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OUTLINE

• Quantum spin liquids: review of history, theories, 
experiments

• Classical spin ice and quantum spin ice

• A realistic spin model on the pyrochlore lattice

• Symmetry enrichment and other prediction
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WHY DO WE CARE ABOUT QSLS?
It breaks the Landau paradigm of phases and phase transitions. 

Liquid-gas transition: Landau symmetry
breaking theory.

FQHE: no symmetry breaking,  ground state degeneracy 
not protected by symmetry, fractional excitation, 
emergent Chern-Simons gauge theory…

We want to look for exotic phases beyond FQHE.   
QSLs provide such a possibility both in theory and 
experiments. 
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HISTORY
• 1973, Anderson’s RVB wavefuc for triangle lattice  

Heisenberg model to suppress AFM Neel order

• 1987, high temperature superconductor without phonons
each bond=spin singlet,  quantum superposition

RVB state becomes a superconductor upon 
doping with mobile holes.  
RVB wavefct is a superconductor wavefct 
after doping.

noncollinear orderGang Chen’s theory group 

Gang Chen’s theory group



THEORY (INCOMPLETE)
• Definition of QSL 

• Classification

• Exact solvable models

• Numerics (and EE): ED (small system), QMC (sign problem),  
DMRG (1d, quasi-1d), etc

Heisenberg model on kagome lattice,
J1-J2 model on square lattice, honeycomb lattice
……

Kitaev’s toric code
Kitaev model on honeycomb lattice,  
many new ones……

2002, Wen’s PSG: an example of H2(SG, GG) for Spinons.
Recent SET: classify symmetry fractionalization patterns of fractional  
excitations Hd(SG,GG). 

historical/experimental definition
Properties: states w/ fractional excitations (quantum number, 
e.g. spin-1/2 spinons, statistics), states w/ emergent gauge structure 
(to “deconfine” the fractional excitation.
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VARIOUS QSLS (OFTEN 
DISCUSSED ONES)

e.g. spinon non-FL in 2D:  spinon Fermi sea+U(1) gauge
Dirac spin liquid: Dirac spinon+U(1) gauge

• Critical spin liquids                                  

Classes of QSLs

• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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• Topological spin liquids (gapped spinons)

e.g.  Z2 spin liquid in 2d or 3d
     QSI: U(1) spin liquid in 3d

Anderson’s RVB
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QSL CANDIDATES (INCOMPLETE)

2d-triangle
materials

EtMe3Sb[Pd(dmit)2]2
-(ET)2Cu2(CN)3
Ba3CuSb2O9

Ba3NiSb2O9

2d-kagome
materials

ZnCu3(OH)6Cl2
Cu3V2O7(OH)2·2H2O
BaCu3V2O3(OH)2

3d-pyrochlore3d-hyperkagome
strong SOC material

Na4Ir3O8

Ba2YMoO6

Pr2Zr2O7

· · ·

• Solid-state systems (explain one)

• “Ultracold" atoms: dipolar magnetism, large quantum group  
[SP(N) or SU(N) with reasonably large N !] 
Issue: prepare/design, cooling, probing 
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AN EXPERIMENTAL ONE EtMe3Sb[Pd(dmit)2]2
NMR lineshapes

1H NMR

Evidence for lack of static moments: f> 1000!

Y. Shimizu 
et al, 2003

!103 s−1. Thus, this is an inhomogeneous broadening due to
static local fields. The observed local static fields are too
small for this system to be understood as a MLRO or spin-
glass state. The spectral tail is at most within "50 kHz,
which corresponds to a !Pd"dmit#2$2 moment of %0.05#B
judging from the hyperfine coupling constant mentioned be-
fore. Furthermore, the tail is composed of the minor fraction
of the spectrum, while the dominant fraction stays at the
center with little shift. This means that the small local mo-
ment exists only on a minority of the !Pd"dmit#2$2 dimers.
We also measured 13C-NMR spectra of EtMe3P!Pd"dmit#2$2
for comparison as shown in Fig. 4"b#. The gradual inhomo-
geneous broadening at low temperatures is also observed
even in EtMe3P!Pd"dmit#2$2, which enters a nonmagnetic
state below 25 K with a full spin gap. Therefore, the broad-
ening observed in the two salts is not due to bulk magnetism,
but most probably due to the impurity Curie spins caused by
slight crystal imperfections. As a consequence, our analysis
of the spectra also concludes that EtMe3Sb!Pd"dmit#2$2 does
not undergo either spin ordering or freezing at least down to
1.37 K.

The observed broadening is larger in
EtMe3Sb!Pd"dmit#2$2 than in EtMe3P!Pd"dmit#2$2. The mag-
netization nucleated around locally symmetry-broken sites
generally extends for a distance characterized by a spatial
spin correlation length. In the ground state, the correlation
length is roughly estimated to be %J /$, where $ is the spin
gap of the system; if $ is zero, the correlation length di-
verges and, as a result, a power-law decay of the spatial
correlation function is expected. EtMe3P!Pd"dmit#2$2 has a
short correlation length because of the existence of the sig-
nificant spin gap, while EtMe3Sb!Pd"dmit#2$2 has a compara-
tively long correlation length or a power-law decay of the
correlation function because of the absence of an appreciable
spin gap. This is likely the reason why the broadening of
EtMe3Sb!Pd"dmit#2$2 is larger. It was reported that the
13C-NMR spectra of %-"BEDT-TTF#2Cu2"CN#3, which does

not have an appreciable spin gap either, also show a similar
inhomogeneous broadening at low temperatures.32 To take
this and our results into consideration, the significant inho-
mogeneous broadening is considered to be a universal nature
of the spin liquid with no appreciable spin gap because this
state is quite sensitive to slight crystal imperfections due to
the quasi-long-range correlation.

As described above, the spectra and T1
−1 of

EtMe3Sb!Pd"dmit#2$2 do not show any features of the spin
ordering or freezing at least down to 1.37 K, in spite of the
growth of antiferromagnetic correlations from much higher
temperature around 200 K. Since 1.37 K is lower than 1% of
J, thermal fluctuations are so small as to be negligible in this
temperature region. Thus, the absence of spin ordering or
freezing is attributed not to thermal fluctuations but to quan-
tum fluctuations. Considering the absence of an appreciable
spin gap, which is concluded by the fact that T1

−1 retains a
finite value down to 1.37 K, this state is clearly distinct from
the VBS state accompanied by spin dimerization. This state
is, therefore, regarded as the quantum spin-liquid state,
where the RVB scenario can be brought to realization.

A number of theoretical studies have been conducted on
the regular-triangular Heisenberg spin-1 /2 system, and there
is a general consensus that the 120° spiral MLRO state is
realized in the ground state,25,33–35 in contrast to our experi-
mental result.

Several theoretical studies on isosceles-triangular Heisen-
berg systems have suggested that slight deviation from the
regular triangle can destroy the spiral MLRO state and real-
ize the spin-liquid state.12,36–41 Our result may be rational-
ized from such standpoints. It is desired to study whether or
not the deviation from the regular triangle leads to the spin-
liquid state even on a scalene-triangular lattice, because our
system has a scalene structure rather than an isosceles one.

Another possible mechanism of the observed spin liquid
is explained in light of the proximity of the Mott transition.
Although EtMe3Sb!Pd"dmit#2$2 is a Mott insulator, its insu-
lating nature is easily destroyed by a pressure of a few
kilobars.42 This means that its transfer integrals, whose per-
turbing effect yields exchange interactions, are not much
smaller than the electron correlation energy. Therefore, not
only the second-order Heisenberg terms, but also the higher-
order ones are expected to emerge as the ring exchange and
long-range Heisenberg interactions. While the nearest-
neighbor Heisenberg interactions seem to be predominant as
the temperature dependence of the susceptibility shows, it is
possible that such extra higher-order interactions are not neg-
ligible and play a significant role in the realization of the
present spin liquid. In fact, some theories based on the spin
Hamiltonian including the ring exchange,8 and the Hubbard
Hamiltonian with moderate on-site Coulomb repulsion,9,10

successfully predict the gapless quantum spin-liquid state.
In conclusion, we have found a spin-liquid system on a

triangular lattice, EtMe3Sb!Pd"dmit#2$2. We have revealed by
our 13C NMR study that this material has neither spin
ordering/freezing nor an appreciable spin gap down to
1.37 K, which is lower than 1% of J. Inhomogeneous broad-
ening appears at low temperature, similar to the other spin
liquid system %-"BEDT-TTF#2Cu2"CN#3. This is consistent
with the quasi-long-range spin correlation characterizing the
gapless nature.
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FIG. 4. "a# 13C-NMR spectra for randomly oriented samples of
EtMe3Sb!Pd"dmit#2$2. "b# Those of EtMe3P!Pd"dmit#2$2 for
comparison.

ITOU et al. PHYSICAL REVIEW B 77, 104413 "2008#

104413-4

NATURE PHYSICS DOI: 10.1038/NPHYS1715 LETTERS

t (s) t (s)t (×104 s)

76 mK 1.03 K 148.3 K

300

1

0.1

0.01

0.01 0.1 1 10 100

Temperature (K)

0

0.2

0.4

0.6

0.8

1

β

0 0 40 80 1201 2 3 0 5 10 15

1 ¬
 M

(t
) 

/M
( 

  )

Figure 3 | Stretching exponent obtained from the 13C nuclear spin-lattice
relaxation curves. The main panel shows the temperature dependence of
the exponent. The dark blue circles show values obtained from the present
measurements in a dilution refrigerator. We also show reanalysed values
for previously reported2 higher-temperature data as light blue circles. The
spin-lattice relaxation curves at three representative temperatures are
presented in the upper three panels, where the red squares indicate
obtained experimental data and the green lines represent fits to
stretched-exponential functions.

shows a steep decrease of T�1
1 on cooling. At sufficiently low

temperatures, the spin-lattice relaxation curves recover to single-
exponential functions as shown in Fig. 3. This is different from
the case of �-(BEDT-TTF)2Cu2(CN)3 at low temperatures, where
the relaxation curves become further from single exponential
functions with decreasing temperature30, and makes it difficult to
discuss the intrinsic spin dynamics. In the low-temperature region
of EtMe3Sb[Pd(dmit)2]2 where the relaxation curves recover to
single-exponential functions, we can see from Fig. 2 that T�1

1 is
proportional to the square of the temperature. This means that
the imaginary part of the q-integrated dynamic susceptibility (to
be exact, lim⇤⇤0⌅q⇥

⌅⌅(q,⇤)/⇤), which is evaluated from (T1T )�1,
decreases in proportion to the temperature on cooling, as shown in
the inset of Fig. 2 (q: wave vector, ⇤: frequency). This is in contrast
to the nature of the fully gapless spin liquid with a spinon Fermi
surface, where the imaginary part of the susceptibility remains
constant (Fermi-liquid case) or diverges (non-Fermi-liquid case)
on cooling. Thus, the low-temperature phase is not fully gapless,
and therefore has a spin gap at least in some portion of q-space.

We emphasize that the decrease in the imaginary part of the
susceptibility does not follow an exponential law but a power
law in temperature. This result implies that the spin gap may
be a nodal one, similar to superconducting gaps in anisotropic
superconductors, often realized in correlated quantum fermion
liquids. Although it might also be possible that the system has a full
gap and that T�1

1 at low temperatures reflects extrinsic relaxation,
this is more unlikely. In this case, the relaxation curves would
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Figure 4 | 13C-NMR spectra of EtMe3Sb[Pd(dmit)2]2 at several ultralow
temperatures measured in a dilution refrigerator. The spectra are obtained
by Fourier transformation of the spin-echo signals for randomly oriented
single crystals.

become more or less distributed non-single-exponential functions.
Experimental results instead show that the relaxation curves recover
to a single-exponential function in the low-temperature limit, as
shown in Fig. 3. Therefore, it is more likely that the T 2 dependence
of T�1

1 is intrinsic and that the spin gap is nodal.
In principle, this spin gap should be observable also in

the behaviour of the static spin susceptibility. However, the
susceptibility was so far measured only down to 5K and is not
available in the region below the transition temperature2. We also
note that it will be difficult to measure the intrinsic susceptibility
below the transition temperature, because the Curie term caused
by impurity free spins will make a serious contribution at such
low temperatures even for a very small number of impurities. The
Knight shift (the first moment of the spectrum) offers another way
to measure the static spin susceptibility. It is expected that the spin
gap leads to the disappearance of the spin susceptibility, yielding
the disappearance of the Knight shift of a few kilohertz through the
hyperfine coupling of about 9⇥102 kHz/µB (ref. 2). Unfortunately,
our experimental results do not have the accuracy to discuss such a
small shift because of the comparatively large spectral width and the
slight extrinsic drift of the external applied field, which is inevitable
even when using a superconducting magnet with high stability (see
the Methods section).

In summary, our NMR experiments show that the spin system of
EtMe3Sb[Pd(dmit)2]2 does not undergo classical ordering/freezing
down to 19.4mK, which is less than 0.01% of J . Whereas this
quantum spin liquid has a gapless spin excitation above 1.0 K,
we found clear evidence that the spin system under 7.65 T shows
an instability other than classical ordering at around 1.0 K and
acquires a spin gap. This gap may be nodal, similar to that of
anisotropic superconductivity.

Last, we mention future debatable problems on the instability
that we have discovered. One of the possible candidates is the
pairing instability of the spinon Fermi surface. This naturally
explains the nodal-gap formation when spinon pairing occurs
in a non-s-wave Bardeen–Cooper–Schrieffer channel and causes
an anisotropic (such as d-wave) resonating-valence-bond state.
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a real candidate of the quantum liquid state, which has been sought since Anderson’s proposal

more than 35 years ago (6). Figure 8a shows the temperature dependence of the magnetic

susceptibility with the core diamagnetism subtracted (50). In contrast with the magnetic transi-

tion at 27 K in k-(ET)2Cu[N(CN)2]Cl as evidenced by an anomaly, k-(ET)2Cu2(CN)3 has no

anomaly down to the lowest temperature measured, 2 K, but does have a broad peak, which is

well fitted to the triangular-lattice Heisenberg model with an exchange interaction of J ! 250 K

(50, 51). The wspin behavior of k-(ET)2Cu[N(CN)2]Cl is unlikely fitted to the Heisenberg model,

even if the anisotropy is considered, possibly because it is situated very close to the Mott

transition, where the Hubbard model or higher-order corrections in the Heisenberg model

should work.

The magnetism is further probed by NMR measurements. Figure 8b shows the single-crystal
1H NMR spectra for k-(ET)2Cu[N(CN)2]Cl and k-(ET)2Cu2(CN)3 under the magnetic field

applied perpendicular to the conducting layer (50). The line shape at high temperatures comes

from the nuclear dipole interaction sensitive to the field direction against molecular orientation,

which is different between the two systems. k-(ET)2Cu[N(CN)2]Cl shows a clear line splitting

below 27 K, indicating a commensurate aniferromagnetic ordering, whose moment is estimated

at 0.45 mB per an ET dimer by separate 13C NMR studies (25, 52, 53). However, the spectra of

k-(ET)2Cu2(CN)3 show neither distinct broadening nor splitting, which indicates the absence

of long-range magnetic ordering at least down to 32 mK, 4 orders of magnitude lower than
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(a) Temperature dependences of spin susceptibilities of k-(ET)2Cu2(CN)3 and k-(ET)2Cu[N(CN)2]Cl. The solid lines represent the
results of the series expansion of the triangular-lattice Heisenberg model using [7,7] Pade approximation with J ¼ 240 K and 250 K.
(b) 1H NMR spectra of single crystals of k-(ET)2Cu2(CN)3 (left panel) and k-(ET)2Cu [N(CN)2]Cl (right panel) under magnetic fields
applied perpendicular to the conducting layer. Abbreviation: NMR, nuclear magnetic resonance.
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from NMR

!We have estimated the interdimer transfer integrals along
the three directions for the EtMe3Sb salt, as shown in the
caption of Fig. 1"b#.$ Among them, the Et2Me2Sb salt is ex-
ceptionally not mapped to a Mott insulator at low tempera-
tures, unlike any other X!Pd"dmit#2$2 systems. It has turned
out that this salt undergoes a first-order valence transition at
70 K to a gapped ground state with fully separated
charges,17–20 although early susceptibility measurements16

had implied the possibility of a gapless spin-liquid ground
state.

The remaining two salts, the EtMe3P and EtMe3Sb salts,
are Mott insulators and, thus, have nearly regular-triangular
spin systems, which are expected to exhibit a strong frustra-
tion effect. These two salts behave differently at low tem-
peratures, which is likely due to the difference in the crystal
structures.22 In the EtMe3P salt, the VBS state accompanied
by spin dimerization is realized below 25 K and, conse-
quently, static susceptibility shows a rapid decrease with a
full spin gap of about 40 K.22 Superconductivity appears as
the VBS state is suppressed by pressure.23 Contrastingly, the
EtMe3Sb salt shows no such rapid decrease indicating a
phase transition, as will be described later. Thus,
EtMe3Sb!Pd"dmit#2$2 is expected to keep the nearly regular-
triangular exchange network without spin dimerization down
to low temperature, unlike the EtMe3P salts. This system is,
therefore, one of the few model materials of the nearly
regular-triangular spin-1 /2 system.

Fine single crystals of EtMe3Sb!Pd"dmit#2$2 were pre-
pared by an aerial oxidation method. For the 13C-NMR mea-
surement, we prepared enriched molecules as shown in Fig.
1"a#. We performed the static uniform susceptibility and
13C-NMR measurements for a large number of the single

crystals without any particular orientation. The susceptibility
! was measured in the temperature range from 300 to 4.5 K
under a field of 5 T. The NMR measurements were per-
formed from 299 to 1.37 K under 7.65 T. The spectra were
obtained by the Fourier transformation of spin echo signals
following the "" /2#x-""#x pulse sequence. The spin-lattice
relaxation rate, T1

−1, was obtained from the recovery curve of
the integrated spin-echo intensity. Since the recovery curve
becomes nonsingle exponential at low temperatures, we de-
fine T1 as the time when the recovery curve reaches 1 /e.

The temperature dependence of ! of
EtMe3Sb!Pd"dmit#2$2 is shown in Fig. 2, where the contribu-
tions of the core diamagnetism and of the impurity free spins
have already been subtracted. The core diamagnetisms are
estimated by using the reported value24 for Pd"dmit#2 and
Pascal’s law for EtMe3Sb. The diamagnetic correction leaves
an uncertainty of 0.3#10−4 emu /mol, typically.24 The sub-
tracted free-spin contribution corresponds to one S=1 /2 spin
per 7#102 f.u.

As temperature is decreased from 300 K, ! gradually in-
creases. Around 50 K, it exhibits a broad peak denoting sig-
nificant development of the antiferromagnetic correlations.
The solid lines in the figure show the theoretical curves16

extrapolated using the !7 /7$ Padé approximants for the high-
temperature expansion25 of the regular-triangular spin-1 /2
system with Heisenberg antiferromagnetic interactions, J
=220 and 250 K. In this calculation, we used a value of g
=2.038 for !Pd"dmit#2$2

−, which is based on electron spin
resonance measurements.26 Since these curves reproduce the
observed ! behavior well, it is concluded that a nearly
regular-triangular spin-1 /2 system with J=220–250 K is re-
alized in this compound. In detailed comparison, the ob-
served ! has a slightly steeper temperature dependence
above its peak temperature than the calculated !. This im-
plies slight deviation from the regular triangle and/or exis-
tence of extra higher-order exchange interactions discussed
later. In fact, a theoretical study reported that deviation from
the regular triangle causes steeper temperature dependence
of !.27
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FIG. 1. "a# Pd"dmit#2 molecule with selective substitution of 13C
isotope. The carbon atoms at both ends of the molecule are en-
riched. "b# Crystal structure of a Pd"dmit#2 layer viewed along the
long axis of the Pd"dmit#2 molecule. Arrows "tB, ts, and tr# indicate
the transfer integral network between the !Pd"dmit#2$2 dimers. For
EtMe3Sb!Pd"dmit#2$2, tB, ts, and tr are calculated using the ex-
tended Hückel method as 28.3, 27.7, and 25.8 meV, respectively,
while the intradimer transfer integral, tA, is calculated as
453.5 meV. "c# Schematic of the spin system of X!Pd"dmit#2$2,
where circles represent !Pd"dmit#2$2 dimers on which localized 1 /2
spins exist. Three exchange interactions "JB, Js, and Jr# are non-
equivalent but close to each other, reflecting the values of tB, ts, and
tr.
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CpT − 1 =  + T2 gives  = 19.9 mJ K − 2 mol − 1 and  = 24.1 mJ K − 4 mol − 1. 
The finite electronic heat capacity coefficient  in a triangular S-1/2 
spin system suggests that gapless excitations occur from a liquid-
like ground state, similar to the case of -(BEDT-TTF)2Cu2(CN)3

14. 
As Figure 2a shows,  is not seriously affected by magnetic fields 
up to 8 T. This excludes the possibility that paramagnetic impurity 
spins are the origin of the  term. The measurement was also per-
formed for over 50 pieces of microcrystals, and the temperature  
and magnetic field dependences obtained were almost the same as 
those in Figure 2a. Thus, the large heat capacity at low temperatures 
is attributed to the intrinsic properties of this material.

To disclose peculiarity in the thermodynamic properties due to 
spin frustration, Figure 2a also shows the data for two other analo-
gous compounds EtMe3As[Pd(dmit)2]2 and Et2Me2Sb[Pd(dmit)2]2, 
together with the data for EtMe3P[Pd(dmit)2]2. These salts have 
ordered ground states as are assorted by their transfer energy ratios 
t /t. EtMe3P[Pd(dmit)2]2 has a nonmagnetic VBS state below 25 K25, 
whereas EtMe3As[Pd(dmit)2]2 has an antiferromagnetic long-range 
ordering at 23 K26. Et2Me2Sb[Pd(dmit)2]2 undergoes a drastic first-
order transition accompanied by CO at 70 K27. From the figure, it is 
evident that these salts with ordered ground states have lower heat 
capacities than EtMe3Sb[Pd(dmit)2]2. Linear extrapolation of the 
data to T = 0 gives a vanishing  term in the heat capacity. This fact 
demonstrates that the T-linear contribution is observed only in the 
spin-liquid system.

Heat capacity of EtMe3Sb[Pd(dmit)2]2 below 1 K. As frustrated 
spin systems may undergo unexpected phase changes in the low-
energy region due to various kinds of many-body effects, thermo-
dynamic measurements should be performed at temperatures as low 
as possible. In Figure 2a, we also show heat capacity data obtained in 
the dilution temperature region in the CpT − 1 vs T2 plot. These data 
are displayed in the inset of Figure 2a, wherein a low-temperature 
region is expanded in the same plot. Unexpectedly, a large upturn 
below 1 K masks information about the electron spins. The magnetic  
fields tend to reduce this upturn, which is an unusual behaviour as 

a simple Schottky-type heat capacity due to nuclear spins. Figure 2b  
is a logarithmic plot that shows the overall behaviour of CpT − 1 
below 4 K. The most plausible explanation for this upturn is rota-
tional motion of methyl (Me) groups in the cation layer. The Me 
groups have a hindered rotation due to quantum tunnelling in the 
threefold symmetry potential (C3) at low temperatures. The energy 
levels of the quantum tunnelling states are expressed by irreduc-
ible representation of A, E, and there exists a small energy split-
ting expressed by  between them. These levels are coupled with 
nuclear spin states of three protons in the Me group. If the proton 
spins are in equilibrium condition, the total nuclear spins for A and 
E states should be I = 3/2 and I = 1/2, respectively. The energy split-
ting ( ) is usually very small, in the order of 100 − 2 eV, and therefore 
produces an increase of heat capacity corresponding to the high- 
temperature tail of the Schottky anomaly below 1 K, as is studied by 
Sorai et al. in some metal complexes containing Me groups28. The 
upturn observed in EtMe3Sb[Pd(dmit)2]2 is considered to have the 
same origin. Application of a magnetic field may cause a hyperfine 
splitting of the nuclear spins and it consequently creates magnetic-
field dependence in Cp. However, spin inversion of protons in such 
organic salts has a rather long spin-lattice relaxation time, in the 
order of 101–3 s, so that it cannot be detected accurately by thermal 
relaxation calorimetry technique, in which we usually analyse tem-
perature relaxation behaviours in the similar time scale. The unu-
sual magnetic field dependence of this Schottky anomaly under 
magnetic fields observed in this compound is probably related to 
the behaviours of nuclear spin levels and to the long time constant  
of proton spin inversion. This remains speculative because, to the 
best of our knowledge, the detailed magnetic-field dependence  
of the heat capacity has not been investigated experimentally. How-
ever, the unexpectedly large heat capacity, which is comparable  
to the electron spin entropy in this limited temperature region,  
suggests that it should be considered separately from the electronic 
system.

The estimation of  using the dilution temperature data does 
not reveal any change, which implies that the T-linear term with 
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Figure 2 | Low-temperature heat capacities of EtMe3Sb[Pd(dmit)2]2. (a) CpT − 1 versus T2 plot of EtMe3Sb[Pd(dmit)2]2 (h9-EtMe3Sb) below 2 K obtained 
under 0 T (red squares), 1 T (green filled circles), 2 T (blue diamonds), 5 T (ocher crosses) and 8 T (purple filled circles). This figure contains the data of 
related Pd(dmit)2 salts of EtMe3As[Pd(dmit)2]2(EtMe3As red pluses), EtMe3P[Pd(dmit)2]2 (EtMe3P blue crosses) and Et2Me2Sb[Pd(dmit)2]2 (Et2Me2Sb 
green filled circles), which have ordered ground states for comparison. The fitting lines obtained by using the data of 0 T of each salt are shown by the 
same colours with the data. The existence of a T-linear contribution even in the insulating state of EtMe3Sb[Pd(dmit)2]2 is observed. A large upturn 
below 1 K that masks the information of the electron spins is probably attributable to the rotational tunnelling of Me groups. The inset figure shows CpT − 1 
versus T2 plot of EtMe3Sb[Pd(dmit)2]2 data below 0.7 K, where a large upturn with magnetic field dependence appears. The data obtained under 0 T (red 
squares), 1 T (green filled circles), 2 T (blue diamonds), 5 T (ocher crosses), 8 T (purple filled circles) and 10 T (orange squares) are plotted. (b) The overall 
behaviour of CpT − 1 below 4 K of EtMe3Sb[Pd(dmit)2]2 (h9-EtMe3Sb) and its deuterated compound of d9-EtMe3Sb[Pd(dmit)2]2 (d9-EtMe3Sb) in a logarithmic 
plot. The data under 0 T (red squares), 1 T (green filled circles) and 2 T (blue diamonds) of EtMe3Sb[Pd(dmit)2]2 is shown by the same symbols as in (a). 
The data obtained under 0 T (purple crosses) and 2 T (ocher filled circles) of d9-EtMe3Sb[Pd(dmit)2]2 are compared in the same plot. The upturn has 
been reduced down to about few percent by deuteration. The origin of the upturn is extrinsic for the discussion of electronic spins and is attributed to the 
existence of rotational tunnelling levels of Me groups in the cation.

some complication: but consistent with
large density of states at low energies

Itou, etc, PRB 2008
Yamashita, etc Science 2011
Yamamoto etc, NatComm 2011

Spinon Fermi Surface ??

M. Yamashita et al, 2010

Thermal conductivity
• Huge linear thermal 

conductivity indicates 
the gapless excitations 
are propagating, at least 
in dmit

• Estimate for a metal 
would correspond to a 
mean free path l ~ 1 μm 
≈1000 a !

Similar to expectations for spinon Fermi surface

metallic thermal conductivity
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CHALLENGES: CONNECT THEORY WITH 
EXPERIMENTS

• Modelling:  
Given a QSL candidate, want to know if it is QSL and what type of 
QSL.  Require the Hamiltonian and “solving” it. Both are hard.  

• Measurement:  
How to unambiguously confirm QSLs of any type by experiments 
on a given QSL candidate. Not just absence of ordering at low Ts.  
More direct probe for the “defining” properties of QSL, e.g. 
emergent gauge structure, deconfined (fractionalized) degrees of 
freedom. 
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OUTLINE

• Quantum spin liquids: review of history, theories, 
experiments

• Classical spin ice and Quantum spin ice

• A realistic spin model on the pyrochlore lattice

• Symmetry enrichment and other prediction

Gang Chen’s theory group 
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CLASSICAL SPIN ICE 
(WHAT WE UNDERSTOOD VERY WELL)

• Ising spins on pyrochlore lattice

Residual Pauling entropy
Zhou, etc, nat. comm. 2011

pinch points in neutron scattering: 
dipolar like spin correlation
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QUANTUM MECHANICS IS 
IMPORTANT!

• Experiments

range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.

QUANTUM EXCITATIONS IN QUANTUM SPIN ICE PHYS. REV. X 1, 021002 (2011)

021002-3

Well-defined spin waves in Yb2Ti2O7
by Prof B. Gaulin’s group

where ! ¼ 1=ðkBTÞ, where T is the temperature and kB is
Boltzmann’s constant, and where mi ¼ hSii, m"

i ¼ hS"i i
and thus jmij $ 1=2. The entropic part of the free energy,
i.e., the last term of Eq. (1), is obviously independent of the
orientation of the magnetization mi. Now consider the
Ansatz

m 0
j ð#Þ ¼ $Re½e&i#ðâj þ i b̂jÞ(; (2)

where $ 2 ½0; 1=2(, # 2 ½0; 2%½, and âj and b̂j are the
local x and y unit vectors, respectively (see Supplemental
Material [4]), which depend only upon which of the four
sublattices the site resides. In words, Eq. (2) describes
translational invariant states (no unit cell enlargement)
where all spins make the same angle with their local x
axis. (Note that this spin configuration carries no total net
moment.) This is the !5 manifold of ground states first
identified in Ref. [8] for Er2Ti2O7. Now, let " ¼ $ei# ¼
"1 þ i"2, "1, "2 2 R. Up to an unimportant constant,
the free energy for the Ansatz Eq. (1) as a function of "
reads

F0
MF½"( ¼ a"2 þ a)ð")Þ2 þ bj"j2; a 2 C; b 2 R;

(3)

since Eq. (1) is quadratic in the spins. Cubic symmetries
then impose that a ¼ a) ¼ 0, so that F0

MF depends on j"j
only, i.e., solely on jm0

i j. Indeed, under the threefold
rotation along the [111] axis, one finds # ! #þ 2%=3, or

" ! e2i%=3" ) a ¼ 0; (4)

since F0
MF should remain invariant under the above trans-

formation. Thus, within MFT, the degeneracy is present for
arbitrary two-spin interactions [18]. Similar arguments
show that the leading order term splitting the degeneracy
in the free energy and consistent with cubic symmetry is

F6 ¼ &c½"6 þ ð")Þ6(; (5)

with some real constant c. Since there is no general
argument to make c vanish, we conclude that the Uð1Þ

degeneracy is an artifact of the approximations introduced
so far. In MFT, it is, however, remarkably robust: six-spin
interactionswould be required to induce a term of the form
of Eq. (5). In Er2Ti2O7 (and indeed most other rare-earth
pyrochlores), this is entirely negligible [14,19]. Spin-
lattice coupling may generate effective four-spin interac-
tions [20], which also cannot split the degeneracy. This
leaves only fluctuations—i.e., OBD—to determine the
splitting coefficient c.
Local minimum.—By expanding about the degenerate

states described by Eq. (2), we find that for arbitrary
(symmetry preserving) exchange parameters, the states in
Eq. (2) are extrema of the free energy (see Supplemental
Material [4]). Whether or not they are global minima, i.e.,
whether or not they constitute ground states of the problem,
depends on the parameters J"&

ij . We now proceed to the

extraction of the latter from experiment, and lift any po-
tential suspense: for parameters relevant to Er2Ti2O7, these
are the lowest-energy states.
Er2Ti2O7 Hamiltonian.—The effective S ¼ 1=2 de-

scription applies to Er2Ti2O7 below about 74 K [8,21].
Nearest-neighbor exchange dominates, for which the
Hamiltonian takes the form [17]

H ¼
X

hiji
fJzzSz

iS
z
j & J*ðSþ

i S
&
j þ S&

i S
þ
j Þ

þ J**½'ijS
þ
i S

þ
j þ ')

ijS
&
i S

&
j (

þ Jz*½Sz
i ð(ijSþ

j þ ()ijS
&
j Þ þ i $ j(g; (6)

where the sans serif characters S"
i denote components of

the spins in the local pyrochlore bases, where ' is a 4+ 4
complex unimodular matrix, and (ij ¼ &')

ij [17]. Jzz, J*,
Jz* and J** are related to the J"&

ij (for nearest-neighbor i
and j) through basis rotations, and the resulting linear
combinations between the said parameters, as well as the
explicit expression of ' and the local bases used in Eq. (6)
are given in the Supplemental Material [4].

FIG. 1 (color). The measured SðQ; !Þ at T ¼ 30 mK, H ¼ 3 T sliced along several directions. The first five columns show SðQ; !Þ
in the HHL plane, with the field applied along ½1#10(, while the last two columns show SðQ; !Þ for the field along [111]. Top row:
measured SðQ; !Þ. Bottom row: calculated SðQ; !Þ, based on an anisotropic exchange model with six free parameters (see text) that
were extracted by fitting to the measured dispersions.
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ISING SPIN IS NOT ENOUGH

• A generic Hamiltonian for effective spin-1/2 (S. Onoda etc)

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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FIG. 3. (Color online) (a) Two f -p transfer integrals: Vpf σ ,
between pz and f(5z2−3r2)z orbitals, and Vpf π , between px /py and
fx(5z2−r2)/fy(5z2−r2). (b) f -p virtual electron hopping processes. n (n′)
and ℓ in state f npℓf n′

represent the number of f electrons at the Pr
site r (r ′) and that of p electrons at the O1 site.

3. Strong-coupling perturbation theory

Now we are ready to perform the strong-coupling pertur-
bation expansion in Vpf π and Vpf σ . Hybridization between
these Pr 4f electrons and O 2p electrons at the O1 site, which
is located at the center of the tetrahedron, couples f 2 states
having the local energy U with f 1 and f 3 states having the
local energy levels 0 and 3U , respectively (Fig. 2). Here, LS
coupling has been ignored in comparison with U for simplicity.
Creating a virtual p hole decreases the total energy by $, which
is the p-electron level measured from the f 1 level.

First, the second-order perturbation in Vpf σ and Vpf π

produces only local terms. They only modify the CEF from
the result of the point-charge analysis with renormalized
parameters for the effective ionic charges and radii. Nontrivial
effects appear in the fourth order in Vpf σ and Vpf π . Taking
into account the virtual processes shown in Fig. 3(b), the
fourth-order perturbed Hamiltonian in Vpf σ and Vpf π is
obtained as

Ĥff = 2
(2U − $)2

n.n.∑

⟨r,r ′⟩

∑

m1,m2

∑

m′
1,m

′
2

∑

σ1,σ2

∑

σ ′
1,σ

′
2

Vm1Vm′
1
Vm2Vm′

2

× f̂ †
r,m1,σ1 f̂r,m2,σ2 f̂

†
r ′,m′

1,σ
′
1
f̂r ′,m′

2,σ
′
2

×
[

− 1
2U − $

δm1,m2δm′
1,m

′
2
δσ1,σ2δσ ′

1,σ
′
2

+
(

1
2U − $

+ 1
U

)
(R†

rRr ′)m1,m
′
2;σ1,σ

′
2
(R†

r ′Rr )m′
1,m2;σ ′

1,σ2

]
.

(17)

D. Effective pseudospin-1/2 model

Next we project the superexchange Hamiltonian, Eq. (17),
onto the subspace of doublets given by Eq. (7). For this
purpose, we have only to calculate for a site r the matrix
elements of the operators f̂ †

r,ml ,σ f̂r,m′
l ,σ

′ with ml,m
′
l = 0, ± 1

and σ,σ ′ = ±1, in terms of |MJ ⟩, which is explicitly repre-
sented by f -electron operators in Appendix B, and then in

FIG. 4. (Color online) Pyrochlore lattice structure. The phase
φr,r ′ appearing in Eq. (18) takes −2π/3, 2π/3, and 0 on the blue, red,
and green bonds, respectively, in our choice of the local coordinate
frames [Eqs. (12)].

terms of the atomic doublet |σ ⟩D , Eq. (7). Finally, we obtain
the effective quantum pseudospin-1/2 Hamiltonian:

Ĥeff = Jn.n.

n.n.∑

⟨r,r ′⟩

[
σ̂ z

r σ̂ z
r ′ + 2δ(σ̂+

r σ̂−
r ′ + σ̂−

r σ̂+
r ′ )

+ 2q(e2iφr,r′ σ̂+
r σ̂+

r ′ + H.c.)
]
, (18)

with σ̂±
r ≡ (σ̂ x

r ± iσ̂
y
r )/2, where σ̂ r represents a vector of the

Pauli matrices for the pseudospin at a site r . The phase44

φr,r ′ takes −2π/3, 2π/3, and 0 for the bonds shown in
blue, red, and green in Fig. 4, in the local coordinate frames
defined in Eq. (12). This phase cannot be fully gauged
away, because of the noncollinearity of the ⟨111⟩ magnetic
moment directions and the threefold rotational invariance
of (r,σ r ) about the [111] axes. Equation (18) gives the
most generic nearest-neighbor pseudospin-1/2 Hamiltonian
for non-Kramers magnetic doublets of rare-earth ions such
as Pr3+ and Tb3+ that is allowed by the symmetry of the
pyrochlore system. Note that the bilinear coupling terms of
σ̂ z

r and σ̂±
r ′ are prohibited by the non-Kramers nature of the

moment; namely, σ̂ z
r changes sign under the time-reversal

operation, while σ̂
x,y
r does not.

The dependence of the Ising coupling constant on U , $,
Vpf σ , and Vpf π takes the form

Jn.n. =
V 4

pf σ

(2U − $)2

(
1
U

+ 1
2U − $

)
J̃ (β,γ ,Vpf π/Vpf σ ),

(19)

where J̃ contains the dependence on the remaining dimension-
less variables (β, γ , Vpf π/Vpf σ ). We show the sign of J̃ as
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In the limit of DIsing → ∞, ĤDSI = ĤIsing + ĤD + ĤH is
reduced to an Ising model,26 which can explain many magnetic
properties experimentally observed at temperatures well below
the crystal-field excitation energy.9,10,13,27

Because of the ferromagnetic effective nearest-neighbor
coupling Jeff = Dn.n. + Jn.n. > 0, creating “3-in, 1-out” and
“1-in, 3-out” configurations out of the macroscopically de-
generate “2-in, 2-out” spin-ice manifold costs energy, and
they can be regarded as defects of magnetic monopoles and
antimonopoles with a magnetic charge.6 Then, the spin ice is
described as the Coulomb phase of magnetic monopoles where
the emergent U(1) gauge fields mediate the Coulomb interac-
tion between monopole charges.12,13 The density of magnetic
monopoles is significantly suppressed to lower the total free
energy at a temperature T < Jeff ∼ a few kelvins. Simulta-
neously, the reduction of the monopole density suppresses
spin-flip processes, for instance, due to quantum tunneling,28

that change the configuration of monopoles. Hence, the
relaxation time to reach the thermal equilibrium shows a
rapid increase. These phenomena associated with the thermal
quench of spin ice have been observed experimentally29,30 and
successfully mimicked by classical Monte Carlo simulations
in a Coulomb gas model of magnetic monopoles.27,31 This
indicates that quantum effects are almost negligible in dipolar
spin ice. It has been shown that emergent gapless U(1)
gauge excitations together with a power-law decay of spin
correlations can survive against a weak antiferroic exchange
interaction that exchanges the nearest-neighbor pseudospin-
1/2 variables (“in” and “out”).12 This U(1) spin liquid12 can
be viewed as a quantum version of the spin ice, although
the macroscopic degeneracy of the ice-rule manifold should
eventually be lifted in the ideal case under equilibrium.

B. Quantum effects

At first glance, one might suspect that quantum fluctuations
should be significantly suppressed by a large total angular
momentum J of the localized rare-earth magnetic moment
and its strong single-spin Ising anisotropy DIsing > 0, since
they favor a high amplitude of the quantum number for
Ĵ z

r ≡ Ĵ r · nr , either MJ = J or MJ = −J . Namely, in the
effective Hamiltonian, ĤDSI = ĤIsing + ĤD + ĤH, a process
for successive flips of the total angular momentum from
MJ = J to −J at one site and from −J to J at the adjacent
site is considerably suppressed at a temperature T ≪ DIsing.
The coupling constant for this pseudospin-flip interaction is of
the order |Jn.n.|(|Jn.n.|/DIsing)2J and becomes negligibly small
compared to the Ising coupling Jeff .

In reality, however, because of the D3d CEF acting on rare-
earth ions (Fig. 1), the conservation of Ĵ z, which is implicitly
assumed in the above consideration, no longer holds at the
atomic level. Eigenstates of the atomic Hamiltonian including
the LS coupling and the CEF take the form of a superposition
of eigenstates of Ĵ z whose eigenvalues are different by integer
multiples of 3. Obviously, this is advantageous for the quantum
pseudospin exchange to work efficiently.

Attempts to include quantum effects have recently ap-
peared. It has been argued that the presence of a low-energy
crystal-field excited doublet above the ground-state doublet
in Tb2Ti2O7

10,16 enhances quantum fluctuations and possibly

(a) (b)

rx

ry

rz

rz

rx ry

FIG. 1. (Color online) (a) Pr3+ ions form tetrahedra (dashed lines)
centered on O2− ions (O1) and are surrounded by O2− ions (O2) in
the D3d symmetry as well as by transition-metal (T M) ions. Each Pr
magnetic moment (thick arrow) points to either of the two neighboring
O1 sites. (xr , yr ,zr ) denotes the local coordinate frame. (b) Local
coordinate frame from the top. Upward and downward triangles of
O2− ions (O2) are located above and below the hexagon of T M ions,
respectively.

drives the classical spin ice into a quantum spin ice composed
of a quantum superposition of “2-in, 2-out” configurations.32

We have theoretically explored an alternative scenario,
namely, a quantum melting of spin ice.23 A quantum entan-
glement among the degenerate states lifts the macroscopic
degeneracy, suppresses the spin-ice freezing, and thus leads
to another distinct ground state. Actually, the quantum-
mechanical spin-exchange Hamiltonian mixes “2-in, 2-out”
configurations with “3-in, 1-out” and “1-in, 3-out”, leading
to a failure of the strict ice rule and a finite density of
monopoles in the quantum-mechanical ground state. Namely,
the quantum mechanically generated monopoles can modify
the dipolar spin-ice ground state, while a spatial profile of
short-range spin correlations still resembles that of the dipolar
spin ice.23 They may appear in bound pairs or in condensates.
We have reported that there appears a significantly large
anisotropic quantum-mechanical superexchange interaction
between Pr magnetic moments in Pr2T M2O7

23 (T M = Zr,
Sn, Hf, and Ir).33 This anisotropic superexchange interaction
drives quantum phase transitions among spin ice, quadrupolar
states having nontrivial chirality correlations, and quantum
spin ice, as we will see later.

Actually, among the rare-earth ions available for mag-
netic pyrochlore oxides,10,33 the Pr3+ ion could optimally
exhibit quantum effects because of the following two facts.
(i) A relatively small magnitude of the Pr3+ localized mag-
netic moment, whose atomic value is 3.2µB , suppresses the
magnetic dipolar interaction, which is proportional to the
square of the moment size. Then, for Pr2T M2O7, one obtains
Dn.n. ∼ 0.1 K, which is an order of magnitude smaller than
the 2.4 K for Ho2Ti2O7 and Dy2Ti2O7. Similarly, quantum
effects might appear prominently also for Nd3+, Sm3+, and
Yb3+ ions because of their small moment sizes, 3.3µB ,
0.7µB , and 4µB , respectively, for isolated cases. (ii) With
fewer 4f electrons, the 4f -electron wave function becomes
less localized at atomic sites. This enhances the overlap
with the O 2p orbitals at the O1 site [Fig. 1(a)], and thus
the superexchange interaction. It is also further increased
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QUANTUM SPIN ICE

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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modynamics, transport, and spectroscopy; therefore U(1)
fractionalization may be easier to find in experiments. Such
states, thus far realized in large-N spin models18 and bosonic
Hubbard-type models,10–12 arise as the deconfined or Cou-
lomb phase of compact U(1) lattice gauge theory. While
most work on spin liquids has focused on d!2, motivated
by the cuprates and the conventional wisdom that quantum
fluctuations are more effective at destroying long-range order
in low dimensions, the U(1) spin liquid only occurs in d
"3; for d!2 the Coulomb phase of compact U(1) gauge
theory #with gapped matter$ is always unstable due to instan-
ton effects.19
Both models are of intrinsic interest as examples of trac-

table but nontrivial frustrated magnets. The pyrochlore
model is particularly appealing due to its simplicity: its deri-
vation begins with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet. Taking the limit of large easy-axis exchange
anisotropy Jz"J! simplifies the problem by breaking the
spectrum into extensively degenerate manifolds with large
separations of O(Jz). It is then possible to write an effective
Hamiltonian describing the splitting of the low-energy mani-
fold, using standard techniques of degenerate perturbation
theory in J! . This effective Hamiltonian has a U(1) gauge
structure, which forms the foundation for our subsequent
analysis.20 Another point of view, equivalent at the level of
perturbation theory but perhaps with broader implications in
more general scenarios, is that the low-energy sector of the
model is unitarily equivalent to a U(1) gauge theory. It is
not obvious how to treat the resulting model analytically, but
upon addition of an extra six-site interaction term it can be
tuned to a soluble point where it is possible to write an exact
ground-state wave function with no further approximations.
The models can be reinterpreted as quantum dimer models
#QDM’s$, and the extra term as the analog of the Rokhsar-
Kivelson #RK$ potential in the square lattice QDM.21 As will
be explained in detail below, the properties of the soluble
point allow us to locate the U(1) spin liquid adjacent to it.
Since this state is stable to all zero-temperature perturba-
tions, it persists over a finite extent of the phase diagram
#Fig. 1$. Furthermore, stability to large but finite Jz implies
that the U(1) gauge structure persists in the absence of mi-
croscopic local symmetries and is truly emergent. On the
purely theoretical side, we believe these models give the first
examples of U(1) gauge theories that have a deconfining
phase even in the limit of infinitely strong bare coupling. The
first such Z2 gauge theory was discovered only recently by
Moessner and Sondhi.8
The effective theory of the U(1) spin liquid and the

soluble RK point is simply Gaussian quantum electrodynam-
ics #QED$. At the RK point, which is itself a special decon-
fined limit of the generic phase, the ‘‘electric stiffness,’’ or
coefficient of E2 in the Hamiltonian, vanishes. This is a
higher-dimensional generalization of the effective picture of
the square lattice QDM in terms of a coarse-grained height
field.22
The U(1) spin liquid has power-law correlations with

nontrivial angular dependence, U(1) topological order, and
supports gapped Sz!1/2 spinons, a gapped topological point
defect #the ‘‘magnetic’’ monopole$, and a gapless Sz!0 col-

lective mode corresponding to the photon of the gauge
theory. The latter excitation makes an additive T3 contribu-
tion to the low-temperature specific heat and should affect
various other low-energy properties of U(1)-fractionalized
phases %either the U(1) spin liquid, or phases with coexisting
conventional and topological order&. If such a phase exists in
a real material, we speculate that it may be possible to probe
‘‘photons’’ with photons via Raman scattering.

A. Outline

We begin Sec. II with a derivation of the pyrochlore
model starting from the Heisenberg antiferromagnet. In Sec.
II B the cubic #or corner-sharing octahedra$ model is dis-
cussed. The remainder of Sec. II is concerned with demon-
strating the equivalence of the spin models to frustrated com-
pact U(1) gauge theories and developing a useful lattice
version of electric-magnetic duality.
Beginning from the dual description, Sec. III develops the

effective description of the U(1) spin liquid and the soluble
point in terms of Gaussian quantum electrodynamics. Cor-
rections to effective action and to the scaling equalities be-
tween microscopic and effective degrees of freedom are dis-
cussed in Sec. III C. Section IV contains a discussion of the
universal properties of the U(1) spin liquid, including its
U(1) topological order. In Sec. V we present our analysis of
the soluble point ground-state wave function, which gives
strong support for the validity of our effective picture. We
conclude in Sec. VI with a discussion of open issues, focus-
ing on the challenging problems of understanding this phys-
ics in a broader range of models and looking for
U(1)-fractionalized phases in real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore model

We begin with the nearest-neighbor S!1/2 Heisenberg
antiferromagnet on the pyrochlore lattice. This structure is a
three-dimensional network of corner-sharing tetrahedra #Fig.

FIG. 1. Phase diagram for both models. The parameter V/Jring
is the relative strength of the Rokhsar-Kivelson potential and the
XY ring exchange that obtains in the easy-axis limit of the Heisen-
berg model. The soluble point is located at V/Jring!1, which is a
special deconfined point of the adjacent U(1) spin liquid. Just to
the right of the soluble point the models go into an Ising ordered
state. Sufficiently far to the left we expect Ising order, while at
intermediate values of V/Jring states with broken translation sym-
metry but no magnetic order are also possible. Immediately to the
left of the soluble point, the U(1) spin liquid exists over a finite
#but unknown$ extent of the phase diagram.
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We study the physics of hard-core bosons with unfrustrated hopping (t) and nearest-neighbor repulsion
(V) on the three dimensional pyrochlore lattice. At half-filling, we demonstrate that the small V=t
superfluid state eventually becomes unstable at large enough V=t to an unusual insulating state which
displays no broken lattice translation symmetry. Equal time and static density correlators in this insulator
are well described by a mapping to electric field correlators in the Coulomb phase of a U!1" lattice gauge
theory, allowing us to identify this insulator with a U!1" fractionalized Mott-insulating state. The
possibility of observing this phase in suitably designed atom-trap experiments with ultracold atoms is
also discussed, as are specific experimental signatures.

DOI: 10.1103/PhysRevLett.100.047208 PACS numbers: 75.10.Jm, 05.30.Jp, 71.27.+a

Much of our current understanding of the low tempera-
ture behavior of condensed matter systems is based on
highly successful theoretical paradigms such as Landau’s
Fermi liquid theory of normal metals, Bogoliubov theory
for superfluids, BCS theory of superconductivity, and spin-
wave theory for ferromagnets and antiferromagnets [1].
However, some systems exhibit behavior that falls outside
of any of these standard paradigms—one example of this
is the unconventional normal state of underdoped high-Tc
superconductors [2,3], while other examples include the
cooperative paramagnetic state of frustrated magnets [4]
and the unusual phenomenology of heavy fermion com-
pounds [5]. For instance, in the underdoped normal state of
high-Tc superconductors, some of the experimental evi-
dence is suggestive of the fact that the elementary quasi-
particles excitations are not spin-1=2 charge-e holes, but
spinless charge carriers propagating separately from
chargeless spin carriers [2,3].

This has motivated much of the recent effort aimed at
providing theoretically consistent descriptions of low tem-
perature phases of matter that would display such spin-
charge separation, or more generally, quasiparticle frac-
tionalization. These developments [6] allow one to con-
clude that such exotic behavior is indeed possible, and go
on to provide a description of quasiparticle fractionaliza-
tion in terms of an effective field theory with gauge sym-
metry [7,8]. In this approach, fractionalized quasiparticles
emerge as the true low-energy excitations in deconfined
phases of a gauge theory (in which the emergent gauge
force is not strong enough to bind the fractionalized qua-
siparticles into more conventional quanta), and can be
accompanied by additional gauge excitations that carry
energy but no spin or charge (such as the vortex excitation
of a Z2 gauge theory [9]).

A closely related strand of activity has focused on the
analysis of particular microscopic models in order to
understand whether they exhibit such exotic phases for
specific values of input parameters. This has led, for in-

stance, to the construction of several different models [10–
12] which exhibit so called Z2 deconfined phases (the
nomenclature refers to the effective gauge theory that
affords the most ‘‘natural‘‘ description of the low-energy
physics).

One may now ask: Is there an experimental system
which would display one of these fractionalized phases
for a definite range of control parameters? A promising
avenue in this regard is the physics of ultracold atoms in
optical lattice potentials. Recent work has demonstrated
that a wide variety of phenomena of interest to condensed
matter physics can be studied by appropriately engineering
systems of ultracold atoms in optical potentials. For in-
stance, it has been possible to provide a cold-atom realiza-
tion of the superfluid-insulator transition in a bosonic
hubbard model with on site interactions on a cubic lattice
[13,14]. This has been followed by several interesting
proposals for realizing fermionic and bosonic models
with a variety of tunable interactions in different optical
lattice geometries [15,16].

In this Letter, we use sophisticated Quantum
Monte Carlo (QMC) methods to provide the first confir-
mation of the existence of a U!1" fractionalized insulating
phase that may be realized in cold-atom systems modeled
by the Hamiltonian:

 H #
X

hiji
$V!ni % 1=2"!nj % 1=2" % t!byi bj & bibyj "'

&
X
i

$U!ni % 1=2"2 %!ni': (1)

Here, ni is the particle number at sites i of a three dimen-
sional pyrochlore lattice [Fig. 1(a)], byi is the correspond-
ing boson creation operator, U is the on site repulsion, and
V the nearest-neighbor repulsion between bosons hopping
(with amplitude t) on the nearest-neighbor links hiji.

Although the pyrochlore lattice geometry we consider is
technically challenging to realize, recent work that ap-
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• Quantum Monte Carlo (Isakov etc 2008) 

peared as our study was underway provides a viable pre-
scription for experimentally realizing such an optical lat-
tice [17]. Furthermore, the simplicity of the interactions
means that they can be realized in state-of-the art cold-
atom experiments for a wide range of values of parameters
[14] including the ‘‘hard-core’’ limit (ni ! 0, 1) of very
large U. We therefore focus on this hard-core limit in some
detail here, setting t ! 1 and ! ! 0 in what follows. [In
this hard-core limit, Eqn. (1) may also be written in spin
S ! 1=2 language via the mapping Szi ! ni " 1=2, Jz !
V, J? ! "2t.]

In this hard-core limit, with ! ! 0 to enforce density
1=2 per site, the physics at small V is readily tractable: As
the hopping t is unfrustrated, there is a stable superfluid
phase at small V—indeed a reasonable variational wave
function for the ground state in this regime may be easily
written down in spin language as j!i ! Q

ijSxi ! #1=2ii.
What is the low temperature state in the opposite, large V
limit? To answer this, we use the well-documented [18]
stochastic series expansion (SSE) QMC method (at large
values of V, modifications developed recently [19] are
crucial to maintain ergodicity—for a review, see
Ref. [20]).

Numerics.—Most of our results are on L$ L$ L (L,
the number of up pointing tetrahedra that fit in one side-
length) samples with periodic boundary conditions and
even L ranging from L ! 6 to L ! 12, and inverse tem-
perature " ranging from 6 to 120 (with the largest "
employed for the largest size). We use standard SSE esti-
mators [18] to calculate the specific heat, the superfluid
stiffness #s, the bond (kinetic) energy correlations, and the
equal time C$$

0%q; % ! 0& ! hn$%q&n$0%"q&i and static
correlators S$$

0%q; !n ! 0& ! R"
0 d%C

$$0%q; %& of the den-
sity n$i (here $,$0 refer to different basis sites in a unit cell,
and all site types [Fig. 1(a)] are assigned coordinates of
site-type 0).

As is clear from Fig. 2(a), we see a distinct transition
from a superfluid state at small V, to an insulating state at
large V for a sequence of low temperatures. This transition
is first-order at nonzero temperature [Fig. 2(a)], and while
the first order nature is less prominent in lower temperature
scans, a scaling analysis suggests that the transition re-
mains first order even in the zero temperature limit [21].
We estimate that this zero temperature transition is at
%V=t&c ' 19:3 [Fig. 2(b)].

In the insulator, we see absolutely no Bragg peaks that
would correspond to spatial ordering in either the local
density or the local bond energy. The insulator is thus, in
this specific sense, a liquid state of matter; this is illustrated
in Fig. 3 with several scans of density correlators in q space
at a representative point at very low temperature above the
insulating ground state. This absence of spatial ordering in
the insulating state of an interacting boson system at 1=2
filling is one of our striking results, for such featureless
insulating states are more typical of insulators with integer
density per site.

Interpretation.—Theoretical interpretation of this strik-
ing result is facilitated by noting that our Hamiltonian in
this hard-core limit is closely related to that studied in
Ref. [22]: Hermele et al. considered the S ! 1=2 XXZ
antiferromagnet on the pyrochlore lattice. By an analysis of
a related effective model of planar rotors (with additional
terms added by hand to ensure better theoretical control),
they argued that a U%1& deconfined phase was a theoreti-
cally consistent possibility in the limit of extremely aniso-
tropic exchange Jz ( J? > 0—however, since the
positive sign of J? introduces a sign problem in quantum
Monte-Carlo treatment of such models, their work stopped
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FIG. 2 (color online). (a) Superfluid density at " ! 30—the
break around V ! 19:2 indicates observed hysteresis near the
(weakly) first-order transition. (b) Schematic phase diagram:
dots with error bars denote observed transitions, and dot at
(19.4,1/30) denotes location at which insulating phase data is
displayed in Figs. 3 and 4.
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DIFFERENCE BETWEEN 
CLASSICAL AND QUANTUM

• Classical spin ice: basically classical stat mech with local constraints  
(ice rule), i.e. a thermal/entropy effect

Residual Pauling entropy
Dipolar spin correlation (1/r3) 

Deconfined (coherent) spinons
Emergent photons

No residual Pauling entropy
T3 heat capacity
Power-law spin (Sz) correlation
Defects induced ground state degeneracy

• Quantum spin ice: string-net condensation, emergent quantum electrodynamics, 
a novel quantum phase of matter. 
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OUR DOUBLET: LOCAL PHYSICS
• Local moments on pyrochlore lattice: pseudospin 1/2 2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for all

a simple picture for d electrons 
under D3d point group crystal field

n
jz = 3/2

jz = �3/2

• Why is this Kramers doublet so special?
1-dimensional representations of the point group!

R(2⇡/3)|Jz = ±3/2i = �|Jz = ±3/2i
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OUR DOUBLET: LOCAL PHYSICS
• Also applies to f electron moments on pyrochlore

j = 3/2, 9/2, 15/2, · · ·

• may generally apply to any Kramers’ spin (j>1/2)
For example,  Yb: Yb2Ti2O7

j = 7/2: 8 states or 4 doublets

E

crystal
field 
splitting

jz = ±3/2

Bertin, etc,  J. Phys: cond.mat 2012

2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for all

if B0
2 < 0.

Local crystal field Hamiltonian
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SYMMETRY PROPERTIES
• Space group symmetry

Td ⇥ I ⇥ translations

C3 : Sµ ! Sµ

M : Sx,z ! �Sx,z, Sy ! Sy

I : Sµ ! Sµ

Td = {C3,M}and

Important: Sx and Sz transform identically (as a dipole),   
     while Sy transforms as an octupole moment under M.

n
Sz =

1

2
|3
2
ih3
2
|� 1

2
|� 3

2
ih�3

2
|

S+ = |3
2
ih�3

2
|, S� = |� 3

2
ih3
2
|Gang Chen’s theory group 
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OUR MODEL
• Nearest neighbour exchange from symmetry

H =
X

hiji

J
z

Sz

i

Sz

j

+ J
x

Sx

i

Sx

j

+ J
y

Sy

i

Sy

j

+J
xz

�
Sx

i

Sz

j

+ Sz

i

Sx

j

�

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL

FM

quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Versus S. Onoda, L. Balents’ model

Same on every bond !

Apply a global rotation around y axis in the 
pseudospin space and obtain XYZ model

H =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
x

S̃x

i

S̃x

j

+ J̃
y

S̃y

i

S̃y

j
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UNFRUSTRATED REGIME: MAGNETIC ORDER

1. J̃
z

< 0 and |J̃
z

| � J̃
x,y

, then hS̃z

i

i 6= 0.

This is an “all-in all-out” AFM state with magnetic dipolar order.

2. J̃
x

< 0 and |J̃
x

| � J̃
y,z

, then hS̃x

i

i 6= 0.

This state is not distinct from the first state. 
3. J̃

y

< 0 and |J̃
y

| � J̃
x,z

, then hS̃y

i

i 6= 0.

This state is distinct from the above two states! 
It has an antiferro-octupolar order but no dipolar order.
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FRUSTRATED REGIME: MAGNETIC ORDER

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
Z

J̃x

J̃y

J̃z

J̃x

J̃y

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

�1 1

1

�1

AIAO

AFO

FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.

Acknowledgements. – We thank Leon Balents, Michel

Study phase on a cube: �1  ˜J
x,y,z

 1.

J̃z = 1:                   phase diagram by gauge 
mean field theory.

No sign problem in the shaded region !
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PERTURBATIVE ANALYSIS

Hermele etc 2004:
H0 = Jz

X

hiji

Sz
i S

z
j

H1 = �J±
X

hiji

(S+
i S�

j + h.c.)

gives ice-ruled manifold

generates quantum tunnelling 
among ice-rule states

2!. It can be obtained by translating one ‘‘up-pointing’’ tet-
rahedron "shown on the right of Fig. 2! through the fcc Bra-
vais lattice vectors R!n0a0"n1a1"n2a2. We choose a0
!x, a1!x/2"!3y/2, and a2!x/2"y/2!3"!2/3z. Basis
vectors for the reciprocal lattice are defined by bi
!!2#$ i jkaj#ak , so that ai•bj!2#% i j . The four sites in
each unit cell are distinguished by an index i!0, . . . ,3, as
indicated in Fig. 2. Lattice sites are denoted either by single
italic letters such as i or by pairs (R,i) when we wish to
specify the position of a site within the unit cell.
Up to a constant the Hamiltonian can be written as a sum

over tetrahedra:

H!
J
2 &

t
"St!2, "1!

where St!& i!tSi is the total spin on the tetrahedron t. Fol-
lowing the analysis of a generalized kagomé Heisenberg an-
tiferromagnet in Ref. 9, we introduce easy-axis exchange an-
isotropy:

H!HI"H!, "2!

HI!
Jz
2 &

t
"St

z!2, "3!

H!!
J!

2 &
'i j(

"Si
"S j

$"H.c.!, "4!

where Jz%J! . This reduces the global SU(2) invariance to
U(1)#Z2. We first consider the point J!!0, where H re-
duces to a classical Ising model, with ground states specified
by St

z!0 on all tetrahedra. It was argued by Anderson23 that,
almost identically to Pauling’s model for water ice,24 this
Ising model has an extensive ground-state degeneracy "i.e.,
finite T!0 entropy per site!.
A small J!&0 introduces quantum fluctuations and lifts

the extensive degeneracy; this splitting is encapsulated in an
effective Hamiltonian using standard techniques of perturba-

tion theory. The first-order contribution is easily seen to van-
ish. We will need to go to third order, where we have the
general expression

He f f!"1$P!!$H!
P
HI

H!"H!
P
HI

H!
P
HI

H!""1$P!.

"5!

Here P projects onto the orthogonal complement of the
ground-state manifold. To describe the processes contribut-
ing in Eq. "5!, it is useful to work in the standard hard-core
boson language for the spins, where Sz!'1/2 corresponds
to the presence/absence of a boson. Each term in H! hops
bosons along nearest-neighbor bonds; acting on a state in the
low-energy manifold, each hop creates two tetrahedra with
St
z)0. At second order in H!, bosons can hop and then
return along the same bond *Fig. 3"a!+. This can always oc-
cur on four bonds in every tetrahedron, thus giving only a
constant contribution to the energy. At third order another
constant contribution arises from single bosons "or holes!
hopping around triangular faces *Fig. 3"b!+. There is also a
nontrivial ring exchange process acting on the hexagonal
plaquettes "see Fig. 2!, where hexagons containing three
evenly spaced bosons can be rotated as shown in Fig. 3"c!.
The resulting effective Hamiltonian is

He f f!"J!
2 /Jz!"J! /Jz$1 !Nt

"Jring&̋ "S1
"S2

$S3
"S4

$S5
"S6

$"H.c.!, "6!

where Nt is the total number of tetrahedra, Jring!3J!
3 /2Jz

2

and the sum is over hexagonal plaquettes. The labeling of the
spin operators inside the sum is given by moving around
each hexagon in an arbitrary direction. Note that *He f f ,St

z+
!0, as must be true for any effective Hamiltonian acting in
the low-energy manifold, whatever the form of H!.
We focus on the extreme easy-axis limit described by

He f f , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground-state manifold.

FIG. 2. The pyrochlore lattice "left! and one up-pointing tetra-
hedron "right!. One sublattice of tetrahedra is shaded and the other
transparent. The thickened bonds show the location of a pyrochlore
hexagon. Each such hexagon is a member of one of four orienta-
tions of kagomé lattice planes. The numbering of sites in the up-
pointing tetrahedron on the right is the convention used in the text.
For i!0,1,2, the fcc Bravais lattice vector ai points in the direction
given by looking from site 3 to site i.

FIG. 3. Depiction of the processes contributing to the third-
order degenerate perturbation theory for the easy-axis pyrochlore
Heisenberg antiferromagnet. Processes "a! and "b! give only trivial
constant shifts of the energy. Process "c! leads to an XY ring ex-
change term acting on hexagonal plaquettes.
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where Jz%J! . This reduces the global SU(2) invariance to
U(1)#Z2. We first consider the point J!!0, where H re-
duces to a classical Ising model, with ground states specified
by St

z!0 on all tetrahedra. It was argued by Anderson23 that,
almost identically to Pauling’s model for water ice,24 this
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Effectively given by a 6-site ring exchange

Jz � J±
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MAP TO U(1) LATTICE GAUGE THEORY

Err0 = Sz
i

e±iArr0 = S±
i

Define

Compact U(1) lattice gauge theory

H
e↵

= �K
X

hexagon

cos(r⇥A)r
r’
i

hexagons on the dual diamond lattice

K > 0 favours a zero-flux state with r⇥A = 0

K < 0 favours a ⇡-flux state with r⇥A = ⇡
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OPEN STRING
Similar as any other slave particle approach, but here is more 
physically justified. 

spin flip

r

r’
i

Spin flip creates spinon-antispinon pair on 
neighboring diamond sites. (Balents etc 2012)

S±
i = �†

r�r0s±rr0

where s±rr0 = e±iArr0 is the gauge field.

and gauge charge is defined as

Qr = (�1)r
X

i2r

Sz
i

invariant under local U(1) gauge transformation
�r ! �re

i�r

s±rr0 ! s±rr0ei�r�i�r0
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APPLY TO XYZ

8

In dQSI, equal-time dipolar spin correlations are given
by h ~E ~Ei electric field correlations, which fall o↵ as 1/r4.
The above results can be used to determine the corre-
sponding (but more subtle) result for oQSI. First, we note
that ⌧zr can be viewed as a vector field on the diamond
lattice, transforming as a time-reversal odd pseudovec-
tor (i.e. identical to ~E in dQSI). Therefore, in the long
wavelength limit, ⌧zr transforms as T+

1

.
To proceed, we need to construct the operator in the

(Gaussian) oQSI continuum theory with smallest scal-
ing dimension, that also transforms as T+

1

and is time-

reversal odd. We have dim ~E = dim ~B = 2, and
dim @µ = 1. Also the derivative @µ transforms as T�

1

.
For example, we need to consider operators of the form
@µ ~E⌫ , which transforms as T�

1

⌦ T+

2

. Decomposing this
into irreducible representations, we find that T+

1

does not
appear in the tensor product, and this operator does not
contribute to the dipolar spin correlations. Proceeding in
this fashion, the desired operator is instead of the form
Oµ⌫� = @µ@⌫( ~E)�, with dimOµ⌫� = 4. The correspond-
ing correlations fall o↵ as a power law with exponent
twice the scaling dimension, so the oQSI dipolar correla-
tions fall o↵ as 1/r8.

This result ignores the role of long-range dipolar in-
teraction, which is potentially significant in f -electron
systems, but its main purpose is to illustrate a sharp
di↵erence between dQSI and oQSI. In addition, if one
restricts to the XYZ Hamiltonian only (i.e. includes no
longer-range exchange), the Z

2

⇥ Z
2

symmetry actually
implies that dipolar correlations fall o↵ exponentially in
oQSI, since both ⌧z and ⌧x transform non-trivially under
Z
2

⇥ Z
2

.

VII. GAUGE MEAN FIELD THEORY

The formalism of gauge mean field theory (gMFT)
for the pyrochlore lattice was introduced in Refs. 3 and
6. This mean-field theory is anchored to the QSI phase
known to occur in the easy-axis limit [5], and allows one
to assess the competition between QSI and magnetically

ordered phases. Here, we adapt the gMFT formalism
specifically to the pyrochlore XYZ model.

A. Slave particles

The ground state of H
e↵

[Eq. (87)] is a U(1) quantum
spin liquid whose low energy physics is described by com-
pact quantum electrodynamics in 3 + 1 dimensions[4, 5].
In the gauge theory language, the “two-in-two-out” spin
ice rule becomes Gauss’ law, and the ⌧̃±r breaks the ice
rule by creating electrically charged spinon excitations
on neighboring tetrahedra. The J± term describes the
hopping of spinons on the dual diamond lattice sites.
Following Refs. 3 and 6, to make the spinons and gauge

field explicit, we enlarge the physical Hilbert space by
writing the spin operators as

⌧̃+r,r+e
i

= �†
r s

+

r,r+e
i

�r+e
i

(92)

⌧̃zr,r+e
i

= szr,r+e
i

, (93)

where r is an A sublattice site of the diamond lattice,
and ei connects r to its neighbors on the dual diamond
lattice. �†

r (�r ) is the spinon creation (annihilation) op-
erator at site r, and szrr0 , s

±
rr0 are spin-1/2 operators that

act as gauge fields. Since the spinons are bosonic, we
further write �†

r = ei�r (�r = e�i�r), where �r is a 2⇡
periodic angular variable and �†

r�r = 1 by construction.
In the above equations, the physical Hilbert space has
been enlarged to the the combined space of the spinons
and gauge field. To project back to the physical Hilbert
space, we implement the following constraint,

Qr = ⌘r
X

i

szr,r+⌘rei

, (94)

where ⌘r = ±1 for r 2 A/B sublattice. Here Qr is the
spinon number operator and satisfies

[�r, Qr0 ] = i�rr0 . (95)

The XYZ model Hamiltonian [Eq. (86)] can be rewritten as

H
XYZ

=
Jzz
2

X

r

Q2

r � J±
X

r

X

i 6=j

�†
r+⌘rei

�r+⌘rej

s�⌘r
r,r+⌘rei

s+⌘r
r,r+⌘rej

+
J±±
2

X

r

X

i 6=j

�
�†

r�
†
r�r+⌘rei

�r+⌘rej

s⌘r
r,r+⌘rei

s⌘r
r,r+⌘rej

+ h.c.
�

+ constant. (96)

The J±± term now appears as an interaction between spinons. The above Hamiltonian is manifestly invariant under
the local U(1) gauge transformation (�r ! �re�i�r , s±rr0 ! s±rr0e

±i(�r0��r)).

Rewrite the XYZ model to manifest the gauge structure

HXYZ =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
y

S̃x

i

S̃x

j

+ J̃
x

S̃y

i

S̃y

j

=
X

hiji

JzzS̃
z
i S̃

z
j � J±(S̃

+
i S̃�

j + h.c.) + J±±(S̃
+
i S̃+

j + S̃�
i S̃�

j )

with J
zz

= J̃
z

, J± = � 1
4 (J̃x + J̃

y

) and J±± = 1
4 (J̃x � J̃

y

).

show the spinon-gauge coupling
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CONDENSE SPINONS

HXYZ =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
y

S̃x

i

S̃x

j

+ J̃
x

S̃y

i

S̃y

j

=
X

hiji

JzzS̃
z
i S̃

z
j � J±(S̃

+
i S̃�

j + h.c.) + J±±(S̃
+
i S̃+

j + S̃�
i S̃�

j )

= 2(S̃x

i

S̃x

j

� S̃y

i

S̃y

j

)

J±
Jzz

QSI ordered in xy

J±±
Jzz

h ˜Syi 6= 0 antiferro-octupolar

h ˜Sxi 6= 0 all-in all-out

Z2 QSL?

Z2 QSL?

Z2 QSL: h�i = 0 but h��i 6= 0

not found in my gauge MFT 4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
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limit, J̃? favors QSI with ⇡ flux of the vector potential
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the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
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point along the local zi axes, toward (away from) py-
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have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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QSI

Are they different?
Yes.  They are distinct by symmetry, 
i.e. they are symmetry enriched QSIs

C3 : Sµ ! Sµ

M : Sx,z ! �Sx,z, Sy ! Sy

I : Sµ ! Sµ

QSI

QSI

dQSI

oQSI

In fact, Pi-flux state is also also example of symmetry enrichment. 
This is similar as the 3 symmetry enriched Z2 QSLs in Kitaev’s toric code model.
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dQSI oQSI

E-field
(pseudovector)

B-field      
(vector)

Transformation of continuum E/B field under Oh point group

T+
1

T�
1 T�

2

T+
2

dQSI vs oQSI

• Both phases have identical thermodynamical properties,  
e.g.   T3 heat capacity

• Different dipolar static spin correlation: 
     dQSI:   < Sz(0) Sz(r) >  ~ 1/r4. 
     oQSI:   < Sz(0) Sz(r) >  ~ 1/r8,  
         with Z2xZ2 symmetry, decay exponentially. 
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OPEN QUESTION

It is expected that, QSIs are more stable  
in the (frustrated) white region.  But how
are the QSIs connected with each other?

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
Z

J̃x

J̃y

J̃z

J̃x

J̃y

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

�1 1

1

�1

AIAO

AFO

FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.

Acknowledgements. – We thank Leon Balents, Michel
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SU(2) Point

What is the ground state of SU(2) Heisenberg 
model on the pyrochlore lattice? 
My conjecture: multicritical point or critical region 
with emergent non-Abelian gauge structure, 
  i.e.  SU(2) quantum spin liquid
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MATERIAL SURVEY
Our doublet can potentially be realized for any Kramers spin moment with j>1/2.

Two well-known systems:

• Pyrochlores A2B2O7,
A = Nd, Er, Dy, … ?
e.g. ,
Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc
Dy2Ti2O7,
Cd2Os2O7, etc

• Spinels AB2X4, B=lanthanide?
e.g.  CdEr2Se4

be equal to ðR=2Þ lnð3=2Þ ¼ 1:68 Jmol$1 K$1, the residual
entropy associated with proton disorder in water ice [15]
and, in spin ice, with the extensive degeneracy of the
frozen state associated with the ice-rules [14].

Figure 1 shows the magnetic contribution (CMAG=T) to
the specific heat for CdEr2Se4, obtained after subtracting
the phonon and CEF contributions from the experimental
data [the best fit is obtained with a Debye temperature
!D ¼ 167:84ð39Þ K and the first excited CEF level at
46.96(29) K above the ground state; see inset of Fig. 1].
CMAG shows no sign of long-range order but a broad peak
centered at %0:95 K with a rapid fall to zero in the low-
temperature side, associated in the titanates with the freez-
ing of the R3þ moments in the spin ice state [7]. Most
importantly, the entropy recovered by integration of
CMAG=T between 0.3 and 20 K is about 4:2 Jmol$1 K$1,
which differs from S ¼ R ln2 expected for the noninteract-
ing Ising spins by 1:56 Jmol$1 K$1, a value close to the

zero-point entropy of a spin ice ground state. The recovery
of the zero-point entropy on application of a magnetic field
[the integrated entropy S up to 13 K in a field of 0.5 T
amounts to more than 90% of the total spin entropy,
compared to 76% in zero field (Fig. 3 bottom)], is also
consistent with spin ice behavior, as has been shown for
Dy2Ti2O7 [7]. Note that although the integration of
CMAG=T has been made for T ' 0:3 K, the absence of
any ordering feature in the ac-" below the freezing tem-
perature, Tp, (see below) completely rules out a large
discrepancy in S from our calculated value. Note also
that extrapolating the experimental curve below 0.3 K us-
ing a Schottky function adds only 0:025 Jmol$1 K$1 to the
total entropy, 2 orders of magnitude smaller than the
quoted value of 4:2 Jmol$1 K$1.
Figure 1 therefore constitutes irrefutable experimental

evidence of the spin ice behavior in CdEr2Se4. The task is
now to establish that the system satisfies the anisotropy and
exchange requirements for its existence. In CdEr2Se4, the
first indication of strong anisotropy of the Er3þ ions comes
from the field dependence of the dc magnetization (Fig. 2).
On cooling, the magnetization approaches saturation at a
value close to half of the free ion maximum # ¼ 9#B,
indicative of strong anisotropy and, a priori, reminiscent of
the behavior in spin ice [16]. However, a half-
magnetization plateau does not uniquely support h111i
uniaxial anisotropy as it is also found in Er2Ti2O7 [16]
with planar anisotropy. Further evidence is thus needed to
prove this point and it comes from a calculation of the
effect the change in the local coordination environment of
the Er3þ ions has on the single-ion CEF levels. In fact, a
close look at the spinel and pyrochlore structures of
CdEr2Se4 and Er2Ti2O7, respectively, shows that, in the
titanate, each R3þ ion is surrounded by eight oxygens
forming a distorted cube with two shortened R-O distances
lying along the h111i axes. In the spinel structure, on the
other hand, each R3þ has six nearest-neighbor Se2$ ions in
an almost perfect octahedral environment. None of the Er-
Se bonds points along the threefold axes. We have calcu-

FIG. 1 (color online). Magnetic specific heat and correspond-
ing integrated entropy (per mole of Er) for CdEr2Se4, showing a
reasonable agreement with the predicted S value for the degen-
erate 2 in 2 out spin ice state, R ln2-ðR=2Þ lnð3=2Þ. The error in
SðTÞ has been estimated from the error bars of the parameters
fitted in the calculation of CMAG. Inset: phonon, CEF, and
magnetic contributions to CðTÞ.

FIG. 2 (color online). Experimental (symbols) and calculated
(solid lines) field dependence of the magnetization of a poly-
crystalline sample of CdEr2Se4.
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
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1086420

T (K)

3

2

1

0

s(
T)

 (
J K

¬1
 m

ol
-D

y¬1
)

1.20.80.40.0
T (K)

Pauling's entropy

Rln(2)

Pauling's entropy
(R/2)ln(3/2)

3

2

1

0c(
T)

/T
 (

J K
¬2

 m
ol

-D
y¬1

)

6

5

4

3

2

1

0

s(
T)

 (
J K

¬1
 m

ol
-D

y¬1
)

a

b

Single crystal (this work)

Ref.8 (experimental)

Ref.2 (experimental)

Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.
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SUMMARY
• We propose a realistic XYZ model based on a  

singlet Kramers doublet on the pyrochlore lattice. 

• This realistic model supports two distinct symmetry 
enriched quantum spin ice phases. 

• This model can be well understood by quantum  
Monte Carlo simulation. 
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