SYMMETRY ENRICHED QUANTUM SPIN ICES ON THE PYROCHLORE LATTICE

Gang Chen University of Toronto

Collaborators

- Yi-ping Huang (CU Boulder)
- Michael Hermele (CU Boulder)
- Ref: arXiv 1311.1231 (more stuff)

)UIINF

- Quantum spin liquids: review of history, theories, experiments
 Classical spin ice and quantum spin ice
- A realistic spin model on the pyrochlore lattice
- Symmetry enrichment and other prediction

WHY DO WE CARE ABOUT QSLs?

It breaks the Landau paradigm of phases and phase transitions.

We want to look for exotic phases beyond FQHE. QSLs provide such a possibility both in theory and experiments.

HISTORY

• 1973, Anderson's RVB wavefuc for triangle lattice Heisenberg model to suppress AFM Neel order

+ all other dimer covering

each bond=spin singlet, quantum superposition

noncollinear order

1987, high temperature superconductor without phonons

RVB state becomes a superconductor upon doping with mobile holes. RVB wavefct is a superconductor wavefct after doping.

THEORY (INCOMPLETE)

- Definition of QSL
- Classification

historical/experimental definition

Properties: states w/ fractional excitations (quantum number, e.g. spin-1/2 spinons, statistics), states w/ emergent gauge structure (to ''deconfine'' the fractional excitation.

2002, Wen's PSG: an example of H²(SG, GG) for Spinons. Recent SET: classify symmetry fractionalization patterns of fractional excitations H^d(SG,GG).

Exact solvable models

Kitaev's toric code Kitaev model on honeycomb lattice, many new ones.....

 Numerics (and EE): ED (small system), QMC (sign problem), DMRG (Id, quasi-Id), etc

Heisenberg model on kagome lattice, J₁-J₂ model on square lattice, honeycomb lattice

Topological spin liquids (gapped spinons) e.g. Z₂ spin liquid in 2d or 3d QSI: U(1) spin liquid in 3d

b)

QSL CANDIDATES (INCOMPLETE)

Solid-state systems (explain one)

2d-triangle

materials $EtMe_3Sb[Pd(dmit)_2]_2$ κ -(ET)₂Cu₂(CN)₃ $Ba_3CuSb_2O_9$ $Ba_3NiSb_2O_9$

 $\begin{array}{c} {\rm materials} \\ {\rm ZnCu}_3({\rm OH})_6{\rm Cl}_2 \\ {\rm Cu}_3{\rm V}_2{\rm O}_7({\rm OH})_2{\cdot}2{\rm H}_2{\rm O} \\ {\rm BaCu}_3{\rm V}_2{\rm O}_3({\rm OH})_2 \end{array}$

. . .

3d-hyperkagome 3d-pyrochlore strong SOC material $Na_4 Ir_3 O_8$ $Ba_2 Y MoO_6$ $Pr_2 Zr_2 O_7$

 "Ultracold" atoms: dipolar magnetism, large quantum group [SP(N) or SU(N) with reasonably large N !]
 Issue: prepare/design, cooling, probing

AN EXPERIMENTAL ONE $EtMe_3Sb[Pd(dmit)_2]_2$

metallic thermal conductivity

CHALLENGES: CONNECT THEORY WITH EXPERIMENTS

Modelling:

Given a QSL candidate, want to know if it is QSL and what type of QSL. Require the Hamiltonian and "solving" it. Both are hard.

Measurement:

How to unambiguously confirm QSLs of any type by experiments on a given QSL candidate. Not just absence of ordering at low Ts. More direct probe for the "defining" properties of QSL, e.g. emergent gauge structure, deconfined (fractionalized) degrees of freedom.

)UIINF

- Quantum spin liquids: review of history, theories, experiments
 Classical spin ice and Quantum spin ice
- A realistic spin model on the pyrochlore lattice
- Symmetry enrichment and other prediction

CLASSICAL SPIN ICE (WHAT WE UNDERSTOOD VERY WELL)

Ising spins on pyrochlore lattice

QUANTUM MECHANICS IS IMPORTANT!

Experiments

Well-defined spin waves in Yb2Ti2O7 by Prof B. Gaulin's group

(\ne\) E (me\) E E (meV) 0.5 0 1 2 0 1 2 0 0.5 1 1.5-2 0 2 -1 0 1 2 3 -2 4 0 2 -1 0 (HHH) (00L) (22L) (HH2) (-H+1, -H+1, H+2) (-2H, H+1, H-1) (H-1, 2, -H-1)

> Spin waves and quantum order-by-disorder in Er2Ti2O7 also by Prof B. Gaulin's group

also in many other experiments...

Prof Gingras' review 2013

ISING SPIN IS NOT ENOUGH

• A generic Hamiltonian for effective spin-1/2 (S. Onoda etc)

$$\begin{split} H &= \sum_{\langle ij \rangle} \{ J_{zz} \mathbf{S}_{i}^{z} \mathbf{S}_{j}^{z} - J_{\pm} (\mathbf{S}_{i}^{+} \mathbf{S}_{j}^{-} + \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{+}) \\ &+ J_{\pm \pm} (\gamma_{ij} \mathbf{S}_{i}^{+} \mathbf{S}_{j}^{+} + \gamma_{ij}^{*} \mathbf{S}_{i}^{-} \mathbf{S}_{j}^{-}) \\ &+ J_{z\pm} [\mathbf{S}_{i}^{z} (\zeta_{ij} \mathbf{S}_{j}^{+} + \zeta_{ij}^{*} \mathbf{S}_{j}^{-}) + i \leftrightarrow j] \}, \end{split}$$

Complicated!

spins are defined in local coordinate system

exchange has bond-dependent phase factors

Prof Gingras' review 2013

QUANTUM SPIN ICE

"Toy" XXZ model (Hermele etc 2004)

Quantum Monte Carlo (Isakov etc 2008)

$$H = \sum_{\langle ij \rangle} [V(n_i - 1/2)(n_j - 1/2) - t(b_i^{\dagger}b_j + b_i b_j^{\dagger})] + \sum_i [U(n_i - 1/2)^2 - \mu n_i].$$

DIFFERENCE BETWEEN CLASSICAL AND QUANTUM

Classical spin ice: basically classical stat mech with local constraints Residual Pauling entropy (ice rule), i.e. a thermal/entropy effect

Dipolar spin correlation $(1/r^3)$

Quantum spin ice: string-net condensation, emergent quantum electrodyna a novel quantum phase of matter.

Deconfined (coherent) spinons Emergent photons

No residual Pauling entropy T³ heat capacity Power-law spin (S^z) correlation Defects induced ground state degeneracy

OUR DOUBLET: LOCAL PHYSICS

Local moments on pyrochlore lattice: pseudospin 1/2

a simple picture for d electrons under D_{3d} point group crystal field

• Why is this Kramers doublet so special?

1-dimensional representations of the point group!

 $R(2\pi/3)|J^z = \pm 3/2\rangle = -|J^z = \pm 3/2\rangle$

UR DOUBIFT: LOCAL PHYSICS

- Also applies to f electron moments on pyrochlore
- $j = 3/2, 9/2, 15/2, \cdots$ $H_{cf} = 3B_2^0(J^z)^2 + \cdots$ if $B_2^0 < 0$. May generally apply to any Kramers' spin (j>1/2) For example, Yb:Yb₂Ti₂O₇ Dr theory gr

Bertin, etc, J. Phys: cond.mat 2012

SYMMETRY PROPERTIES

• Space group symmetry

Important: S^x and S^z transform identically (as a dipole), while S^y transforms as an octupole moment under M.

OUR MODEL

Nearest neighbour exchange from symmetry

Same on every bond ! Versus S. Onoda, L. Balents' model $H = \sum_{\langle ij \rangle} \{J_{zz} \mathbf{S}_i^z \mathbf{S}_j^z - J_{\pm} (\mathbf{S}_i^+ \mathbf{S}_j^- + \mathbf{S}_i^- \mathbf{S}_j^+) + J_{\pm\pm} (\gamma_{ij} \mathbf{S}_i^+ \mathbf{S}_j^+ + \gamma_{ij}^* \mathbf{S}_i^- \mathbf{S}_j^-) + J_{z\pm} [\mathbf{S}_i^z (\zeta_{ij} \mathbf{S}_j^+ + \zeta_{ij}^* \mathbf{S}_j^-) + i \leftrightarrow j]\},$ Apply a global rotation around y axis in the

pseudospin space and obtain XYZ model

$$H = \sum_{\langle ij \rangle} \tilde{J}_z \tilde{S}_i^z \tilde{S}_j^z + \tilde{J}_x \tilde{S}_i^x \tilde{S}_j^x + \tilde{J}_y \tilde{S}_i^y \tilde{S}_j^y$$

UNFRUSTRATED REGIME: MAGNETIC ORDER

1. $\tilde{J}_z < 0$ and $|\tilde{J}_z| \gg \tilde{J}_{x,y}$, then $\langle \tilde{S}_i^z \rangle \neq 0$.

This is an "all-in all-out" AFM state with magnetic dipolar order.

2. $\tilde{J}_x < 0$ and $|\tilde{J}_x| \gg \tilde{J}_{y,z}$, then $\langle \tilde{S}_i^x \rangle \neq 0$.

This state is not distinct from the first state.

3. $\tilde{J}_y < 0$ and $|\tilde{J}_y| \gg \tilde{J}_{x,z}$, then $\langle \tilde{S}_i^y \rangle \neq 0$.

This state is distinct from the above two states! It has an antiferro-octupolar order but no dipolar order.

FRUSTRATED REGIME: MAGNETIC ORDER

Study phase on a cube: $-1 \leq \tilde{J}_{x,y,z} \leq 1$.

 $\tilde{J}_z = 1$: phase diagram by gauge mean field theory.

No sign problem in the shaded region !

PERTURBATIVE ANALYSIS

Hermele etc 2004: $J_z \gg J_{\pm}$

 $H_0 = J_z \sum S_i^z S_j^z$ gives ice-ruled manifold $\langle ij \rangle$ $H_1 = -J_{\pm} \sum (S_i^+ S_j^- + h.c.)$ generates quantum tunnelling among ice-rule states $\langle ij \rangle$ apply H₁ 3 times

Effectively given by a 6-site ring exchange $H_{\text{ring}} = -\frac{12J_{\pm}^3}{J_z^3} \sum_{\text{hexagon}} (S_1^+ S_2^- S_3^+ S_4^- S_5^+ S_6^- + h.c.)$

MAPTO U(I) LATTICE GAUGETHEORY

Define

 $E_{\boldsymbol{rr'}} = S_i^z$ $e^{\pm iA_{\boldsymbol{rr'}}} = S_i^\pm$

Compact U(I) lattice gauge theory

$$H_{\text{eff}} = -K \sum_{\text{hexagon}} \cos(\nabla \times A)$$

hexagons on the dual diamond lattice

K > 0 favours a zero-flux state with $\nabla \times A = 0$ K < 0 favours a π -flux state with $\nabla \times A = \pi$

OPEN STRING

Similar as any other slave particle approach, but here is more physically justified.

Spin flip creates spinon-antispinon pair on neighboring diamond sites. (Balents etc 2012)

$$S_i^{\pm} = \Phi_{\boldsymbol{r}}^{\dagger} \Phi_{\boldsymbol{r}'} s_{\boldsymbol{r} \boldsymbol{r}'}^{\pm}$$

where $s_{\boldsymbol{rr'}}^{\pm} = e^{\pm i A_{\boldsymbol{rr'}}}$ is the gauge field.

and gauge charge is defined as

$$Q_{\boldsymbol{r}} = (-1)^{\boldsymbol{r}} \sum_{i \in \boldsymbol{r}} S_i^z$$

invariant under local U(I) gauge transformation

$$\Phi_{\boldsymbol{r}} \to \Phi_{\boldsymbol{r}} e^{i\chi_{\boldsymbol{r}}}$$
$$s_{\boldsymbol{r}\boldsymbol{r}'}^{\pm} \to s_{\boldsymbol{r}\boldsymbol{r}'}^{\pm} e^{i\chi_{\boldsymbol{r}} - i\chi_{\boldsymbol{r}'}}$$

APPLY TO XYZ

Rewrite the XYZ model to manifest the gauge structure

$$\begin{aligned} H_{\text{XYZ}} &= \sum_{\langle ij \rangle} \tilde{J}_z \tilde{S}_i^z \tilde{S}_j^z + \tilde{J}_y \tilde{S}_i^x \tilde{S}_j^x + \tilde{J}_x \tilde{S}_i^y \tilde{S}_j^y \\ &= \sum_{\langle ij \rangle} J_{zz} \tilde{S}_i^z \tilde{S}_j^z - J_{\pm} (\tilde{S}_i^+ \tilde{S}_j^- + h.c.) + J_{\pm\pm} (\tilde{S}_i^+ \tilde{S}_j^+ + \tilde{S}_i^- \tilde{S}_j^-) \\ \text{with } J_{zz} &= \tilde{J}_z, \ J_{\pm} = -\frac{1}{4} (\tilde{J}_x + \tilde{J}_y) \text{ and } J_{\pm\pm} = \frac{1}{4} (\tilde{J}_x - \tilde{J}_y). \end{aligned}$$

show the spinon-gauge coupling

$$H_{\rm XYZ} = \frac{J_{zz}}{2} \sum_{\mathbf{r}} Q_{\mathbf{r}}^2 - J_{\pm} \sum_{\mathbf{r}} \sum_{i \neq j} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{i}}^{\dagger} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{j}} s_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{i}}^{-\eta_{\mathbf{r}}} s_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{i}}^{+\eta_{\mathbf{r}}} s_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{j}}^{+\eta_{\mathbf{r}}} + \frac{J_{\pm\pm}}{2} \sum_{\mathbf{r}} \sum_{i \neq j} \left(\Phi_{\mathbf{r}}^{\dagger} \Phi_{\mathbf{r}}^{\dagger} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{i}} \Phi_{\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{j}} s_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{i}}^{\eta_{\mathbf{r}}} s_{\mathbf{r},\mathbf{r}+\eta_{\mathbf{r}}\mathbf{e}_{j}}^{\eta_{\mathbf{r}}} + h.c. \right)$$

CONDENSE SPINONS

$$H_{XYZ} = \sum_{\langle ij \rangle} \tilde{J}_{z} \tilde{S}_{i}^{z} \tilde{S}_{j}^{z} + \tilde{J}_{y} \tilde{S}_{i}^{x} \tilde{S}_{j}^{x} + \tilde{J}_{x} \tilde{S}_{i}^{y} \tilde{S}_{j}^{y}$$

$$= \sum_{\langle ij \rangle} J_{zz} \tilde{S}_{i}^{z} \tilde{S}_{j}^{z} - J_{\pm} (\tilde{S}_{i}^{+} \tilde{S}_{j}^{-} + h.c.) + J_{\pm\pm} (\tilde{S}_{i}^{+} \tilde{S}_{j}^{+} + \tilde{S}_{i}^{-} \tilde{S}_{j}^{-})$$

$$= 2(\tilde{S}_{i}^{x} \tilde{S}_{j}^{x} - \tilde{S}_{i}^{y} \tilde{S}_{j}^{y})$$

$$Z_{2} QSL; \quad \langle \Phi \rangle = 0 \text{ but } \langle \Phi \Phi \rangle \neq 0$$
not found in my gauge MFT
$$\int_{Z_{2}} QSL? \quad Ordered in \times y \quad J_{+}$$

$$\int_{Z_{2}} QSL? \quad Ordered in \times y \quad J_{+}$$

$$\int_{J_{2z}} \int_{U} \tilde{S}_{x}^{x} \neq 0 \text{ all-in all-out}$$

$$\int_{U} J_{y} = 0 \text{ all-in all-out}$$

SYMMETRY ENRICHMENT

In fact, Pi-flux state is also also example of symmetry enrichment. This is similar as the 3 symmetry enriched Z_2 QSLs in Kitaev's toric code model.

dQSI vs oQSI

Transformation of continuum E/B field under Oh point group

- Both phases have identical thermodynamical properties,
 e.g. T³ heat capacity
- Different dipolar static spin correlation:

 $\begin{aligned} dQSI: &< S_z(0) S_z(r) > &\sim 1/r^4. \\ oQSI: &< S_z(0) S_z(r) > &\sim 1/r^8, \\ & \text{with } Z_2 x Z_2 \text{ symmetry, decay exponentially.} \end{aligned}$

OPEN QUESTION

1.0 It is expected that, QSIs are more stable in the (frustrated) white region. But how
0.5 are the QSIs connected with each other?

What is the ground state of SU(2) Heisenberg -1.0 model on the pyrochlore lattice? -10 -0.5 0.0 0.5 1.0 My conjecture: multicritical point or critical region with emergent non-Abelian gauge structure, *i.e.* SU(2) quantum spin liquid

MATERIAL SURVEY

Our doublet can potentially be realized for any Kramers spin moment with j>1/2.

Two well-known systems:

- Pyrochlores $A_2B_2O_7$, A = Nd, Er, Dy, ...? e.g.,
 - Nd₂Ir₂O₇, Nd₂Sn₂O₇, Nd₂Zr₂O₇, etc Dy₂Ti₂O₇, Cd₂Os₂O₇, etc
- Spinels AB₂X₄, B=lanthanide?
 e.g. CdEr₂Se₄
 CdYb₂S₄

SUMMARY

- We propose a realistic XYZ model based on a singlet Kramers doublet on the pyrochlore lattice.
- This realistic model supports two distinct symmetry enriched quantum spin ice phases.
- This model can be well understood by quantum Monte Carlo simulation.