Cluster Mott insulators and spin liquids in Mo-based cluster magnets

Gang Chen (Univ of Toronto)

Collaborators: Hae-Young Kee, Yong-Baek Kim

ArXiv 1402.5425 (Phys. Rev. Lett. 113, 197202 (2014)) ArXiv 1408.1963 ????

T. McQueen

Nature Material 2012

Two Curie-Weiss regimes in LiZn2Mo3O8

- The result does not fit into our understanding spin-1/2 triangular system.
- Further low-temperature experiments: NMR, muSR, neutron scattering, proposed as a spin liquid candidate.

The Mo structure: anisotropic Kagome

Model

Claim: a single-band extended Hubbard model on an anisotropic Kagome lattice with 1/6 electron filling.

Minimal model allowed by symmetry [require quantum chemistry understanding]

$$H = \sum_{\langle ij \rangle \in \mathbf{u}} \left[-t_1(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + V_1 n_i n_j \right]$$

$$+ \sum_{\langle ij \rangle \in \mathbf{d}} \left[-t_2(c_{i\sigma}^{\dagger} c_{j\sigma} + h.c.) + V_2 n_i n_j \right]$$

$$+ \sum_i \frac{U}{2} (n_i - \frac{1}{2})^2,$$

- * Large U alone cannot localize the electron.
- * V1 and V2 are needed: because it is 4d orbital, and also to localize the electron in the clusters.

Generic phase diagram

spin sector is spin liquid

Here t1/t2 = 4, no qualitative difference for different t1/t2

V2 is small, V1 is large snapshots of electron occupation in type-I CMI

- A "simple" understanding:
 - * Electrons are localized in **one** type of triangles in type-I CMI;
 - * Electrons are localized in **both** types of triangles in type-II CMI.

Sub-Mott-gap process: correlated electron motion

3rd order process in type-II CMI

Dual honeycomb lattice and Kagome lattice

This collective tunnelling process preserves the center of mass of 3 electrons!

$$H_{QDM} \sim -\sum_{Q} (|Q\rangle\langle Q)| + |Q\rangle\langle Q|)$$

Type-II CMI: plaquette charge order via QDM

R. Moessner

S. Sondhi

P. Chandra

A model study in 2001

$$H_{QDM} = -t \left(| \bigcirc \rangle \langle \bigcirc | + | \bigcirc \rangle \langle \bigcirc | \right) + v \left(| \bigcirc \rangle \langle \bigcirc | + | \bigcirc \rangle \langle \bigcirc | \right)$$

plaquette charge order

- Remarks:
 - * The plaquette charge order is a **local charge "RVB"**. (This is not Anderson's spin singlet RVB).
 - * One may simply view each resonating hexagon as a benzene molecule.
 - * It is a collective behaviour of 3 electrons.
 - * It is a quantum effect.

Charge order reconstructs the spin state

Spin state reconstruction

$$\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = \frac{1}{2} \oplus \frac{1}{2} \oplus \frac{3}{2}$$

K. Kugel

D. Khomskii

The total spin Stot = 1/2; Pseudospin T = 1/2, nonmagnetic

An effective Kugel-Khomskii model on the **emergent triangular lattice**

Explanation for fractional spin susceptibility at finite temperatures

There exists a peak in the heat capacity around 100K, which is consistent with phase transition.

Hastings' theorem implies both CMIs are spin liquids.

E Fradkin

S Kivelson

S. Sondhi

R. Moessner

Quantum Dimer Model = Lattice Gauge Theory;

bipartite: compact U(1) gauge theory,

non-bipartite: Z2 gauge theory.

$$H_{QDM} \sim -\sum_{\mathbf{Q}} (|\mathbf{Q}\rangle\langle\mathbf{Q}| + |\mathbf{Q}\rangle\langle\mathbf{Q}|)$$

The PCO in type-II CMI can be understood as the confining phase of compact U(1) gauge theory in 2D.

A. Polyakov

This implies 3D CMI supports quantum charge liquid & charge fractionalization!

$$\frac{q_e}{2}$$

$$-\frac{q_e}{2}$$

Summary

- I provide specific examples to illustrate some of the physics in cluster Mott insulators.
- There is a very interesting interplay between the charge and spin degrees of freedom in both 2D and 3D cluster Mott insulators, maybe also with disorders in the future!
- Cluster Mott insulators are new physical systems that may host various emergent and exotic physics.