spin up and down" of spinons11,12 proposed for
!− !BEDT−TTF"2Cu2!CN"3.9 With a small N, the Fermi sur-
face is strongly coupled with the fluctuating gauge field and
vertex corrections cannot be ignored. This makes it difficult
to find an explicit form of a scaling transformation for the
strongly interacting fixed point. However, one can see that
the essential properties, which make the scaling dimension of
instanton infinite, does not depend on the specific form of a
scaling transformation. Actually, the existence of an ex-
tended Fermi surface and the fact that only small-angle scat-
terings are important at low energies are enough to argue that
the scaling dimension of instanton remains to be infinite and
instantons are irrelevant at a strongly interacting fixed point
for any nonzero N.

II. ANGULAR REPRESENTATION OF FERMI SURFACE

We start by considering N flavors of fermions coupled
with a compact U!1" gauge field in 2+1D,

S =# d3x$" j
!!!0 − ia0 − #F"" j +

1
2m

" j
!!− i " − a"2" j

+
1

4g2 f#$f#$% . !1"

Here " j is the fermion field with N flavors, j=1,2 , .. ,N, and
a#= !a0 ,a" is the U!1" gauge field with #=0,1 ,2. #F is the
chemical potential, g is the gauge coupling, and f#$ is the

field strength tensor. Summation over the repeated flavor in-
dex j is implied. In the energy-momentum space, the action
becomes

S =# d3p$!ip0 + %p"" j
!!p"" j!p" +
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Here p and l denote energy-momentum vectors and %p= (P(2
2m

−#F. Integrating out high-energy fermion modes outside a
momentum shell with a width ( near the Fermi surface, we
obtain the low-energy effective action S=S0+S1, where

S0 =# d)dkd* !i) + k"+ j
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+# d3p$ 1
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Here, the Fermi velocity has been set to one. Fermion mo-
mentum is represented in the polar coordinate,30 where k
+(k(−kF is the deviation of momentum from the Fermi sur-
face in the radial direction and * is the angular coordinate as
is shown in Fig. 1!a". We use the approximation, ,dk
=,d(k((k(,d*-kF,dk,d*, and redefine the fermion field
as + j!) ,k ,*"+kF

1/2" j)) ,k1= !kF+k"cos * ,k2= !kF+k"sin **.
K.NkF is the diamagnetic term. a*= k̂* ·a is the spatial
gauge field parallel to the fermion momentum along k̂*

= !cos * , sin *". ql= k̂* ·q and qt= !k̂*,q"z are the momentum
components of the gauge field, which are parallel and per-
pendicular to k̂*, respectively. Note that a0!$ ,ql ,qt ;*" and
a*!$ ,ql ,qt ;*" in the second line of Eq. !3" implicitly depend
on * because ql and qt are measured in reference to k̂* as
shown in Fig. 1!b". ( is the momentum cutoff of the fermi-
ons near the Fermi surface and (̃ is the cutoff of the gauge
field. For (-kF, we can ignore the quadratic term k2 /2m,
which is irrelevant at low energies.
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ons parametrized by the direction of their velocities !or an-
gular momentum" and each fermion contributes a finite
scaling dimension to the total scaling dimension of the in-
stanton operator. In the second part !Sec. IV", the fluctua-
tions of the noncompact gauge field are considered together
with instantons. To control the gauge fluctuations, we con-
sider a large N limit. In this case, vertex corrections are neg-
ligible and we can obtain a definite scaling transformation
under which the low-energy theory remains invariant. The
key difference from the previous studies19,21 is that in the
present approach all points on the Fermi surface are treated
on the equal footing rather than focusing on a local patch in
the momentum space. This enables us to define the scaling
dimension of the instanton operator, taking into account the
whole Fermi surface. With the fluctuating noncompact gauge
field, fermion modes—which have different Fermi
velocities—are no longer decoupled, and we cannot simply
sum the scaling dimensions of different modes as we did in
the noninteracting case. However, in the low-energy limit,
only small-angle scatterings are important because momenta
of the gauge field are scaled down while the circumference
of the Fermi surface is unchanged under the scale transfor-
mation. This implies that two fermion fields on different
points on the Fermi surface are essentially decoupled at low
energies. Therefore, there are still infinitely many indepen-
dent 1+1D fermion modes, which contribute to the scaling
dimension of instanton at low energies. By using this prop-
erty, we can argue that the scaling dimension of an instanton
is infinite also at the interacting fixed point. Finally, in Sec.
V, we consider the case with a small N of the order of 1,
which is directly pertinent to the U!1" spin liquid state with
two flavors !spin up and down" of spinons11,12 proposed for
!− !BEDT−TTF"2Cu2!CN"3.9 With a small N, the Fermi sur-
face is strongly coupled with the fluctuating gauge field and
vertex corrections cannot be ignored. This makes it difficult
to find an explicit form of a scaling transformation for the
strongly interacting fixed point. However, one can see that
the essential properties, which make the scaling dimension of
instanton infinite, does not depend on the specific form of a
scaling transformation. Actually, the existence of an ex-
tended Fermi surface and the fact that only small-angle scat-
terings are important at low energies are enough to argue that
the scaling dimension of instanton remains to be infinite and
instantons are irrelevant at a strongly interacting fixed point
for any nonzero N.

II. ANGULAR REPRESENTATION OF FERMI SURFACE

We start by considering N flavors of fermions coupled
with a compact U!1" gauge field in 2+1D,
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a#= !a0 ,a" is the U!1" gauge field with #=0,1 ,2. #F is the
chemical potential, g is the gauge coupling, and f#$ is the

field strength tensor. Summation over the repeated flavor in-
dex j is implied. In the energy-momentum space, the action
becomes

S =# d3p$!ip0 + %p"" j
!!p"" j!p" +

1
2g2 !p2&#$

− p#p$"a#
! !p"a$!p"% +# d3pd3l
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2
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l

2
'

+# d3p1d3p2d3l

!2'"3

1
2m

a!!p2 − l" · a!p2"" j
!!p1 + l"" j!p1" .

!2"

Here p and l denote energy-momentum vectors and %p= (P(2
2m

−#F. Integrating out high-energy fermion modes outside a
momentum shell with a width ( near the Fermi surface, we
obtain the low-energy effective action S=S0+S1, where

S0 =# d)dkd* !i) + k"+ j
!!),k,*"+ j!),k,*"

+# d3p$ 1
2g2 !p2&#$ − p#p$"a#

! !p"a$!p"

+ Ka!!p" · a!p"% ,

S1 = −
i

!2'"3/2# d)dkd*d$dqldqt )a0!$,ql,qt;*"

− ia*!$,ql,qt;*"*+ j
!&) +

$

2
,k +

ql

2
,* +

qt

2kF
'

,+ j&) −
$

2
,k −

ql

2
,* −

qt

2kF
' . !3"

Here, the Fermi velocity has been set to one. Fermion mo-
mentum is represented in the polar coordinate,30 where k
+(k(−kF is the deviation of momentum from the Fermi sur-
face in the radial direction and * is the angular coordinate as
is shown in Fig. 1!a". We use the approximation, ,dk
=,d(k((k(,d*-kF,dk,d*, and redefine the fermion field
as + j!) ,k ,*"+kF

1/2" j)) ,k1= !kF+k"cos * ,k2= !kF+k"sin **.
K.NkF is the diamagnetic term. a*= k̂* ·a is the spatial
gauge field parallel to the fermion momentum along k̂*

= !cos * , sin *". ql= k̂* ·q and qt= !k̂*,q"z are the momentum
components of the gauge field, which are parallel and per-
pendicular to k̂*, respectively. Note that a0!$ ,ql ,qt ;*" and
a*!$ ,ql ,qt ;*" in the second line of Eq. !3" implicitly depend
on * because ql and qt are measured in reference to k̂* as
shown in Fig. 1!b". ( is the momentum cutoff of the fermi-
ons near the Fermi surface and (̃ is the cutoff of the gauge
field. For (-kF, we can ignore the quadratic term k2 /2m,
which is irrelevant at low energies.

SUNG-SIK LEE PHYSICAL REVIEW B 78, 085129 !2008"

085129-2

gauge photon is overly Landau-damped.
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Spin wave vs (fractionalized) spinon continuum

range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.

QUANTUM EXCITATIONS IN QUANTUM SPIN ICE PHYS. REV. X 1, 021002 (2011)

021002-3

spinon continuum in Cs2CuCl4 
Masanori, etc NatPhys 2009 
but these are 1d spinons ! 

Neutron scattering

• In a quantum spin liquid, the elementary 
spin excitations are fractional, S=1/2 spinons

• Most of the information is in the 
continuum!

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)

spin wave in Yb2Ti2O7 
L Savary, et al, PRX 2011
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Huge spinon continuum at all energies
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always possible to excite a spinon particle-hole pair with the momenta near the zone boundary, the spectral

intensity is not considerably a↵ected at the zone boundary as E increases. Therefore, the broad continuum

continues to cover a large portion of the Brillouin zone at a finite E.

The stability of the spinon Fermi surface U(1) quantum spin liquid against the spinon confinement has

been addressed extensively in literatures4,5. It was proposed and understood that the large densities of

gapless fermionic spinons on the spinon Fermi surface help suppress the instanton events of the compact

U(1) gauge field for a two-dimensional U(1) quantum spin liquid4,5. The proliferation of the instanton

events is the cause of the confinement for a U(1) quantum spin liquid without gapless spinons6. Since

the instanton event is suppressed here, the compactness of the U(1) gauge field is no longer an issue,

and the low-energy property of our U(1) quantum spin liquid is then described by gapless spinons on

the Fermi surface coupled with a noncompact U(1) gauge field5,7,8. Due to the coupling to the gapless

spinons, the U(1) gauge photon is over-damped and becomes very soft. The soft gauge photon further

scatters the fermionic spinons strongly, gives a self-energy correction to the spinon Green’s function, and

kills the spinon quasi-particle weight5,7–9. The resulting spinon non-Fermi liquid state has an enhanced
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Summary

2. Rare-earth triangular lattice quantum spin liquid: YbMgGaO4

• To our best knowledge, this is the first strong spin-orbit coupled quantum spin liquid 
candidate with odd number of electrons per unit cell and effective spin-1/2 moment.

1. QSL is a field that bridges the fundamental ideas with the frontier experiments, 
it provides exciting opportunities for both theorists and experimentalists.

Gang Chen’s theory group 
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•  Octupolar U(1) quantum spin liquid   

              of quantum spin ice



Rare-earth pyrochlores

RE2M2O7
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Kramers’ doublet: R3+ with odd number of electrons

Non-Kramers’ doublet / singlet: R3+  with even number of electrons

Rare-earth local moments: a crude classification 

1

SUPPLEMENTARY INFORMATION FOR “A
SEMICLASSICAL STUDY OF THE GENERIC
SPIN MODEL ON A TRIANGULAR LATTICE”

Space group symmetry and the generic spin model
for YbMgGaO4

FIG. 1. The formation of the local ground state Kramers’
doublet under the combination of spin-orbit coupling (SOC)
and the crystal electric field (CEF). Please refer the text for
the detailed description.

The Yb3+ ion contains thirteen 4f electrons. Accord-
ing to the Hund’s rule, we should have the total spin
s = 1/2 and the orbital angular momentum L = 3 for
the Yb3+ ion. The fourteen-fold spin and orbital degen-
eracy should be lifted when the atomic spin-orbit cou-
pling and the crystal electric field are considered. For
the 4f electrons, the atomic spin-orbit coupling should
be considered before the crystal electric field. As we show
in Fig. 2, the atomic spin-orbit coupling entangles the or-
bital angular momentum and the total spin, leading to
a total angular momentum J = 7/2. Just like the case
for the quantum spin ice candidate Yb2Ti2O7 [32], the
crystal electric field of the D3d point group further splits
the eight J = 7/2 states into four pairs of Kramers’ dou-
blets. The ground state doublet is well separated from
other excited doublets with an energy gap � and thus
can be treated as an e↵ective spin-1/2 degree of freedom
at the temperature that is much lower than the energy
gap [7, 32]. This e↵ective spin-1/2 degree of freedom for
the Yb3+ ion is further supported by the low tempera-
ture magnetic entropy that is measured to be R ln 2 per
spin [6, 7].

This e↵ective spin, denoted as S in the main text, re-
sults from the spin-orbital entanglement of the Yb3+ 4f
electrons. As a consequence, under the space group sym-
metry operation, both the position and the orientation
of the spins are transformed as

Sr ! Det[Ô] · Ô�1 · SÔ·r+t, (1)

where Ô and t are the matrix and the vector that specify
the rotation part and the translation part of the space
group operation, respectively. In contrast, in a magnetic
system whose local moment is purely given by the total
spin, the spin rotational symmetry would be decoupled
from the space group symmetry operation. The latter

merely acts on the positions of the spin moments and
does not rotate the spin components. This is the key dif-
ference between the strong spin-orbit coupled Mott insu-
lators and a conventional Mott insulator with quenched
orbital degrees of freedom.

FIG. 2. The space group symmetry operation for the Yb
triangular layer.

As we explain in the main text, the interlayer Yb spin
coupling is much weaker than the intralayer one. We thus
keep the symmetry operation within each Yb triangu-
lar layer. The R3̄m space group symmetry contains two
translations (T1 and T2) along the two crystallographic
axes, the three-fold rotation (C3) around the z direction,
the two-fold rotation (C2) around the diagonal direction,
and an inversion (I) about the lattice site. With these
symmetries and their transformations on the spin oper-
ators, it is ready to obtain the generic spin Hamiltonian
that describes the interaction between the Yb local mo-
ments,

H =
X
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Frustration parameters

In Fig. 3 and Fig. 4, we dissemble the three-
dimensional plots of the transition temperature and the
frustration parameter into a set of two-dimensional plots.

Self-consistent spin wave theory

In this section, we provide a detailed derivation of the
spin wave theory. We focus the discussion on the stripe
ordered phase in region III, and the spin wave theory
in other ordered regions can be obtained likewise. As
we show in the main text, the spins in region III orient
in the ±x̂ directions. We introduce the Dyson-Maleev
representation for the spin operators [29, 30]

Si · m̂i = �S + a†
iai , (3)

SOC+CEF
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classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

+ …….

Spin ice (Ising) limit

2-in 2-out  
spin ice rule
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water ice rule from wiki
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Classical spin ice

Pinch points in spin correlation

•  The “2-in 2-out” states are extensively degenerate. 
•  At temperature T < Jzz, the system thermally fluctuates within the ice 

manifold, leading to classical spin ice and interesting experimental 
discoveries. 



Dipole-octupole doublet

The early classification of local moments is a bit crude ! 

One should carefully examine the wavefunction of the local doublet.Gang Chen’s theory group 
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• Local moments on pyrochlore lattice:  effective spin-1/2

d electrons under D3d 
point group crystal field

n jz = 3/2

jz = �3/2

Local physics: start with t2g electrons 

octahedral  
CEF

2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for all

d3 configuration
(jz = ±1/2)e.g. 5d transition metal

Gang Chen’s theory group 
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• Why is this Kramers doublet so special ?

ONE-dimensional representations of the point group !

R(2⇡/3)|Jz = ±3/2i = �|Jz = ±3/2i

R(2⇡/3) ⌘ e�i 2⇡
3 Jz

= e�i 2⇡
3 ⇥(± 3

2 ) = e⌥i⇡ = �1

|Jz = +3/2i time reversal
|Jz = �3/2i
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• Also applies to 4f electron moments on pyrochlore

2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for allif B0

2 < 0.

with the local crystal field Hamiltonian

More generally, …

e.g.
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Figure 2. Description of low-temperature neutron scattering spectra measured at constant scattering vector Q on powder samples. Left:
spectrum of Tb2Ti2O7 from Mirebeau et al [25]; see the left panel of figure 5 of this reference. Right: spectrum of Er2Ti2O7 from Champion
et al [24]; see the top panel of figure 3 of this reference. The solid lines result from a simultaneous fit to the two spectra. The presence of an
additional CEF excitation around 7.3 meV for Tb2Ti2O7, not described here and previously, suggests the existence of two inequivalent Tb
sites [12]. This interpretation may be backed by specific heat measurements, the result of which depends strongly on the sample preparation
method [37–39]. For the two fits a background intensity is added, described by a first-order polynomial of the energy.

Table 5. Ground-state wavefunctions for six compounds of the R2Ti2O7 pyrochlore series computed with the Bm
n parameters displayed in

table 2.

Tb |�±
0 i = 0.266|±5i ⌥ 0.133|±2i � 0.129|⌥1i ⌥ 0.946|⌥4i

Dy |�±
0 i = 0.981|± 15

2 i ± 0.190|± 9
2 i � 0.022|± 3

2 i ⌥ 0.037|⌥ 3
2 i + 0.005|⌥ 9

2 i ± 0.001|⌥ 15
2 i

Ho |�±
0 i = �0.979|±8i ± 0.189|±5i � 0.014|±2i ± 0.070|⌥1i � 0.031|⌥4i ± 0.005|⌥7i

Er |�±
0 i = 0.471|± 13

2 i ± 0.421|± 7
2 i � 0.569|± 1

2 i ⌥ 0.240|⌥ 5
2 i + 0.469|⌥ 11

2 i
Tm |�0i = 0.147|6i � 0.692|3i � 0.692|�3i � 0.147|�6i
Yb |�±

0 i = 0.376|± 7
2 i ± 0.922|± 1

2 i � 0.093| ⌥ 5
2 i

wavefunctions as well as the rare-earth spectroscopic g
factors.

From the methodology point of view, this work
introduces a very simple method for a reliable determination
of the rare-earth crystal-field parameters for a series of
isostructural rare-earth compounds. Its success requires the
availability of inelastic CEF neutron scattering data for a
sufficiently large number of compounds of the series.

Obviously our method does not apply if the interactions
between the CEF and other excitations, e.g. phonons, vary
much within the series. In addition, our method assumes the
interactions between the CEF excitations to be small. We
basically neglect the influence of the excited multiplets on the
ground-state multiplet. Theoretically, the contribution of the
excited multiplets may not be negligible. Referring to table
1.1 of the textbook by Jensen and MacKintosh [46], the first
excited multiplet is located at a temperature equal or larger
than 4750 K in temperature units for all the rare earths we
consider, with the exception of Tb3+ for which it is only
2900 K. It remains to be checked that our method can be
theoretically justified. In any case, we have so far obtained a
nice account of all the published inelastic neutron scattering
data, which only concern the ground-state multiplets. We
account not only for the position of the energy levels but also
for the intensity of the CEF transitions which depend on the
wavefunctions. This suggests that we have at least reached
a very reasonable phenomenological model for the R2Ti2O7
series local properties at low energy, which are of interest in
the framework of frustration.
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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the classical ground state is the all-in–all-out FeF3 structure
[34,35]. The introduction of strong quantum effects may
melt the classical order to produce a type of spin liquid,
rather as in other unfrustrated quantum antiferromagnets. In
this Letter, we report on Ce2Sn2O7, a pyrochlore magnet
based on Ce3þ (4f1, 2F5=2). The local moments have h111i
Ising anisotropy, and we find that although antiferromag-
netic spin correlations develop below approximately 1 K,
there is no sign of magnetic order down to 0.02 K. The
magnetic moment is small, suggesting that the magnetic
dipolar couplings are much smaller than magnetic
exchange interactions. This makes Ce2Sn2O7 an excellent
model material to look for novel exchange-induced QSLs
on the pyrochlore lattice.
The low-temperature magnetic properties of Ce3þ pyro-

chlores have been little studied, probably because of the
difficulty to stabilize the magnetic Ce3þ oxidation state in
preference to the nonmagnetic Ce4þ (4f0). In Ce2Sn2O7, a
compound previously investigated for its oxygen storage
capabilities [36], the trivalent rare-earth can be readily
stabilized by taking advantage of a solid state oxydo-
reductive reaction during which Sn0 is oxidized to Sn4þ

while reducingCe4þ to the requiredCe3þ. Our sampleswere
produced using this method. Their oxygen stoichiometry,
obtained from the thermogravimetric analysis procedure,
reported in Ref. [36], is 7.00" 0.01. The absence of
excess oxygen indicates that all cerium cations are in their
trivalent oxidation state and that diffraction data can be
fitted assuming a stoichiometric formula unit. The Rietveld
refinement of a neutron powder diffraction pattern is shown
in Fig. 1 and gives the lattice parameter 10.6453(3) Å
at 1.5 K (space group: Fd3̄m). The value of the atomic
coordinate x for the oxygen atomOð48fÞ is 0.3315(3), in the
range of the typical values forA2B2O7 compounds [37]. The
Ce—Oð48fÞ bond length is 2.600" 0.003 Å, close to the
sum of the ionic radii (2.68 Å), while the Ce—O0ð8bÞ bond
(pointing along the local h111i direction) has a length of
2.305" 0.003 Å, which is markedly shorter than 2.68 Å,

as usually observed in rare-earth pyrochlores. Attempts to
refine antisite cation disorder (0.5" 2.5%) and oxygen
Frenkel disorder (0.36" 0.16%), which can induce stuffing
effects and disordered exchange interactions, respectively,
did not provide evidence for structural defects.
Magnetization (M) data weremeasured in the temperature

(T) range from 1.8 to 370 K in an applied magnetic field (H)
of 1000 Oe using a Quantum Design MPMS-XL super-
conducting quantum interference device (SQUID) magne-
tometer. Additional magnetization, and ac-susceptibility,
measurements were made as a function of temperature
and field, from T ¼ 0.07 to 4.2 K and from H ¼ 0 to
8 × 104 Oe, using SQUID magnetometers equipped with a
miniature dilution refrigerator developed at the Institut Néel-
CNRS Grenoble. The heat capacity (Cp) of a pelletized
sample was measured down to 0.3 K using a Quantum
Design physical properties measurement system (PPMS).
Muon spin relaxation (μSR) measurements were performed
at the LTF spectrometer of the Swiss Muon Source, in the
range from T ¼ 0.02 to 0.8 K. Muons were longitudinally
polarized and spectra were recorded in zero field with earth-
field compensation or in applied fields parallel to the beam.
The magnetization divided by the applied field M=H,

which is equal to susceptibility χ in the linear field regime,
is shown as a function of the temperature T over the full
temperature range in Fig. 2(a). The susceptibility increases
continuously with decreasing temperature, and there is no
evidence of any ordering transition [inset of Fig. 2(a)]. At
high temperature, T > 130 K, the inverse susceptibility
χ−1 [shown in Fig. 2(b)] is almost linear, and a fit to the
Curie-Weiss law yields a magnetic moment μ ¼
2.75" 0.20 μB=Ce, in reasonable agreement with the
expected free ion value of 2.54 μB=Ce, and
θCW ¼ −250" 10 K. This is an extremely large value for
such a rare-earth material, where magnetic interactions are
expected to be in the kelvin range. The large value of θCW can
be attributed to crystal field effects, as shown by the strong
curvature of χ−1ðTÞ below 100 K, indicating a change in the
population of crystal field levels of the Ce3þ ion. At moderate
temperatures, 1 K < T < 10 K, a linear behavior is
observed, and the Curie-Weiss fit to this part of χ−1ðTÞ
[see inset of Fig. 2(b)] gives a magnetic moment of
μ ¼ 1.18" 0.02 μB=Ce, which corresponds to the moment
of the ground state doublet, and θCW ¼ −0.25" 0.08 K.
Figure 2(c) shows that the effectivemagneticmoment fμeff ¼
½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
g approaches the free ion

value at 370 K, and it falls to an approximate plateau of
1.18μB in the range from T ¼ 1 to 10K. At low temperature,
T < 1 K, the effective moment drops.
The magnetic susceptibility was used to estimate the

crystal field scheme. In the LS coupling scheme, a crystal
electric fieldwith theD3d symmetry of theCe3þ site splits the
2F5=2 free ion ground state into three Kramers doublets.
However, the ground state multiplet 2F5=2 alone does not
allowus to reproduce our experimental data. Instead,we used
matrix elements of the crystal field Hamiltonian which are

FIG. 1 (color online). Rietveld refinement of neutron
powder diffraction data (HRPT instrument at PSI) collected at
1.5 K using an incident wavelength of 1.49 Å. Fitted isotropic
displacement parameters: BCe ¼ 0.87ð4Þ Å2; BSn ¼ 0.79ð3ÞÅ2;
BOð48fÞ ¼ 1.08ð2ÞÅ2; BO0ð8bÞ¼0.87ð5ÞÅ2. Conventional Rietveld
factors (%): RP ¼ 4.10; RWP ¼ 5.19; RBragg ¼ 5.52; RF ¼ 4.25.
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• Effective spin-1/2 under lattice symmetry
Td ⇥ I ⇥ translations

C3 : Sµ ! Sµ

M : Sx,z ! �Sx,z, Sy ! Sy

I : Sµ ! Sµ

Td = {C3,M}and

Important: Sx and Sz transform identically (as a dipole),   
  while Sy transforms as an octupole moment under mirror.
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Generic model: XYZ model
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continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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A small transformation into XYZ model

H =
X

hiji

J
z

Sz

i

Sz

j

+ J
x

Sx

i

Sx

j

+ J
y

Sy

i

Sy

j

+J
xz

�
Sx

i

Sz

j

+ Sz

i

Sx

j

�

Rotation around the y axis 
in the effective spin space

HXYZ =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
x

S̃x

i

S̃x

j

+ J̃
y

S̃y

i

S̃y

j

XYZ model
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Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

classical spin ice

+ quantum 
fluctuations

S. Curnoe, 2008
S. Onoda, 2010

XXZ model can lead to U(1) QSL

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
Sz

i

�
�ijS

+
j + �⇥ijS

�
j

⇥
+ i� j

⌅

H±± = J±±
⇤

⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

•  Pretty much one can add any term to create quantum tunneling, as long as it is 
not too large to induce magnetic order, the ground state is a U(1) QSL !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, ….

J±
Jzz

U(1) QSL long-range order
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Emergent Quantum Electrodynamics

Spinon deconfinement

SpinonJzz

energy

“Magnetic” monopoles
J3
±

J2
zz

gapless  
gauge photon

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Figs from Moessner&Schiffer,2009

Emergent electric field 

Emergent vector potential

Sz ⇠ E

S± ⇠ e±iA
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XYZ model is the generic model that describes the interaction  
between DO doublets. 

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
Z

J̃x

J̃y

J̃z

J̃x

J̃y

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

�1 1

1

�1

AIAO

AFO

FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.

Acknowledgements. – We thank Leon Balents, Michel
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Gapped phases w/ symmetry ! SET and SPT phases

• there are LRE symmetric states ! Symm. Enriched Topo. phases
- 100s symm. spin liquid through the PSG of topo. excit. Wen 02

- 8 trans. symm. enriched Z2 topo. order in 2D, 256 in 3D Kou-Wen 09

- 1000, 000s symm. Z2 spin liquid through [H2(SG ,Z2)]2⇥ Hermele 12

- Classify SET phases through H3[SG ⇥ GG ,U(1)] Ran 12

• there are SRE symmetric states !

one phase

many di↵erent phases

We may call them symmetry protected trivial (SPT) phase

or symmetry protected topological (SPT) phase
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How to tell if Ce2Sn2O7 is an octupolar U(1) QSL or not ? 

The idea to use a little knob that could simply 
lead to some clear experimental consequence,  
very much like the isotope effect of BCS superconductors. 

Here we apply external magnetic field, and expect 
a field-driven Higgs transition to magnetic ordering 
as the field only couples to the matter field (spinons).

Field-driven Higgs transition 
for octupolar U(1) QSL

2
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(a)

U(1) QSL

Phase diagram for h k [111]

J±/Jy
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J y

FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
X

hiji

J̃
x

⌧̃x
i

⌧̃x
j

+ J̃
y

⌧̃y
i

⌧̃y
j

+ J̃
z

⌧̃z
i

⌧̃z
j

, (1)

where ⌧̃x and ⌧̃z (J̃
x

and J̃
z

) are related to ⌧x and ⌧z

(J
x

and J
z

) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃

y

⌘ J
y

. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is

H =
X

hiji

X

µ=x,y,z
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⌧̃µ
i

⌧̃µ
j

�
X

i

h (n̂ · ẑ
i

) ⌧z
i

, (2)

where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is

Hsim =
X
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J
y
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+
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, (3)

where we define ⌧±
i

= ⌧z
i

± i⌧x
i

and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
with [29]

Hring = Jring
X
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FIG. 2. Phase diagrams for magnetic fields along (a) [111], (b) [001], and (c) [110] directions. Outside the QSLs are phases
with induced magnetic orders from the spinon condensation. With h = 0, the spinons are condensed at kc = (0, 0, 0), and we
choose the local moments to order in the local ẑ direction. In (a), large magnetic field near the vertical axis drives the spinon
condensation at kc = ⇡(1, 1, 1), and the resulting order is depicted in the figure. This order smoothly connects to the order on
the horizontal axis. The cases in (b) and (c) are similar, except that in (b) the field on the vertical axis drives the condesation
at kc = 2⇡(0, 0, 1), while in (c) kc = ⇡(1, 1, 0) near the vertical axis. We set the diamond lattice constant to unity.

despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with

HXYZ =
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) by a rotation around the y direction in the
pseudospin space, and ⌧̃y ⌘ ⌧y, J̃
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. When one of
the couplings, J̃

µ

, is dominant and antiferromagnetic, the
corresponding pseudospin component, ⌧̃

µ

, is regarded as
the Ising component of the model, and the ground state
is a U(1) QSL in the corresponding quantum spin ice
regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃

y

is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
component, ⌧z, couples linearly to the external magnetic
field. The resulting model is
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where n̂ is the direction of the magnetic field and ẑ
i

is
the z direction of the local coordinate basis at the lattice
site i [29]. This generic model describes all magnetic
properties of the DO doublets on the pyrochlore lattice.
As the generic model contains four parameters, it nec-

essarily brings some unnecessary complication into the
problem. Without losing any generalities, we here con-
sider a simplified version of the generic model in Eq. 2.
The simplified model is
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and n̂ is the direction
of the external magnetic field. In the Ising limit with
J± = 0 and h = 0, the antiferromagnetic J

y

favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
turbation theory yields an e↵ective ring exchange model
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despite the fact that the DO doublet involves a signifi-
cant contribution from the orbital part due to the strong
SOC [12–17], and the DO doublet is modeled by an ef-
fective pseudospin-1/2 moment ⌧ . Both ⌧x and ⌧z trans-
form as the dipole moments under the space group sym-
metry, while the ⌧y component behaves as an octupole
moment [8]. It is this important di↵erence that leads to
some of the unique properties of its U(1) QSL ground
states.

Because of the spatial uniformity, we transform the
generic model HDO into the XYZ model with
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the Ising component of the model, and the ground state
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regime. The dipolar U(1) QSL is realized when the Ising
component is the dipole moment ⌧̃x or ⌧̃z, while the oc-
tupolar U(1) QSL is realized when the Ising component is
the octupole moment ⌧̃y. In the compact U(1) quantum
electrodynamics description of the low energy properties
of the U(1) QSL [18, 19], the Ising component is identified
as the emergent electric field [18]. Therefore, the emer-
gent electric field transforms very di↵erently under the
lattice symmetry in dipolar and octupolar U(1) QSLs,
making these two U(1) QSLs symmetry enriched U(1)
topological order on the pyrochlore lattice [8].

Octupolar U(1) QSL and field-driven Anderson-Higgs’
transitions.—Since the dipolar U(1) QSL has been dis-
cussed many times in literature [8, 20–28], we here focus
on the octupolar U(1) QSL of the octupolar quantum
spin ice regime where J̃
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is dominant and antiferromag-
netic. The octupolar U(1) QSL is a new phase that is

unique to the DO doublet and cannot be found in any
other pyrochlore system.
We consider the coupling of the DO doublet to the

external magnetic field. Remarkably, because ⌧̃
y

is an
octupole moment, it does not couple to the magnetic field
even though it is time reversally odd. Only the dipolar
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J± = 0 and h = 0, the antiferromagnetic J
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favors the
⌧y components to be in the ice manifold and requires a
“two-plus two-minus” ice constraint for the ⌧y configu-
ration on each tetrahedron. This octupolar ice manifold
is extensively degenerate. With a small and finite J±
or h, the system can then tunnel quantum mechanically
within the octupolar ice manifold and form an octupolar
U(1) QSL. In this perturbative limit, the degenerate per-
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where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating
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where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the
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r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

J
y

Q2
r

2
�

X

r

X

µ 6=⌫

J±�
†
r+⌘reµ

�r+⌘re⌫
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�
X
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)(�†
r�r0s

+
rr0 + h.c.). (7)
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Lower excitation edge for h k [111]
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

J
y

Q2
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Lower excitation edge for h k [001]
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FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

3

where “i, j, k, l,m, n” are six sites on the perimeter of
the elementary hexagon of the pyrochlore lattice, and the
ring exchange Jring < 0 for J± > 0 and for either sign
of h. Hring does not involve defect tetrahedra that vio-
late the ice constraint and thus only describes the quan-
tum fluctuation and dynamics within the ice manifold.
It is well-known that the low energy properties of Hring

is described by the compact U(1) quantum electrody-
namics [18] of the U(1) QSL with gapless gauge photon,
and the spin-flip operator ⌧±

i

is identified as the gauge
string within the ice manifold. We expect the simpli-
fied model Hsim captures the generic properties of the
octupolar U(1) QSL.

To obtain the phase diagram of Hsim, we start from
the octupolar U(1) QSL phase and study its instability.
For this purpose, we include the spinon excitations (that
are out of the ice manifold) into the formulation. The
perturbative analysis and Hring, that focus on the ice
manifold, does not capture the spinons. We here imple-
ment a parton-gauge construction for the octupolar U(1)
QSL and formulate Hsim into a lattice gauge theory with
the spinons. Like many other parton construction, we
replace the physical Hilbert space with a larger one and
supplement it with a constraint. We follow Refs. 20 and
21 and express the pseudospin operators as

⌧+
i

= �†
r�r0s

+
rr0 , ⌧y

i

= syrr0 , (5)

where rr0 is the link that connects two neighboring tetra-
hedral centers at r and r0, and the pyrochlore site i is
shared by the two tetrahedra. The centers of the tetra-
hedra form a diamond lattice, and r (r0) belongs to the
I (II) diamond sublattice. Here srr0 is a spin-1/2 vari-
able that corresponds to the emergent gauge field, and
�†

r (�r) creates (annihilates) one spinon at the diamond
site r. The spinons carry the emergent electric charge,
and �†

r and �r are raising and lowering operators of the
emergent electric charge. Since we enlarged the physical
Hilbert space, the constraint Qr = ⌘r

P
µ

⌧yr,r+⌘reµ
is im-

posed, where ⌘r = 1 (�1) for the I (II) sublattice and the
e
µ

’s are the first neighbor vectors of the diamond lattice.
Here Qr measures the electric charge at r and satisfies

[�r, Qr] = �r, [�†
r, Qr] = ��†

r. (6)

The U(1) QSL of quantum spin ice is an example of the
string-net condensed phases [30]. In the U(1) QSL, ⌧±

i

creates the shortest open (gauge) string whose ends are
spinon particles. In the spin ice context, ⌧±

i

creates two
defect tetrahedra that violate the “two-plus two-minus”
ice constraint. The parton-gauge construction captures
this essential property, and the model becomes

Hsim =
X

r

J
y

Q2
r

2
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X

r

X

µ 6=⌫
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Lower excitation edge for h k [110]

h = 1.0Jy
h = 2.5Jy

FIG. 3. Lower excitation edges of the spinon continuum in
the dynamic spin structure factor under di↵erent magnetic
fields. In the figure, we set J± = 0.1Jy. The inset of (a) is
the Brillouin zone.

With the constraint, Eq. 7 is an exact reformulation of
the simplified model in Eq. 3. It describes the bosonic
spinons hopping on the diamond lattice. The spinons are
minimally coupled with the emergent U(1) gauge field.
Remarkably, the external magnetic field directly couples
to the spinons and does not couple to the emergent elec-
tric field. This is sharply distinct from the dipolar U(1)
QSL where the magnetic field would also directly couple
with the emergent electric field.
Inside the U(1) QSL, the spinons are fully gapped. As

we increase the magnetic field h, the spinon gap gradually
decreases. It is expected that, at a critical field strength,
the spinon gap is closed and the spinons are condensed
with h�ri 6= 0. Via the Anderson-Higgs’ mechanism, the
U(1) gauge field becomes massive. The resulting proxi-
mate state develops a long-range magnetic order. There-
fore, this is an Anderson-Higgs’ transition driven by the
external magnetic fields. This is a generic property of the
octupolar U(1) QSL and is not a specific property of the
simplified model. To our knowledge, this is the first ex-
ample that an external probe drives an Anderson-Higgs’
transition in a physical system.
To solve the reformulated model in Eq. 7, we adopt

the gauge mean-field approximation [8, 20–22]. In this
approximation, we decouple the model into the spinon
sector and the gauge sector. Since Hring favors a zero
background gauge flux on each elementary hexagon of
the diamond lattice, we solve for the mean-field ground
state within this sector [29]. The magnetic dipolar order
is obtained by evaluating

h⌧z
i

i = 1

2

⇥
h⌧+

i

i+ h⌧�
i

i
⇤

(8)

=
1

2

⇥
h�†

r�r0ihs+rr0i+ h.c.
⇤
, (9)

where h· · ·i is taken with respect to the ground state. Be-
cause of the Zeeman coupling, h⌧z

i

i is non-zero even in the

Lower excitation edge

4

Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is J

z

, not J̃
z

nor J̃
x

[29]. The sign or
value of J

z

is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of J

z

. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-

Gang Chen’s theory group 

Gang Chen’s theory group



Neutron scattering and thermal transport

Thermal transport 

see both contribution, but there is a big separation of energy scales in  
spinon and gapless photons.
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Di↵erent U(1) QSLs Heat capacity Inelastic neutron scattering measurement

Octupolar U(1) QSL for DO doublets Cv ⇠ T

3 Gapped spinon continuum

Dipolar U(1) QSL for DO doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

Dipolar U(1) QSL for non-Kramers’ doublets Cv ⇠ T

3 Gapless gauge photon

Dipolar U(1) QSL for usual Kramers’ doublets Cv ⇠ T

3 Both gapless gauge photon and gapped spinon continuum

TABLE I. List of the physical properties of di↵erent U(1) QSLs on the pyrochlore lattice. “Usual Kramers doublet” refers to
the Kramers doublet that is not a DO doublet. They transform as a two-dimensional irreducible representation under the D3d

point group. Although the dipolar U(1) QSL for DO doublets behaves the same as the one for usual Kramers’ doublets, their
physical origins are rather di↵erent [29].

U(1) QSL phase where the spinons are not condensed. In
the proximate ordered state, the spinon condensate gives
an additional contribution that is the induced magnetic
order. For all three directions of the external magnetic
field, even though the spinons are condensed at finite
momenta, the proximate magnetic order preserves the
translation symmetry.

The full phase diagrams and the field-induced proxi-
mate magnetic orders are depicted in Fig. 2. The mag-
netic field is found to be least e↵ective in destructing the
U(1) QSL for the field along the [110] direction. This is
because the local ẑ direction of two sublattices are or-
thogonal to the [110] direction and the pseudospins on
them do not couple to the external field. The phase
transition is found to be continuous within the gauge
mean-field theory and may turn weakly first order after
the fluctuations are included. Nevertheless, as the spinon
gap is very small near the phase transition, this means
that the heat capacity and the magnetic entropy will be
more pronounced at low temperatures in these regions.

Lower excitation edges of the dynamic spin structure
factors.— A smoking gun confirmation of U(1) QSL is to
directly measure the gapless U(1) gauge photon and/or
the spinon continuum by inelastic neutron scattering
(INS) measurement. For the DO doublet, the neutron
spin couples to the local moment in the same way as
the external magnetic field. Therefore, for the octupolar
U(1) QSL, the INS directly probes the spinon excitation,
and one would only observe the spinon continuum in-
stead of the gapless U(1) gauge photon. The latter was
proposed for the dipolar U(1) QSL. This is the sharp dif-
ference between the octupolar U(1) QSL and the dipolar
U(1) QSL.

In the U(1) QSL, the spinon excitation has two
branches due to the two sublattice structure of the dia-
mond lattice. Specifically for the simplified model Hsim,
the two spinon branches are degenerate in the absence of
the external magnetic field because the spinons do not
hop from one sublattice to another. As shown in Eq. 7,
however, the magnetic field allows the spinons to tunnel
between the sublattices and breaks the degeneracy of the
two spinon bands. The splitted spinon bands are labeled
by !1(k) and !2(k) [29].

The INS measures the dynamic spin structure factor
h⌧z⌧ziq,⌦, where q and ⌦ are the neutron momentum and
energy transfer, respectively. As ⌧z is a spinon bilinear,
one neutron spin flip creates one spinon-antispinon pair
that shares the neutron energy and momentum transfer.
From the conservation of the momentum and the energy,
we have

q = k1 + k2, (10)

⌦(q) = !
i

(k1) + !
j

(k2), (11)

where i, j = 1, 2 are the band indices, and k1 and k2 are
the momenta of the two spinons.
The lower excitation edge of the dynamic spin struc-

ture factor encodes the minimum of the spinon excitation
⌦(q) for each q. In Fig. 3, we plot the dispersion of the
lower spinon excitation edge along the high symmetric
momentum direction in the octupolar U(1) QSL for dif-
ferent external field orientations. The field modifies the
spinon dispersion and then tunes the spinon excitation
edge. As far as we are aware of, this is a very rare exam-
ple that one can actually control the spinon excitations
in a QSL.
Discussion.—Many DO doublet pyrochlores are actu-

ally magnetically ordered [31–38]. This makes the QSL
candidate Ce2Sn2O7 rather unique. Ce2Sn2O7 has the
Curie-Weiss temperature ⇥CW ⇡ �0.25K. It was then
argued in Ref. 11 that an antiferromagnetic ⇥CW cannot
support a QSL in the spin ice regime. This is certainly
true for the usual Kramers’ doublet, but it is not the
case for the DO doublets. For the DO doublets, what
⇥CW measures is J

z

, not J̃
z

nor J̃
x

[29]. The sign or
value of J

z

is not related to the criteria that determines
the phase diagram. One cannot rule out the possibility
of the dipolar U(1) QSL in Ce2Sn2O7. Moreover, the
octupolar U(1) QSL does not even care about the sign
of J

z

. If the ground state of Ce2Sn2O7 is not any other
QSLs, the question nails down to whether it is a dipolar
U(1) QSL or an octupolar U(1) QSL.
We list the thermodynamic and spectroscopic proper-

ties of various U(1) QSLs in Tab. I. Clearly, thermody-
namic measurements cannot di↵erentiate them because
the low-energy properties are all described by the com-
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Our doublet can potentially be realized for any Kramers spin moment with J>1/2.

Two well-known systems:

• Pyrochlores A2B2O7,

e.g. ,
Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc
Dy2Ti2O7,
Cd2Os2O7, etc
Ce2Sn2O7,

• Spinels AB2X4, B=lanthanide?
e.g.  CdEr2Se4
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.
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Conclusion

•  We propose a new doublet dubbed “dipole-octupole” doublet.   

•  We propose a generic XYZ model for our new doublet.  

•  This XYZ model supports both exotic (octupolar) order and symmetry  
 enriched U(1) quantum spin liquid (quantum spin ice) ground states. 

•  There exist a large class of materials (not just pyrochlore, any other lattices  
 with the same point group) that can support such doublets.  

•  The remarkable properties of the doublet allows a direct comparison  
 between numerics and experiments. We propose a way to detect the  
 consequence of symmetry enrichment.  


