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OUTLINE

1. Monopole condensation transition out of quantum spin ice. 

• I propose the Pr subsystem of the disordered Pr2Ir2O7 sample might be a 
quantum spin ice. 

2. Rare-earth triangular lattice quantum spin liquid: YbMgGaO4

• To our best knowledge, this is the first strong spin-orbit coupled quantum spin liquid 
candidate with odd number of electrons per unit cell and effective spin-1/2 moment.
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, Arxiv1505). 
•  This is the first strong spin-orbit coupled QSL with odd number of electrons and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. 
•  We understand the microscopic Hamiltonian and the physical mechanism.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4
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1. Monopole condensation transition out of quantum spin ice. 



• Introduction: does quantum spin ice exist in nature? 

• Magnetic transition of quantum spin ice is confinement transition of 
compact QED 

• Monopole condensation and proximate phases

1. Monopole condensation out of quantum spin ice
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Spin ice in rare-earth pyrochlores

RE2M2O7
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2-in 2-out  
spin ice rule

2-in 2-out  
water ice rule

+ dipolar

Castelnovo, Gingras, Moessner, Sondhi, Schiffer, 
Penc, …….

from wiki
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Spin ice in rare-earth pyrochlores



Classical spin ice

Pinch points in spin correlation

•  The “2-in 2-out” states are extensively degenerate. 
•  At T < Jzz, the system thermally fluctuates within the ice manifold, 

leading to classical spin ice and interesting experimental discoveries. 
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Quantum fluctuation can leads to U(1) QSL
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•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a quantum spin ice !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….

flip 6 spins on the hexagon
or

Ring exchange

quantum  
tunneling
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QSI is NOT a Landau symmetry breaking phase

Spinon deconfinement

SpinonJzz

energy

Magnetic monopoles
J3
±

J2
zz

gapless  
gauge photon

•  Unlike CSI, QSI is a novel phase of matter. No LRO, no symmetry breaking, cannot be 
understood in Landau’s paradigm!  

•  The right description is in terms of fractionalization and emergent gauge structure.

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Figs from Moessner&Schiffer,2009
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Important question: does QSI exist in experiments? 
Probably.
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Yi-Ping Huang

•  Kramers’ doublet  

 

•  Non-Kramers’ doublet 

•  Dipole-octupole doublet

Realistic models

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X
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i are local spin coordinates, Jzz ¼
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6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc 
no sign problem for QMC on any lattice.  
It supports nontrivial phase like quantum spin ice

SB Lee, Onoda, Balents, 2012



Pyrochlore Iridates: Pr2Ir2O7

R2Ir2O7 K Matsuhira, M Wakeshima, Y Hinatsu, S. Takagi 
JPSJ, 2011
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Experiments: a featureless state near an ordered state

frozen at Tf. The observed T-independent behavior sug-
gests that only a partial fraction of spins freezes, while the
majority remain liquid.

The h111i Ising-like anisotropy of the 4f moments is
confirmed by the field dependence of the magnetization
M!B" along #100$, #110$, and #111$ at 70 mK (Fig. 3). The
4f ground-state-doublet contribution (thick curves) is esti-
mated by subtracting the sum of the Van Vleck and Pauli
paramagnetic contributions, which is estimated from !0B
(Fig. 3). At 13 T, M tends to saturate and approaches a
Brillouin function (thin curves) for noninteracting, local
h111i Ising spins with gJJz % 2:69, consistent with the
CEF analysis [11]. This slow saturation at the field scale,
B& ' kBjT&j=!gJ"BJz" ( 11 T, confirms an AF coupling
with an energy scale of jT&j % 20 K. At low fields, M
becomes isotropic (Fig. 3), as expected for h111i Ising
spins on a pyrochlore lattice [17]. Below 0.3 T, M changes
displaying a nearly constant derivative dM=dB (inset of
Fig. 3). This departure from a Brillouin function also
suggests liquidlike short-range correlations.

When such h111i Ising spins on a pyrochlore lattice
interact only through a nearest-neighbor AF coupling J,
mean-field theory predicts an ‘‘all-in and all-out’’ type of
LRO to appear at T ( J [18]. This indicates that in
Pr2Ir2O7, effects beyond the mean-field theory of nearest-
neighbor AF interaction, such as quantum fluctuations and
longer-range couplings, are crucial to suppress the LRO
down to T ) jT&j. Observed indications of such effects are
(1) the Kondo coupling between the 4f moments and the
5d-conduction electrons, and (2) the RKKY long-range
interactions between the 4f moments.

Although rare, the Kondo effect in Pr-based compounds
[19,20] and low carrier systems [14] has been reported. The
first evidence of Kondo effect in Pr2Ir2O7 is the lnT de-
pendence of the resistivity [Fig. 4(a)]. For such a depen-
dence in a stoichiometric high-quality metal, two mecha-
nisms can be considered: (i) CEF effect and (ii) Kondo

effect. Since the gap to the first excited level is (160 K,
the lnT dependence below 50 K cannot be due to a CEF
effect. Thus, the observed lnT dependence is likely due to
the Kondo effect, and in fact, over a decade in T between
3 K and 35 K, #!T" can be fit to the Hamann’s expression
(solid line) with TK % 25 K [21]. Interestingly, TK is close
to jT&j, and suggests that it is not the single-ion screening,
but the intersite screening that leads to the Kondo effect, as
discussed for low carrier-density and AF correlated Kondo
lattices [14,22]. In addition, the field dependence of the
resistivity is consistent with the Kondo effect [13]; the
negative magnetoresistance is proportional to M2 for all
axes under fields up to 2 T<B& [inset of Fig. 4(a)].

Second, the Kondo effect is also seen in the low T
decrease of the effective Curie constant C!T" ' T!!T";
see Fig. 4(b). The rapid decrease in C!T" below 10 K
suggests that the moment size diminishes owing to
Kondo screening. Correspondingly, !*1!T" follows the
CW law over a decade in T from 1.5 to 16 K [solid line
in the inset of Fig. 4(b)], yielding a slightly smaller effec-
tive moment 2:69"B, and a reduced Weiss temperature,
j$Wj % 1:7 K, in comparison with the high T values
(3:06"B, 20 K). These results and the crossover to lnT de-
pendence below j$Wj indicate partial screening of 4f mo-
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!SM!T" % R ln2. Inset: CM as a function of T1=2.
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Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single
crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of jT!j "
20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial
spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges
and leads to a partial screening of the moments below jT!j. Our results indicate that the underscreened
moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.

DOI: 10.1103/PhysRevLett.96.087204 PACS numbers: 75.20.Hr, 75.40.Cx, 75.50.Ee

Geometrically frustrated magnets have attracted great
interest because of the possible emergence of novel mag-
netic phases at low temperatures resulting from the sup-
pression of conventional order. Among them, the three-
dimensional pyrochlore lattice of corner sharing tetrahedra
has been studied extensively [1]. It is predicted theoreti-
cally that Heisenberg spins on a pyrochlore lattice with
nearest-neighbor antiferromagnetic (AF) coupling form a
spin-liquid state at T " 0 K [2]. However, only a few
compounds are believed to display a spin-liquid phase,
such as the insulator Tb2Ti2O7 [3].

In metallic systems, the frustration inherent to the pyro-
chlore lattice might also lead to new types of electronic
behavior. One remarkable possibility is the predominance
of the Kondo effect, and concomitant heavy-fermion be-
havior, in nearly localized d- and f-electron systems where
the Kondo temperature is generally too small to overcome
magnetic order without the frustration. Prominent ex-
amples are the heavy-fermion behavior in LiV2O4 and
Y#Sc$Mn2 with itinerant d-electron spins on a pyrochlore
lattice [4,5].

Connecting the two exotic states of frustrated magnets,
insulating spin-liquid and itinerant heavy fermions, there is
another exciting yet unprecedented possibility of metallic
spin liquid [6,7]. Ground states in f-electron based Kondo
lattices are generally classified into Fermi liquid and mag-
netic regimes as the result of the competition between the
Kondo effect and RKKY interactions. If the lattice has
geometrical frustration and the transition temperature is
depressed, the underscreened moments may stay disor-
dered even in the magnetic regime, and form a metallic
spin liquid on the geometrically frustrated Kondo lattice.
(See the inset of Fig. 1.)

There has been a number of reports on metallic systems
among the A2B2O7 pyrochlore oxides possessing localized
moments [1]. Yet, none is known to remain magnetically

disordered down to the lowest temperatures except for the
newly developed pyrochlore iridates [8]. In particular, the
AF correlated Pr 4f moments of Pr2Ir2O7 remain para-
magnetic down to at least 0.3 K in the metallic state due to
the Ir 5d-conduction bands [8]. This places Pr2Ir2O7 as a
candidate for a geometrically frustrated Kondo lattice.

Here we report on strongly frustrated magnetism in
single crystals of Pr2Ir2O7. We find that the h111i Ising-
like Pr3% moments have an AF RKKY interaction energy
scale jT!j " 20 K. However, the dc magnetization down to
70 mK does not exhibit any trace of long-range order
(LRO), except for an indication of partial freezing at
120 mK. Instead, the Kondo effect emerges below jT!j
and leads to a partial screening of the 4f moments, re-
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. When analyzing our results for , we added a constant term
to describe the effect of the spin freezing.

Macroscopically broken time reversal symmetry
The macroscopically broken time reversal symmetry means that the time-reversal operation,
which inverts the spin and orbital angular momenta and the wavevector, , ,
and , as well as the fictitious magnetic field , should not be compensated
by any other symmetry operations of the crystal, e.g., translation, spatial inversion, reflection,
rotation, and their combinations.

Hall and longitudinal resistivities
Figure S1 shows the temperature dependence of the Hall resistivity (left axis) and the longi-
tudinal resistivity (right axis) under a magnetic field of = 0.05 T along the [111] direction.

clearly exhibits a bifurcation between the zero-field cooled (ZFC) and field-cooled (FC) pro-
cesses below 1.5 K, while does not show any bifurcation. Correspondingly, a bifurcation is
visible in but not in as shown in Fig. 2a and in the inset of Fig. 2b within the main text
because of the small Hall angle 0.01.

Metamagnetic transition and “2-in, 2-out” correlation
Figure S2 shows the field dependence of the magnetization along the [100], [110], and [111]
directions at 0.1 K. The clear anisotropy observed at high fields is fully consistent with an Ising-
like anisotropy for Pr 4 moments [S3,S4]. As shown in the inset of Fig. S2 and in Fig. 3b within
the main text, our measurements at 0.03 and 0.06 K clearly reveal a first-order metamagnetic
transition at 2.3 T for fields along the [111] direction. The associated anomaly is observed
already at 0.1 K in the vs. curve for fields along the [111] direction (Fig. S2). No anomaly
is seen for fields applied along the other two crystallographic directions.

The fact that the metamagnetic transition is observed only for fields along the [111] direction
is a clear evidence for the “2-in, 2-out” spin-configuration of Pr 4 moments, and for a FM
coupling between the nearest neighbors. In general, four Ising moments on a tetrahedron form
two distinct configurations, depending on the sign of the nearest-neighbor interaction: an “all-
in, all-out” and the “2-in, 2-out” (Fig. 1b in the main text) spin-configuration, respectively for
antiferromagnetic (AF) and ferromagnetic (FM) interactions. Locally, the “all-in, all-out” state
has no net magnetization. Therefore, to induce a finite magnetization for fields applied along
each one of the crystallographic directions, a metamagnetic transition would have to occur.
However, this is not what is observed in our experiment. In contrast, for the “2-in, 2-out” spin-
configuration, a metamagnetic transition would occur only for fields along the [111] direction
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Figure S2 Field dependence of the magnetization for fields along the [100], [110], and
[111] directions at 0.1 K. Inset: Hysteresis in the magnetization at the metamagnetic
transition for fields along the [111] direction at 0.03 K.

Theoretical calculation
For the tight-binding calculation, we took into account four different angles of rotation of a IrO
octahedron and the associated triply degenerate orbitals in the local coordinate frames.
No significant effect was found from the small splitting of the Ir 5 levels due to the trigonal
crystal-field of the pyrochlore structure. The orbital-dependent electron transfer between
the nearest-neighbor Ir sites was estimated from the Slater-Koster table [S12]. The amplitude
was chosen so that the total bandwidth becomes of the order of 3 eV as obtained by the first-
principles band calculation [S7], which also uncovered a single electron-like Fermi surface with
a carrier concentration comparable to the experimental estimate of per Ir. The relativistic
spin-orbit interaction for the electrons is large, and it has finite matrix elements within the
manifold. We took the spin-orbit coupling strength of eV, which was also estimated

from band structure calculations. The effective AF Kondo coupling to the Pr 4 moments
was estimated to be 4 meV. The calculations have been performed with wavevector meshes
for the zero-field-magnetic configuration shown in Fig. 1d in the main text. An energy broad-
ening of eV has been introduced for practical calculations, which is comparable to the
relaxation rate obtained from the observed longitudinal conductivity .
The results are shown in Fig. S3 (left axis) as a function of the number of electrons per Ir
site. For the expected Ir configuration with 5 , it gives for the zero-field spin
configuration shown in Fig. 1d in the main text.
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First-order magnetic transition in Yb2Ti2O7
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The very nature of the ground state of the pyrochlore compound Yb2Ti2O7 is much debated, because
experimental results demonstrate evidence for either a disordered ground state or a long-range ordered ground
state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing
states, such as a quantum spin liquid state or a ferromagnetic state which may originate from an Anderson-Higgs
transition. We present a detailed magnetization study demonstrating a first-order ferromagnetic transition at 245
and 150 mK in a powder and a single-crystal sample, respectively. Its first-order character is preserved up to
applied fields of ∼200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in
the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the
discrepancies between previously published data for Yb2Ti2O7.

DOI: 10.1103/PhysRevB.89.224419 PACS number(s): 75.40.Cx, 64.60.Ej, 75.30.Kz, 75.60.Ej

I. INTRODUCTION

Magnetism affected by geometrical frustration is an active
field due to the ability to generate new and unusual magnetic
phases [1]. In this context, the pyrochlore oxide materials
R2M2O7 (R = rare earth, M = metal) form a very rich family
in which a large diversity of new physics can be explored [2].
Specifically, the rare-earth ions lie on the vertices of corner
sharing tetrahedra, forming the highly frustrated pyrochlore
lattice. Depending on the rare-earth element, the anisotropy of
the spins as well as the exchange and dipolar interactions can
be varied so that different model Hamiltonians can be studied
within this structure. One of the most spectacular realizations
is the spin-ice phase (mainly studied with R = Dy and Ho;
M = Ti) [3,4] in which the local spin arrangement obeys
the ice rule (two spins point into and two spins point out
of every tetrahedron in the structure) and which possesses a
macroscopically degenerate ground state. This state is induced
by the strong uniaxial anisotropy along the local ⟨111⟩ axes
of the tetrahedra, combined with a resultant ferromagnetic
interaction. With these ingredients and in the presence of
strong transverse fluctuations, a new magnetic state is expected
to be stabilized, the quantum spin ice (QSI) in which exotic
excitations are predicted [5–7].

Yb2Ti2O7 has been proposed as a good candidate for
stabilizing the QSI state [8,9]. Indeed, the exchange in
Yb2Ti2O7 is highly anisotropic, with a strong ferromagnetic
component akin to the Ising exchange of spin ice [8,10,11],
despite an XY -like anisotropy perpendicular to the lo-
cal ⟨111⟩ directions [12,13]. At low temperature, using
a model Hamiltonian with anisotropic exchange parame-
ters deduced from experiments, a first-order phase transi-
tion towards a long-range ferromagnetic order is predicted
[9,14–16].

*elsa.lhotel@neel.cnrs.fr

Experimentally, the existence of a long-range magnetic
ordering in this compound is debated, suggesting a fragile
ground state with respect to perturbations. In an early study,
a peak was observed around 210 mK in the specific heat of a
polycrystalline sample [17]. It was later shown to be associated
with a first-order transition and an abrupt slowing down of the
fluctuations in the low-temperature phase [18].

Below the transition, depending on the nature of the
samples (single crystal or polycrystal) and the crystal growth
conditions, different results have been obtained. Some neutron
scattering measurements demonstrate ferromagnetic long-
range order (LRO) [14,19] while others do not [20–22].
A discrepancy is also observed in muon spin relaxation
measurements (µSR) where an anomaly at the transition
is present [18,23] or not [24]. In the meantime, it was
shown that the peak in specific heat strongly depends on the
samples [25,26] so that the presence of a transition towards a
long-range order might depend on the sample quality.

It has been suggested that the specific heat anomaly,
however, does not necessarily correspond to a magnetic
ordering [24,25]. It is therefore essential to probe another
thermodynamic quantity which should be more sensitive to
the magnetic nature of the transition: the magnetization. In
this article, we show that the magnetization of Yb2Ti2O7
presents a first-order transition in both a powder sample
and a single crystal which was shown to develop additional
magnetic intensity on structural peaks [14]. The first-order
nature of the transition invoked in previous studies [14,18,24]
is proved by the existence of a small thermal hysteresis (of a
few millikelvins in width). The transition is accompanied by
strong time-dependent effects. The magnetization value below
the transition temperature is consistent with the stabilization
of a ferromagnetic ordering with a reduced spontaneous
moment, suggesting a strongly fluctuating spin component.
Significantly the first-order behavior occurs below the peak in
the specific heat where only a deviation in the susceptibility is
observed.

1098-0121/2014/89(22)/224419(7) 224419-1 ©2014 American Physical Society
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possible temperature dependence of the spontaneous moment
must be considered, since an increase in the ordered moment
may be expected as the temperature is reduced further below
TC . For the single crystal, our analysis was carried out at 80 mK
which corresponds to TC/2. The same procedure was followed
at 110 mK and the results were found to be comparable. For
the powder sample, we performed the analysis between 80
(about TC/3) and 200 mK, and no significant dependence of the
spontaneous moment with temperature was observed. These
results suggest that the spontaneous moment will not increase
significantly at lower temperature and point out the first-order
nature of the transition.

C. First-order transition and time-dependent effects

A detailed study of the magnetization around the transition
has been performed. To ensure accurate results, measurements
had to be performed with well-controlled temperature
regulation and extremely slow cooling and warming rates. The
protocol was the following: (i) regulate at a given temperature,
(ii) take a large number of measurements (between 40 and 100)
so that the magnetization reaches equilibrium at this tempera-
ture, and (iii) change the temperature with a step of 5 or 2 mK
depending on the measurements. The temperature was ramped
between 80 and 400 mK, cooling and warming the sample.
The equivalent ramping rate is between 9 and 18 mK/h.
The obtained magnetization as a function of temperature for
the single crystal is shown in Fig. 5. It can be seen that at the
transition, at a fixed temperature, a strong relaxation occurs.
As shown in the inset of Fig. 5 where the magnetization is
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FIG. 6. (Color online) (a) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis, extracted from
Fig. 5 with only the equilibrium value of the magnetization plotted
compared to the specific heat data. (b) The equivalent data for the
crushed powder.

plotted as a function of time, at 155 mK, the equilibrium
magnetization is reached after times as long as 600 s.

Figure 6(a) shows the equilibrium values of the magneti-
zation at the transition (obtained from Fig. 5) as a function
of temperature for the single crystal. It can be seen that a
small hysteresis is present (which is much narrower than that
for a fast temperature sweep), indicating a first-order like
behavior. Also shown is the specific heat data on the same
crystal. A subtle change of slope occurs in the magnetization
at the peak in specific heat, while the first-order transition
develops below this peak. The bump observed at ≈180 mK
before the sharp increase is not present in the magnetization
of the powder sample as shown in Fig. 6(b) and might be due
to a sample inhomogeneity, a consequence of difficulties in
sample preparation [25,26].

From the magnetization, it appears, that the first-order
transition occurs around 150 mK in this single crystal. The
transition extends over about 20 mK and the hysteresis width
is about 3 mK. For the powder sample, the transition occurs
around 245 mK, but the width of the transition and the width
of the hysteresis are similar.

Zero-field-cooled–field-cooled (ZFC-FC) magnetization
shows an irreversibility below the temperature of the transition
(see Fig. 7) [34]. In ordered materials, such irreversibility is
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Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.
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Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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Experiments: a featureless state near an ordered state



Gang Chen’s theory group 

Gang Chen’s theory group= chemical pressure, 
      oxygen content ……

featureless
disordered state magnetic order

T

g

Summary of experimental results

•  What is the structure of the magnetic order? 

•  What is the relationship between the featureless disordered  
 state and various magnetic states? 

•  What is the nature of the featureless disordered states? Is it QSI? 
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Insight from high-Tc superconductors

One important question is to understand the  
relationship between different phases (and/or orders)

strange 
metal

Fermi 
liquid

Figure from wiki

1. Perturbative treatment (not interesting):  
instability of Fermi liquid;  

2. Attack from top:  
instability of non-Fermi liquid;  

3. Attack from Left,  
attack from Right:  
what is PG (Z2 topological order?) ? 
(Senthil, Balents, Nayak, Fisher 2000-2002); 

4. Attack from bottom: some quantum  
criticality under the SC dome? 
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featureless disordered state  
=quantum spin ice?? magnetic order

Attack from left (quantum spin ice)

Let there be light: emergent photonExcitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004

Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004
Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004

Collective spin dynamics

Here, “monopole” is a spinon !

+
- +

-
+

-

+ -
+
-

+

-
gauge  
photonspinon spinon

hSzi 6= 0hSzi = 0

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Spinons are deconfined. Spinons are confined !

Remark: for non-Kramers’ doublet, the magnetic transition out of QSI  
must be a confinement transition.
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Theoretical framework: compact QED and electromagnetic 

duality 
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Lattice gauge theory formalism: technical part

diamond lattice

3

phases.
If one experimentally finds a magnetic ordered state

bordering a disordered state that is fluctuating within
the “2-in 2-out” spin ice manifold, and if the structure of
the magnetic ordered states and the nature of the tran-
sition from QSI are compatible one may postulate the
disordered state is in the QSI phase.

such unconventional phase transition and the corre-
ponding ordered phase that are proximate to a disordered
phase,

order in the Ising direction, order in the direction nor-
mal the spin component along the ... experimental

II. A GENERIC RING EXCHANGE MODEL
AND COMPACT QED FOR QSI

Even though more complicated realistic Hamiltonians
are available for e↵ective spin-1/2 moments with both
Kramers’ and non-Kramers’ doublets on the pyrochlore
lattice, it is known that the spin-1/2 XXZ model on the
pyrochlore lattice,

H =
X

hiji

⇥
�J?(⌧

+
i

⌧�
j

+ ⌧�
i

⌧+
j

) + J
z

⌧z
i

⌧z
j

⇤
, (1)

in the perturbative regime already captures the universal
properties of QSI. Here ⌧±

i

⌘ ⌧x
i

± i⌧y
i

. A large and
positive J

z

favors an extensive degenerate “2-in 2-out”
spin ice configuration. With a transverse exchange J?,
the system can tunnel quantum mechanically within the
ice manifold. It is argued and shown numerically that
QSI is realized for |J?|/Jz less than a critical value. In
the limit with |J?|/Jz ⌧ 1, the 3rd order degenerate
perturbation theory yields a ring exchange model,

Hring = �
X

7p

K

2
(⌧+1 ⌧�2 ⌧+3 ⌧�4 ⌧+5 ⌧�6 + h.c.), (2)

where K = 24J3
?/J

2
z

and “1,· · · ,6” are 6 sites on the
perimeter of the elementary hexagons (“7

p

”) of the py-
rochlore lattice. In fact, the perturbative treatment of
all the realistic models in the Ising limit (with a domi-
nant J

z

) gives the same form of ring exchange model as
Eq. (2).

We now introduce the lattice vector gauge fields as

Err0 ⌘ ⌧z
i

+
1

2
, eiArr0 ⌘ ⌧+

i

, (3)

where the pyrochlore site i resides on the center of
the nearest-neighbor diamond link hrr0i, and r (r0) is
on the diamond I (II) sublattice (see Fig.X). Moreover,
Err0 = �Er0r, Arr0 = �Ar0r and [Err0 , Arr0 ] = i. With
this transformation, Hring is mapped to the compact U(1)
lattice gauge theory on the diamond lattice formed by the
centers of the tetrahedra,

HLGT =
X

hrr0i

U

2
(Err0 �

✏r
2
)2 �

X

7d

K cos(curl A), (4)

where we have added the electric field term with the sti↵-
ness U , ✏r = +1(�1) for r 2 I (II) sublattice, and the
lattice curl (curl A ⌘

P
rr027d

Arr0) defines the inter-
nal magnetic field B through the center of the diamond
hexagon. Here Err0 (Arr0) is integer valued (2⇡ periodic).
In the large U limit, the microscopic ⌧z = ±1/2 is recov-
ered.
Eq. (4) is the standard compact QED Hamiltonian on

the diamond lattice. Although actual values of U and
K in the low energy description of QSI are renormalized
from the perturbative results, Eq. (4) does describe the
universal properties of QSI and is the starting point of
our analysis in the following sections.

III. ELECTROMAGNETIC DUALITY

As we explain in Sec. I, the internal magnetic field in
the confinement phase of the compact QED is strongly
fluctuating and thus the magnetic monopole is con-
densed. Magnetic monopoles are topological defects of
the U(1) gauge field A and carry the magnetic charge.
To describe the confinement transition from QSI via the
monopole condensation, it is not so convenient to work
with the field variables in Eq. (4) because the magnetic
monopoles are not even explicit. In the following, we
use the electromagnetic duality, that is analogous to the
boson-vortex duality in describing superfluid-Mott tran-
sition, to reformulate the compact QED Hamiltonian on
the diamond lattice in Eq. (4) and make the monopole
degrees of freedom explicit.
To carry out the duality transformation, we first in-

troduce an integer-valued dual U(1) gauge field arr0 that
lives on the link of the dual diamond lattice (see Fig.X)
such that

curl a ⌘
X

rr027⇤
d

arr0 ⌘ Err0 � E0
rr0 , (5)

where “7⇤
d

” refers to the elementary hexagon on the dual
honeycomb lattice and the electric field vector Err0 pene-
trates through the center of “7⇤

d

”. We have introduced a
background electric field distribution E0

rr0 that takes care
of the background charge distribution due to the “2-in 2-
out” spin ice rule. Each state in the spin ice manifold
corresponds to an background electric field distribution.
For our convenience, we choose a simple electric field con-
figuration that corresponds to a uniform “2-in 2-out” spin
ice state (see Fig.X) and satisfies

E0
r,r+✏re0

= E0
r,r+✏re1

= ✏r, (6)

E0
r,r+✏re2

= E0
r,r+✏re3

= 0, (7)

where e
µ

(µ = 0, 1, 2, 3) are the four vectors that connect
the I sublattice sites to their nearest neighbors.

In terms of the dual gauge variables, the lattice gauge
theory in Eq. (4) is transformed to

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0 , (8)

HLGT  captures the universal properties of QSI.   

Err0 ⇠ Sz
i , eiArr0 ⇠ S+

i .

• In an ordered state, <Sz>!=0, <S+> is strongly fluctuating. 

• In the gauge language, E field is static, B magnetic field is strongly 
fluctuating, the magnetic monopole (carrying magnetic charge) is 
condensed, which confines the electric charge carriers (spinons).

r
r’i

Hermele etc, 2004

HRing ⇠ �K
X

hexagon

⇥
S+
1 S�

2 S+
3 S�

4 S+
5 S�

6 + h.c.
⇤
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Electromagnetic duality 

We therefore wish to reformulate the lattice QED model
so that the monopole excitations of the Coulomb phase are
explicit. Here we follow Hermele et al.6 with slight differ-
ences. As the reader will recall, the electric and magnetic
fields in Maxwell’s equations are dual when there are no
charges or currents present. While there are no currents in
our system, Eq. !6" shows we do have a charge distribution.
The duality transformation is

E! ab = curl !! + e!ab
!0", !18"

B! = curl A! . !19"

We have thus introduced an explicit operator for the mag-
netic field B! and an “electric vector potential” !! , whose ex-
ponential creates a ‘magnetic field’ since an exponential of A!
creates an “electric field,” via Eqs. !9", !4", !3", and !10".
Here e!!0" is a classical electric field created by the charge
distribution,6 and

div e!!0" = div E! = "a. !20"

It is convenient to choose e!ab
!0" to be integer valued, so that

curl!! may also be taken integer valued. A simple choice is to
take the classical configuration corresponding to one of the
3:1 states, e.g. just ea,a+#

!0" ="a$#0 !Fig. 5".
The Hamiltonian in the dual language takes the form

H =
U

2 #̋ $curl !! + e!0" −
"a

2
%2

− K#
r,r!

cos B! , !21"

where we denote the sites of the dual lattice by r, and its
links by r ,r!. The hexagons now denote the plaquettes of the

dual lattice. !Note the change in the summation subscripts on
both the first and second terms."

The dual fields obey the canonical commutation relations

&Br,r!,!r,r!' = + i , !22"

and the commutator vanishes for different links. The new
fields are once again conjugate variables. Br,r! is defined
modulo 2%—an angular variable, and the !r,r! variable is
integer valued.

Standard manipulations can now be used to “soften” the
inconvenient integer constraint on !r,r!, remove the period-
icity of Br,r!, and make the monopole variables explicit. The
reader is referred to Refs. 11 and 29 and references therein
for details. These manipulations are inexact, but do not
change the structure of the phase diagram in the vicinity of
the transition from the Coulomb to confining phase. One
obtains

H =
U

2 #̋ !curl !! − ē"2 +
K

2 #
r,r!

B! 2

− w#
r,r!

cos!&r − &r! − 2%!r,r!" , !23"

where now !r,r! and B! are real variables. In Eq. !23", one
may freely shift ē by a gradient, changing only the overall
zero of energy, since such a gradient does not couple to
curl!! . We have used this freedom to modify the original
e!0"+"a /2 terms to

ēa,a+# = "a$1
4

− $#0% , !24"

which has no divergence, but has the same curl as the origi-
nal “source” fields. As promised, explicit monopole degrees
of freedom have been introduced. A monopole number op-
erator Nr is slaved !by a dual Gauss’ law constraint" to the B!
field,

div B! = 2%Nr. !25"

It is conjugate to the dual phase &r, such that

&&r,Nr!' = + i$r,r!. !26"

Equation !25" is another U!1" gauge constraint, so it is not
surprising that the monopole hopping term w respects a dual
!noncompact" gauge symmetry.

Although the monopole number Nr !which can be both
positive or negative reflecting the two signs of flux emanat-
ing from a monopole" appears nowhere explicitly in Eq. !23",
it is implicit through the constraint of Eq. !25". In the Cou-
lomb phase for large K, therefore, monopoles are energeti-
cally costly !though their energy is finite, as is easily verified
by integrating the associated B2 energy density", with a gap
of O!K". Through the w term, however, monopoles do not
reside in localized states with Nr= ±1, but instead in super-
positions of such states, with only #rNr= ±1. As K is de-
creased, the monopole energy gap decreases, and at some
point it will reach zero. This point corresponds to the con-
finement transition discussed in the previous section.

FIG. 5. !Color online" Direct and dual diamond lattices are dual
to one another. The plaquettes of one lattice correspond to the links
of its dual lattice.

ORDERING IN A FRUSTRATED PYROCHLORE¼ PHYSICAL REVIEW B 73, 134402 !2006"

134402-7

3

phases.
If one experimentally finds a magnetic ordered state

bordering a disordered state that is fluctuating within
the “2-in 2-out” spin ice manifold, and if the structure of
the magnetic ordered states and the nature of the tran-
sition from QSI are compatible one may postulate the
disordered state is in the QSI phase.

such unconventional phase transition and the corre-
ponding ordered phase that are proximate to a disordered
phase,

order in the Ising direction, order in the direction nor-
mal the spin component along the ... experimental

II. A GENERIC RING EXCHANGE MODEL
AND COMPACT QED FOR QSI

Even though more complicated realistic Hamiltonians
are available for e↵ective spin-1/2 moments with both
Kramers’ and non-Kramers’ doublets on the pyrochlore
lattice, it is known that the spin-1/2 XXZ model on the
pyrochlore lattice,

H =
X

hiji

⇥
�J?(⌧

+
i

⌧�
j

+ ⌧�
i

⌧+
j

) + J
z

⌧z
i

⌧z
j

⇤
, (1)

in the perturbative regime already captures the universal
properties of QSI. Here ⌧±

i

⌘ ⌧x
i

± i⌧y
i

. A large and
positive J

z

favors an extensive degenerate “2-in 2-out”
spin ice configuration. With a transverse exchange J?,
the system can tunnel quantum mechanically within the
ice manifold. It is argued and shown numerically that
QSI is realized for |J?|/Jz less than a critical value. In
the limit with |J?|/Jz ⌧ 1, the 3rd order degenerate
perturbation theory yields a ring exchange model,

Hring = �
X

7p

K

2
(⌧+1 ⌧�2 ⌧+3 ⌧�4 ⌧+5 ⌧�6 + h.c.), (2)

where K = 24J3
?/J

2
z

and “1,· · · ,6” are 6 sites on the
perimeter of the elementary hexagons (“7

p

”) of the py-
rochlore lattice. In fact, the perturbative treatment of
all the realistic models in the Ising limit (with a domi-
nant J

z

) gives the same form of ring exchange model as
Eq. (2).

We now introduce the lattice vector gauge fields as

Err0 ⌘ ⌧z
i

+
1

2
, eiArr0 ⌘ ⌧+

i

, (3)

where the pyrochlore site i resides on the center of
the nearest-neighbor diamond link hrr0i, and r (r0) is
on the diamond I (II) sublattice (see Fig.X). Moreover,
Err0 = �Er0r, Arr0 = �Ar0r and [Err0 , Arr0 ] = i. With
this transformation, Hring is mapped to the compact U(1)
lattice gauge theory on the diamond lattice formed by the
centers of the tetrahedra,

HLGT =
X

hrr0i

U

2
(Err0 �

✏r
2
)2 �

X

7d

K cos(curl A), (4)

where we have added the electric field term with the sti↵-
ness U , ✏r = +1(�1) for r 2 I (II) sublattice, and the
lattice curl (curl A ⌘

P
rr027d

Arr0) defines the inter-
nal magnetic field B through the center of the diamond
hexagon. Here Err0 (Arr0) is integer valued (2⇡ periodic).
In the large U limit, the microscopic ⌧z = ±1/2 is recov-
ered.
Eq. (4) is the standard compact QED Hamiltonian on

the diamond lattice. Although actual values of U and
K in the low energy description of QSI are renormalized
from the perturbative results, Eq. (4) does describe the
universal properties of QSI and is the starting point of
our analysis in the following sections.

III. ELECTROMAGNETIC DUALITY

As we explain in Sec. I, the internal magnetic field in
the confinement phase of the compact QED is strongly
fluctuating and thus the magnetic monopole is con-
densed. Magnetic monopoles are topological defects of
the U(1) gauge field A and carry the magnetic charge.
To describe the confinement transition from QSI via the
monopole condensation, it is not so convenient to work
with the field variables in Eq. (4) because the magnetic
monopoles are not even explicit. In the following, we
use the electromagnetic duality, that is analogous to the
boson-vortex duality in describing superfluid-Mott tran-
sition, to reformulate the compact QED Hamiltonian on
the diamond lattice in Eq. (4) and make the monopole
degrees of freedom explicit.
To carry out the duality transformation, we first in-

troduce an integer-valued dual U(1) gauge field arr0 that
lives on the link of the dual diamond lattice (see Fig.X)
such that

curl a ⌘
X

rr027⇤
d

arr0 ⌘ Err0 � E0
rr0 , (5)

where “7⇤
d

” refers to the elementary hexagon on the dual
honeycomb lattice and the electric field vector Err0 pene-
trates through the center of “7⇤

d

”. We have introduced a
background electric field distribution E0

rr0 that takes care
of the background charge distribution due to the “2-in 2-
out” spin ice rule. Each state in the spin ice manifold
corresponds to an background electric field distribution.
For our convenience, we choose a simple electric field con-
figuration that corresponds to a uniform “2-in 2-out” spin
ice state (see Fig.X) and satisfies

E0
r,r+✏re0

= E0
r,r+✏re1

= ✏r, (6)

E0
r,r+✏re2

= E0
r,r+✏re3

= 0, (7)

where e
µ

(µ = 0, 1, 2, 3) are the four vectors that connect
the I sublattice sites to their nearest neighbors.

In terms of the dual gauge variables, the lattice gauge
theory in Eq. (4) is transformed to

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0 , (8)
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phases.
If one experimentally finds a magnetic ordered state

bordering a disordered state that is fluctuating within
the “2-in 2-out” spin ice manifold, and if the structure of
the magnetic ordered states and the nature of the tran-
sition from QSI are compatible one may postulate the
disordered state is in the QSI phase.

such unconventional phase transition and the corre-
ponding ordered phase that are proximate to a disordered
phase,

order in the Ising direction, order in the direction nor-
mal the spin component along the ... experimental

II. A GENERIC RING EXCHANGE MODEL
AND COMPACT QED FOR QSI

Even though more complicated realistic Hamiltonians
are available for e↵ective spin-1/2 moments with both
Kramers’ and non-Kramers’ doublets on the pyrochlore
lattice, it is known that the spin-1/2 XXZ model on the
pyrochlore lattice,

H =
X

hiji

⇥
�J?(⌧

+
i

⌧�
j

+ ⌧�
i

⌧+
j

) + J
z

⌧z
i

⌧z
j

⇤
, (1)

in the perturbative regime already captures the universal
properties of QSI. Here ⌧±

i

⌘ ⌧x
i

± i⌧y
i

. A large and
positive J

z

favors an extensive degenerate “2-in 2-out”
spin ice configuration. With a transverse exchange J?,
the system can tunnel quantum mechanically within the
ice manifold. It is argued and shown numerically that
QSI is realized for |J?|/Jz less than a critical value. In
the limit with |J?|/Jz ⌧ 1, the 3rd order degenerate
perturbation theory yields a ring exchange model,

Hring = �
X

7p

K

2
(⌧+1 ⌧�2 ⌧+3 ⌧�4 ⌧+5 ⌧�6 + h.c.), (2)

where K = 24J3
?/J

2
z

and “1,· · · ,6” are 6 sites on the
perimeter of the elementary hexagons (“7

p

”) of the py-
rochlore lattice. In fact, the perturbative treatment of
all the realistic models in the Ising limit (with a domi-
nant J

z

) gives the same form of ring exchange model as
Eq. (2).

We now introduce the lattice vector gauge fields as

Err0 ⌘ ⌧z
i

+
1

2
, eiArr0 ⌘ ⌧+

i

, (3)

where the pyrochlore site i resides on the center of
the nearest-neighbor diamond link hrr0i, and r (r0) is
on the diamond I (II) sublattice (see Fig.X). Moreover,
Err0 = �Er0r, Arr0 = �Ar0r and [Err0 , Arr0 ] = i. With
this transformation, Hring is mapped to the compact U(1)
lattice gauge theory on the diamond lattice formed by the
centers of the tetrahedra,

HLGT =
X

hrr0i

U

2
(Err0 �

✏r
2
)2 �

X

7d

K cos(curl A), (4)

where we have added the electric field term with the sti↵-
ness U , ✏r = +1(�1) for r 2 I (II) sublattice, and the
lattice curl (curl A ⌘

P
rr027d

Arr0) defines the inter-
nal magnetic field B through the center of the diamond
hexagon. Here Err0 (Arr0) is integer valued (2⇡ periodic).
In the large U limit, the microscopic ⌧z = ±1/2 is recov-
ered.
Eq. (4) is the standard compact QED Hamiltonian on

the diamond lattice. Although actual values of U and
K in the low energy description of QSI are renormalized
from the perturbative results, Eq. (4) does describe the
universal properties of QSI and is the starting point of
our analysis in the following sections.

III. ELECTROMAGNETIC DUALITY

As we explain in Sec. I, the internal magnetic field in
the confinement phase of the compact QED is strongly
fluctuating and thus the magnetic monopole is con-
densed. Magnetic monopoles are topological defects of
the U(1) gauge field A and carry the magnetic charge.
To describe the confinement transition from QSI via the
monopole condensation, it is not so convenient to work
with the field variables in Eq. (4) because the magnetic
monopoles are not even explicit. In the following, we
use the electromagnetic duality, that is analogous to the
boson-vortex duality in describing superfluid-Mott tran-
sition, to reformulate the compact QED Hamiltonian on
the diamond lattice in Eq. (4) and make the monopole
degrees of freedom explicit.
To carry out the duality transformation, we first in-

troduce an integer-valued dual U(1) gauge field arr0 that
lives on the link of the dual diamond lattice (see Fig.X)
such that

curl a ⌘
X

rr027⇤
d

arr0 ⌘ Err0 � E0
rr0 , (5)

where “7⇤
d

” refers to the elementary hexagon on the dual
honeycomb lattice and the electric field vector Err0 pene-
trates through the center of “7⇤

d

”. We have introduced a
background electric field distribution E0

rr0 that takes care
of the background charge distribution due to the “2-in 2-
out” spin ice rule. Each state in the spin ice manifold
corresponds to an background electric field distribution.
For our convenience, we choose a simple electric field con-
figuration that corresponds to a uniform “2-in 2-out” spin
ice state (see Fig.X) and satisfies

E0
r,r+✏re0

= E0
r,r+✏re1

= ✏r, (6)

E0
r,r+✏re2

= E0
r,r+✏re3

= 0, (7)

where e
µ

(µ = 0, 1, 2, 3) are the four vectors that connect
the I sublattice sites to their nearest neighbors.

In terms of the dual gauge variables, the lattice gauge
theory in Eq. (4) is transformed to

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0 , (8)

diamond (dotted) and 
dual diamond lattice 

(Bergman, Fiete, Balents, PRB 2006)

Monopole lives on dual diamond lattice, carry magnetic charge or dual U(1) gauge charge. 

To study monopole physics, we need to use a technique called “duality” to make it explicit.
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice. In Eq. (8), we have introduced the
electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)

Ēr,r+✏re2 = Ēr,r+✏re3 = +
✏r
2
. (10)

Just like the conjugation relation between the electric
field E and the gauge field A, the magnetic field B is
conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
first relax the integer valued constraint of the dual gauge
field by inserting a cos 2⇡a such that

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
diagram.

In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
We now insert the magnetic monopole variable into the
dual Hamiltonian and have

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(✓r � ✓r0 + 2⇡arr0). (13)

The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate

in the confinement phase of the compact QED. In the
dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the the monopole band will
touch zero energy and the monopole is condensed. In
the confinement phase, as the E field develops a static
distribution, the B field is strongly fluctuating and the a
field is weakly fluctuating. Therefore, it is legitimate to
first ignore the fluctuation of the dual gauge field a and
study the monopole spectrum to uncover the monopole
band mininum and the condensate for the confinement
phase. In such a gauge mean-field-like treatment, the
“U” term in the Hamiltonian enforces that

curl ā = Ē, (14)

which is solved to fix the gauge for the dual gauge field.
Here we have set the dual gauge field to its static com-
ponent ā. Through Eq. (14), the background electric
field distribution in the dual formulation turns into the
dual gauge flux experienced by the magnetic monopoles.
Because the background electric field takes either ✏r/2
or �✏r/2, this gives rise to ⇡ flux of dual gauge field
through each elementary hexagon on the dual diamond
lattice. We fix the gauge by choosing

ār,r+eµ = ⇠
µ

(q · r), (15)

where r 2 I sublattice of the dual diamond lattice, e
µ

(µ = 0, 1, 2, 3) refer to the 4 nearest-neighbor vectors
of the dual diamond lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and
q = 2⇡(100).
In the presence of the background flux, the monopole

hopping Hamiltonian on the dual diamond lattice is given
as

H
m

= �
X

r,r0

t e�i2⇡ā
rr0�†

r�r0 , (16)

where we have introduced a unimodular field �r ⌘ ei✓r

with |�r| ⌘ 1. It is straightforward to work out the
dispersion of the lowest monopole band that is

⌦k = �t
q
4 + 2

p
3 + c

x

c
y

� c
x

c
z

+ c
y

c
z

, (17)

where c
x

= cos k
x

, c
y

= cos k
y

, c
z

= cos k
z

. The mini-
mum of this band occurs at several lines of momentum
points in the Brioullin zone. One such degenerate line of
momentum points is

(k
x

, k
y

, k
z

) = (0, 0, arbitrary), (18)

and the minimum energy is �2
p
2t (see Fig.X). Other

degenerate lines are readily obtained by the symmetry
operations.
The line degeneracy of the band minima is a conse-

quence of the background flux that frustrates the hop-
ping of the monopoles. These degeneracies are acciden-
tical and are not protected by symmetry. It is expected

insert monopole variables

• B magnetic field is strongly fluctuating, the fluctuation of dual 
U(1) gauge field is weak. 

dual U(1) gauge
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Analogy with Boson-vortex duality
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ensemble with fixed boson number (average filling f). We will typically do the
latter, except in Secs. 2.2,2.3, and the first part of Sec. 3, where we work at fixed
chemical potential.

2.2. Mott states at integral filling

"0" Mott

n

t/U
0

1

1/2

SF

2

3/2

"2" Mott

"1" Mott

Fig. 1. Schematic phase diagram of boson ro-
tor model, with on-site interactions only.
The shaded regions indicate where a there
is a large near-degeneracy of states with
different boson densities, and the system is
highly susceptible to off-site interactions.

Neglecting terms in H′, the zero
temperature phase diagram of H is well-
known.10) It takes the schematic form
in Fig. 1. For t/U ≪ 1, the system
is in a Mott insulating ground state,
with ⟨n̂i⟩ = N , the integer nearest to
n, on every site. This phase persists
inside the “lobes” drawn in the figure.
There is a gap to the lowest-lying ex-
cited states, which may be thought of as
single extra/missing bosons (which delo-
calize into plane-waves). For large t/U ,
the ground state is a superfluid (SF in

the figure), with ⟨eiφ̂i⟩ = Ψsf ̸= 0, and
the density f = ⟨n̂i⟩ varies smoothly
with parameters in an unquantized fash-
ion. There is no excitation gap, and the
lowest-lying excitations are acoustic “phonons” or “phasons”, the Goldstone modes
of the broken U(1) symmetry of the superfluid.

2.3. Mott states at non-integral filling

We now return to the shaded regions of the phase diagram in Fig. 1, where states
with different boson density are nearly degenerate. Indeed, in the simple model with
H′ = 0, for n = N+1/2, states with any average density between N and N+1 are de-
generate. For t/U = 0, the eigenvalue of n̂i = N or n̂i = N +1 can be independently
chosen on each site. The omitted terms in H′ will then clearly determine the nature
of the ground states appearing in the shaded region. Generally, Mott insulating
states appear at rational fractional fillings, f = p/q, with p, q relatively prime. For
q > 1, these are boson “crystals” or charge density waves. Mott states with increas-
ing q are expected to require longer-range interactions in H′ for their stabilization.

n

t/U
0

1

1/2

2

3/2

"2" Mott

"1" Mott

"0" Mott

SF

Fig. 2. Schematic phase diagram with off-site
interactions. Some representative Mott in-
sulating states with ⟨n̂i⟩ = N + 1/2 are
shown.

For example, in the vicinity of n =
N + 1/2, we can adopt a pseudo-spin
description, with Sz

i = n̂i − N − 1/2 =
±1/2. In the limit of U → ∞ (or t/U ≪
1), one can then replace

H → −t
∑

⟨ij⟩

(

S+
i S−

j + S−
i S+

j

)

, (2.3)

with ⟨ij⟩ indicating the sum is taken
Balents, et al, 2005
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Physical observables are gauge invariant

!
C

J!b · d!! = !
C

curl E! · d!! = "
S

E! · dA! . #61$

From this last expression it is evident that the loop integral of
the monopole defect current gives the electric flux through
that loop. The lattice version of the electric flux is a constant
plaquette “area” times the electric field penetrating perpen-
dicular to that plaquette

%
r!r!!"˝

Jr!r!! = Eab & ni. #62$

In conclusion the variations in the spin density can be related
to the loop sums of the monopole defect current around
plaquettes of the dual diamond lattice. Armed with this
knowledge we can plot a function to show the spin density
variations. We plot the “spin density” so defined for each of
the phases obtained in mean field theory in Figs. 11–19.

VII. RG ANALYSIS

In this section, we briefly consider the effect of fluctua-
tions on the mean-field critical behavior of our effective ac-
tion. Our primary focus in this paper is not on quantum criti-
cal phenomena, but rather on the nature of the ordered
phases close to the U#1$ spin liquid state. These results for
the ordered phases are independent of the contents of this
section.

By simple power counting, the problem of a generalized
“Ginzburg-Landau” theory in 3+1 dimensions #with a many-
component “superconducting” field !!$ is in its upper critical
dimension, so one expects either of two possibilities. One
possibility is that the Gaussian fixed point is marginally
stable, and mean-field behavior is correct up to logarithmic
factors. The other possibility is that the Gaussian fixed point
is marginally unstable, and the true critical behavior is a
strong coupling problem; most probably, such flows to strong
coupling indicate a weak fluctuation-induced first-order tran-
sition.

Here we follow Balents et al.,1,2 who generalized the cal-
culations of Halperin, Lubensky, and Ma31 and Brezin et
al.,32 and consider a general q-component 'U#1$( action

S0 =" dDr)%
!=0

q−1

*#!" − i#"$!!*2 + s*!!*2 +
1

2e2F2+ ,

S1 =
1
4 " dDr %

!,m,n,i=0

q−1

u!m;ni!!
*!m

* !n!i. #63$

Here we have written the theory for a general space-time
dimensionality D. For the quantum critical point of interest,
D=3+1=4 total space-time dimensions. For this very gen-
eral action the RG flows obtained by an $ expansion are1,2

FIG. 15. #Color online$ The spin density variations in the 4+0
phase, for %4&0. The four field components of either the ' or ( set
have a nonvanishing expectation value of identical magnitude. This
phase has an enlarged unit cell of 16, in a bcc Bravais lattice.

FIG. 16. #Color online$ The spin density variations in the 4+4
phase, for %4&0, %6&0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4)4)4=64, in a fcc Bravais lattice.

FIG. 17. #Color online$ The spin density variations in the 4+4
phase, for %4*0, %6&0. All eight field components have a nonva-
nishing expectation value of identical magnitude. This phase has an
enlarged unit cell of 4)4)4=64, in a fcc Bravais lattice.

BERGMAN, FIETE, AND BALENTS PHYSICAL REVIEW B 73, 134402 #2006$

134402-14

In some phases, however, the symmetry breaking is not
manifest in the scalar density, but rather in the current or
kinetic energy:

Jr,r! = i!!*"r!!#!"r!#e−i"r,r! − c.c.$ ,

Kr,r! = !!*"r!!#!"r!#e−i"r,r! + c.c.$ . "57#

Both the current density and the local kinetic energy can
be encoded in a complex valued vector,

vr,r! = !*"r!!#!"r!#e−i"r,r!. "58#

The imaginary and real parts will give us "half# the current
density and the local kinetic energy, respectively.

Each plaquette in the dual diamond lattice corresponds to
a pyrochlore lattice site at the center of the plaquette. Any
monopole defect “object” we can define on the dual
plaquettes is also defined on the direct pyrochlore lattice
sites, and encodes the symmetry of the MFT phase. There-

fore, the function must be “similar” to the spin density on
these sites, in the sense of giving the correct symmetry of the
latter. An appropriate function is a loop integral "curl# of the
complex current around the plaquette

%
r!r!!"˝

vr!r!! & n˝ = ni. "59#

We can formalize this argument by considering Maxwell’s
equations, with magnetic monopoles

curl E! = −
!B!

!t
+ J!b, curl B! = +

!E!

!t
+ J!e,

div E! = #e, div B! = #b, "60#

where the magnetic monopole density and current are de-
noted with a subscript b. In a static system integrating the
first equation over some surface we get, by Stokes theorem,

FIG. 11. "Color online# The spin density variations in the 1+0
phase—same phase as in Fig. 10 for comparison. This phase has an
enlarged unit cell of 2$2$1=4, in a simple cubic Bravais lattice.

FIG. 12. "Color online# The spin density variations in the 1+1
phase, for %5&0. One each of the four ' and ( fields has a nonva-
nishing expectation value. The expectation values have identical
magnitude. This phase has an enlarged unit cell of 2$4$2=16, in
a simple hexagonal Bravais lattice.

FIG. 13. "Color online# The spin density variations in the 1+1
phase, for %5)0. One each of the four ' and ( fields has a nonva-
nishing expectation value. The expectation values have identical
magnitude. This phase has an enlarged unit cell of 2$4$2=16, in
a simple hexagonal Bravais lattice.

FIG. 14. "Color online# The spin density variations in the 4+0
phase, for %4)0. The four field components of either the ' or ( set
have a nonvanishing expectation value of identical magnitude. This
phase has an enlarged unit cell of 16, in a bcc Bravais lattice.
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IV. FORMALISM—MONOPOLE DEFECTS
ON THE DIAMOND LATTICE

A. Ground state manifold

To understand the confinement transition, we must under-
stand the nature of the lowest energy monopole and anti-
monopole states, which condense at the transition. They are
equivalent by B! →−B! symmetry, so it is sufficient to study
just the monopole states. The ultimate field theory will con-
sist of a relativistic field for each member of the monopole
multiplet, since the relativistic description includes particles
and antiparticles !here antimonopoles" on equal footing. We
will apply for the most part a !dual" mean-field approach,
taking curl != ē in !23", and neglecting fluctuations of !
around this value. This is sufficient to analyze the spectrum
of ordered phases near the U!1" quantum liquid. Fluctuations
will be restored later in Sec. VII.

We may thus consider the manifold of states with one
monopole, i.e., Nr=1 on one and only one site of the dual
lattice, and Nr=0 on all other sites. Through the w term in
!23", the wave function of the monopole delocalizes, and is
described by a tight-binding model, which we may write as

Htb = − w #
$r,r!%

&"†!r!""!r"e−i!r,r! + H.c.' , !27"

where $r ,r!% denotes a summation over nearest neighbors on
the diamond lattice. Here "r

† and "r are creation and annihi-
lation operators for the monopole. Note we have absorbed a
factor of 2# into the vector potential relative to !23" to make
our notation more conventional. By our mean-field assump-
tion, !r,r! is a c-number vector potential carrying a “flux”
!actually electric flux" given by 2#ē. Since it appears only in
a periodic exponential, the form in Eq. !24" is equivalent to a
flux of 2# /4=# /2 through each dual plaquette.

This can be understood as follows. The original compact
QED theory had a staggered background charge of $a on
each direct lattice site. The monopoles, as magnetic charges,
see this in the same way electric charges would see a stag-
gered lattice of magnetic monopoles and antimonopoles.
These ‘monopoles’ and ‘antimonopoles’ !we use single
quotes to denote the dual view, since these are actually the
background gauge charges" are distributed in an alternating
fashion at the center of each cell of the dual diamond lattice.
The neighboring cells to a cell containing a ‘monopole’ all
contain ‘antimonopoles.’ Each ‘monopole’ has a “charge” of
2#. Since all lattice directions are equivalent, the ‘magnetic’
flux going out of each face of the cell must be the same, as
illustrated in Fig. 6. The structure of the diamond lattice is
made of cells where each cell has 4 faces, as opposed to the
cubic lattice which has six faces for each of its cells !cubes".
Thus we conclude that each face in the diamond lattice has a
flux of 2# /4=# /2 going through it in the direction from a
‘monopole’ cell to an ‘antimonopole’ cell. The "r monopole
particle thus experiences Aharonov-Bohm fluxes of precisely
this sort as it moves through the lattice.

It proves convenient to describe the links of the diamond
lattice by !r ,r!"= !a ,%" where a"u denote the sites of the u
sublattice, and %" (0,1 ,2 ,3) enumerate the four links ema-

nating from each u site. Furthermore, we can enumerate the
u sublattice sites by r!=# j=1

3 nja! j where a! j &a!1= !a /2"!ŷ
+ ẑ" ,a!2= !a /2"!x̂+ ẑ" ,a!3= !a /2"!x̂+ ŷ"' are the primitive Bra-
vais lattice vectors of the fcc lattice, and nj span the integer
numbers. We refer to this coordinate system as “index”
space.

We shall now focus our attention on finding the ground
state manifold of this Hamiltonian. First we must find an
appropriate choice of the vector potential giving the desired
flux pattern through the faces inside the lattice. To this end,
the index space notation proves particularly useful. One such
possible vector potential is

!0!n!" = 0, !! !n!" = !!1!n!",!2!n!",!3!n!"" * $!!Q! · n!" ,

!28"

where Q! = !# /2"!1,0 ,−1" and $! = !1,1 ,2" !Fig. 7".
We proceed to diagonalize the hopping term. General

eigenstates cannot be found analytically, however minimum
energy eigenstates can. We find eight ground state eigen-
modes, denoted &' and &̄' where the indices run through

FIG. 6. !Color online" Alternating charge distribution emits
‘magnetic’ field lines through the faces of a diamond lattice cell.

FIG. 7. !Color online" Projected diamond plane view of vector
potential pattern—links between the honeycomb planes have !0
=0. All links with the same vector potential value are in the same
color.
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• Monopole loop current  
defines the magnetic order

(Maxwell’s equation)

5

that the further neighbor monopole hopping or monopole
interactions should lift these degeneracies.

Because of the background flux, the space group sym-
metry is realized projectively, which is known as projec-
tive symmetry group (PSG) (see XXX). Under PSG, each
symmetry operation (S) of the Fd3̄m space group on the
monopole field is associated with a gauge transformation
⇤
S

(r),

S : �r ! �
Sr e

�i⇤S(r). (19)

We use PSG to generate monopole hoppings up to 5th
neighbors, but do not find obvious degeneracy break-
ing. On the other hand, the line degeneracy immedi-
ately gets lifted if we impose the unimodular constraint
of the monopole field. The unimodular constraint of
the monopole field is like the interaction between the
monopoles and forces the magnitude of the monopole
fields to be uniform. Among the degenerate momenta
of Eq. (18), the unimodular requirement picks up two
equivalent solutions with

k1 = (0, 0,⇡), k2 = (0, 0,�⇡), (20)

and the corresponding eigenvectors are
⇢

r 2 I, '1(r) = ( 1+i

2 + 1�i

2 ei2⇡x)ei⇡z,
r 2 II, '1(r) = ei⇡z,

(21)

⇢
r 2 I, '2(r) = ( i+1

2 + i�1
2 ei2⇡x)e�i⇡z,

r 2 II, '2(r) = ie�i⇡z.
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Using the PSG transformations, we generate 10 other
equivalent solutions from the above results. In total,
there are 12 symmetry equivalent solutions.

When the monopole is bose condensed, the spinons are
confined and the system develops magnetic order. Al-
though the magnetic ordering transition is induced by
monopole condensation, as monopoles are emergent de-
grees of freedom that are not gauge invariant, the physi-
cal information of the monopole condensate is encoded in
the gauge invariant monopole bilinears. Again, symme-
try is a powerful tool to establish the relation between
the relevant physical observables and the monopole bi-
linears. We want to find the monopole bilinears that are
related to the spin density ⌧z. The candidate monopole
bilinears are the monopole density and the monopole cur-
rent. Although the monopole density (�†�) transforms
in the same way as the spin density (⌧z) under the space
group transformation, they behave oppositely under the
time reversal transformation. So we turn out attention
to the monopole current. As the loop integral of mag-
netic monopole current is the electric flux through the
plaquette enclosed by that loop, we have

⌧z
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d
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where the pyrochlore site i is the center of the elemen-
tary honeycomb 7⇤

d

on the dual diamond lattice, and

Jrr0 ⌘ i(h�†
r ih�r0ie�iārr0 � h.c.) defines the monopole cur-

rent. Here h�ri is the expectation value of the monopole
field that is taken with respect to one of the twelve equiv-
alent solutions. In Fig.X, we depict the spin density dis-
tribution of the monopole condensate at k1. The result-
ing magnetic state is an antiferromagnetic state with the
ordering wavevector 2⇡(001), although the four spins on
each tetrahedron still obey the “2-in 2-out” spin ice rule.

V. CRITICAL THEORY

In the previous section, we have established that the
monopole interaction in the confinement phase selects 12
equivalent monopole condensates which leads to 12 sym-
metry equivalent magnetic ordering structures. Near the
confinement transition, the fluctuations of the monopole
condensate and the gauge fields are strong. One can
then obtain a standard Landau-Ginzburg-Wilson expan-
sion of the action in terms of the monopole condensate in
the vincinity of the phase transition. We introduce the
slowly-varying monopole fields �

a

via the expansion

�r =
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, (24)

where '
a

(r) (a = 1, · · · , 12) are the 12 discrete monopole
modes that span the ground state manifold of the
monopole condensate. Again, we use PSG transforma-
tion of the monopole field � to generate the PSG for
the slowly-varying fields �

a

. With monopole PSG, we
generate the symmetry allowed e↵ective action for the
monopole condensation transition,
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where we have restored the gauge field fluctuation by cou-
pling the �

a

fields to the fluctuating dual U(1) gauge field
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,
and “· · · ” contains the anisotropic quartic terms that
break the U(12) symmetry. This is a multi-component
Ginzburg-Landau theory in 3+1D which is the upper
critical dimension of the theory. One expects the phase
transition of this theory is either a Gaussian fixed point
or a weakly first order transition driven by fluctua-
tions. Both possibilities suggest that the mean-field
treatment of the phase transition should be valid for a
very wide range of length scales. In a mean-field descrip-
tion, the monopole field correlator at the critcal point is
h�†
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that the further neighbor monopole hopping or monopole
interactions should lift these degeneracies.

Because of the background flux, the space group sym-
metry is realized projectively, which is known as projec-
tive symmetry group (PSG) (see XXX). Under PSG, each
symmetry operation (S) of the Fd3̄m space group on the
monopole field is associated with a gauge transformation
⇤
S

(r),

S : �r ! �
Sr e

�i⇤S(r). (19)

We use PSG to generate monopole hoppings up to 5th
neighbors, but do not find obvious degeneracy break-
ing. On the other hand, the line degeneracy immedi-
ately gets lifted if we impose the unimodular constraint
of the monopole field. The unimodular constraint of
the monopole field is like the interaction between the
monopoles and forces the magnitude of the monopole
fields to be uniform. Among the degenerate momenta
of Eq. (18), the unimodular requirement picks up two
equivalent solutions with

k1 = (0, 0,⇡), k2 = (0, 0,�⇡), (20)

and the corresponding eigenvectors are
⇢

r 2 I, '1(r) = ( 1+i

2 + 1�i

2 ei2⇡x)ei⇡z,
r 2 II, '1(r) = ei⇡z,

(21)

⇢
r 2 I, '2(r) = ( i+1

2 + i�1
2 ei2⇡x)e�i⇡z,

r 2 II, '2(r) = ie�i⇡z.
(22)

Using the PSG transformations, we generate 10 other
equivalent solutions from the above results. In total,
there are 12 symmetry equivalent solutions.

When the monopole is bose condensed, the spinons are
confined and the system develops magnetic order. Al-
though the magnetic ordering transition is induced by
monopole condensation, as monopoles are emergent de-
grees of freedom that are not gauge invariant, the physi-
cal information of the monopole condensate is encoded in
the gauge invariant monopole bilinears. Again, symme-
try is a powerful tool to establish the relation between
the relevant physical observables and the monopole bi-
linears. We want to find the monopole bilinears that are
related to the spin density ⌧z. The candidate monopole
bilinears are the monopole density and the monopole cur-
rent. Although the monopole density (�†�) transforms
in the same way as the spin density (⌧z) under the space
group transformation, they behave oppositely under the
time reversal transformation. So we turn out attention
to the monopole current. As the loop integral of mag-
netic monopole current is the electric flux through the
plaquette enclosed by that loop, we have
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where the pyrochlore site i is the center of the elemen-
tary honeycomb 7⇤

d

on the dual diamond lattice, and

Jrr0 ⌘ i(h�†
r ih�r0ie�iārr0 � h.c.) defines the monopole cur-

rent. Here h�ri is the expectation value of the monopole
field that is taken with respect to one of the twelve equiv-
alent solutions. In Fig.X, we depict the spin density dis-
tribution of the monopole condensate at k1. The result-
ing magnetic state is an antiferromagnetic state with the
ordering wavevector 2⇡(001), although the four spins on
each tetrahedron still obey the “2-in 2-out” spin ice rule.

V. CRITICAL THEORY

In the previous section, we have established that the
monopole interaction in the confinement phase selects 12
equivalent monopole condensates which leads to 12 sym-
metry equivalent magnetic ordering structures. Near the
confinement transition, the fluctuations of the monopole
condensate and the gauge fields are strong. One can
then obtain a standard Landau-Ginzburg-Wilson expan-
sion of the action in terms of the monopole condensate in
the vincinity of the phase transition. We introduce the
slowly-varying monopole fields �

a

via the expansion
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12X

a=1
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, (24)

where '
a

(r) (a = 1, · · · , 12) are the 12 discrete monopole
modes that span the ground state manifold of the
monopole condensate. Again, we use PSG transforma-
tion of the monopole field � to generate the PSG for
the slowly-varying fields �

a

. With monopole PSG, we
generate the symmetry allowed e↵ective action for the
monopole condensation transition,
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where we have restored the gauge field fluctuation by cou-
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fields to the fluctuating dual U(1) gauge field
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ã
⌫

� @
⌫

ã
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and “· · · ” contains the anisotropic quartic terms that
break the U(12) symmetry. This is a multi-component
Ginzburg-Landau theory in 3+1D which is the upper
critical dimension of the theory. One expects the phase
transition of this theory is either a Gaussian fixed point
or a weakly first order transition driven by fluctua-
tions. Both possibilities suggest that the mean-field
treatment of the phase transition should be valid for a
very wide range of length scales. In a mean-field descrip-
tion, the monopole field correlator at the critcal point is
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that the further neighbor monopole hopping or monopole
interactions should lift these degeneracies.

Because of the background flux, the space group sym-
metry is realized projectively, which is known as projec-
tive symmetry group (PSG) (see XXX). Under PSG, each
symmetry operation (S) of the Fd3̄m space group on the
monopole field is associated with a gauge transformation
⇤
S

(r),

S : �r ! �
Sr e

�i⇤S(r). (19)

We use PSG to generate monopole hoppings up to 5th
neighbors, but do not find obvious degeneracy break-
ing. On the other hand, the line degeneracy immedi-
ately gets lifted if we impose the unimodular constraint
of the monopole field. The unimodular constraint of
the monopole field is like the interaction between the
monopoles and forces the magnitude of the monopole
fields to be uniform. Among the degenerate momenta
of Eq. (18), the unimodular requirement picks up two
equivalent solutions with

k1 = (0, 0,⇡), k2 = (0, 0,�⇡), (20)

and the corresponding eigenvectors are
⇢

r 2 I, '1(r) = ( 1+i

2 + 1�i

2 ei2⇡x)ei⇡z,
r 2 II, '1(r) = ei⇡z,

(21)

⇢
r 2 I, '2(r) = ( i+1
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2 ei2⇡x)e�i⇡z,

r 2 II, '2(r) = ie�i⇡z.
(22)

Using the PSG transformations, we generate 10 other
equivalent solutions from the above results. In total,
there are 12 symmetry equivalent solutions.

When the monopole is bose condensed, the spinons are
confined and the system develops magnetic order. Al-
though the magnetic ordering transition is induced by
monopole condensation, as monopoles are emergent de-
grees of freedom that are not gauge invariant, the physi-
cal information of the monopole condensate is encoded in
the gauge invariant monopole bilinears. Again, symme-
try is a powerful tool to establish the relation between
the relevant physical observables and the monopole bi-
linears. We want to find the monopole bilinears that are
related to the spin density ⌧z. The candidate monopole
bilinears are the monopole density and the monopole cur-
rent. Although the monopole density (�†�) transforms
in the same way as the spin density (⌧z) under the space
group transformation, they behave oppositely under the
time reversal transformation. So we turn out attention
to the monopole current. As the loop integral of mag-
netic monopole current is the electric flux through the
plaquette enclosed by that loop, we have
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where the pyrochlore site i is the center of the elemen-
tary honeycomb 7⇤
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on the dual diamond lattice, and

Jrr0 ⌘ i(h�†
r ih�r0ie�iārr0 � h.c.) defines the monopole cur-

rent. Here h�ri is the expectation value of the monopole
field that is taken with respect to one of the twelve equiv-
alent solutions. In Fig.X, we depict the spin density dis-
tribution of the monopole condensate at k1. The result-
ing magnetic state is an antiferromagnetic state with the
ordering wavevector 2⇡(001), although the four spins on
each tetrahedron still obey the “2-in 2-out” spin ice rule.

V. CRITICAL THEORY

In the previous section, we have established that the
monopole interaction in the confinement phase selects 12
equivalent monopole condensates which leads to 12 sym-
metry equivalent magnetic ordering structures. Near the
confinement transition, the fluctuations of the monopole
condensate and the gauge fields are strong. One can
then obtain a standard Landau-Ginzburg-Wilson expan-
sion of the action in terms of the monopole condensate in
the vincinity of the phase transition. We introduce the
slowly-varying monopole fields �

a

via the expansion
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, (24)

where '
a

(r) (a = 1, · · · , 12) are the 12 discrete monopole
modes that span the ground state manifold of the
monopole condensate. Again, we use PSG transforma-
tion of the monopole field � to generate the PSG for
the slowly-varying fields �

a

. With monopole PSG, we
generate the symmetry allowed e↵ective action for the
monopole condensation transition,
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where we have restored the gauge field fluctuation by cou-
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and “· · · ” contains the anisotropic quartic terms that
break the U(12) symmetry. This is a multi-component
Ginzburg-Landau theory in 3+1D which is the upper
critical dimension of the theory. One expects the phase
transition of this theory is either a Gaussian fixed point
or a weakly first order transition driven by fluctua-
tions. Both possibilities suggest that the mean-field
treatment of the phase transition should be valid for a
very wide range of length scales. In a mean-field descrip-
tion, the monopole field correlator at the critcal point is
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Monopole condensation transition out of quantum spin ice
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We study proximate magnetic ordered phases and the related quantum phase transition out of
quantum spin ice (QSI). We use the electromagnetic duality of the compact quantum electrody-
namics and analyze the condensation of the magnetic monopole excitations for the QSI. It is shown
that the monopole condensation leads to magnetic states that belong to the “2-in 2-out” spin ice
manifold and generically have an enlarged magnetic unit cell. We further derive the critical theory
that describes the monopole condensation transition. We demonstrate that the antiferromagnetic
state with the ordering wavevector Q = 2⇡(001) is proximate to QSI while the ferromagnetic state
with the ordering wavevector Q = (000) is not proximate to QSI. This implies that if there exists
a direct transition from QSI to the ferromagnetic state, the transition is expected to be strongly
first order. We discuss possible connection with the puzzling experiments in the pyrochlore systems
Pr2Ir2O7 and Yb2Ti2O7. Our results shed lights on the experimental search of QSI and other exotic
phases of matter.

PACS numbers: 64.60.-i,71.10.-w,71.27.+a

I. INTRODUCTION

Quantum spin ice (QSI) is a U(1) quantum spin liquid
on the pyrochlore lattice and is described by emergent
compact quantum electrodynamics (QED) with gapless
U(1) gauge photon and deconfined spinon excitations.
Recently several rare-earth pyrochlores with f electron
local moments are proposed as candidates for QSI. The
local Ising spin anisotropy in these materials favors the
local magnetic moments to point toward or outward the
center of the tetrahedral units of the pyrochlore lattice.
The predominant Ising exchange interaction favors the
local moments to be in the “2-in 2-out” spin ice mani-
fold. QSI arises from the high order quantum tunneling
process within the spin ice manifold. In these pyrochlore
systems, because the f electrons are very localized, the f
electron exchange interaction is weak and is of the order
of ⇠ 1K, thus the energy scale of the high order quantum
tunneling process is even smaller. This makes the direct
experimental detection of QSI in the f electron systems
very challenging. One may wonder if there exists any
alternative route to detect QSI in these systems.

Experimentally several pyrochlore candidates for QSI
are found to be either in a magnetic ordered state or
in a disordered state. The actual phases of these ma-
terials depend on the stoichiometry and the preparation
methods of the samples. Nevertheless, this suggests that
the system might be located near a phase transition be-
tween a disordered phase and magnetic ordered phase.
Theoretically, the instability of QSI and the proximate
magnetic ordered phases have not been explored system-
atically. The previous work based on gauge mean-field
theory focused on the instability of QSI by condensing
the spinon excitation. The magnetic states from spinon
condensation is generically not in the “2-in 2-out” spin
ice manifold. In this paper, we explore the proximate
magnetic order and the magnetic transition from QSI

FIG. 1. A schematic phase diagram for the magnetic ordering
transition from QSI based on the mean-field analysis. The
dashed (solid) line represents a thermal crossover (transition).
g is a tuning parameter (see the discussion in the main text).
The Pr local moment of Pr2Ir2O7 is likely to be close to the
quantum critical point (QCP).

by condensing magnetic monopoles that are topological
excitations of the emergent compact U(1) gauge theory.
We theoretically determine the structure of magnetic or-
dered phases that are proximate to QSI and the nature
of the phase transition from QSI to nearby magnetic or-
dered phases. If one experimentally finds a magnetic or-
dered state bordering a disordered state that is fluctuat-
ing within the “2-in 2-out” spin ice manifold, and if the
magnetic ordered structure and the nature of the tran-
sition are consistent with the theoretical prediction, one
may postulate the disordered state is in the QSI phase.
This could serve as an indirect detection of QSI in these
systems.
Besides the motivation of finding QSI, we are moti-

vated by the puzzling experiments in the pyrochlore iri-
date compound Pr2Ir2O7. In contrast to other materials
of the pyrochlore iridate family, Pr2Ir2O7 remains metal-
lic down to the lowest temperature. In this material,
the Pr3+ ion has a 4f2 electron configuration and form

Standard Landau-Ginzburg expansion in the monopole fields

The critical theory is described by multicomponent bosons coupled with a fluctuating U(1) gauge 
field in 3+1D. 

determined by projective symmetry group
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First-order magnetic transition in Yb2Ti2O7
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The very nature of the ground state of the pyrochlore compound Yb2Ti2O7 is much debated, because
experimental results demonstrate evidence for either a disordered ground state or a long-range ordered ground
state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing
states, such as a quantum spin liquid state or a ferromagnetic state which may originate from an Anderson-Higgs
transition. We present a detailed magnetization study demonstrating a first-order ferromagnetic transition at 245
and 150 mK in a powder and a single-crystal sample, respectively. Its first-order character is preserved up to
applied fields of ∼200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in
the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the
discrepancies between previously published data for Yb2Ti2O7.

DOI: 10.1103/PhysRevB.89.224419 PACS number(s): 75.40.Cx, 64.60.Ej, 75.30.Kz, 75.60.Ej

I. INTRODUCTION

Magnetism affected by geometrical frustration is an active
field due to the ability to generate new and unusual magnetic
phases [1]. In this context, the pyrochlore oxide materials
R2M2O7 (R = rare earth, M = metal) form a very rich family
in which a large diversity of new physics can be explored [2].
Specifically, the rare-earth ions lie on the vertices of corner
sharing tetrahedra, forming the highly frustrated pyrochlore
lattice. Depending on the rare-earth element, the anisotropy of
the spins as well as the exchange and dipolar interactions can
be varied so that different model Hamiltonians can be studied
within this structure. One of the most spectacular realizations
is the spin-ice phase (mainly studied with R = Dy and Ho;
M = Ti) [3,4] in which the local spin arrangement obeys
the ice rule (two spins point into and two spins point out
of every tetrahedron in the structure) and which possesses a
macroscopically degenerate ground state. This state is induced
by the strong uniaxial anisotropy along the local ⟨111⟩ axes
of the tetrahedra, combined with a resultant ferromagnetic
interaction. With these ingredients and in the presence of
strong transverse fluctuations, a new magnetic state is expected
to be stabilized, the quantum spin ice (QSI) in which exotic
excitations are predicted [5–7].

Yb2Ti2O7 has been proposed as a good candidate for
stabilizing the QSI state [8,9]. Indeed, the exchange in
Yb2Ti2O7 is highly anisotropic, with a strong ferromagnetic
component akin to the Ising exchange of spin ice [8,10,11],
despite an XY -like anisotropy perpendicular to the lo-
cal ⟨111⟩ directions [12,13]. At low temperature, using
a model Hamiltonian with anisotropic exchange parame-
ters deduced from experiments, a first-order phase transi-
tion towards a long-range ferromagnetic order is predicted
[9,14–16].

*elsa.lhotel@neel.cnrs.fr

Experimentally, the existence of a long-range magnetic
ordering in this compound is debated, suggesting a fragile
ground state with respect to perturbations. In an early study,
a peak was observed around 210 mK in the specific heat of a
polycrystalline sample [17]. It was later shown to be associated
with a first-order transition and an abrupt slowing down of the
fluctuations in the low-temperature phase [18].

Below the transition, depending on the nature of the
samples (single crystal or polycrystal) and the crystal growth
conditions, different results have been obtained. Some neutron
scattering measurements demonstrate ferromagnetic long-
range order (LRO) [14,19] while others do not [20–22].
A discrepancy is also observed in muon spin relaxation
measurements (µSR) where an anomaly at the transition
is present [18,23] or not [24]. In the meantime, it was
shown that the peak in specific heat strongly depends on the
samples [25,26] so that the presence of a transition towards a
long-range order might depend on the sample quality.

It has been suggested that the specific heat anomaly,
however, does not necessarily correspond to a magnetic
ordering [24,25]. It is therefore essential to probe another
thermodynamic quantity which should be more sensitive to
the magnetic nature of the transition: the magnetization. In
this article, we show that the magnetization of Yb2Ti2O7
presents a first-order transition in both a powder sample
and a single crystal which was shown to develop additional
magnetic intensity on structural peaks [14]. The first-order
nature of the transition invoked in previous studies [14,18,24]
is proved by the existence of a small thermal hysteresis (of a
few millikelvins in width). The transition is accompanied by
strong time-dependent effects. The magnetization value below
the transition temperature is consistent with the stabilization
of a ferromagnetic ordering with a reduced spontaneous
moment, suggesting a strongly fluctuating spin component.
Significantly the first-order behavior occurs below the peak in
the specific heat where only a deviation in the susceptibility is
observed.
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possible temperature dependence of the spontaneous moment
must be considered, since an increase in the ordered moment
may be expected as the temperature is reduced further below
TC . For the single crystal, our analysis was carried out at 80 mK
which corresponds to TC/2. The same procedure was followed
at 110 mK and the results were found to be comparable. For
the powder sample, we performed the analysis between 80
(about TC/3) and 200 mK, and no significant dependence of the
spontaneous moment with temperature was observed. These
results suggest that the spontaneous moment will not increase
significantly at lower temperature and point out the first-order
nature of the transition.

C. First-order transition and time-dependent effects

A detailed study of the magnetization around the transition
has been performed. To ensure accurate results, measurements
had to be performed with well-controlled temperature
regulation and extremely slow cooling and warming rates. The
protocol was the following: (i) regulate at a given temperature,
(ii) take a large number of measurements (between 40 and 100)
so that the magnetization reaches equilibrium at this tempera-
ture, and (iii) change the temperature with a step of 5 or 2 mK
depending on the measurements. The temperature was ramped
between 80 and 400 mK, cooling and warming the sample.
The equivalent ramping rate is between 9 and 18 mK/h.
The obtained magnetization as a function of temperature for
the single crystal is shown in Fig. 5. It can be seen that at the
transition, at a fixed temperature, a strong relaxation occurs.
As shown in the inset of Fig. 5 where the magnetization is

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.1 0.12 0.14 0.16 0.18 0.2

M
/H

 (
em

u/
cm

3 )

T (K)

single crystal
H = 5 Oe
H // [100]

0.24

0.25

0.26

0.27

0 500 1000 1500 2000

M
/H

 (
em

u/
cm

3 )

t (s)

T=155 mK

cooling

warming

FIG. 5. (Color online) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis at the proximity
of the transition. The temperature was swept in steps of 5 mK and
100 extractions were made at each temperature (∼30 min at each
temperature). Inset: Isotherm as a function of time t at T = 155 mK
when warming (red circles) and when cooling (blue squares). The
lines are fitted to the exponential: M

H
(t) = Meq

H
− !M

H
exp(−t/τ ).

When warming τ = 207 s, Meq
H

= 0.260 emu cm−3, and !M
H

=
−6.58 × 10−3 emu cm−3. When cooling τ = 165 s, Meq

H
=

0.249 emu cm−3, and !M
H

= 1.08 × 10−2 emu cm−3.
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FIG. 6. (Color online) (a) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis, extracted from
Fig. 5 with only the equilibrium value of the magnetization plotted
compared to the specific heat data. (b) The equivalent data for the
crushed powder.

plotted as a function of time, at 155 mK, the equilibrium
magnetization is reached after times as long as 600 s.

Figure 6(a) shows the equilibrium values of the magneti-
zation at the transition (obtained from Fig. 5) as a function
of temperature for the single crystal. It can be seen that a
small hysteresis is present (which is much narrower than that
for a fast temperature sweep), indicating a first-order like
behavior. Also shown is the specific heat data on the same
crystal. A subtle change of slope occurs in the magnetization
at the peak in specific heat, while the first-order transition
develops below this peak. The bump observed at ≈180 mK
before the sharp increase is not present in the magnetization
of the powder sample as shown in Fig. 6(b) and might be due
to a sample inhomogeneity, a consequence of difficulties in
sample preparation [25,26].

From the magnetization, it appears, that the first-order
transition occurs around 150 mK in this single crystal. The
transition extends over about 20 mK and the hysteresis width
is about 3 mK. For the powder sample, the transition occurs
around 245 mK, but the width of the transition and the width
of the hysteresis are similar.

Zero-field-cooled–field-cooled (ZFC-FC) magnetization
shows an irreversibility below the temperature of the transition
(see Fig. 7) [34]. In ordered materials, such irreversibility is
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FIG. 2. (color online) Temperature dependence of elastic neu-
tron scattering intensity of Pr2+xIr2−xO7−δ at the position of
the qm = (100) reflection. The intensity measured at T = 2 K
was subtracted as a background. Curve: Ising mean-field the-
ory fit to the data, which yields a transition temperature of
TM = 0.93(1) K. Inset: sketch of the 2-in/2-out magnetic
structure.

Refinement of the magnetic structure using the
propagation vector qm was carried out on the high-
temperature-subtracted T = 0.5 K data collected on
SPINS. Assuming an Ising anisotropy in the [111] di-
rection for Pr3+ moments, as is well established for
Pr2Ir2O7 [5], the best refinement was obtained using an
ordered spin-ice 2-in/2-out structure for moments on a
unit tetrahedron (inset of Fig. 2), yielding an on-site mo-
ment µneu = 1.7(1)µB per Pr3+ ion [32]. The ordered
spin-ice structure is predicted for long-range ordering of
Heisenberg spins on the pyrochlore lattice due to dipole-
dipole interactions [33], although in Pr2Ir2O7 the Ising
nature of the Pr3+ moments and the strong dependence
of the ordering on stoichiometry suggest RKKY interac-
tions also play an important role.
To better understand the spatial and temporal coher-

ence of magnetism below the critical temperature TM , we
now turn to high-resolution magnetic neutron scattering.
The momentum dependence of the high-temperature-
subtracted scattering data [Fig. 3(a)] reveals four mag-
netic Bragg peaks, indexed by (100), (110), (102) and
(112), that appear sharp in both momentum and energy.
A fit to the 0.3 K data integrated over |E| < 0.03 meV
[Fig. 3(b)] yields a Gaussian momentum resolution of
FWHM 0.023(1) Å−1 at the (111) nuclear Bragg peak.
Using a phenomenological expression for the momentum
dependence of the momentum resolution, we fit the data
to a set of Gaussian-convoluted Lorentzian profiles. This
yields the intrinsic half-width-half-maximum (HWHM)
widths κ for each magnetic Bragg peak in Fig. 3(b). From
this analysis we obtain a lower bound ξmin = 1/κmax ≈
170 Å for the spatial correlation length.
The energy dependence of the two lowest-angle mag-

netic Bragg peaks, measured with λ = 9.04 Å, is com-
pared to that of the resolution-limited nuclear Bragg
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FIG. 3. (color online) Elastic and quasielastic neutron scat-
tering intensity of Pr2+xIr2−xO7−δ measured at 0.3 K on
CNCS, T = 1.7 K data subtracted. See text for defini-
tions. (a) Scattering intensity as a function of momentum
and energy, λ = 7.26 Å. (b) Momentum dependence of the
energy-integrated (|E| < 0.03 meV) intensity at T = 0.3 K.
Curve: fit to set of Voigt profiles plus a polynomial back-
ground. (c) Energy dependence at three Bragg positions,
λ = 9.04 Å. Solid curves: fits to Voigt profiles. Dashed
curves: associated Lorentzian broadening.

peak (111) in Fig. 3(c). A fit of the (100) and (110)
magnetic Bragg peaks to a quasielastic Lorentzian pro-
file convoluted with a fixed Gaussian energy resolution
(FWHM γ = 17(1) µeV) yields intrinsic HWHM widths
Γ = 0.9(2) µeV and 0.5(2) µeV, respectively. From this
analysis we obtain an upper bound of ≈ 1 µeV on any
intrinsic broadening, indicating that the observed order
is static on a time scale that exceeds !/Γ ≈ 0.7 ns.
Overall our elastic and quasielastic neutron results re-

veal that our Pr2+xIr2−xO7−δ sample experiences a tran-
sition at TM = 0.93(1) K from a paramagnetic state
to long-range spin-ice order characterized by spatial and
temporal correlations that span at least 170 Å and 0.7 ns,
respectively.

D. Muon spin relaxation

The present µSR studies of Pr2Ir2O7, like those re-
ported previously [9, 12], were carried out using the di-
lution refrigerator at the M15 muon beam channel at

Magnetic order is discovered in 
some samples. (MacLaughlin, etc, 2015)
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Summary for the first part

• I have studied the phase diagram near quantum spin ice. 

• Using field theoretic technique, I have obtained the structure of the magnetic 

states and the nature of the magnetic transition. 

• I use my theoretical results to explain the puzzling experiments in Pr2Ir2O7 and 

Yb2Ti2O7. It implies the disordered phase is likely to be a QSI.
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Frustrated monopole bands

IV. FORMALISM—MONOPOLE DEFECTS
ON THE DIAMOND LATTICE

A. Ground state manifold

To understand the confinement transition, we must under-
stand the nature of the lowest energy monopole and anti-
monopole states, which condense at the transition. They are
equivalent by B! →−B! symmetry, so it is sufficient to study
just the monopole states. The ultimate field theory will con-
sist of a relativistic field for each member of the monopole
multiplet, since the relativistic description includes particles
and antiparticles !here antimonopoles" on equal footing. We
will apply for the most part a !dual" mean-field approach,
taking curl != ē in !23", and neglecting fluctuations of !
around this value. This is sufficient to analyze the spectrum
of ordered phases near the U!1" quantum liquid. Fluctuations
will be restored later in Sec. VII.

We may thus consider the manifold of states with one
monopole, i.e., Nr=1 on one and only one site of the dual
lattice, and Nr=0 on all other sites. Through the w term in
!23", the wave function of the monopole delocalizes, and is
described by a tight-binding model, which we may write as

Htb = − w #
$r,r!%

&"†!r!""!r"e−i!r,r! + H.c.' , !27"

where $r ,r!% denotes a summation over nearest neighbors on
the diamond lattice. Here "r

† and "r are creation and annihi-
lation operators for the monopole. Note we have absorbed a
factor of 2# into the vector potential relative to !23" to make
our notation more conventional. By our mean-field assump-
tion, !r,r! is a c-number vector potential carrying a “flux”
!actually electric flux" given by 2#ē. Since it appears only in
a periodic exponential, the form in Eq. !24" is equivalent to a
flux of 2# /4=# /2 through each dual plaquette.

This can be understood as follows. The original compact
QED theory had a staggered background charge of $a on
each direct lattice site. The monopoles, as magnetic charges,
see this in the same way electric charges would see a stag-
gered lattice of magnetic monopoles and antimonopoles.
These ‘monopoles’ and ‘antimonopoles’ !we use single
quotes to denote the dual view, since these are actually the
background gauge charges" are distributed in an alternating
fashion at the center of each cell of the dual diamond lattice.
The neighboring cells to a cell containing a ‘monopole’ all
contain ‘antimonopoles.’ Each ‘monopole’ has a “charge” of
2#. Since all lattice directions are equivalent, the ‘magnetic’
flux going out of each face of the cell must be the same, as
illustrated in Fig. 6. The structure of the diamond lattice is
made of cells where each cell has 4 faces, as opposed to the
cubic lattice which has six faces for each of its cells !cubes".
Thus we conclude that each face in the diamond lattice has a
flux of 2# /4=# /2 going through it in the direction from a
‘monopole’ cell to an ‘antimonopole’ cell. The "r monopole
particle thus experiences Aharonov-Bohm fluxes of precisely
this sort as it moves through the lattice.

It proves convenient to describe the links of the diamond
lattice by !r ,r!"= !a ,%" where a"u denote the sites of the u
sublattice, and %" (0,1 ,2 ,3) enumerate the four links ema-

nating from each u site. Furthermore, we can enumerate the
u sublattice sites by r!=# j=1

3 nja! j where a! j &a!1= !a /2"!ŷ
+ ẑ" ,a!2= !a /2"!x̂+ ẑ" ,a!3= !a /2"!x̂+ ŷ"' are the primitive Bra-
vais lattice vectors of the fcc lattice, and nj span the integer
numbers. We refer to this coordinate system as “index”
space.

We shall now focus our attention on finding the ground
state manifold of this Hamiltonian. First we must find an
appropriate choice of the vector potential giving the desired
flux pattern through the faces inside the lattice. To this end,
the index space notation proves particularly useful. One such
possible vector potential is

!0!n!" = 0, !! !n!" = !!1!n!",!2!n!",!3!n!"" * $!!Q! · n!" ,

!28"

where Q! = !# /2"!1,0 ,−1" and $! = !1,1 ,2" !Fig. 7".
We proceed to diagonalize the hopping term. General

eigenstates cannot be found analytically, however minimum
energy eigenstates can. We find eight ground state eigen-
modes, denoted &' and &̄' where the indices run through

FIG. 6. !Color online" Alternating charge distribution emits
‘magnetic’ field lines through the faces of a diamond lattice cell.

FIG. 7. !Color online" Projected diamond plane view of vector
potential pattern—links between the honeycomb planes have !0
=0. All links with the same vector potential value are in the same
color.
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice. In Eq. (8), we have introduced the
electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)

Ēr,r+✏re2 = Ēr,r+✏re3 = +
✏r
2
. (10)

Just like the conjugation relation between the electric
field E and the gauge field A, the magnetic field B is
conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
first relax the integer valued constraint of the dual gauge
field by inserting a cos 2⇡a such that

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
diagram.

In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
We now insert the magnetic monopole variable into the
dual Hamiltonian and have

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(✓r � ✓r0 + 2⇡arr0). (13)

The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate

in the confinement phase of the compact QED. In the
dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the the monopole band will
touch zero energy and the monopole is condensed. In
the confinement phase, as the E field develops a static
distribution, the B field is strongly fluctuating and the a
field is weakly fluctuating. Therefore, it is legitimate to
first ignore the fluctuation of the dual gauge field a and
study the monopole spectrum to uncover the monopole
band mininum and the condensate for the confinement
phase. In such a gauge mean-field-like treatment, the
“U” term in the Hamiltonian enforces that

curl ā = Ē, (14)

which is solved to fix the gauge for the dual gauge field.
Here we have set the dual gauge field to its static com-
ponent ā. Through Eq. (14), the background electric
field distribution in the dual formulation turns into the
dual gauge flux experienced by the magnetic monopoles.
Because the background electric field takes either ✏r/2
or �✏r/2, this gives rise to ⇡ flux of dual gauge field
through each elementary hexagon on the dual diamond
lattice. We fix the gauge by choosing

ār,r+eµ = ⇠
µ

(q · r), (15)

where r 2 I sublattice of the dual diamond lattice, e
µ

(µ = 0, 1, 2, 3) refer to the 4 nearest-neighbor vectors
of the dual diamond lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and
q = 2⇡(100).
In the presence of the background flux, the monopole

hopping Hamiltonian on the dual diamond lattice is given
as

H
m

= �
X

r,r0

t e�i2⇡ā
rr0�†

r�r0 , (16)

where we have introduced a unimodular field �r ⌘ ei✓r

with |�r| ⌘ 1. It is straightforward to work out the
dispersion of the lowest monopole band that is

⌦k = �t
q
4 + 2

p
3 + c

x

c
y

� c
x

c
z

+ c
y

c
z

, (17)

where c
x

= cos k
x

, c
y

= cos k
y

, c
z

= cos k
z

. The mini-
mum of this band occurs at several lines of momentum
points in the Brioullin zone. One such degenerate line of
momentum points is

(k
x

, k
y

, k
z

) = (0, 0, arbitrary), (18)

and the minimum energy is �2
p
2t (see Fig.X). Other

degenerate lines are readily obtained by the symmetry
operations.
The line degeneracy of the band minima is a conse-

quence of the background flux that frustrates the hop-
ping of the monopoles. These degeneracies are acciden-
tical and are not protected by symmetry. It is expected

The background electric field  
distribution creates a Pi flux  
experienced by the monopoles, 
this frustrates monopole hopping.
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice. In Eq. (8), we have introduced the
electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)

Ēr,r+✏re2 = Ēr,r+✏re3 = +
✏r
2
. (10)

Just like the conjugation relation between the electric
field E and the gauge field A, the magnetic field B is
conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
first relax the integer valued constraint of the dual gauge
field by inserting a cos 2⇡a such that

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
diagram.

In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
We now insert the magnetic monopole variable into the
dual Hamiltonian and have

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(✓r � ✓r0 + 2⇡arr0). (13)

The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate

in the confinement phase of the compact QED. In the
dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the the monopole band will
touch zero energy and the monopole is condensed. In
the confinement phase, as the E field develops a static
distribution, the B field is strongly fluctuating and the a
field is weakly fluctuating. Therefore, it is legitimate to
first ignore the fluctuation of the dual gauge field a and
study the monopole spectrum to uncover the monopole
band mininum and the condensate for the confinement
phase. In such a gauge mean-field-like treatment, the
“U” term in the Hamiltonian enforces that

curl ā = Ē, (14)

which is solved to fix the gauge for the dual gauge field.
Here we have set the dual gauge field to its static com-
ponent ā. Through Eq. (14), the background electric
field distribution in the dual formulation turns into the
dual gauge flux experienced by the magnetic monopoles.
Because the background electric field takes either ✏r/2
or �✏r/2, this gives rise to ⇡ flux of dual gauge field
through each elementary hexagon on the dual diamond
lattice. We fix the gauge by choosing

ār,r+eµ = ⇠
µ

(q · r), (15)

where r 2 I sublattice of the dual diamond lattice, e
µ

(µ = 0, 1, 2, 3) refer to the 4 nearest-neighbor vectors
of the dual diamond lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and
q = 2⇡(100).
In the presence of the background flux, the monopole

hopping Hamiltonian on the dual diamond lattice is given
as

H
m

= �
X

r,r0

t e�i2⇡ā
rr0�†

r�r0 , (16)

where we have introduced a unimodular field �r ⌘ ei✓r

with |�r| ⌘ 1. It is straightforward to work out the
dispersion of the lowest monopole band that is

⌦k = �t
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c
z

, (17)

where c
x

= cos k
x

, c
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z

= cos k
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. The mini-
mum of this band occurs at several lines of momentum
points in the Brioullin zone. One such degenerate line of
momentum points is

(k
x

, k
y

, k
z

) = (0, 0, arbitrary), (18)

and the minimum energy is �2
p
2t (see Fig.X). Other

degenerate lines are readily obtained by the symmetry
operations.
The line degeneracy of the band minima is a conse-

quence of the background flux that frustrates the hop-
ping of the monopoles. These degeneracies are acciden-
tical and are not protected by symmetry. It is expected

Fixing gauge,
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice. In Eq. (8), we have introduced the
electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)

Ēr,r+✏re2 = Ēr,r+✏re3 = +
✏r
2
. (10)

Just like the conjugation relation between the electric
field E and the gauge field A, the magnetic field B is
conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
first relax the integer valued constraint of the dual gauge
field by inserting a cos 2⇡a such that

Hdual =
X

7⇤
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U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
diagram.

In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
We now insert the magnetic monopole variable into the
dual Hamiltonian and have

Hdual =
X

7⇤
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2
(curl a� Ē)2 �

X
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K cosBrr0
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X

r,r0
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The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate

in the confinement phase of the compact QED. In the
dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the the monopole band will
touch zero energy and the monopole is condensed. In
the confinement phase, as the E field develops a static
distribution, the B field is strongly fluctuating and the a
field is weakly fluctuating. Therefore, it is legitimate to
first ignore the fluctuation of the dual gauge field a and
study the monopole spectrum to uncover the monopole
band mininum and the condensate for the confinement
phase. In such a gauge mean-field-like treatment, the
“U” term in the Hamiltonian enforces that

curl ā = Ē, (14)

which is solved to fix the gauge for the dual gauge field.
Here we have set the dual gauge field to its static com-
ponent ā. Through Eq. (14), the background electric
field distribution in the dual formulation turns into the
dual gauge flux experienced by the magnetic monopoles.
Because the background electric field takes either ✏r/2
or �✏r/2, this gives rise to ⇡ flux of dual gauge field
through each elementary hexagon on the dual diamond
lattice. We fix the gauge by choosing

ār,r+eµ = ⇠
µ

(q · r), (15)

where r 2 I sublattice of the dual diamond lattice, e
µ

(µ = 0, 1, 2, 3) refer to the 4 nearest-neighbor vectors
of the dual diamond lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and
q = 2⇡(100).
In the presence of the background flux, the monopole

hopping Hamiltonian on the dual diamond lattice is given
as
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where we have introduced a unimodular field �r ⌘ ei✓r

with |�r| ⌘ 1. It is straightforward to work out the
dispersion of the lowest monopole band that is
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. The mini-
mum of this band occurs at several lines of momentum
points in the Brioullin zone. One such degenerate line of
momentum points is
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) = (0, 0, arbitrary), (18)

and the minimum energy is �2
p
2t (see Fig.X). Other

degenerate lines are readily obtained by the symmetry
operations.
The line degeneracy of the band minima is a conse-

quence of the background flux that frustrates the hop-
ping of the monopoles. These degeneracies are acciden-
tical and are not protected by symmetry. It is expected

The monopole band minima have a  
line degeneracy in k space. 
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
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electric field vector Ē that combines both the background
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Just like the conjugation relation between the electric
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conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
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field by inserting a cos 2⇡a such that
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X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
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In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
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The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate
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electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

Gang Chen’s theory group 

Gang Chen’s theory group



21"
"

 

 

 

Figure 3 

  

• observation of T2/3 heat capacity
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• Entropy: effective spin-1/2 local moments
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Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �

T ⌧ �At              , the only active DOF is the ground state  
doublet that gives rise to an effective spin-1/2. 
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Can this kind of system support a QSL ground state?  Yes.

Filling constraints for spin-orbit coupled insulators in symmorphic and

non-symmorphic crystals
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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What is the nature of the QSL? What is the physical origin of the QSL?

Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X
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, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
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3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order
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The spin-1/2 XXZ model supports conventional order. 
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Classical phase diagram
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are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
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equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
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has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
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FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.
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I: 120 degree state II: stripe order in xz plane

III: stripe order along y

Many classical spin configurations have rather close 
energies at the phase boundaries between different 
ordered states, in the end, the quantum fluctuation is 
enhanced at these regions and may melt the magnetic 
order. If spin liquid exists, it can probably occur in  
these regions. 
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Future direction

•  For experiments:  
1. Neutron scattering, optical, thermal transport.  
2. New materials: all the rare earth elements have the same chemical properties. 
3. Other quantum spin liquids in strong spin-orbit coupled insulators.   

•   For theory: 
1. Classification (beyond Xiao-Gang Wen’s pioneering PSG classification in 2002) 
2. Variational Monte Carlo: projective wave function with parton construction.  
3. Other numerical methods.
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Summary

1. We have studied the monopole condensation transition out of quantum spin ice. 

    We applied this theory to explain the puzzling experiments in Pr2Ir2O7. 

2. YbMaGaO4 is probably the first quantum spin liquid with odd electron filling and 
strong spin-orbit coupling.  
 
   The QSL physics is probably originated from the anisotropic spin interaction  
    due to SOC.  


