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Lattice gauge theory for U(1) spin liquid
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TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

Figure from Michel Gingras

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

3rd order degenerate perturbation 
(Hermele, Fisher, Balents 2004)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have
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TABLE I. Physical properties of the U(1)0 and U(1)
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QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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where J
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> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1
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where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes
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X
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cos(curlA) + U
X
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(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY
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.
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deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
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tion, we have
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“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H
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,
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spin

=
N

N

H
1/2

is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H
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to the subspace H, in which
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where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr
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Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes
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The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-
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•  Kramers’ doublet  

 

•  Non-Kramers’ doublet 

•  Dipole-octupole doublet

One could think more realistically, …

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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indicating strong fluctuations—classical, quantum, or both.
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where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful
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magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Besides the quantitative differences, are there sharp distinctions between the 
U(1)pi QSL on the left and the U(1)0 QSL on the right? 
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Pi flux and the spinon translation

Aharonov-Bohm flux experienced by spinon via the 4 translation  
is identical to the flux in the hexagon.
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U(1) QSLs U(1)0 QSL U(1)
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QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v
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Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as
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> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J
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the third-order degenerate perturbation theory yields an
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erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9
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FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)

⇡

3

where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s

µ

T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

= ±1

If K < 0, curlA = ⇡

If K > 0, curlA = 0

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

2

“XXZ” model with global XY spin-rotation symmetry
[7]. There, it was shown that for J± ⌧ J

zz

, it is per-
turbatively equivalent, order by order, to a lattice U(1)
gauge theory, with gauge fields that describe the spin con-
figurations constrained to the spin ice manifold of ground
states. This gauge theory was furthermore argued to ex-
hibit a so-called “Coulomb phase”, which corresponds to
a U(1) QSL phase. Subsequent numerical simulations
[8, 9] verified this prediction. This Coulombic QSL is not
only magnetically disordered, but also supports several
exotic excitations: spinons (called magnetic monopoles in
the spin ice literature), dual “electric monopoles”, and an
emergent photon. This understanding, however, was lim-
ited to the perturbative regime J± ⌧ J

zz

and considered
only the XXZ case. Here we develop a non-perturbative

method to analyze the full Hamiltonian in Eq. (1).
Non-perturbative theories of QSLs based on “slave

particles” have been developed and used extensively in
SU(2) invariant S = 1/2 Heisenberg and Hubbard mod-
els [10]. Generally these approaches work by embedding
the Hilbert space on each site in some larger “spinon”
one, with a microscopic gauge symmetry which acts to
project back to the physical space. QSL phases are found
when, in a mean field sense, this microscopic gauge sym-
metry is incompletely broken in the ground state. Here,
we follow the spirit but not the letter of these approaches,
by introducing redundant degrees of freedom not for each
spin but for each tetrahedron of the pyrochlore lattice.
This new slave particle representation is, like the afore-
mentioned standard ones, formally exact, but addition-
ally naturally describes the Coulombic QSL found before
in the perturbative analysis, when that limit is taken.
It also has the added advantage that, unlike in stan-
dard approaches, the gauge fields appear explicitly in the
slave particle Hamiltonian, rendering the analogy to lat-
tice gauge theory more direct and transparent.

By dint of the theory developed in Refs. 4, 7, and 8,
we define our slave particles on the centers of the “up”
and “down” tetrahedra of the pyrochlore lattice, which
comprise two FCC sublattices (I/II, with ⌘r = ±1) of

sites, denoted with boldface characters r, of a dual dia-
mond lattice. The sites of the original pyrochlore lattice
are bonds of the dual lattice. The perturbative analysis
of Ref. 7 identified the low energy states of H as the spin
ice ones, supplemented by spinons corresponding to de-
fect tetrahedra. As mentioned above, this inspires us to
enlarge the Hilbert space and define “spinon” slave oper-
ators, which in turn can be seen as particles in a fluctu-
ating vacuum (the two-in-two-out manifold dear to the
spin ice community). We consider H

big

= H
spin

⌦ H
Q

,
where H

spin

=
N

N

H
1/2

is the Hilbert space of Eq. (1)
and H

Q

is the Hilbert space of a field Qr 2 Z. Qr is de-
fined on all the sites of the dual diamond lattice and, at
this stage, is free and unphysical. We further define the
real and compact operator 'r to be the canonically con-
jugate variable to Qr, ['r, Qr] = i. In H

Q

, the bosonic
operators �†

r = ei'r and �r = e�i'r thus act as raising
and lowering operators, respectively, for Qr. Note that,
by construction, |�r| = 1. We now take the restriction
of H

big

to the subspace H, in which

Qr = ⌘r
X

µ

szr,r+⌘reµ
, (2)

where the e
µ

’s are the four nearest-neighbor vectors of
an ⌘r = 1 (I) diamond sublattice site. This constraint
can be viewed as analogous to Gauss’ law, where now Qr

counts the number of spinons. The restriction of Qr, �r

and �†
r to H exactly reproduces all matrix elements of

the original H
spin

, with the replacements

S+r,r+eµ
= �†

r s
+

r,r+eµ
�r+eµ , Szr,r+eµ

= szr,r+eµ
. (3)

Here r 2 I, and s±rr0 , s
z

rr0 act within the H
spin

subspace
of H

big

. Note especially that, by itself, s±rr0 6= S±rr0 is not
the physical spin, and does not remain within H.

In this paper we focus on the case where J±± = 0
(which otherwise introduces additional complications to
be dealt with in a separate publication), and the Hamil-
tonian then becomes

H =
X

r2I,II

J
zz

2
Q2

r � J±

8
<

:
X

r2I

X

µ,⌫ 6=µ

�†
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s+r,r+e⌫
+

X
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X
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�†
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�r�e⌫
s+r,r�eµ

s�r,r�e⌫
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; (4)
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8
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X

µ,⌫ 6=µ

⇣
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µ⌫

�†
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+ h.c.
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+
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�†
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r
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⌘
9
=

;+ const..

The integer-valued constraint in Eq. (2) commutes with
H and thereby ensures that Eq. (4) is a U(1) gauge the-
ory. Explicitly, it is invariant under the transformations

(
�r ! �r e�i�r

s±rr0 ! s±rr0e
±i(�r0��r)

, (5)

with arbitrary �r. This invariance, and the Gauss’ law in
Eq. (2) can be made formally identical to that in lattice
electrodynamics by writing szrr0 = Err0 and s±rr0 = e±iArr0 ,
where E and A are lattice electric and magnetic fields [7].
This clarifies that s±rr0 is to be regarded as an element of
the U(1) gauge group. However, the notation is unnec-
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
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. In comparison, for the U(1)0 QSL with
J? > 0, we have T s
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µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s
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(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,
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1 (1)T
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1 (1)[T1|ai], (8)
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1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q
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a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s

µ

, T s

⌫

are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s

µ

and T s

⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s

µ

T s

⌫

(T s

µ

)�1(T s

⌫

)�1 experiences
the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)

⇡

QSL with J? < 0, we have
T s
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T s

⌫

= �T s

⌫

T s

µ

. In comparison, for the U(1)0 QSL with
J? > 0, we have T s

µ

T s

⌫

= +T s

⌫

T s

µ

.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q

a

; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)
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where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q
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a2 + ⇡, q
b3 = q
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s
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are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s
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ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
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)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s
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⌫
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⌫
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the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)
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QSL with J? < 0, we have
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. In comparison, for the U(1)0 QSL with
J? > 0, we have T s
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⌫
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.
We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q
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; z
a

i, where q
a

la-
bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q

a

as q
a

= q
a1e1 + q

a2e2 + q
a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T
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acts on the state as

T
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|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)
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s
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1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
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a3 + ⇡, (12)

q
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a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that
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where T s
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are the translation operators that oper-
ate on the individual spinon. The time reversal sym-
metry demands that T s
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⌫

either commute or an-
ticommute with each other. As the spinon tunnels on
the lattice successively following the translation opera-
tion T s

µ

T s

⌫

(T s

µ
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⌫

)�1, the spinon experiences the back-
ground U(1) gauge flux. If the background U(1) gauge
flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).

For the XXZ model, it was shown that, in the regime
with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
tetrahedral centers. It is ready to see from the (red)
path on the diamond lattice in Fig. 2b that transporting
the spinon according to T s
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the same gauge flux in the elementary hexagon plaque-
tte. Therefore, for the U(1)
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QSL with J? < 0, we have
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. In comparison, for the U(1)0 QSL with
J? > 0, we have T s
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We now explore the sepctroscopic consequence of the

non-trivial translational symmmetry fractionalization for
the spinons in the U(1)

⇡

QSL. To reveal the property
of the spinon continuum, we consider a generic two-
spinon scattering state44–46 |ai ⌘ |q
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; z
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i, where q
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bels the total crystal momentum and z

a

refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
bravais lattice vectors, for our convenience we express
the momentum q
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as q
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a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T
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acts on the state as
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(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,
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1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives
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a2 + ⇡, q
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Likewise, we have
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a3 + ⇡, (12)
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The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)
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QSL extends to the
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/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)
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QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)
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QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
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i

= szrr0 , S
+
i

= �†
r�r0s

+
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But elastic neutron scattering will NOT see extra Bragg peak.
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flux is 0 (⇡), “+” (“�”) sign is chosen in Eq. (5).
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with J? < 0, each elementary hexagon plaquette of the
diamond lattice formed by the tetrahedral centers traps
a ⇡ U(1) gauge flux for the spinon1. The spinons are
created in pairs by the spin flipping operators S± and
reside on the diamond lattice sites of the neighboring
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QSL. To reveal the property
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i, where q
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bels the total crystal momentum and z
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refers to the
remaining quantum numbers such as the total energy
of the state. Due to the non-orthogonality of the fcc
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a3e3, where

e1 = (�1, 1, 1), e2 = (1,�1, 1), e3 = (1, 1,�1). From the
symmetry localization condition for the spinons, the lat-
tice translation T

µ

acts on the state as

T
µ

|ai = T s

µ

(1)T s

µ

(2)|ai, (6)

where ‘1’ and ‘2’ label the two spinons, and the transla-
tion is “decomposed” into the two spinon translations. In
the following, we apply the approach that was developed
for the 2D Z2 QSL in Ref. 44, but adapt the discussion to
our 3D U(1)

⇡

QSL. We apply the spinon translation on
the spinon 1 of the state |ai to generate the other three
two-spinon scattering states,

|bi = T s

1 (1)|ai, |ci = T s

2 (1)|ai, |di = T s

3 (1)|ai. (7)
All the above states are energy eigenstates and have
the same energy as the two-spinon scattering state |ai.
Nevertheless, these spinon scattering states have distinct
crystal momenta. To show that, we apply the translation
operations on the state |bi,

T1|bi = T s

1 (1)T
s

1 (2)T
s

1 (1)|ai = +T s

1 (1)[T1|ai], (8)

T2|bi = T s

2 (1)T
s

2 (2)T
s

1 (1)|ai = �T s

1 (1)[T2|ai], (9)

T3|bi = T s

3 (1)T
s

3 (2)T
s

1 (1)|ai = �T s

1 (1)[T3|ai], (10)

where the anticommutation relation between two spinon
translations are used in the last two equations. This im-
mediately gives

q
b1 = q

a1, q
b2 = q

a2 + ⇡, q
b3 = q

a3 + ⇡. (11)

Likewise, we have

q
c1 = q

a1 + ⇡, q
c2 = q

a2, q
c3 = q

a3 + ⇡, (12)

q
d1 = q

a1 + ⇡, q
d2 = q

a2 + ⇡, q
d3 = q

a3. (13)

The combination of two di↵erent spinon translations on
|ai such as T s

1 (1)T
s

2 (1)|ai does not generate new states
with di↵erent momenta. Since the two-spinon scatter-
ing states, |ai, |bi, |ci, |di, have the same energy and the
same spin quantum number, the above relations between
their crystal momenta suggest that, there is an enhanced
spectral periodicity for the spinon continuum. The spec-
tral periodicity can be reflected by the spectral intensity
I(q, E), the lower L(q) and upper excitation edge U(q)
of the spinon continuum. For U(1)

⇡

QSL, we have

I(q, E) = I(q + 2⇡(100), E) = I(q + 2⇡(010), E)

= I(q + 2⇡(001), E), (14)

L(q) = L(q + 2⇡(100)) = L(q + 2⇡(010))

= L(q + 2⇡(001)), (15)

U(q) = U(q + 2⇡(100)) = U(q + 2⇡(010))

= U(q + 2⇡(001)). (16)

Usually, the spectral periodicity is defined by the in-
teger mutiples of the reciprocal lattice vectors. Here,
because of the ⇡ flux and the translational symmetry
fractionalization for U(1)

⇡

QSL, the spectral periodic-
ity is half of the reciprocal lattice vectors. The spectral
periodicity enhancement is a rather unique property of
U(1)

⇡

QSL and is absent in U(1)0 QSL. We emphasize
that the enhanced spectral periodicity is the dynamical

property rather than the static property of U(1)
⇡

QSL.
The U(1)

⇡

QSL preserves all the lattice symmetries, and
an elastic neutron scattering would not observe any ex-
tra magnetic Bragg peak that accompanys with lattice
symmetry breaking.

IV. SPINON CONTINUUM OF THE U(1)
⇡

QSL

Here we return to the specific XXZ model and explic-
itly demonstrate the experimental consequence of the
background ⇡ flux in the U(1)

⇡

QSL. We focus on the
J? < 0 regime that has not been extensively stud-
ied. It was shown that the U(1)

⇡

QSL extends to the
point9 at J? = �4.13J

zz

. We, however, do not think
the U(1)

⇡

QSL can extend beyond the Heisenberg point
at J? = �J

zz

/2 where the SU(2) symmetry, that per-
mutes the spin components, is inconsistent with the dis-
tinct physical meaning of three spin components in the
U(1)

⇡

QSL. It is likely that the Heisenberg point is a
critical point where the U(1)

⇡

QSL terminates. Never-
theless, the early study does show the quantitative sta-
bility of the U(1)

⇡

QSL. Following the previous treat-
ment6,8–10, we implement the spinon-gauge construction
via Sz

i

= szrr0 , S
+
i

= �†
r�r0s

+
rr0 , where �†

r (�r) creates
(annihilates) the spinon at the diamond lattice site r,
and sz and s± encode the U(1) gauge field such that

4

FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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Calculation to demonstrate the above prediction

4

szrr0 ' Err0 and s+rr0 ' 1
2e

iArr0 . The XXZ model is ex-
pressed as

HXXZ ' J
zz

2

X

r

Q2
r � J?

4

X

hhrr0ii

�†
r�r0e�iArr0 , (17)

where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9

!I,±(k) =
q

2J
zz

�
�± J?(c2

y

c2
z

+ s2
x

s2
y

+ c2
x

s2
z

)
1
2

�
,(18)

!II,±(k) =
q

2J
zz

�
�± J?(s2

y

s2
z

+ c2
x

c2
y

+ s2
x

c2
z

)
1
2

�
,(19)

where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
relator via the INS. From the relation

hS+
i

S�
j

i ⇠ h�†
ri
�r0

i
e
iArir

0
i�rj

�†
r0
j
e
�iArir

0
j i

' h�†
ri
�rj

ih�r0
i
�†

r0
j
iheiĀrir

0
i
�iĀrir

0
j i, (20)

where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

2

U(1) QSLs U(1)0 QSL U(1)
⇡

QSL

Exchange Coupling J? > 0 J? < 0

Background U(1) Flux 0 Flux ⇡ Flux

Heat Capacity C
v

⇠ T 3 C
v

⇠ T 3

Proximate XY Order Keep Translation Enlarged Cell

Spectral Periodicity Not Enhanced Enhanced

TABLE I. Physical properties of the U(1)0 and U(1)
⇡

QSLs.

the pyrochlore QSI1. The realistic spin models for py-
rochlore QSI contain more interactions8,9,12,14, but the
simple XXZ model already realizes and captures the
generic property of the pyrochlore ice U(1) QSL in the
perturbative Ising regime. Therefore, we deliver our the-
ory through the XXZ model but emphasize the model-

independent universal and generic properties of the U(1)
QSL. This model is defined as

HXXZ =
X

hiji

J
zz

Sz

i

Sz

j

� J?(S
+
i

S�
j

+ S�
i

S+
j

), (1)

where J
zz

> 0. The phase diagram of the specific XXZ
model is given in Fig. 1 and explained in the remain-
ing part of the paper. In the regime with |J?| ⌧ J

zz

,
the third-order degenerate perturbation theory yields an
e↵ective Hamiltonian that acts on the extensively degen-
erate spin ice manifold. The e↵ective model is a ring
exchange model with1

He↵ = �12J3
?

J2
zz

X

7p

(S+
i

S�
j

S+
k

S�
l

S+
m

S�
n

+ h.c.), (2)

where “i, j, k, l,m, n” are the six vertices on the elemen-
tary hexagon (“7p”) of the pyrochlore lattice. To reveal
the U(1) gauge structure, one introduces the lattice gauge
fields as Err0 ' Sz

rr0 , eiArr0 ' S±
rr0 , where r, r0 label the

centers of the tetrahedra and form a diamond lattice.
The e↵ective spin model becomes

HLGT = �K
X

7d

cos(curlA) + U
X

rr0

(Err0 � ⌘r
2
)2 (3)

where K = 24J3
?/J

2
zz

and “U ! 1” recovers the Hilbert
space of the spin-1/2 moment. Here “7d” refers to the
elementary hexagon on the diamond lattice, and ⌘r = +1
(�1) for r 2 I (II) sublattice of the diamond lattice.
When J? > 0 and |J?| is small so that the XY order
is absent, the ground state favors a zero U(1) gauge flux
and is labeled as U(1)0 QSL. This regime has been exten-
sively studied theoretically and numerically1,8,9,28,41–43.
For J? < 0, the ground state favors a ⇡ background U(1)
gauge flux with9

curlA ⌘
X

rr027d

Arr0   = ⇡ (4)

FIG. 2. (Color online.) The diamond lattice formed by the
tetrahedral centers of the pyrochlore lattice. (a) The spinon
hopping for a specific gauge choice for the ⇡ flux. (b) The
successive translations of the spinon along the (red) pathway,
that are marked by 1�, 2�, 3� and 4�, experience the U(1)
gauge flux in the hexagon plaquette.

for each diamond lattice hexagon (see Fig. 2a) and is thus
labeled as U(1)

⇡

QSL. This regime has a sign problem
for quantum Monte Carlo simulation and is thus less ex-
plored. Only one prior work9 has carefully studied the
stability of the U(1) QSL in this regime and found the
U(1) QSL is more robust in this regime than the J? > 0
regime. Despite the di↵erent phase stability, both U(1)0
and U(1)

⇡

QSLs are described by the same low-energy
field theory and characterized by the same long-distance
universal properties. We, however, point out that the
U(1)

⇡

QSL is a distinct symmetry enriched U(1) QSL
from the U(1)0 QSL. We show below that the symmetry
enrichment occurs in the translational symmetry frac-
tionalization of the spinons. We emphasize that the spec-
tral periodicity of the spinon continuum is a keen physical
observable encoding the distinct symmetry enrichment
and thus provides the sharp experimental confirmation
of the U(1) QSL.

III. TRANSLATIONAL SYMMETRY
FRACTIONALIZATION AND THE SPECTRAL

PERIODICITY

The translation symmetry of the pyrochlore lattice is
generated by the three translations T1, T2, and T3. Here,
the T

µ

operation translates the system by the fcc bravais
lattice vector a

µ

, and we have a1 = 1
2 (011),a2 = 1

2 (101),
and a3 = 1

2 (110). Any two translation operations, T
µ

and T
⌫

(µ 6= ⌫), commute with each other with T
µ

T
⌫

=
T
⌫

T
µ

.
In the U(1) QSL, the spinons are fractionalized and

deconfined excitations, and the symmetry operations act
locally on the spinons. This symmetry localization con-
dition leads to the symmetry fractionalization for the
spinons. For the translation symmetry under considera-
tion, we have

T s

µ

T s

⌫

= ±T s

⌫

T s

µ

, (5)
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon
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�†
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where Arr0 = Arr00 +Ar00r0 , and r00 is the shared nearest
neigbhor site of r and r0. Here the operator Qr is defined
as Qr =

P
r02n.n.(r) ⌘rS

z

rr0 , where the summation is
taken for the nearest neighbor sites of r. A conjugate ro-
tor variable is introduced such that �r = e�i�r , |�r| = 1
and [�r, Qr] = i. One further fixes the gauge by set-
ting9 Ārr0 = ✏rr0q0 · r that takes care of the ⇡ flux (see
Fig. 2a), where q0 = 2⇡(100), r 2 I sublattice, and ✏rr0

takes the value 0,1,1,0 for rr0 orienting along (111),
(11̄1̄), (1̄11̄), (1̄1̄1) lattice direction, respectively. The
gauge fixing condition enlarges the unit cell for the
spinons, but the translation symmetry is preserved and
is realized projectively. The spinon excitation in U(1)

⇡

QSL is then solved by the standard coherent state path
integral method and is given as9
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where c
µ

= cos(k
µ

/2), s
µ

= sin(k
µ

/2). The subindices, I,
II, arise from the fact that the two diamond lattices are
decoupled in Eq. (17) and the subindices, ±, arise from
the doubling of the unit cell by the gauge choice. Here,
the constraint |�r| = 1 is implemented by the global La-
grangian multiplier, �, that is demanded to be uniform
for the two sublattices by inversion.

The spinon continuum is detected by the hS+
i

S�
j

i cor-
relator via the INS. From the relation
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where r
i

, r
j

2 I, r0
i

, r0
j

2 II, and the neutron spin flip
excites two spinons with one from the I sublattice and
the other from the II sublattice, we obtain the momentum
and energy transfers of the neutron,

q = k1 + k2 + q0, E = !I,µ(k1) + !II,⌫(k2), (21)

where µ, ⌫ = ± and the o↵set q0 arises from the partic-
ular gauge choice for the U(1)

⇡

QSL, and the predicted
physical observable does not depend on this choice. Here
we have neglected the photon contribution that appears
as a higher order term from the gauge fluctuation with
respect to the gauge choice in the expansion of Eq. (20).
The spinons are gapped, and a minimal energy is required
to excite them, which defines the lower excitation edge.
As we show explicitly in Fig. 3, the lower excitation edge
of the U(1)

⇡

QSL has the enhanced periodicity while the
U(1)0 QSL does not.

FIG. 3. (Color online.) The lower excitation edge of the
spinon continuum in U(1)0 and U(1)

⇡

QSLs. Here, �0�1 =
2⇡(1̄11),�0�2 = 2⇡(11̄1). We set J? = 0.12J

zz

for U(1)0 QSL
in (a) and J? = �J

zz

/3 for U(1)
⇡

QSL in (b).

V. DISCUSSION

Although the gapless U(1) gauge photon is one defining
feature of the U(1) QSLs, its very-low-energy scale and
the suppressed spectral weight may prohibit the experi-
mental identification8,35. In contrast, the spinon contin-
uum occurs at the higher energy. The enhanced spectral
periodicity of the spinon continuum in the U(1)

⇡

QSL is
a sharp signature for the experimental observation. Since
the U(1)

⇡

QSL occupies a larger parameter space than
the U(1)0 QSL9, it is thus more likely for a candidate
system to locate in U(1)

⇡

QSL and develop the enhanced
spectral periodicity that we predict for the spinon con-
tinuum.
There are three types of doublets in the rare-earth

pyrochlore systems. For the non-Kramers doublet like
Pr3+ in Pr2Ir2O7 and Pr2Zr2O7

7,9,31,47 since only the
Ising component of the local moment is odd under the
time reversal, the INS would naturally select the Ising
components and hence only measure the gauge field cor-
relator. The spinon continuum cannot be observed for
the non-Kramers doublet. For the usual Kramers dou-
blet like Yb3+ in Yb2Ti2O7

8,10,11,27, all the components
contribute to the magnetic dipolar moments and are thus
visible in the INS measurements. Both the gapped spinon
continuum and the gapless gauge photon are recorded in
the INS spectrum. As for the dipole-octupole Kramers
doublet like Ce3+ in Ce2Sn2O7

12,14,39,48, it was predicted
that12,14, two distinct symmetry enriched U(1) QSLs,
namely, the dipolar U(1) QSL and the octupolar U(1)
QSL, can occur. For the dipolar U(1) QSL, both the
gapped spinon continuum and the gapless gauge photon

Lower excitation edge of spinon continuum  
within the gauge MFT calculation
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the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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Sz ⇠ E (emergent electric field)
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
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of the dual diamond lattice, where

µ = 1, 2, 3, and a
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We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm
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)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation
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This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z
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repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that
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where T
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is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a
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, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm
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(1)|Ai, (14)
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It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

degrees of freedom. For the non-Kramers doublet, the
INS measurement would merely pick up the Sz corre-
lator and thus measure the correlation function of the
emergent electric field. It was then shown, within the
low-energy Maxwell field theory, that the spin correla-
tion corresponds to the electric field correlator5,36,44,

hEµ

�q,�!

E⌫

q,!i ⇠ [�
µ⌫

� qµq⌫

q2
]!�(! � v|q|), (6)

where v is the speed of the photon mode. Apart from the
angular dependence, the spectral weight of the photon
mode is suppressed5,36 as the energy transfer ! ! 0.

III. THE LOOP CURRENT OF “MAGNETIC
MONOPOLES”

The well-known result of the photon modes in the
INS measurement was obtained by considering the low-
energy field theory that describes the long-distance quan-
tum fluctuation within the spin ice manifold. The actual
spin dynamics, that is captured by the Sz correlation in
the INS measurement, operates in a broad energy scale
up to the exchange energy and certainly contains more
information than just the photon mode from the low-
energy Maxwell field theory. What is the other informa-
tion hidden behind? To address this question, we have
to leave the low-energy Maxwell field theory and include
the gapped matters into our consideration.

The gapped matters are spinons and “magnetic
monopoles”. The spinons are sources and sinks of the
emergent E field and live on the diamond lattice sites
or the tetrahedral centers. These spinon are excitations
out of the spin ice manifold and are created by the Sx

or Sy operator. For the non-Kramers’ doublet systems,
the neutron scattering does not allow such spin-flipping
processes. So we turn to the “magnetic monopoles”.
The “magnetic monopole” is the source or the sink of

the emergent B field and is the excitation within the
spin ice manifold. Since the “magnetic monopole” is lo-
cated on the dual diamond lattice site (see Fig. 1), to
make the “magnetic monopole” explicit, one needs to do
a duality transformation on the lattice gauge Hamilto-
nian H

LGT

13,44,55. This standard procedure yields the
following dual theory

H
dual

= �t
X

hRR0i

e�i2⇡↵RR0�†
R�R0 � µ

X

R

�†
R�R

+
U

2

X

7⇤

(curl↵� ⌘r
2
)2 �K

X

hRR0i

cosBRR0 + · · · ,(7)

where �†
R (�R) creates (annihilates) the “magnetic

monopole” at the dual diamond lattice site R, “7⇤” is
the hexagon on the dual diamond lattice, “t” is the
“monopole” hopping, and “· · · ” refers to the “monopole”
interaction. Here ↵ is the dual U(1) gauge field that lives
on the links of the dual diamond lattice, and curl↵ is de-
fined as

curl↵ ⌘
X

RR027⇤

 ↵RR0 (8)

and is simply the electric field going through the center of
the hexagon plaquette on the dual diamond lattice. This
dual model describes the coupling between the “magnetic
monopoles” and the fluctuating dual U(1) gauge fields,
and is the starting point to explore the dynamics of the
“magnetic monopoles”. For our purpose to capture the
generic spectral structure of the “monopole” dynamics,
we here keep only the nearest-neighbor “monopole” hop-
ping.
Since the neutron picks up the Sz component for

non-Kramers doublets, we want to find what kind of
“monopole” operators in the dual theory correspond to
the Sz component. Since this is a gauge theory, only
gauge invariant quantity is physical according to Elitzur’s

HZeeman = ~B ·
X

i

Sz
i ẑi

The weak magnetic field polarizes Sz slightly, and thus modifies  
the background electric field distribution. This further modulates  
monopole band structure, creating “Hofstadter” monopole band,  
which may be detectable in inelastic neutron.



Summary 1

1. We point out the existence of “magnetic monopole continuum” in the  
   U(1) quantum spin liquid, and monopole is purely quantum origin. 

2. We point out that the “magnetic monopole” always experiences 
   a Pi flux, and thus supports enhanced spectral periodicity with folded  
   Brillouin zone, while spinons most of the time experience Pi flux.
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
          ( R. Sibille, et al, arXiv 1706.03604). 
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Outline
1. Signatures of fractionalization in U(1) spin liquid?

2.  Spin quantum number fractionalization in YbMgGaO4?  
Is it spinon Fermi surface spin liquid?
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is likely the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. (needs comment.) 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  I think it is a spinon Fermi surface U(1) QSL.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Qingming Zhang 
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The microscopics
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Figure 1 

  

Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �

T ⌧ �At              , the only active DOF is the ground state  
doublet that gives rise to an effective spin-1/2. 
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Modeling

Yao-Dong Li
(Fudan -> here) 

2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X
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⇥
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, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
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,a
3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order

4f electron is very localized, and  
dipolar interactions weak. 

YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and

035107-2
YD Li, XQ Wang, GC,  arXiv1512, PRB 2016 

YD Li, Y Shen, YS Li, J Zhao, GC*,     arXiv 1608.06445

anisotropic both in spin space and in real space !
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Polarized neutron scattering
Strong exchange anisotropy in YbMgGaO4 from polarized neutron

di↵raction
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We measured the magnetic correlations in the triangular lattice spin-liquid candidate material
YbMgGaO4 via polarized neutron di↵raction. The extracted in-plane and out-of-plane components
of the magnetic structure factor show clear anisotropy. We found that short-range correlations
persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered
at the M middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin
anisotropy, with di↵erent correlation lengths for the in-plane and out-of-plane spin components.
When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with
only first-neighbor coupling and strongly anisotropic exchanges.

Anderson proposed in a seminal paper that the
ground state of the spin-1/2 Heisenberg triangular
lattice antiferromagnet (TLA) is a ”quantum liq-
uid” of resonating valence bonds [1]. Later studies
of this model mostly showed an ordered ground
state, with sublattice magnetization hSi = 0.41S

[2–7]. In contrast to the isotropic model, per-
turbations such as further-neighbor interactions
[8–13] or ring exchange [14, 15] were shown to
destroy Néel order and to promote the forma-
tion of a spin-liquid ground state. Real, undis-
torted spin-1/2 triangular lattice systems are rare.
Until recently the charge transfer salts were the
only known class. Members such as -(BEDT-
TTF)2Cu2(CN)3 [16] and EtMe3Sb[Pd(dmit)2]
[17] show spin-liquid ground states with a spinon
Fermi surface at low temperature. However the
magnetism of these systems is complicated with
charge fluctuations inducing an e↵ective ring ex-
change between spins that destroys Néel order.
Also, no momentum resolved spectroscopic data
of the magnetic excitations, crucial to fully char-
acterize the correlated state, is available due to
the small size of the synthetic crystals.

The recent discovery of YbMgGaO4, an inor-
ganic rare-earth oxide with e↵ective spin-1/2 tri-
angular lattice (see Fig. 1) gives a new opportu-
nity to study frustrated magnetism in this sim-
ple geometry [19]. First studies showed corre-
lated spin fluctuations without long range or-
der at the lowest measured temperature of 50
mK [20]. Moreover, large single crystals enabled
momentum resolved neutron spectroscopic stud-
ies of the magnetic excitation spectrum [21] that
was interpreted both as a spinon Fermi surface
[22] and resonating valence bonds [23]. Support-
ing the resonating valence bond picture, recent
measurements found no magnetic contribution to

FIG. 1. Single triangular layer of YbMgGaO4 with
the magnetic Yb3+ atoms shown as green spheres.
Surrounding oxygen atoms above and below the tri-
angular plane are shown by red and purple spheres,
respectively. The tilted blue ellipsoids represent the
first-neighbor symmetric exchange tensor [18].

the thermal conductivity [24]. Moreover it has
emerged very recently that crystalline electric-
field randomness induced by the non-magnetic
Mg/Ga site disorder is an essential characteris-
tic of YbMgGaO4[25]. This suggests that the
origin of the low temperature disordered state
might be driven by both intrinsic (quantum fluctu-
ations) and extrinsic (exchange randomness) pa-
rameters. The theoretical development is also
hampered by the lack of consensus on the under-
lying spin Hamiltonian.

In this Letter, we report the results of polarized
neutron di↵raction measurements in the candi-
date spin-liquid phase of YbMgGaO4. The experi-
mental technique probes separately the real-space
dependence and the spin-direction dependence of
the spin-spin equal time correlation function. In
rare earth systems such as YbMgGaO4, the mag-
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FIG. 3. Integrated magnetic di↵use scattering sig-
nal of YbMgGaO4 measured at di↵erent tempera-
tures and compared to the SCGA calculation. Pur-
ple symbols denote the magnetic signal measured at
10 K, green and blue symbols correspond to the mea-
sured spin structure-factors Syy and Szz at 52(2) mK,
while the blue and green lines show the corresponding
SCGA result simulated at TMF = 120 mK for model
B. (a) Powder-averaged data with black line denot-
ing the magnetic form factor of the Yb3+ ion. (b-d)
Angular dependence of the di↵use scattering signal in-
tegrated between q = 0.9 � 1.3 Å�1 and q = 2 � 2.4
Å�1. Black line is a guide to the eye.

3(a). The signal, measured at 10 K, is identical
to the magnetic form factor of Yb3+, confirming
the ideal paramagnetic nature of YbMgGaO4 at
this temperature. At base temperature the cor-
relations between the in-plane spin components
has a more pronounced maximum when compared
to the z-component and both are centered at
q = 1.15 Å�1. We also integrated the magnetic
signal within the 0.9 < q < 1.3 Å�1 annulus that

includes the M - and K-points of the first BZ, see
Fig. 3(b). Both the y and z components of the
e↵ective spin show clear peaks at the symmetry
equivalent M -points of the first BZ. We also inte-
grated the magnetic signal between 2.0 < q < 2.4
Å�1 that includes the center of the second BZ, see
Fig. 3(c). The signal again shows clear peaks at
angles corresponding to the M

0-points while there
is no di↵erence between the y and z components
of the spin in this cut.

The momentum dependence of the measured
magnetic di↵use scattering in YbMgGaO4 reveals
short-range correlations down to the lowest tem-
perature of 52 mK. This temperature is far below
the Curie-Weiss temperature of 4 K [19], suggest-
ing a strongly fluctuating magnetic ground state.
The most prominent feature of the di↵use scatter-
ing data is the peak at (1/2, 0, 0), the M point of
the Brillouin zone as previously observed via neu-
tron scattering without separating the spin com-
ponents [21]. This is in strong contrast to the re-
sults of the simplest antiferromagnetic model on
the triangular lattice with isotropic first-neighbor
interactions, where correlations are strongest at
the K-point (1/3, 1/3, 0). This suggests that fur-
ther terms in the Hamiltonian are important in
describing the low temperature correlated state of
YbMgGaO4. Our second observation is that the
correlations are strongly spin direction dependent,
revealing that the underlying Hamiltonian has to
be anisotropic as well. This is indeed expected for
a system with strong spin-orbit coupling and pre-
viously evidenced by magnetic susceptibility, mag-
netization and electron spin resonance measure-
ments in the paramagnetic phase [19, 20]. Also
it was previously shown that strongly anisotropic
couplings are present in the Yb3+-pyrochlore com-
pound, Yb2Ti2O7 [30].

Two di↵erent model Hamiltonians have been
proposed that describe the exchange interactions
in YbMgGaO4[21, 31]. The for the ambiguity of
the spin wave fit is two fold. Firstly, the spin
waves in the magnetic field polarized phase are
broad due to the randomness of the g-values [25].
Secondly, the spin wave spectrum is independent
of J

z± for the measured Bkz field direction. In or-
der to compare these models with our experimen-
tal data, we use self-consistent Gaussian approxi-
mation to calculate spin-spin correlations [32, 33],
as detailed in Sec. 4 of the Supplementary Mate-
rials [28]. The SCGA method describes correla-
tions between classical spins taking into account
the fluctuations of the molecular field. It is accu-
rate except the vicinity of the critical point T

c

. All
model parameters are fixed by previous fits of the
spin wave dispersion except the model tempera-
ture, that is fitted to our di↵use scattering data.
The reason for taking temperature as a variable
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We measured the magnetic correlations in the triangular lattice spin-liquid candidate material
YbMgGaO4 via polarized neutron di↵raction. The extracted in-plane and out-of-plane components
of the magnetic structure factor show clear anisotropy. We found that short-range correlations
persist at the lowest measured temperature of 52 mK and neutron scattering intensity is centered
at the M middle-point of the hexagonal Brillouin-zone edge. Moreover, we found pronounced spin
anisotropy, with di↵erent correlation lengths for the in-plane and out-of-plane spin components.
When comparing to a self-consistent Gaussian appoximation, our data clearly support a model with
only first-neighbor coupling and strongly anisotropic exchanges.

Anderson proposed in a seminal paper that the
ground state of the spin-1/2 Heisenberg triangular
lattice antiferromagnet (TLA) is a ”quantum liq-
uid” of resonating valence bonds [1]. Later studies
of this model mostly showed an ordered ground
state, with sublattice magnetization hSi = 0.41S

[2–7]. In contrast to the isotropic model, per-
turbations such as further-neighbor interactions
[8–13] or ring exchange [14, 15] were shown to
destroy Néel order and to promote the forma-
tion of a spin-liquid ground state. Real, undis-
torted spin-1/2 triangular lattice systems are rare.
Until recently the charge transfer salts were the
only known class. Members such as -(BEDT-
TTF)2Cu2(CN)3 [16] and EtMe3Sb[Pd(dmit)2]
[17] show spin-liquid ground states with a spinon
Fermi surface at low temperature. However the
magnetism of these systems is complicated with
charge fluctuations inducing an e↵ective ring ex-
change between spins that destroys Néel order.
Also, no momentum resolved spectroscopic data
of the magnetic excitations, crucial to fully char-
acterize the correlated state, is available due to
the small size of the synthetic crystals.

The recent discovery of YbMgGaO4, an inor-
ganic rare-earth oxide with e↵ective spin-1/2 tri-
angular lattice (see Fig. 1) gives a new opportu-
nity to study frustrated magnetism in this sim-
ple geometry [19]. First studies showed corre-
lated spin fluctuations without long range or-
der at the lowest measured temperature of 50
mK [20]. Moreover, large single crystals enabled
momentum resolved neutron spectroscopic stud-
ies of the magnetic excitation spectrum [21] that
was interpreted both as a spinon Fermi surface
[22] and resonating valence bonds [23]. Support-
ing the resonating valence bond picture, recent
measurements found no magnetic contribution to

FIG. 1. Single triangular layer of YbMgGaO4 with
the magnetic Yb3+ atoms shown as green spheres.
Surrounding oxygen atoms above and below the tri-
angular plane are shown by red and purple spheres,
respectively. The tilted blue ellipsoids represent the
first-neighbor symmetric exchange tensor [18].

the thermal conductivity [24]. Moreover it has
emerged very recently that crystalline electric-
field randomness induced by the non-magnetic
Mg/Ga site disorder is an essential characteris-
tic of YbMgGaO4[25]. This suggests that the
origin of the low temperature disordered state
might be driven by both intrinsic (quantum fluctu-
ations) and extrinsic (exchange randomness) pa-
rameters. The theoretical development is also
hampered by the lack of consensus on the under-
lying spin Hamiltonian.

In this Letter, we report the results of polarized
neutron di↵raction measurements in the candi-
date spin-liquid phase of YbMgGaO4. The experi-
mental technique probes separately the real-space
dependence and the spin-direction dependence of
the spin-spin equal time correlation function. In
rare earth systems such as YbMgGaO4, the mag-
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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METHODS
Sample growth and characterizations. High-quality YbMgGaO4 single crystals 
were synthesized using the optical floating zone technique19. A representative  
single crystal, which is optically transparent with mirror-like cleaved surfaces, is 
shown in Extended Data Fig. 1a. Our X-ray diffraction (XRD) measurements 
revealed that all of the reflections from the cleaved surface could be indexed by 
(0, 0, L) peaks of triangular YbMgGaO4; no impurity phases were observed 
(Extended Data Fig. 1b). The full-width at half-maximum (FWHM) of the rocking 
curve of the (0, 0, 18) peak was about 0.009°, indicating an extremely high crystal-
lization quality (Extended Data Fig. 1c). This was confirmed by the sharp and clear 
diffraction spots in the X-ray Laue pattern (Extended Data Fig. 1d). Powder XRD 
patterns on ground single crystals also revealed no indication of impurity phases 
(Extended Data Fig. 1e). The Rietveld refinements31 confirm that the XRD pattern 
can be described by the R m3  space group. The refined structural parameters are 
given in Extended Data Table 1. These results suggested that the YbMgGaO4 single 
crystal possessed a perfect triangular lattice with no detectable impurities. This is 
consistent with previous measurements that have demonstrated that the impurity/
isolated spins are less than 0.04% in similar samples18,19. Although the Mg/Ga site 
disorder in the non-magnetic layers does not directly affect the exchange interac-
tion between the Yb local moments, it may have an indirect effect and could lead 
to some exchange disorder. It seems that this disorder is not significant, because 
no signs of spin freezing were observed. A QSL is often stable against weak local 
perturbations, provided that the perturbation is irrelevant or not significant. 
Therefore, if a QSL is realized as the ground state for YbMgGaO4, then the possible 
exchange disorder will not destabilize this state if the disorder strength is not  
significant.

In addition, the field dependence of magnetization in our single  crystal 
 displayed a linear behaviour above 12 T (Extended Data Fig. 1f),  indicative 
of a fully  polarized state. The Van Vleck susceptibility extracted from the 
 linear-field-dependent magnetization data was subtracted in the inset of Fig. 1c.
Neutron scattering experiments. INS measurements were carried out on the 
ThALES cold triple-axis spectrometer at the Institut Laue-Langevin, Grenoble, 
France, and at the FLEXX cold triple-axis spectrometer in the BER-II reactor at 
Helmholtz-Zentrum Berlin, Germany32. For the ThALES experiment, silicon (111) 
was used as a monochromator and analyser; the final neutron energies were fixed at 
Ef =  3 meV (energy resolution of about 0.05 meV), Ef =  3.5 meV (energy resolution 
of about 0.08 meV) or Ef =  4 meV (energy resolution of about 0.1 meV). For the 
FLEXX experiment, pyrolythic graphite (002) was used as a monochromator and 
analyser. Contamination from higher-order neutrons was eliminated through a 
velocity selector installed in the front of the monochromator. The final neutron 
energy was fixed at Ef =  3.5 meV (energy resolution of about 0.09 meV). Three (six) 
pieces of single crystals with total a mass of about 5 g (19 g) were coaligned in the 
(HK0) scattering plane for the ThALES (FLEXX) experiment. The FWHM of the 
rocking curve of the coaligned crystals for the ThALES and FLEXX experiments 
were approximately 0.95° and 0.92°, respectively. The elastic neutron scattering 
experiment was carried out at the WAND neutron diffractometer at the High 
Flux Isotope Reactor, Oak Ridge National Laboratory, USA; one single crystal was 
used for the experiment, with the incident wavelength λ =  1.488 Å (Extended Data  
Fig. 2). For the low-temperature experiments, a dilution insert for the standard 4He 
cryostat was used to reach temperatures down to around 30–70 mK.

Because of the non-uniform shape of the single crystal, the relatively large 
sample volume and the extremely broad spin-excitation spectrum, the neutron 
beam self-attenuation (by the sample) may require consideration. In most cases 
the self-attenuation is dependent on only the distance traversed by the  neutrons 
through the sample. We observed the self-attenuation effect in an elastic  incoherent 
scattering image of our sample at 20 K, which exhibited an anisotropic intensity 
distribution (Extended Data Fig. 3a). The self-attenuation effect was also observed 
in the raw constant-energy images (Extended Data Fig. 3b–f), which were shown 
to be anisotropic, with slightly higher intensities occurring at approximately 
the same direction as that observed in the elastic incoherent scattering images. 
The self- attenuation can be corrected by normalizing the data with the elastic 
 incoherent scattering image; that is, the elastic incoherent scattering intensity, 
which is dependent on the sample position (ω) and scattering angle (2θ), is  
converted to a linear attenuation correction factor for the scattering images 
 measured at different energies. The normalized constant-energy images are 
 presented in Fig. 2a–e, revealing a nearly isotropic intensity distribution.

Extended Data Fig. 4 shows the spin excitation spectrum at 20 K, which is 
 broadened and weakened compared with that at 70 mK (discussed below).
Spinon Fermi surface and dynamic spin structure factor. Here we explain the 
spinon mean-field state that is used to explain the dynamic spin structure factor 
of the neutron scattering experiments. As we proposed in the main text, a QSL 
with a spinon Fermi surface gives a compatible explanation for the INS results 
for YbMgGaO4.

To describe the candidate spinon-Fermi-surface QSL state in YbMgGaO4, we 
formally express the Yb3+ effective spin as the bilinear combination of the 
 fermionic spinon with spin †σ=∑αβ α αβ βS f fi i i

1
2

 and a Hilbert space constraint  
†∑ =α α αf f 1i i , where σαβ is a vector whose three components are the Pauli matrices 

and †
αfi  ( fiα) creates (annihilates) a spinon with spin α =  ↑ , ↓  at site i. For the QSL 

with a spinon Fermi surface, we propose a minimal mean-field Hamiltonian HMFT 
for the spinons on the  triangular lattice. We consider a uniform spinon hopping 
with a zero background flux:

† †∑ ∑µ=− + . . −α α α α
〈 〉

H t f f f f( h c ) (1)
ij

i j
i

i iMFT

where t is the mean-field parameter, which represents the hopping amplitude 
between nearest-neighbour sites. The chemical potential µ is included to impose 
the Hilbert space constraint on average. Here, we have treated the spinons freely 
by neglecting the gauge fluctuations. This mean-field state gives a single spinon 
dispersion

∑ω µ=− ⋅ −k at cos( )k
a

i
{ }i

where {ai} are six nearest-neighbour vectors of the triangular lattice. Owing to the 
Hilbert space constraint, the spinon band is half-filled, leading to a large Fermi 
surface in the Brioullin zone (Extended Data Fig. 5a).

INS measures the dynamic spin structure factor
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where N is total number of lattice sites, the summation goes over all eigenstates, 
| Ω〉  refers to the spinon ground state with the spinons filling the Fermi sea, E0 is 
the energy of the ground state and En(p) is the energy of the nth excited state with 
momentum p. In the actual calculation, owing to the energy resolution of the 
experiments, the δ function is taken to have a broadening: 

δ η
η

− =
/π

− +
ε

ε
E

E
( )

( )2 2

where η is the broadening and ε is the measured energy. Because †=∑+
+ ↑ ↓S f fp k k p k , 

the summation in equation (2) would be over all possible spin-1 excited states that 
are characterized by one spinon particle–hole pair crossing the spinon Fermi 
 surface (Fig. 2g) with a total momentum p and a total energy E. As we show in  
Fig. 2f and Extended Data Fig. 5b, and discuss in the main text, this spinon- Fermi-
surface QSL state gives the three crucial features of the INS results: (1) the broad 
continuum that covers the large portion of the Brioullin zone; (2) the broad 
 continuum persisting from the lowest energy transfer to the highest energy 
 transfer; and (3) the clear upper excitation edge near the Γ  point.

In our calculation of Fig. 2f and Extended Data Fig. 5b, we choose the lattice 
size to be 40 ×  40 and η =  1.2t, in accordance with the energy and momentum 
resolution of the instruments. The energy scale of Fig. 2f is set to be 7.5t.

Here we explain the details of the dynamic spin structure factor in Fig. 2f and 
Extended Data Fig. 5b, based on the particle–hole excitation of the spinon Fermi 
surface. For an infinitesimal energy transfer, the neutrons simply probe the spinon 
Fermi surface. Because the spinon particle and hole can be excited anywhere near 
the Fermi surface, the neutron spectral intensity appears from p =  0 to p =  2kF, 
where kF is the Fermi wavevector. Because | 2kF|  already exceeds the first Brillouin 
zone, the neutron spectral intensity then covers the whole Brillouin zone  including 
the Γ  point. For a small but finite E, as we explain in the main text, a minimal 
momentum transfer pmin ≈  E/vF is required to excite the spinon particle–hole 
pairs. Therefore, the spectral intensity gradually moves away from the Γ  point as 
E increases. Because it is always possible to excite the spinon particle–hole pair with 
the momenta near the zone boundary, the spectral intensity is not greatly affected 
at the zone boundary as E increases. Thus, the broad continuum continues to cover 
a large portion of the Brillouin zone at a finite E.

With the free spinon mean-field model HMFT, we further calculate the spectral 
weight along the energy direction for fixed momenta. The discrepancy between the 
theoretical results in Extended Data Fig. 5d and the experimental results in Extended 
Data Fig. 5e occurs at low energies. We attribute this low-energy  discrepancy to 
the fact that the free spinon theory ignores the gauge fluctuations. The enhance-
ment of the low-energy spectral weight compared to the free spinon results is 
then identified as possible evidence of strong gauge fluctuations in the system;  
we elaborate on this in the following discussion of the heat capacity  behaviour.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

Gang Chen’s theory group 

Gang Chen’s theory group
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Extended Data Figure 5 | Calculation of the zero-flux Hamiltonian.  
a, Spinon dispersion ωk of the zero-flux Hamiltonian. The grey plane 
marks the Fermi level at ω =  0; its intersection with the band gives the 
Fermi surface. The light orange hexagon represents the projection of the 
first Brillouin zone. The maximum of ωk is 3t and the minimum is − 6t, 
providing a bandwidth of 9t. b, Calculated dynamic spin structure factor 
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here, which is obtained using π π= / − /H k k(4 ) 3 (4 )x y  and 
π π= / + /K k k(4 ) 3 (4 )x y . c, Measured spin excitation spectrum along 

high-symmetry directions at 70 mK. d, Calculated energy dispersion at the 
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To characterize the behaviour of the local moment of Yb, we first 
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(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
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spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
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the spectral intensities near the zone centre (that is, the Γ  point) are  
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tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
1

2

X

↵,�

f†
r↵�↵�

fr� , (5)

where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (6)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (7)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, (8)

Gr =
1

4
 †

r(I2⇥2 ⌦ �) r, (9)

where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
try operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.

III. FERMIONIC PARTON CONSTRUCTION

To describe the U(1) QSL that we propose for
YbMgGaO4, we introduce the fermionic spinon opera-
tor fr↵(↵ =", #) that carries spin-1/2, and express the
Yb local moment as

Sr =
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where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
↵

f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form
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where trr0
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is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f
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r")
T and
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where urr0 is a hopping matrix that is related to trr0
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.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52
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where I2⇥2 is a 2⇥ 2 identity matrix. Under the symme-
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O(r)UO O(r), (10)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix42.

IV. PROJECTIVE SYMMETRY GROUP
CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy

urr0 = GO†
O(r)U

†
OuO(r)O(r0)UOGO

O(r0). (11)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the

The spin transformation and gauge transformation commute with each other. 
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FIG. 1. (a) The intralayer symmetries of the R3̄m space group for
YbMgGaO4 [35]. (b) The same lattice symmetry group with a dif-
ferent complete set of elementary transformations. Here S6 ≡ C−1

3 I .
The bold arrow is the axis for the C2 rotation [43].

coupling is present. In Sec. V, we explain the relationship89

between the spinon band structure and the projective symmetry90

group of the spinon mean-field states. In Sec. VI, we focus on91

the U1A00 state and study the spectroscopic properties of92

this state. Finally in Sec. VII, we discuss the experimental93

relevance and remark on the thermal transport result and94

the competing scenarios and proposals. The details of the95

calculation are presented in the Appendixes.96

II. SPACE-GROUP SYMMETRY97
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translations, T1 and T2, one twofold rotation, C2, one threefold99
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38], we further supplement the symmetry group with the time108

reversal T such that O−1T OT = 1 and T 2 = 1, where O is109
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hoppings, and it has the following form: 122
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freedom down to U (1). Here, to get a more compact form 125
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diagonal with GO
r = I2×2 ⊗ WO

r , where WO
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal, all PSGs here have W T

r = I2⇥2.
The last two letters in the labels of the U(1) QSLs are extra
quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.

II. SPACE GROUP SYMMETRY

It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6

(see the definition in Fig. 1b). It is ready to confirm
I = C3

6 , C3 = C2
6 with the definition C6 ⌘ C�1

3 I. The
multiplication rules of this symmetry group is given as
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.
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Yb local moment as
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where � = (�x,�y,�z) is a vector of Pauli matrices. We
further impose a constraint

P
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f†
r↵fr↵ = 1 on each site

to project back to the physical Hilbert space of the spins.
The choice of fermionic spinons allows a local SU(2)
gauge freedom47.

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)

QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form
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where trr0
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is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (6) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (6), we follow Ref. 48 and introduce the
extended Nambu spinor representation for the spinons
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where urr0 is a hopping matrix that is related to trr0
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.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by47,49–52
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where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
gauge transformation and the spin rotation are commu-
tative53 simply because [Sµ
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where GO
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responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (10), the
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tative53 simply because [Sµ
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r] = 0. Moreover, from
Eq. (9), the gauge transformation GO

r is block diagonal
with GO
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r , where WO
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CLASSIFICATION

For the spinon mean-field Hamiltonian in Eq. (6), the
lattice symmetries are realized projectively and form the
projective symmetry group (PSG). To respect the lat-
tice symmetry transformation O, the mean-field ansatz
should satisfy
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The ansatz itself is invariant under the so-called invariant
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r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
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quantum numbers in the PSG classification42.

and gives a large spinon scattering density of states that
is consistent with the inelastic neutron scattering (INS)
results.
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It was pointed out that the intralayer symmetries in-
volves two translations, T1 and T2, one 2-fold rotation,
C2, one 3-fold rotation, C3, and one spatial inversion
I (see Fig. 1a)35,39. Here we work with an equivalent
symmetry group that involves two translations, T1 and
T2, one 2-fold rotation, C2, and one more operation, C6
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Due to the presence of time reversal in
YbMgGaO4

34,36–38, we further supplement the symmetry
group with the time reversal T such that O�1T OT = 1
and T 2 = 1, where O is a lattice symmetry operation.
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to project back to the physical Hilbert space of the spins.
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where we used the fact that the gauge transformation
commutes with the spin rotation. As the series of rota-
tions O1O2O3O4 either rotate the spinons by 0 or 2⇡,

UO1
UO2

UO3
UO4

= ±I4⇥4, (14)

where I4⇥4 is a 4⇥ 4 identity matrix. Since
{±I4⇥4} ⇢ IGG, then
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O4(r)
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This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
“canonical gauge” for the IGG with

IGG = {I2⇥2 ⌦ ei��
z |� 2 [0, 2⇡)}. (16)

Under the canonical gauge, the gauge transformation as-
sociated with the symmetry operation O takes the form
of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (17)

where nO = 0, 1. For translations, one can always choose
a gauge such that

WT1
r = (i�x)n1 , (18)

WT2
r = (i�x)n2ei�2[x,y]�

z

(19)

with n1, n2 = 0, 1 and �2[0, y] = 0. The group relation
in Eq. (3) further demands n1 = n2 = 0. Thus the group
relation in Eq. (1) gives WT1

r = 1,WT2
r = eix�1�

z

, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t

0
1 and t2 are hoppings in their

spinon mean-field Hamiltonians42. The Dirac cones are high-
lighted in dashed circles. The dashed line refers to the Fermi
level. (d) The Brioullin zone of the triangular lattice.

the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01

MF =
P

k h↵�

(k)f†
k↵fk� in the

momentum space and h(k) is a 2⇥ 2 matrix with

h(k) = d0(k)I2⇥2 +
3X

µ=1

d
µ

(k)�µ. (20)

For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
the PSG demands that55 spinons to transform as

fk" ! �e�i⇡/3f†
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�1
6 k,#, (21)
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�C

�1
6 k,". (22)

Applying C6 three times and keeping HMF invariant, we
require

h(k) = �[�yh(k)�y]T (23)

which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
d
µ

(k) = �d
µ

(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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the U1A10 state gives a vanishing mean-field Hamilto-
nian for the spinon hoppings between the first and the
second neighbors, the remaining ones except the U1A00
state all have symmetry protected band touchings at the
spinon Fermi level (see Fig. 2). To illustrate the idea54,
we consider the U1A01 state where the spinon Hamilto-
nian has the form HU1A01

MF =
P
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(k)f†
k↵fk� in the

momentum space and h(k) is a 2⇥ 2 matrix with

h(k) = d0(k)I2⇥2 +
3X

µ=1
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µ

(k)�µ. (20)

For this band structure there are nondegenerate band
touchings at �, M and K points that are protected by
the PSG of the U1A01 state. Under the operation C6,
the PSG demands that55 spinons to transform as

fk" ! �e�i⇡/3f†
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Applying C6 three times and keeping HMF invariant, we
require

h(k) = �[�yh(k)�y]T (23)

which forces d0(k) = 0. The time reversal
symmetry (T = i�y ⌦ I2⇥2K) further requires that
d
µ

(k) = �d
µ

(�k). Thus we have symmetry protected
band touchings with h(k) = 0 at the time reversal in-
variant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole transfor-
mation is involved for C6

42. Using those two symmetries,
we further establish the band touching at the K points.
Likewise, for the U1A11 state, the PSG demands the
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This immediately indicates that, to classify the PSGs for
a spin-orbit-coupled Mott insulator, we only need to fo-
cus on the gauge part, first find the gauge transformation
with the same procedures as those for the conventional
Mott insulators with spin-only moments47, and then ac-
count for the spin rotation.

For the mean-field ansatz in HMF, we choose the
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, where
�1 is the flux through each unit cell of the triangular
lattice and takes the value of 0 or ⇡42. The PSGs with
�1 = 0 (⇡) are labeled by U1A (U1B). Among the sixteen
algebraic PSGs that we find, eight unphysical solutions
have T 2 = 1 for the spinons and give vanishing spinon
hoppings everywhere. In Tab. I and the Supplementary
information, we list the remaining eight PSGs that have
T 2 = �1 consistent with the fact that fermionic spinons
are Kramers doublets42.

V. MEAN-FIELD STATES

Here we obtain the spinon mean-field Hamiltonian
from Tab. I and explain why the U1A00 state stands
out as the candidate ground state for YbMgGaO4. We
start with the U1A states. Among the four U1A states,
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

U1B00 I2⇥2 (�1)xI2⇥2 (�1)xyI2⇥2 (�1)xy�
y(y�1)

2 I2⇥2

U1B10 I2⇥2 (�1)xI2⇥2 i�y(�1)xy (�1)xy�
y(y�1)

2 I2⇥2

U1B01 I2⇥2 (�1)xI2⇥2 (�1)xyI2⇥2 i�y(�1)xy�
y(y�1)

2

U1B11 I2⇥2 (�1)xI2⇥2 i�y(�1)xy i�y(�1)xy�
y(y�1)

2

TABLE II. List of the gauge transformations for the sym-
metry operations of the eight U(1) PSGs, where (x, y) is the
coordinate in the oblique coordinate system. For time rever-
sal symmetry, all PSGs have the same gauge transformation
W T

r = I2⇥2.

where urr0 is a hopping matrix that is related to trr0
,↵�

,

urr0 =

0

BBBBB@

trr0
,"" 0 trr0

,"# 0

0 �t⇤rr0
,## 0 t⇤rr0

,#"
trr0

,#" 0 trr0
,## 0

0 t⇤rr0
,"# 0 �t⇤rr0

,""

1

CCCCCA
. (B3)

1. Spatial Symmetry

First of all, the gauge transformation and spin rotation
are commutative. So in the PSG classification, we only
need to focus on the gauge part of the PSG transforma-
tion. In the canonical gauge IGG = {I2⇥2 ⌦ ei��

z |� 2
[0, 2⇡)}, the gauge transformation associated with a given
symmetry operation O takes the form

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (B4)

where nO = 0, 1. For the symmetry multiplication
rule O1O2O3O4 = 1 where O

i

is an unitary trans-
formation, the corresponding PSG relation becomes
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG, or equivalently,

WO1
r WO2

O2O3O4(r)
WO3

O3O4(r)
WO4

O4(r)

2 {ei��z |� 2 [0, 2⇡)}. (B5)

We start with T1 and T2, where

WT1
r = (i�x)nT1 , (B6)

WT2
r = (i�x)nT2 ei�T2

[r]�z

. (B7)

Through Eq. (A10) that connects T1 and T2, one im-
mediately has n

T1 = n
T2 . From Eq. (A11) where the

total number of T1 and T2 is odd, one immediately has
n
T1 = n

T2 = 0. So we have

WT1
r = 1, WT2

r = ei�T2 [x,y]�
z

. (B8)

Using Eq. (A9), we have

[WT1T1]
�1[WT2T2][W

T1T1][W
T2T2]

�1

= T�1
1 (WT1)�1WT2T2W

T1T1T
�1
2 W�1

T2

2 {ei��z |� 2 [0, 2⇡)}, (B9)

which leads to the result

�
T2
[x+ 1, y]� �

T2
[x, y] ⌘ �1 (B10)

with �1 to be determined. Since it is always possible
to choose a gauge such that �

T2 [0, y] = 0, then we have
�
T2 [x, y] = �1x.
Similarly, T�1

1 T�1
2 T1T2 = 1 leads to

�
T2
[x+ 1, y + 1]� �

T2
[x, y + 1] = �2. (B11)

It is ready to find �2 = �1.
We continue to find WC6

r and WC2
r . For the operation

C6 with WC6
r = (i�x)nC6 ei�C6 [x,y]�

z

, Eq. (A11) leads to

��
C6 [T1(r)] + �

C6 [r] = ��1y + �3, (B12)

��
C6 [T2(r)] + �

C6 [r] = �4 � �1x+ �1y, (B13)

for n
C6 = 0, and

��
C6 [T1(r)] + �

C6 [r] = ��1y + �3 (B14)

��
C6 [T2(r)] + �

C6 [r] = �4 + �1x+ �1y. (B15)

for n
C6 = 1. So we obtain

n
C6 = 0,�

C6 [r] = �1xy � �3x� �4y �
�1y(y � 1)

2
(B16)

n
C6 = 1,�

C6 [r] = �1xy � �3x� �4y �
�1y(y � 1)

2
.(B17)

For n
C6 = 1, we further require �1 = 0,⇡. C6

6 = 1 is
automatically satisfied with the above relations for both
n
C6 = 0 and n

C6 = 1.
For WC2

r with WC2
r = (i�x)nC2 ei�C2 [x,y]�

z

, we need to
consider two separate cases with n

c2 = 0, 1, respectively.
If n

C2 = 0, Eq. (A10) leads to

��
T2 [C

�1
2 T1(r)]� �

C2 [T1(r)] + �
C2 [r] = �5, (B18)

��
C2 [T2(r)] + �

T2 [T2(r)] + �
C2 [r] = �6. (B19)

So we obtain �
C2 [x, y] = ��5x��6y�xy�1 and �1 = 0,⇡

for n
C2 = 0. Similary, for n

C2 = 1, we obtain �
C2 [x, y] =

��5x� �6y � xy�1.
Using C2

2 = 1, we further have �6 = ��5 for n
C2 = 0,

and �6 = �6 for n
C2 = 1. So we arrive at the result

n
C2 = 0, �

C2 [x, y] = ��5(x� y)� xy�1, (B20)

n
C2 = 1, �

C2 [x, y] = ��5(x+ y)� xy�1. (B21)

Here, to simplify the above expression, we choose a pure
gauge tranformation W̃ a

r = eix�
z
�5 . Under the pure

gauge transformation, the gauge part of the PSG trans-
forms as

WO
r ! W̃ a

rW
O
r W̃ a†

O�1(r). (B22)
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TABLE III. The transformation for the spinons under four U1A PSGs that are labeled by U1AnC2nS6 .

U(1) PSGs T1 T2 C2 S6

U1A00
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f(y,x),↓

f(x,y),↓ → ei 5π
6 f(y,x),↑

f(x,y),↑ → e−i π
3 f(x−y,x),↑

f(x,y),↓ → e+i π
3 f(x−y,x),↓

U1A10
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f

†
(y,x),↑

f(x,y),↓ → e−i π
6 f

†
(y,x),↓

f(x,y),↑ → e−i π
3 f(x−y,x),↑

f(x,y),↓ → e+i π
3 f(x−y,x),↓

U1A01
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f(y,x),↓

f(x,y),↓ → ei 5π
6 f(y,x),↑

f(x,y),↑ → −e−i π
3 f

†
(x−y,x),↓

f(x,y),↓ → e+i π
3 f

†
(x−y,x),↑

U1A11
f(x,y),↑ → f(x+1,y),↑
f(x,y),↓ → f(x+1,y),↓

f(x,y),↑ → f(x,y+1),↑
f(x,y),↓ → f(x,y+1),↓

f(x,y),↑ → ei π
6 f

↓†
(y,x),↑

f(x,y),↓ → e−i π
6 f

↓†
(y,x),↓

f(x,y),↑ → −e−i π
3 f

†
(x−y,x),↓

f(x,y),↓ → e+i π
3 f

†
(x−y,x),↑

Hamiltonian H U1A00
MF has already been given in the main text.

This state gives a large spinon Fermi surface in the Brillouin
zone. The spinon mean-field states of the U1A01 state and the
U1A11 state are given by

H U1A01
MF =

∑

x,y

t1
[
−if

†
(x+1,y),↑f(x,y),↓ − if

†
(x+1,y),↓f(x,y),↑ − e− iπ

6 f
†
(x,y+1),↑f(x,y),↓

+ e
iπ
6 f

†
(x,y+1),↓f(x,y),↑ − e

iπ
6 f

†
(x+1,y+1),↑f(x,y),↓ + e− iπ

6 f
†
(x+1,y+1),↓f(x,y),↑ + H.c.

]

+ t2
[
e

i2π
3 f

†
(x+1,y−1),↑f(x,y),↓ + e

iπ
3 f

†
(x+1,y−1),↓f(x,y),↑ + f

†
(x+1,y+2),↑f(x,y),↓

− f
†
(x+1,y+2),↓f(x,y),↑ + e

iπ
3 f

†
(x+2,y+1),↑f(x,y),↓ + e

i2π
3 f

†
(x+2,y+1),↓f(x,y),↑ + H.c.

]
(C6)

and

H U1A11
MF =

∑

x,y

t1
[
if

†
(x+1,y),↑f(x,y),↑ − if

†
(x+1,y),↓f(x,y),↓ + if

†
(x,y+1),↑f(x,y),↑

− if
†
(x,y+1),↓f(x,y),↓ − if

†
(x+1,y+1),↑f(x,y),↑ + if

†
(x+1,y+1),↓f(x,y),↓ + H.c.

]

+ t ′1
[
−f

†
(x+1,y),↑f(x,y),↓ + f

†
(x+1,y),↓f(x,y),↑ + e

iπ
3 f

†
(x,y+1),↑f(x,y),↓

+e
i2π

3 f
†
(x,y+1),↓f(x,y),↑ + e

i2π
3 f

†
(x+1,y+1),↑f(x,y),↓ + e

iπ
3 f

†
(x+1,y+1),↓f(x,y),↑ + H.c.

]

+ t2
[
e

iπ
6 f

†
(x+1,y−1),↑f(x,y),↓ + e

i5π
6 f

†
(x+1,y−1),↓f(x,y),↑ − if

†
(x+1,y+2),↑f(x,y),↓

− if
†
(x+1,y+2),↓f(x,y),↑ + e

i5π
6 f

†
(x−2,y−1),↑f(x,y),↓ + e

iπ
6 f

†
(x−2,y−1),↓f(x,y),↑ + H.c.

]
, (C7)

where in both Hamiltonians t1,t
′
1 denote the first-neighbor

hoppings and t2 denotes the second-neighbor hopping.
The band structures for specific choices of the hopping

parameters are plotted in the main text. Clearly, we observe
the band touchings at the ", M , and K points for the U1A01
state, and band touchings at the " and M points for the U1A11
state.

APPENDIX D: THE U1A00 STATE AND
THE SPECTROSCOPIC RESULTS

1. Free spinon mean-field theory

The spinon mean-field Hamiltonian of the U1A00 state is

H U1A00
MF = −t1

∑

⟨r r ′⟩,α
f †

rαfrα − t2
∑

⟨⟨r r ′⟩⟩,α
f †

rαfrα, (D1)

from which we compute the dynamic spin structure factor for
different choices t2/t1. The dynamic spin structure factor is
given by

S(q,ω) = 1
N

∑

r,r ′

eiq·(r−r ′)
∫

dt e−iωt

〈
%U1A00

MF

∣∣S−
r (t)S+

r ′ (0)
∣∣%U1A00

MF

〉

=
∑

n

δ(ω − ξnq)
∣∣⟨n|S+

q

∣∣%U1A00
MF

〉∣∣2
, (D2)

where N is the total number of spins, the summation is over all
mean-field states with the spinon particle-hole excitation, and
ξnq is the energy of the nth excited state with the momentum q.
The results are depicted in Figs. 4(a)–4(e) and are consistent
with the inelastic neutron scattering results [36,37]. All the
results so far are independent from any microscopic spin
interaction.
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Spectroscopic constraints

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

The U1A00 state is the spinon Fermi surface state  
that we proposed in Shen, et al, Nature.
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r WC6
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TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
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one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
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2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG
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GO1
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GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

We use PSG to predict the corresponding spectrum. Yao-Dong Li
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where we used the fact that the gauge transformation com-154

mutes with the spin rotation. As the series of rotations155

O1O2O3O4 rotate the spinons by either 0 or 2π ,156

UO1
UO2

UO3
UO4

= ±I4×4, (14)

where I4×4 is a 4 × 4 identity matrix. Since {±I4×4} ⊂ IGG,157

then158

GO1
r GO2

O2O3O4(r)G
O3
O3O4(r)G

O4
O4(r) ∈ IGG. (15)

This immediately indicates that, to classify the PSGs for a159

spin-orbit-coupled Mott insulator, we only need to focus on160

the gauge part, first find the gauge transformation with the161

same procedures as those for the conventional Mott insulators162

with spin-only moments [47], and then account for the spin163

rotation.164

For the mean-field ansatz in HMF, we choose the “canonical165

gauge” for the IGG with166

IGG = {I2×2 ⊗ eiφσ z |φ ∈ [0,2π )}. (16)

Under the canonical gauge, the gauge transformation associ-167

ated with the symmetry operation O takes the form168

GO
r = I2×2 ⊗ WO

r

≡ I2×2 ⊗
[
(iσ x)nO eiφO [r]σ z]

, (17)

where nO = 0,1. For translations, one can always choose a169

gauge such that170

WT1
r = (iσ x)n1 , (18)

WT2
r = (iσ x)n2eiφ2[x,y]σ z

, (19)

with n1,n2 = 0,1 and φ2[0,y] = 0. The group relation in171

Eq. (3) further demands n1 = n2 = 0. Thus the group relation172

in Eq. (1) gives WT1
r = 1, WT2

r = eixφ1σ
z

, where φ1 is the flux173

through each unit cell of the triangular lattice and takes the174

value of 0 or π Appendix B. The PSGs with φ1 = 0 (π ) are175

labeled by U1A (U1B). Among the 16 algebraic PSGs that we176

find, eight unphysical solutions have T 2 = 1 for the spinons177

and give vanishing spinon hoppings everywhere. In Table I and178

the Appendixes, we list the remaining eight PSGs that have179

T 2 = −1 consistent with the fact that fermionic spinons are180

Kramers doublets Appendix B.181

V. MEAN-FIELD STATES182

Here we obtain the spinon mean-field Hamiltonian from183

Table I and explain why the U1A00 state stands out as the184

TABLE I. List of the gauge transformations for the four U1A
PSGs. For the time reversal, all PSGs here have W T

r = I2×2. The last
two letters in the labels of the U(1) QSLs are extra quantum numbers
in the PSG classification Appendix B.

U (1) QSL WT1
r WT2

r WC2
r WS6

r

U1A00 I2×2 I2×2 I2×2 I2×2
U1A10 I2×2 I2×2 iσ y I2×2
U1A01 I2×2 I2×2 I2×2 iσ y

U1A11 I2×2 I2×2 iσ y iσ y

FIG. 2. (a)–(c) The mean-field spinon bands along the high-
symmetry momentum lines [see (d)] of the U1A00, U1A01, and
U1A11 states, where t1, t ′

1, and t2 are hoppings in their spinon mean-
field Hamiltonians Appendix C. The Dirac cones are highlighted in
dashed circles. The dashed line refers to the Fermi level. (d) The
Brillouin zone of the triangular lattice.

candidate ground state for YbMgGaO4. We start with the U1A 185

states. Among the four U1A states, the U1A10 state gives 186

a vanishing mean-field Hamiltonian for the spinon hoppings 187

between the first and second neighbors; the remaining ones 188

except the U1A00 state all have symmetry-protected band 189

touchings at the spinon Fermi level (see Fig. 2). To illustrate 190

the idea [54], we consider the U1A01 state where the spinon 191

Hamiltonian has the form H U1A01
MF =

∑
k hαβ(k)f †

kαfkβ in the 192

momentum space and h(k) is a 2×2 matrix with 193

h(k) = d0(k)I2×2 +
3∑

µ=1

dµ(k)σµ. (20)

For this band structure there are nondegenerate band touchings 194

at &, M , and K points that are protected by the PSG of the 195

U1A01 state. Under the operation S6, the PSG demands that 196

spinons transform as 197

fk↑ → −e−iπ/3f
†
−S−1

6 k,↓, (21)

fk↓ → eiπ/3f
†
−S−1

6 k,↑. (22)

Applying S6 three times and keeping HMF invariant, we require 198

h(k) = −[σ yh(k)σ y]T , (23)

which forces d0(k) = 0. The time-reversal symmetry 199

(T = iσ y ⊗ I2×2K) further requires that dµ(k) = −dµ(−k). 200

Thus we have symmetry-protected band touchings with h(k) = 201

0 at the time-reversal invariant momenta & and M . The K 202

points are invariant under C2 and S6 because the spinon 203

particle-hole transformation is involved for S6 Appendix C. 204

Using those two symmetries, we further establish the band 205

touching at the K points. Likewise, for the U1A11 state, the 206

PSG demands the band touchings at & and M points. Because 207

there are only two spinon bands for the U1A states, these band 208

touchings generically occur at the spinon Fermi level. 209
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FIG. 3. (a) S(q,!) along the high-symmetry momentum
lines from HU1A00

MF with t2 = 0.2t1. The spinon bandwidth
B = 9.6t1. (b) The RPA corrected SRPA(q,!) along the
high symmetry momentum lines. We have set the parame-
ters in the spin model to be J±/Jzz = 0.915, J±±/Jzz = 0.35,
and Jz±/Jzz = 0.2. The ratio Jzz/t1 is obtained from
Refs. [33, 36] and fixed to be 1.0 for concreteness.

⇥Sz

r0 + Sz

r(�
⇤
rr0S

+
r0 � �rr0S

�
r0)] is the microscopic spin

model that was introduced in Refs. 33 and 35, and �rr0

is a bond-dependent phase factor due to the spin-orbit-
entangled nature of the Yb moments [35, 46]. For the
specific choice of exchange couplings with J± = 0.915J

zz

in the following, we find the minimum variational energy
Evar = �0.39J

zz

and occurs at t2 = 0.2t1 [46]. Here, the
expectation values of the J±± and J

z± interactions sim-
ply vanish, and this is an artifact of the free spinon mean-
field theory with the isotropic hoppings in Eq. (14). We
here establish that the U1A00 state is a spinon Fermi
surface U(1) QSL.

Spectroscopic properties.—For the U1A00 state, the
dynamic spin structure essentially detects the spinon
particle-hole excitation across the Fermi surface. The
information about the Fermi surface is encoded in the
profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon
mean-field theory [46] (see Fig. 3a). Qualitatively similar
to the mean-field theory with only first neighbor spinon
hoppings, the improved free-spinon mean-field theory of
HU1A00

MF captures the crucial features of the inelastic neu-
tron scattering results [36, 37]. The spinon particle-hole
continuum covers a large portion of the Brillouin zone,
and vanishes beyond the spinon bandwidth. More im-
portantly, the “V-shape” upper excitation edge near the
� point in Fig. 3a was clearly observed in the experi-
ments [36, 37], and the slope of the “V-shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, HU1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry
that is brought by the J±± and J

z± interactions. To
incorporate the J±± and J

z± interactions, we here follow
the phenomenological treatment for the “t-J” model in
the context of cuprate superconductors [58] and consider
H = HU1A00

MF +H 0
spin, where H 0

spin are the J±± and J
z±

interactions. In the parton construction, H 0
spin is treated

as the spinon interactions and thus introduces the spin
rotational symmetry breaking. With a random phase

approximation (RPA) for the interactionH 0
spin, we obtain

the dynamic spin susceptibility [58]

�RPA(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (16)

where �0 is the free-spinon susceptibility, and J (q) is
the exchange matrix from H 0

spin [46]. The renormalized

SRPA(q,!) can be read o↵ from �RPA via SRPA(q,!) =

� 1
⇡

Im
⇥
�RPA(q,!)

⇤+�
and is plotted in Fig. 3b.

The very precise values of J±± and J
z± cannot be de-

termined from the existing data-rich neutron scattering
experiment in a strong field normal to the triangular
plane. This is partly due to the experimental resolu-
tion and others [46], and is also due to the fact that
the linear spin wave spectrum for the field normal to
the plane is independent of J

z± and is not quite sen-
sitive to J±± [35, 39]. In Fig. 3b, instead, we choose
(J±±, Jz±) to fall into the disordered region of the phase
diagram in Ref. [35] where the quantum fluctuations are
expected to be strong [35, 46]. While the free spinon
theory already captures the main features of the neutron
scattering data [36, 37], the anisotropic spin interaction
H 0

spin, included by RPA, merely redistributes the spectral
weight in the momentum space. We find in Fig. 3b that,
the low-energy spectral weight at M is slightly enhanced,
a feature observed in Refs. 36 and 37. From our choice
of the parameters, it is plausible that this peak results
from the proximity to a phase with a stripe-like magnetic
order [35, 36, 39, 46].
Discussion.—We have demonstrated that the spinon

Fermi surface U(1) QSL gives a consistent explanation
of the inelastic neutron scattering result in YbMgGaO4.
Moreover, the anisotropic spin interaction, slightly en-
hances the spectral weight at the M points. The
U(1) gauge fluctuation in the spinon Fermi surface U(1)
QSL [42, 43] was suggested to be the cause for the sub-
linear temperature dependence of the heat capacity in
YbMgGaO4 [35, 36, 39, 44].
In YbMgGaO4, the exchange coupling between the Yb

moments is relatively weak [33]. It is feasible to fully po-
larize the spin with experimentally accessible magnetic
fields [35, 37, 39]. The polarized state is a simple prod-
uct state with short-range quantum entanglement. Since
the ground state of YbMgGaO4 is expected to be ex-
otic [36, 39], there is a quantum phase transition from an
exotic state with long-range quantum entanglement to a
simple product state with short-range quantum entan-
glement as one increases the magnetic field. This field-
driven transition is necessarily a unconventional tran-
sition beyond the traditional Landau’s paradigm and
has not been studied in the previous spin liquid candi-
dates [59–62]. The smooth growth of the magnetization
with varying external fields indicates a continuous tran-
sition [33]. Since we propose YbMgGaO4 to be a spinon
Fermi surface U(1) QSL and gapless, the transition would
be associated with the openning of the spin gap at the

7

FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.
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where we have omitted J±± and J
z± because they do not

conserve spin, therefore their contribution to Evar is zero.
This is an artifact of the free spinon theory of HU1A00

MF
that only includes isotropic spinon hoppings for the first
two neighbors.

As we describe in the main text, we treat the J±± and
J
z± interaction as the spinon interaction. We include

the spinon interaction and compute the dynamic spin
susceptibility by a standard random phase approximation
(RPA). The RPA susceptibility is given by

�(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (69)

where J (q) is the spin exchange matrix from H 0
spin

J (q) =

0

BB@

0 �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 0 (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (70)

with uq = cos(q · a1), vq = 1
2 (cos(q · a2) + cos(q · a3)),

and wq = 1
2 (cos(q · a2)� cos(q · a3)).

V. THE U1B STATES

In this section we use PSG to determine the free spinon
mean-field Hamiltonian for the U1B states to the first and
second spinon hoppings. In Fig. 2, we further present
their spectroscopic features for comparison. Like the
notation for U1As, the U1B states are also labeled by
U1Bn

C2nC6 .

A. The U1B00 state

For ⇡-flux states, the dynamic spin structure factor has
a enhanced periodicity due to anticommutative lattice
translations. A direct consequence of the periodicity is
that � and M become equivalent, and the V-shaped upper
excitation edge in Ref. 2 cannot be reproduced for the
U1B states.
We choose the spinon basis in the momentum space

fk,I = (f
A,k,", fB,k,", fA,k,#, fB,k,#)

T , where A and B
denote the two inequivalent sites in each unit cell due
to ⇡-flux.
The Hamiltonian is written in terms of the Dirac ma-

trices �a and their anticommutators �ab = [�a,�b]/(2i).
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Explore the weak field regime

Detecting Spin Fractionalization in a Spinon Fermi Surface Spin Liquid:
Prediction and Application for YbMgGaO4
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Continuing the recent proposal of the spinon Fermi surface U(1) spin liquid state for YbMgGaO4 in
Yao-Dong Li, et al, arXiv:1612.03447 and Yao Shen, et al, Nature 2016, we explore the experimental
consequences of the external magnetic fields on this exotic state. Specifically, we focus on the
weak field regime where the spin liquid state is preserved and the fractionalized spinon excitations
remain to be a good description of the magnetic excitations. From the spin-1/2 nature of the
spinon excitation, we predict the unique features of spinon continuum when the magnetic field is
applied to the system. Due to the small energy scale of the rare-earth magnets, our proposal for
the spectral weight shifts in the magnetic fields can be immediately tested by inelastic neutron
scattering experiments. Several other experimental aspects about the spinon Fermi surface and
spinon excitations are discussed and proposed. Our work provides a new way to examine the
fractionalized spinon excitation and the candidate spin liquid states in the rare-earth magnets like
YbMgGaO4.

I. INTRODUCTION

A quantum spin liquid (QSL) is an exotic quantum
phase of matter that carries long-range quantum en-
tanglements and is often characterized by the emergent
gauge structure and the fractionalized spin excitation1–3.
The experimental search of QSLs has lasted for forty
years since the original proposal by Anderson in 19734,5.
Many QSL candidate materials have been proposed, but
the confirmation of QSLs has not been achieved in any
of these materials. Recently, a rare-earth triangular lat-
tice antiferromagnet YbMgGaO4, that was first discov-
ered in the powder form6, is proposed as the first QSL
candidate in the strong spin-orbit-coupled Mott insulator
with odd electron fillings7–11. This proposal is compat-
ible with the more fundamental view based on the time
reversal symmetry and quantum entanglements7–9,11,12.
Due to the unprecedented experimental advantage such
as the availability of large high-quality single-crystal sam-
ples7, YbMgGaO4 may stand out as another important
QSL candidate for which a variety of experimental tech-
niques can be implemented and the theoretical proposal
and ideas may be directly tested.

The Yb local moments in YbMgGaO4 remain disor-
dered down to the lowest measured temperature at which
the magnetic entropy is almost exhausted6,9,13,14. The
low-temperature heat capacity has a sub-linear temper-
ature dependence6,14,15 that is close to the C

v

/ T 2/3

behavior for the spinon Fermi surface U(1) QSL16–18.
More substantially, the dynamic spin structure, that is
measured by the inelastic neutron scattering on single-
crystal samples9,14, shows a reasonable agreement with
the theoretical prediction for the spinon Fermi surface
state9,11,16–18.

There are two major questions concerning the candi-
date QSL state in YbMgGaO4. The first and probably
the most crucial one is whether the excitation continuum

from the inelastic neutron scattering is truly a spinon
continuum and represents the spin quantum number frac-
tionalization. The second question is the microscopic
mechanism for the QSL behavior of YbMgGaO4. It was
suggested that the anisotropic interaction of the local
moments, due to the spin-orbit entanglement, could en-
hance the quantum fluctuation and destabilize the mag-
netically ordered phases7,8,10. This observation was first
proposed as one possible mechanism for the QSL behav-
ior in YbMgGaO4

7,8, and explained in details in Refs. 8
and 10. Both questions have been partially addressed
by the mean-field theory analysis9 and the later pro-
jective symmetry analysis 9,11 that identify the spinon
Fermi surface U(1) QSL as the candidate ground state
for YbMgGaO4. Clearly, this exotic state provides a con-
sistent explanation for both thermodynamic and spectro-
scopic behaviors of YbMgGaO4

9.

Ideally, it would be nice to directly solve our micro-
scopic spin model and see if one can obtain any QSL
ground state in the phase diagram, then both questions
may be completely resolved. Due to the complication of
the model, this is di�cult even numerically8,11. In this
work, instead of directly tackling the anisotropic spin
model8,10,19, we work on the spinon mean-field Hamil-
tonian9,11 and address the first question about how to
detect or confirm the very existence of the fractionalized
spinon excitations in YbMgGaO4. We propose a sim-
ple experimental scheme to test the spin quantum num-
ber fractionalization and confirm the spinon excitation.
We suggest to apply a weak external magnetic field and
study the spectral weight shifts of the dynamic spin struc-
ture factor. The splitting of the degenerate spinon bands
by the magnetic field is directly revealed by the spinon
particle-hole continuum that is detected by the dynamic
spin structure factor. We show that the persistance of
the spinon continuum, the spectral weight shifts and the
spectral crossing around the � point, the existence of the
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PhysRevB, 96, 075105
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Organic spin liquids?

formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is

(a) 

b 

c 
0 

(b) 

(c) 

t' t 

c 

0 
a* 
a 

FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.
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3

and the four-spin ring exchange is strongly suppressed
due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
field of the spinons in the organic spin liquid does not ap-
ply to YbMgGaO4. Although the strong magnetic field
fully polarizes the Yb local moments along the field di-
rection and thus destabilizes the spin liquid state, in the
weak field regime, the field does not change the spin liq-
uid ground state and the spinon remains to be a valid
description of the magnetic excitation. From the above
argument, if YbMgGaO4 ground state is a spinon Fermi
surface QSL, the appropriate spinon mean-field Hamilto-
nian for YbMgGaO4 in a weak external magnetic field
should be
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X

hiji,↵

f†
i↵

f
j↵

� t2
X

hhijii,↵

f†
i↵

f
j↵

�
X

i,↵�

g
z

µBhz

f†
i↵

�z

↵�

2
f
i�

� µ
X

i,↵

f†
i↵

f
i↵

, (2)

where only Zeeman coupling is needed, and g
z

is the
Landé factors for the field normal to the triangular plane,
respectively. The mean-field Hamiltonian in Eq. (2) will
be the basis of the analysis below.

IV. SPECTRAL WEIGHT SHIFTS FROM THE
FREE-SPINON THEORY

For each magnetic field, the spinon hopping and the
chemical potential in Eq. (2) need to be re-determined
by optimizing the variational energy of the microscopic
spin Hamiltonian HSpin-h that is
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Here �
ij

’s are the bond-dependent phase variables that
arises from the spin-orbit coupling of the Yb 4f elec-
trons7,8,10,11, and �

ij

= 1, ei2⇡/3, e�i2⇡/3 for ij along the
a1, a2, a3 bond, respectively. Throughout the paper, we
set J± = 0.915J

zz

. The z-direction magnetic field shifts
the chemical potential for the spin-" and spin-# spinons
up and down such that the spinon excitations are given
by

⇠"(k) = ✏(k)� µ" ⌘ ✏(k)� (µ +
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z

µBhz

2
), (4)

⇠#(k) = ✏(k)� µ# ⌘ ✏(k)� (µ � g
z

µBhz

2
), (5)

where ✏(k) is the dispersion that is obtained from the
first line of Eq. (2). In Fig. 1, we plot the mean-field

FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-

Prediction for dynamic spin structure factor

We predict:  
1. The system remains gapless and spinon continuum persists  
2. spectral weight shifts  
3. the spectral crossing at Gamma point  
4. the presence of lower and upper excitation edges

Very different from magnon in the field !! 
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(Fig. 2b). Moreover, the high-field spin-wave spectrum shows a clearly distinct dispersion from that in the low field regime
(Fig. 2a). This further indicates that the low-field continuum cannot be magnon excitations.

We propose that the modulation of the spectral weights of the continuum in the low field regime is consistent with the
previously predicted behavior of the spinon Fermi surface QSL state under magnetic fields29. In the weak field regime,
the proposed zero-field spinon Fermi surface QSL state is expected to persist and the spinon remains to be a valid de-
scription of the magnetic excitation29, which is confirmed by our data that continuum excitations are observed at all energy
measured. It was previously shown in ref. 29 that, the degenerate spinon bands are split and the splitting is given by the
Zeeman energy. The mean-field results for the specific parameter choice of the present experiment are given in details in
Supplemental Materials. In an inelastic neutron scattering measurement, the neutron energy-momentum loss creates the
spin excitation that at the mean-field level corresponds to both the inter-band and intra-band particle-hole excitation of the
spinons. The particle-hole excitation continuum of the spinons persists into the weak field regime. In particular, for zero
momentum transfer of the neutron, the relevant particle-hole excitation would simply be the vertical inter-band excitation
between the spin-up and spin-down spinon bands and leads to the spectral peak at the � point and the Zeeman-split en-
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indicate the boundaries of inter-band (X-shaped edges around 0.6 meV) and intra-band (V-shaped edges below 0.4 meV) excitations. b,
Contour plot of the energy dependent intensity in the nearly polarized state at 9.5 T. The colour scale is shown in linear scale. c, Sketch
of reciprocal space. The dashed lines indicate the Brillouin zone boundaries. d, The split spinon band structure along high-symmetry
points (vertical dashed lines) in momentum space. t is the spinon hopping. The blue and orange bands are of spin-# and spin-" spinons,
respectively. The horizontal dotted line indicates the Fermi level. The solid arrows indicate the spin-flipped inter-band particle-hole
excitations while the dotted arrows indicate spin-unflipped intra-band particle-hole excitations.
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FIG. S 1: Calculation of the spinon band structure and its excitations in a weak magnetic field. a, The dynamic spin structure
factor S+�(p, E) defined in Eq. 3 (left) and illustration of the vertical and tilted inter-band particle-hole excitations (right). These are the
dominant events that are responsible for the spectral peak at (�,�) and the upper and lower excitation edges that cross at the peak29.
b, The dynamic spin structure factor Szz(p, E) defined in Eq. 4 (left) and illustration of the intra-band particle-hole excitations (right).
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combined dynamic spin structure factur defined in Eq. 2 that is proportional to the observed neutron scattering density. In all the figures
we chose the Zeeman splitting gap � = 6t where t is the spinon hopping.
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Finally, lots of isostructural materialsYAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (!CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment !CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

⊙
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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Abstract 

 We report the magnetic properties of compounds in the KBaRE(BO3)2 family (RE= Sm, 

Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb), materials with a planar triangular lattice composed of rare 

earth ions. The samples were analyzed by x-ray diffraction and crystallize in the space group R-

3m. Physical property measurements indicate the compounds display predominantly 

antiferromagnetic interactions between spins without any signs of magnetic ordering above 1.8 

K. The ideal 2D rare earth triangular layers in this structure type make it a potential model 

system for investigating magnetic frustration in rare-earth-based materials.  
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Summary

1. We propose YbMgGaO4 to be a spin-orbit-coupled spin liquid. 

2. The signature of spin fractionalization has been discovered and interpreted as 
spinons.  

3. Predictions have been made for the weakly magnetized regime. It can be 
immediately tested by inelastic neutron.  It has been confirmed in Jun Zhao’s 
recent experiment. 


