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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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• The result does not fit into our understanding  
spin-1/2 triangular system. 

• Further low-temperature experiments:  
NMR, muSR, neutron scattering, 
proposed as a spin liquid candidate. 
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The Mo structure: anisotropic Kagome
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Model

Claim: a single-band extended Hubbard model on an anisotropic Kagome lattice  
            with 1/6 electron filling.

2

smaller Curie-Weiss temperature (⇥L
CW = �14K) from

the high temperature one (⇥H
CW = �220K) and a much

reduced Curie constant which is 1/3 of the high temper-
ature one.

FIG. 1. (Color online.) (a) Mo
3

triangular clusters are orga-
nized into a triangular lattice structure. (b) After connecting
the longer neighboring Mo-Mo bonds in the down triangles,
the system becomes a kagome lattice. b

1

,b
2

are two kagome
lattice vectors that connect neighboring unit cells. We use r’
to label the kagome lattice unit cell and ‘A,B,C’ to label three
sublattices.

In a very recent theoretical work,11 Flint and Lee fol-
lowed the suggestion by the experiments8 and considered
the possibility of an emergent honeycomb lattice that is
centered by weakly coupled dangling spins. In their anal-
ysis, the emergent honeycomb system may form a gapped
QSL phase while the remaining dangling spin moments
dominate the low-temperature magnetic property which
then explains the 1/3 spin susceptibility anomaly. Their
theory invokes the phonon degrees of freedom to work in
a way to generate the emergent honeycomb lattice for the
spin system. Such a scenario might be plausible. In this
paper, however, we explore an alternative explanation
for the experiments that is based on electronic degrees of
freedom and their interactions.

We consider a generic extended Hubbard model for
the unpaired Mo electrons. The model is defined on an
kagome lattice with a 1/6 electron filling and is given as
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where c†
i�

(c
i�

) creates (annihilates) an electron with
spin � at lattice site i, and t1, V1 and t2, V2 are nearest-
neighbor electron hopping and interaction on the up tri-
angles (denoted as ‘u’) and the down triangles (denoted
as ‘d’) (see Fig.1a), respectively. n

i

=
P

�

c†
i�

c
i�

is the
electron density at site i.

Why is this model (Eq.1) is appropriate for
LiZn2Mo3O8? Firstly, the Mo sites do form a kagome
lattice with a shorter (longer) nearest-neighbor bond on
the up (down) Mo3 triangular cluster. There is one un-
paired Mo electron for each up triangular cluster, giving

rise to 1/6 electron filling for the Hubbard model. Sec-
ondly, LiZn2Mo3O8 is found to be a Mott insulator with
a charge gap ⇠ 0.12eV.8 The charge gap is not very large,
so it is more appropriate to model the system with a Hub-
bard model. Seven valence electrons are localized on each
up Mo3 triangular cluster. Supported by a molecular or-
bital calculation, six of the seven electrons localize into
Mo-Mo bonds holding the cluster together.8 The seventh
electron remains unpaired in a totally symmetric (A1)
molecular orbital with equal contributions from all three
Mo atoms.8 This A1 molecular orbital is an equal weight
superposition of relevant electron orbital on each Mo sites
of the up Mo3 cluster.8 The extended Hubbard model in
Eq.1 simply moves one step back, being constructed di-
rectly from the relevant electron orbitals on the Mo sites
and also respecting the R3̄m space group symmetries.
We include the on-site Hubbard-U interaction as well as
two inter-site repulsions V1 and V2. Even though the
down triangles are larger in size than the up triangles
in LiZn2Mo3O8, because of the large spatial extension of
the 4d Mo electron orbitals we think it is necessary to
include the inter-site repulsion V2 for the down triangles.
Since the charge gap is relatively small, it makes sense to
explore possible proximate phases in LiZn2Mo3O8. For
LiZn2Mo3O8 one expects t1 > t2 and U > V1 > V2.
While still keeping the Hubbard-U as the largest energy
scale, we study the phase diagram of this model in much
broader parameter regimes in this paper.

Because of the fractional electron filling, the Mott tran-
sition is driven by the inter-site repulsion rather than the
on-site Hubbard interaction U and the electrons are lo-
calized on the triangular clusters of the kagome lattice
instead of the lattice sites. The electrons become local-
ized on the up (down) triangles when the inter-site re-
pulsion on up (down) triangles overweights the kinetic
energy gain from hoppings between up (down) triangles.
Because of the asymmetry between the up and down tri-
angles of the kagome lattice, the Mott localization on the
up and down triangles does not need to occur simulta-
neously. Therefore, two types of cluster Mott insulating

phases are clearly expected.

For the first kind of cluster Mott insulator, the inter-
site repulsion on one type (up or down) of triangles over-
weights the kinetic energy gain from hoppings between
this types of triangles and causes the electron localiza-
tion on these triangles while the inter-site repulsion on
the other type of triangles remains weak compared to
the kinetic energy gain from hopping between these tri-
angles. The electron occupation number on the triangles
with localized electrons is fixed to one electron per tri-
angle while the electron number on the other type of tri-
angles remains strongly fluctuating. This Mott insulator
is named as the type-I cluster Mott insulator. Moreover,
the triangular clusters that host localized electrons form
a triangular lattice. In the weak Mott regime, we show
the local spin moments form a U(1) QSL with the spinons
filling half the lowest kagome spinon band. We further
show this U(1) QSL is smoothly connected to the weak

t1, V1

A

B C
t2, V2

* Large U alone cannot localize the electron. 
* V1 and V2 are needed: because it is 4d orbital,  
   and also to localize the electron in the clusters.

• Minimal model allowed by symmetry [require quantum chemistry understanding]
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Generic phase diagram

spin sector is spin liquid
Here t1/t2 = 4, no qualitative difference  

for different t1/t2
snapshots of electron occupation in type-I CMI

V2 is small, V1 is large

* Electrons are localized in one type of triangles in type-I CMI; 
* Electrons are localized in both types of triangles in type-II CMI. 
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• A “simple” understanding: 
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Sub-Mott-gap process: correlated electron motion

3rd order process in type-II CMI

dimer resonating 

6

identifying the rotor operators as the spin ladder opera-
tors, e±i✓i = L±

i
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Thus the corresponding e↵ective spin-L model reads
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in which we have made a uniform mean-field approxima-
tion such that h

i

+ 3(V1 + V2) ⌘ Be↵. The 1/6 elec-
tron filling is mapped to the total “magnetization” con-
dition N

s

�1 P
i

Lz
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= � 1
6 , where N

s

is the total number
of Kagome lattice sites.

(a) (b)

FIG. 4. (Color online.) (a) eA, eB and eC are three vectors
that connect the center of an up-triangle to the centers of the
neighboring down-triangles. (b) The centers of the triangles
on the Kagome lattice form a DHL.

The type-II CMI appears when the interactions V1, V2

are dominant over the hoppings t1, t2. In terms of the ef-
fective spin Lz

i

, the electron charge localization condition
in the type-II CMI is
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In the type-II CMI, the allowed e↵ective spin configura-
tion is “2-down 1-up” in every triangle. These allowed
classical spin configuration are extensively degenerate.
The presence of the transverse e↵ective spin exchanges
lifts the classical ground state degeneracy and the ef-
fective interaction can be obtained from a third-order
degenerate perturbation theory. The resulting e↵ective
ring exchange Hamiltonian is given as

Hch,ring = �
X

7
Jring(L

+
1 L

�
2 L

+
3 L

�
4 L

+
5 L

�
6 + h.c.), (11)

where “7” refers to the elementary hexagon of the

Kagome lattice, Jring = 6(Jeff
1 )3

V

2
2

+ 6(Jeff
2 )3

V

2
1

and “1,2,3,4,5,6”

are the 6 vertices on the perimeter of the elementary
hexagon on the Kagome lattice (see Fig. 5).

FIG. 5. (Color online.) The two collective hopping processes
that contribute to the ring electron hopping or the ring ex-
change in Eq. (11). The (red) solid ball represents the electron
or the charge rotor.

We now map the e↵ective Hamiltonian Hch,ring into a
compact U(1) lattice gauge theory on the DHL. We in-
troduce the lattice U(1) gauge fields (E,A) by defining24

Lz

r,µ ⌘ Lz

r+
eµ
2

= Er,r+eµ , (12)

L±
r,µ ⌘ L±

r+
eµ
2

= e±iAr,r+eµ (13)

where r 2 u, Err0 = �Er0r, and Arr0 = �Ar0r.
The centers (labelled as r, r0) of the triangles form a
dual honeycomb lattice (see Fig. 4). The fields E and
A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory
and [Er,r+eµ , Ar,r+eµ ] = �i. With this identification,
the local “2-down 1-up” charge localization condition in
Eq. (10) is interpreted as the “Gauss’ law’’ for the emer-
gent U(1) lattice gauge theory. The e↵ective ring ex-
change Hamiltonian Hch,ring reduces to a gauge “mag-
netic” field term on the DHL,

Hch,ring = �2Jring
X

9
cos(�⇥A), (14)

where �⇥A is a lattice curl defined on the ‘9’ that refers
to the elementary hexagon on the honeycomb lattice. As
this internal gauge structure emerges at low energies in
the charge sector, in the following we will refer this gauge
field as the U(1)ch gauge field.

B. Slave-particle construction and mean-field
theory

Since the gauge theory in the charge sector is a com-
pact U(1) gauge theory defined on a 2D lattice, it would
be confining due to the well-known non-perturbative in-
stanton e↵ect if all the elementary excitations (except for
“photon”) is gapped. However, in our case, the spinon
excitations are gapless and possess spinon Fermi surfaces.
While these spinons do not directly couple to U(1)ch
gauge field, they would interact with charge excitations in
terms of U(1)sp gauge field and then can indirectly couple
to U(1)ch gauge field via the charge excitations. Thus, a
deconfined phase of the U(1)ch gauge field may still be
allowed if spinon Fermi surface fluctuations can suppress

Dual honeycomb lattice and 
Kagome lattice

HQDM ⇠ �
X

(| ih |+ | ih |)

This collective tunnelling process preserves the center of mass of 3 electrons !

A B

A B
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Type-II CMI: plaquette charge order via QDM

R. Moessner S. Sondhi P. Chandra

settles down to a nonzero value on the left of the transition,
at v/t!"0.25, whereas it scales to zero on the right, for
v/t!"0.15. The transition is located around v/t!"0.2,
where the scaling appears inconclusive. From this, we think
it is conservative to estimate the transition point between the
two phases to be located at v/t!"0.2#0.05.
We conclude this section by addressing potential system-

atic errors arising from the introduction of the discretization
in the stacking direction, since the mapping to the quantum
dimer model is exact in the continuum limit only.
In Fig. 5, we show the plots of mrms vs v/t for a system of

2304 sites using different couplings in the stacking direction,
K", thus varying # , at a fixed quantum temperature. It can be
seen that the transition sharpens up as # is increased, but
moves only little as # changes from 10 to 20. As the quan-
tum temperature is lowered by a factor of 2 at #!20, the
transition sharpens further but again does not move signifi-
cantly. These effects are therefore certainly within the error
bars we give for the value of the critcal v/t . The case of the
largest system we have studied $also displayed in Fig. 5%
clearly also falls into this range.
We note that the absence of finite-size effects at v!0,

upon increasing the number of layers, N, at fixed &C and L,

implies the existence of a gap in this part of the phase dia-
gram. This is not surprising since at that point, we are far
away from the phase transition, which is first order at any
rate. However, this observation makes the existence of a gap-
less excitation at this point, suggested in Ref. 13, seem rather
unlikely. More generally, our results fit snugly into the ex-
pectations from the height representation analysis as well the
analysis of the transverse field Ising models $see below as
well% and so there seems little doubt that the analysis in Ref.
13 is flawed.

V. PHASE DIAGRAM

The phase diagram we have thus obtained is depicted in
Fig. 6. The columnar-plaquette phase transition is of first
order, whereas the one at the RK point is a second-order one,
albeit with the somewhat peculiar feature that, coming from
the right, it appears to be first order as no fluctuations are
visible leading up to the critical point. However, coming
from the left, a gap closes, giving rise to the gapless resonon
excitations.1
There are a number of theoretical reasons which lead us to

conclude that the transition from plaquette to columnar VBS
is first order, as the simulations suggest. Within the frame-
work of the Landau-Ginzburg-Wilson theory,15 the critical
point corresponds to the vanishing of the coefficent of the
sixfold clock term, so that the system could in principle fluc-
tuate between all the degenerate XY states $including the
columnar and plaquette ones% without encountering any bar-
riers. However, higher ‘‘harmonics’’ $clock terms% will pre-
sumably come into play as they are unlikely to vanish at
exactly the same point as the leading one; it is these which
will prevent the barriers between the plaquette and columnar
state from vanishing.
Further, we note that the symmetry groups of the two

VBS’s are not such that one of them is a subgroup of another,
which would be a criterion within Landau theory for a con-
tinuous transition. This is in fact a somewhat subtle point as
both phases break translational symmetry and retain a sixfold
rotational symmetry. However, when trying to form domains
of one phase within another, it turns out that the centers of
rotational symmetry lie in distinct places for the two phases.
This point, incidentally, is somewhat simpler in the square

lattice, where the columnar phase breaks translational sym-
metry in one direction and also rotational symmetry, whereas
the plaquette phase breaks translational symmetry in both
directions but retains a fourfold rotational symmetry.

VI. STACKED MAGNETS

Our simulations apply equivalently to the hexagonal
dimer model and to the stacked triangular magnets. We

FIG. 4. Scaling of mrms as a function of L"1, the inverse of the
linear system size. &Qt!0.083, #!10.

FIG. 5. Development of mrms as a function of # and &Q . The
dashed line is for 5184 sites; the others are for 2304 sites. Reducing
the discretization error $increasing #% and lowering the quantum
temperature $increasing N) sharpen up the transition.

FIG. 6. Phase diagram of the quantum dimer model on the hex-
agonal lattice. The nature of the ordered phases is indicated above
the axis.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
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version of parameters between the classical !C" and quantum
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FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.

R. MOESSNER, S. L. SONDHI, AND P. CHANDRA PHYSICAL REVIEW B 64 144416

144416-2

frustrated Heisenberg antiferromagnets on the hexagonal lat-
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by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
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Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:
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It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.
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ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
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shows that there is a diverging correlation length as one ap-
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tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
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pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
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coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
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• Remarks: 
 
* The plaquette charge order is a local charge “RVB”.  
   (This is not Anderson’s spin singlet RVB).  
* One may simply view each resonating hexagon as a benzene molecule.   
* It is a collective behaviour of 3 electrons.  
* It is a quantum effect. 

• A model study in 2001

• plaquette charge order
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• Spin state reconstruction 
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FIG. 11. (Color online.) Three singlet positions that are
related by the 3-fold rotation.

What is the physical origin of this local 4-fold degener-
acy? Clearly, the 2-fold degeneracy of sz = ±1/2 arises
from the time-reversal symmetry and the Kramers’ the-
orem. The remaining 2-fold degeneracy comes from the
point group symmetry of the resonating hexagon. This
is easy to see if we freeze the positions of the 3 electrons.
To be concrete, let us fix the electrons to the sites 1,3,5
in Fig. 11. To optimize the exchange interaction, 2 elec-
trons must form a spin singlet, which leaves the remain-
ing electron as a dangling spin-1/2 moment. As shown
in Fig. 11, this singlet can be formed between any pair
of the electrons and the di↵erent locations of the spin
singlet are related by the 3-fold rotation. Even though
there seems to be 3 possible singlet positions, only 2 of
them are linearly independent, which gives to the 2-fold
⌧z degeneracy which survives even when the ring electron
hopping is turned on. As a result, the pseudospin ⌧ is
even under time-reversal and acts on the space of the sin-
glet position or equivalently the dangling spin position.
In fact, the two states in Eqs. (29) and (30) comprise the
E irreducible representation of the C3v point group.

B. Kugel-Khomskii model

Now we consider the spin and pseudospin interaction
between neighboring resonating hexagons. The neigh-
boring resonating hexagons are connected by a “bow-
tie” that is composed of one up and one down-triangle.
The local moment interaction comes from the remaining
exchange interaction between the 2 electron spins that
reside on the four outer vertices of the bow-tie. To be
concrete, we consider the bow-tie that connects the two
resonating hexagons at the R and R + a1 (see Fig. 1).
To derive the local moment interaction, one just needs to
project the remaining electron spin exchange interaction
onto the 4-fold ground state manifold of each resonat-
ing hexagon. To this end, we first write down the inter-
hexagon exchange interaction between the electrons at
the bow-tie vertices,

H 0
ex = �J 0

4
[n4(R) + n5(R)][n1(R+ a1) + n2(R+ a1)]

+J 0[S4(R)n4(R) + S5(R)n5(R)]⇥ [S1(R+ a1)

⇥n1(R+ a1) + S2(R+ a1)n2(R+ a1)], (31)

where we have considered the exchange interactions for
electrons at all 4 pairs of the sites. The exchange paths of
these pairs all go through the center vertex of the bow-
tie and thus are of equal length. As a result, we only
introduce one exchange coupling J 0 for the four pairs in
the above equation. Moreover, since J 0 is the exchange
coupling between the spins after the system develops the
PCO, clearly J 0 should be smaller than the intra-hexagon
exchange coupling J in Eq. (27).
We project H 0

ex onto the local ground state manifold
at resonating hexagon sites R and R + a1 and then ex-
press the resulting interaction in terms of the spin and
pseudospin operators. The e↵ective interaction on other
bonds can be obtained similarly. The final local moment
interaction reduces to a Kugel-Khomskii model[19] that
is defined on the ETL, which to the order of O(K2/K1)
is given as

HKK =
J 0

9

X

R

X

µ=x,y,z

⇥
s(R) · s(R+ a

µ

)
⇤

⇥[1 + 4⇡µ(R)][1� 2⇡µ(R+ a
µ

)] (32)

where the new set of pseudospin operators are defined

as ⇡x,y(R) = � 1
2⌧

z(R)⌥
p
3
2 ⌧x(R),⇡z(R) = ⌧z(R), and

a
x

= a1,ay = a2 and a
z

= �a1 � a2. In Eq. (32),
the exchange coupling is significantly reduced after the
projection compared to the original exchange coupling in
Eq. (31).
Since the pseudospin ⌧ does not directly couple to the

external magnetic field, the low-temperature Curie-Weiss
temperature (⇥L

CW) and Curie constant (CL) are straight-
forward to compute from HKK,

⇥L
CW = �z

t

s(s+ 1)

3

J 0

9
, CL =

g2µ2
Bs(s+ 1)

3kB

N�

3
,(33)

where z
t

= 6 is the coordination number for nearest
neighbors of the triangular lattice. The above results are
again consistent with the lower temperature 1/3 Curie-
constant of the spin susceptibility in LiZn2Mo3O8.
This Kugel-Khomskii model involves the spin-spin in-

teraction, the pseudospin-pseudospin interaction and also
the spin-pseudospin interaction, which make the model
analytically intractable. In the absence of the spin-
pseudospin interaction, the Heisenberg spin exchange
model would favor the classical 120-degree state. The
presence of spin-pseudospin interaction, however, com-
petes with the Heisenberg term, destabilizes the 120-
degree state and may potentially favor a spin liquid state.
Such a spin liquid, if exists, could be smoothly connected
to the U(1) QSL of the intermediate coupling regime in
Sec. III C. We leave this question for the future work.
Despite its complicated form, the Kugel-Khomskii

model becomes tractable in the presence of a strong ex-
ternal magnetic field. We apply a strong magnetic field to
fully polarize the local spin moments such that sz = 1/2
in every ETL unit cell but at the same time keep the
field from polarizing all the electron spins in the system.
The remaining active local moments are the pseudospins

An effective Kugel-Khomskii model on  
the emergent triangular lattice

K. Kugel D. Khomskii

Charge order reconstructs the spin state
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Explanation for fractional spin susceptibility at finite temperatures

type-II CMI (PCO)

T ⇤

⇥H
CW, CH

|⇥L
CW| < |⇥H

CW|
CL = 1/3CH

T

V2/t1

Type-II CMI (PCO)Type-I CMI

LiZn2Mo3O8Li2InMo3O8

There exists a peak in the heat capacity around 100K, which is consistent 
with phase transition.   

Hastings’ theorem implies both CMIs are spin liquids.
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• Quantum Dimer Model = Lattice Gauge Theory; 
      bipartite: compact U(1) gauge theory,  
      non-bipartite: Z2 gauge theory. 

HQDM ⇠ �
X

(| ih |+ | ih |)

R. MoessnerS. Sondhi

A. Polyakov
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identifying the rotor operators as the spin ladder opera-
tors, e±i✓i = L±

i

where

L±
i

|Lz

i

= ⌥1

2
i = |Lz

i

= ±1

2
i. (8)

Thus the corresponding e↵ective spin-L model reads

Hch =
X

hiji

⇥�Je↵
ij

(L+
i

L�
j

+ h.c.) + V
ij

Lz

i

Lz

j

⇤

+Be↵
X

i

Lz

i

, (9)

in which we have made a uniform mean-field approxima-
tion such that h

i

+ 3(V1 + V2) ⌘ Be↵. The 1/6 elec-
tron filling is mapped to the total “magnetization” con-
dition N

s

�1 P
i

Lz

i

= � 1
6 , where N

s

is the total number
of Kagome lattice sites.

(a) (b)

FIG. 4. (Color online.) (a) eA, eB and eC are three vectors
that connect the center of an up-triangle to the centers of the
neighboring down-triangles. (b) The centers of the triangles
on the Kagome lattice form a DHL.

The type-II CMI appears when the interactions V1, V2

are dominant over the hoppings t1, t2. In terms of the ef-
fective spin Lz

i

, the electron charge localization condition
in the type-II CMI is

X

i2u

Lz

i

= �1

2
,

X

i2d

Lz

i

= �1

2
. (10)

In the type-II CMI, the allowed e↵ective spin configura-
tion is “2-down 1-up” in every triangle. These allowed
classical spin configuration are extensively degenerate.
The presence of the transverse e↵ective spin exchanges
lifts the classical ground state degeneracy and the ef-
fective interaction can be obtained from a third-order
degenerate perturbation theory. The resulting e↵ective
ring exchange Hamiltonian is given as

Hch,ring = �
X

7
Jring(L

+
1 L

�
2 L

+
3 L

�
4 L

+
5 L

�
6 + h.c.), (11)

where “7” refers to the elementary hexagon of the

Kagome lattice, Jring = 6(Jeff
1 )3

V

2
2

+ 6(Jeff
2 )3

V

2
1

and “1,2,3,4,5,6”

are the 6 vertices on the perimeter of the elementary
hexagon on the Kagome lattice (see Fig. 5).

FIG. 5. (Color online.) The two collective hopping processes
that contribute to the ring electron hopping or the ring ex-
change in Eq. (11). The (red) solid ball represents the electron
or the charge rotor.

We now map the e↵ective Hamiltonian Hch,ring into a
compact U(1) lattice gauge theory on the DHL. We in-
troduce the lattice U(1) gauge fields (E,A) by defining24

Lz

r,µ ⌘ Lz

r+
eµ
2

= Er,r+eµ , (12)

L±
r,µ ⌘ L±

r+
eµ
2

= e±iAr,r+eµ (13)

where r 2 u, Err0 = �Er0r, and Arr0 = �Ar0r.
The centers (labelled as r, r0) of the triangles form a
dual honeycomb lattice (see Fig. 4). The fields E and
A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory
and [Er,r+eµ , Ar,r+eµ ] = �i. With this identification,
the local “2-down 1-up” charge localization condition in
Eq. (10) is interpreted as the “Gauss’ law’’ for the emer-
gent U(1) lattice gauge theory. The e↵ective ring ex-
change Hamiltonian Hch,ring reduces to a gauge “mag-
netic” field term on the DHL,

Hch,ring = �2Jring
X

9
cos(�⇥A), (14)

where �⇥A is a lattice curl defined on the ‘9’ that refers
to the elementary hexagon on the honeycomb lattice. As
this internal gauge structure emerges at low energies in
the charge sector, in the following we will refer this gauge
field as the U(1)ch gauge field.

B. Slave-particle construction and mean-field
theory

Since the gauge theory in the charge sector is a com-
pact U(1) gauge theory defined on a 2D lattice, it would
be confining due to the well-known non-perturbative in-
stanton e↵ect if all the elementary excitations (except for
“photon”) is gapped. However, in our case, the spinon
excitations are gapless and possess spinon Fermi surfaces.
While these spinons do not directly couple to U(1)ch
gauge field, they would interact with charge excitations in
terms of U(1)sp gauge field and then can indirectly couple
to U(1)ch gauge field via the charge excitations. Thus, a
deconfined phase of the U(1)ch gauge field may still be
allowed if spinon Fermi surface fluctuations can suppress

• The PCO in type-II CMI can be understood as the confining phase of compact  
U(1) gauge theory in 2D.  

• This implies 3D CMI supports quantum charge liquid & charge fractionalization !

Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon
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Summary

• I provide specific examples to illustrate some of the physics in cluster Mott insulators.  

• There is a very interesting interplay between the charge and spin degrees of freedom  
in both 2D and 3D cluster Mott insulators, maybe also with disorders in the future!

• Cluster Mott insulators are new physical systems that may host various emergent 
     and exotic physics.


