Competing orders and topological excitations in spin-1 pyrochlore antiferromagnets

Gang Chen
Department of Physics
Fudan University
(currently on a sabbatical leave to University of Hong Kong)
Competing phases and topological excitations of spin-1 pyrochlore antiferromagnets

Fei-Ye Li1,2 and Gang Chen1,2,3,4,*

1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
2Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
3Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, 200433, China
4Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

PHYSICAL REVIEW B 98, 045109 (2018)

Everlasting success of spin-1/2 pyrochlores

Pauling entropy in spin ice

Classical spin ice

Ramirez, etc, Nature 1999,
Gingras, etc, Science, 2009
Castelnovo, Moessner, etc, Nature 2008
Everlasting success of spin-1/2 pyrochlores

Quantum spin ice,
Quantum spin liquid

Spinon deconfinement

Figs from Moessner & Schiffer, 2009

Gingras, Gaulin, Balents, Savary, SB Lee, GC, ...
Everlasting success of spin-1/2 pyrochlores

Order by quantum disorder

\textit{Er}_2\textit{Ti}_2\textit{O}_7 \textit{Hamiltonian}: The effective } S = 1/2 \textit{ description applies to } \textit{Er}_2\textit{Ti}_2\textit{O}_7 \textit{below about 74 K} [2, 11]. Nearest-neighbor exchange dominates, for which the Hamiltonian is constrained by symmetry to the form \cite{9}

\begin{align}
H &= \sum_{\langle ij \rangle} \left[J_{zz} S_i^z S_j^z - J_{\pm} (S_i^+ S_j^- + S_i^- S_j^+) \right. \\
&\quad + J_{\pm\pm} \left[\gamma_{ij} S_i^+ S_j^+ + \gamma_{ij} S_i^- S_j^- \right] \\
&\quad + J_{z\pm} \left[S_i^z (\xi_{ij} S_j^+ + \xi_{ij}^* S_j^-) + i \leftrightarrow j \right].
\end{align}

(6)

\[\epsilon_{\alpha}^w (\text{meV}) \]

FIG. 2. Zero-point fluctuation energy ϵ_{α}^w in the classically degenerate manifold parametrized by α. The peak-to-peak energy is $\lambda \approx 3.5 \times 10^{-4}$ meV.
The difference between spin-1/2 and spin-1

Due to Berry phase effect, spin-1/2 chain is gapless, spin-1 Heisenberg chain is gapped.

Building degree of freedom is $S=1$, but at there is $S=1/2$ edge state.
Spin-1 pyrochlores

<table>
<thead>
<tr>
<th>materials</th>
<th>magnetic ions</th>
<th>Θ_CW</th>
<th>magnetic transitions</th>
<th>magnetic structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCaNi$_2$F$_7$</td>
<td>Ni$^{2+}$ (3d8)</td>
<td>-129K</td>
<td>glassy transition at 3.6K</td>
<td>spin glass</td>
</tr>
<tr>
<td>Y$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4)</td>
<td>-1250K</td>
<td>AFM transition at 76K</td>
<td>canted AFM Q = 0</td>
</tr>
<tr>
<td>Tl$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4)</td>
<td>-956K</td>
<td>structure transition at 120K</td>
<td>gapped paramagnet</td>
</tr>
<tr>
<td>Eu$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4)</td>
<td>-</td>
<td>Ru order at 118K</td>
<td>Ru order</td>
</tr>
<tr>
<td>Pr$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Pr$_3^+$ (4f2)</td>
<td>-224K</td>
<td>Ru AFM order at 162K</td>
<td>Ru AFM order</td>
</tr>
<tr>
<td>Nd$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Nd$^{3+}$ (4f3)</td>
<td>-168K</td>
<td>Ru AFM order at 143K</td>
<td>Ru AFM order</td>
</tr>
<tr>
<td>Gd$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Gd$^{3+}$ (4f7)</td>
<td>-10K</td>
<td>Ru AFM order at 114K</td>
<td>Ru AFM order Q = 0</td>
</tr>
<tr>
<td>Tb$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Tb$^{3+}$ (4f8)</td>
<td>-16K</td>
<td>Ru AFM order at 110K</td>
<td>Ru AFM order</td>
</tr>
<tr>
<td>Dy$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Dy$^{3+}$ (4f9)</td>
<td>-10K</td>
<td>Ru AFM order at 100K</td>
<td>Ru AFM order Q = 0</td>
</tr>
<tr>
<td>Ho$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Ho$^{3+}$ (4f10)</td>
<td>-4K</td>
<td>Ru AFM order at 95K</td>
<td>Ru AFM order Q = 0</td>
</tr>
<tr>
<td>Er$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Er$^{3+}$ (4f11)</td>
<td>-16K</td>
<td>Ru AFM order at 92K</td>
<td>Ru AFM order</td>
</tr>
<tr>
<td>Yb$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$ (4d4), Yb$^{3+}$ (4f13)</td>
<td>-</td>
<td>Ru AFM order at 83K</td>
<td>Ru AFM order Q = 0</td>
</tr>
<tr>
<td>Y$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$ (4d2)</td>
<td>-200K</td>
<td>Mo spin glass at 22K</td>
<td>Mo spin glass</td>
</tr>
<tr>
<td>Lu$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$ (4d2)</td>
<td>-160K</td>
<td>Mo spin glass at 16K</td>
<td>Mo spin glass</td>
</tr>
<tr>
<td>Tb$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$ (4d2), Tb$^{3+}$ (4f8)</td>
<td>20K</td>
<td>spin glass at 25K</td>
<td>spin glass</td>
</tr>
</tbody>
</table>

Candidate spin-1 pyrochlore materials

References are listed in PRB 98, 045109

www.ptable.com
Model Hamiltonian

Local moment physics of the Ni$^{2+}$ ion in NaCaNi$_2$F$_7$

\[H = \sum_{\langle ij \rangle} \left[J S_i \cdot S_j + D_{ij} \cdot (S_i \times S_j) \right] + \sum_i D_z (S_i \cdot \hat{z}_i)^2 \]

- Heisenberg (J$>$0)
- Dzyaloshinskii-Moriya
- Single ion anisotropy

\[|D_{ij}|/J \sim O(\lambda/\Delta) \]
\[|D_z|/\Delta \sim O(\lambda^2/\Delta^2) \]

\(\lambda \): SOC \(\Delta \): CEF splitting
Phase diagram (overview)

Quant. Para. = quantum paramagnetic phase
Others are magnetic ordered phases
Quantum paramagnetic phase

Quant. Para. = quantum paramagnetic phase
Others are magnetic ordered phases
Quantum paramagnetic phase

$D_z \to +\infty \quad \text{(easy plane limit)}: \quad |\Psi\rangle = \prod_i |S_i^z = S_i \cdot \hat{z}_i = 0\rangle$

Flavor wave theory

start from the ground state in easy plane limit, one can introduce two flavors of bosons to represent the spin Hamiltonian

$$a_1^{\dagger} |S_i^z = 0\rangle = |S_i^z = 1\rangle$$

$$a_1^{\dagger} |S_i^z = 0\rangle = |S_i^z = -1\rangle$$

$$H_{fw} = \sum_k \Psi_k^{\dagger} M(k) \Psi_k$$

8 branches = 4 sublattices x 2 flavors

A. Joshi, et al. PRB 60, 6584 (1999)
Quantum paramagnetic phase

\[D_z \to +\infty \text{ (easy plane limit): } |\Psi\rangle = \prod_i |S_i^z \equiv S_i \cdot \hat{z}_i = 0\rangle \]

Flavor wave theory

start from the ground state in easy plane limit, one can introduce two flavors of bosons to represent the spin Hamiltonian

\[a^\dagger_1(i) |S_i^z = 0\rangle = |S_i^z = 1\rangle \]
\[a^\dagger_1 |S_i^z = 0\rangle = |S_i^z = -1\rangle \]
\[H_{fw} = \sum_\mathbf{k} \Psi_\mathbf{k}^\dagger M(\mathbf{k}) \Psi_\mathbf{k} \]

8 branches = 4 sublattices x 2 flavors

instability of the quantum paramagnet \(\leftrightarrow\) magnetic order

A. Joshi, et al. PRB 60, 6584 (1999)
Competing magnetic orders

Mean-field theory

\[\langle H \rangle = \sum_{ij} J m_i \cdot m_j + D_{ij} \cdot (m_i \times m_j) + \sum_i D_z (m_i \cdot \hat{z}_i)^2 \]

All ordered states have \(Q=0 \)
Magnetic ordered phases

The ordered phases can be understood from degeneracy lifting:

\[J \text{ term requires } \sum_{i \in I_{u/d}} S_i = 0 \text{ in one tetrahedron} \quad \text{(huge degeneracy)} \]

\[-|D| \sum_i (S_i \cdot \hat{z}_i)^2 \]

“Z-type” order:
- local Z axis
- all-in all-out
- two-in two-out

“XY-type” order:
- local XY plane

Further selected by the sign of DM interaction

or

Quantum order by disorder

Weyl semimetal and extension

\[H_D = E_0 \mathbb{1} + \mathbf{v}_0 \cdot \mathbf{q} + \sum_{i=1}^{3} \mathbf{v}_i \cdot \mathbf{q} \sigma_i. \]

Energy is measured from the chemical potential, \(\mathbf{q} = \mathbf{k} - \mathbf{k}_0 \)

Extension: Type-II Weyl semimetal, Dirac semimetal, nodal line semimetal, hourglass fermion, new fermions
Topological magnons: Weyl magnon

F-Y Li, YD Li, Kim, Balents, Yu, GC, Nature communications 2016
Unique properties of topological Weyl magnon

Magnon Weyl nodes

Magnon surface arcs

Tune Weyl nodes with fields
Focus session: topological magnons

Session Index

Session V44: Topological Magnons

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Title</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday, March 7, 2019</td>
<td>2:30PM - 3:06PM</td>
<td>V44.00001: Topological magnon bands in ultra-thin film pyrochlore iridates and iron jarosites</td>
<td>Gregory Fiete</td>
</tr>
<tr>
<td>Thursday, March 7, 2019</td>
<td>3:06PM - 3:42PM</td>
<td>V44.00002: Topological spin excitations in a three-dimensional antiferromagnet</td>
<td>Yuan Li</td>
</tr>
<tr>
<td>Thursday, March 7, 2019</td>
<td>3:42PM - 4:18PM</td>
<td>V44.00003: Topology of magnons: classification and application to honeycomb Kitaev magnets</td>
<td>Yuan-Ming Lu</td>
</tr>
<tr>
<td>Thursday, March 7, 2019</td>
<td>4:18PM - 4:54PM</td>
<td>V44.00004: Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet</td>
<td>Jinsheng Wen</td>
</tr>
<tr>
<td>Thursday, March 7, 2019</td>
<td>4:54PM - 5:30PM</td>
<td>V44.00005: The surprising usefulness of magnons at intermediate and high energies: from frustration to topology</td>
<td>Roderich Moessner</td>
</tr>
</tbody>
</table>

Room: BCEC 210C
Topological magnons for spin-1 pyrochlores

Triple degeneracy
Topological magnons for spin-1 pyrochlores

FIG. 7. Spin wave excitations of the ordered phases. The pa-

FIG. 8. The nodal lines and Weyl nodes of the spin wave exci-
tation. (a) For the same parameters as in Fig. 7(b), there is a nodal
Materials’ relevance

<table>
<thead>
<tr>
<th>materials</th>
<th>magnetic ions</th>
<th>Θ_{CW}</th>
<th>magnetic transitions</th>
<th>magnetic structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCaNi$_2$F$_7$</td>
<td>Ni$^{2+}$(3d8)</td>
<td>-129K</td>
<td>glassy transition at 3.6K</td>
<td>spin glass</td>
</tr>
<tr>
<td>Y$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4)</td>
<td>-1250K</td>
<td>AFM transition at 76K</td>
<td>canted AFM $Q = 0$</td>
</tr>
<tr>
<td>Tl$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4)</td>
<td>-956K</td>
<td>structure transition at 120K</td>
<td>gapped paramagnet</td>
</tr>
<tr>
<td>Eu$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4)</td>
<td>-</td>
<td>Ru order at 118K</td>
<td>Ru order</td>
</tr>
<tr>
<td>Pr$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Pr$^{3+}$(4f2)</td>
<td>-224K</td>
<td>Ru AFM order at 162K</td>
<td>Ru AFM order</td>
</tr>
<tr>
<td>Nd$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Nd$^{3+}$(4f3)</td>
<td>-168K</td>
<td>Ru AFM order at 143K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Gd$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Gd$^{3+}$(4f7)</td>
<td>-10K</td>
<td>Ru AFM order at 114K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Tb$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Tb$^{3+}$(4f8)</td>
<td>-16K</td>
<td>Ru AFM order at 110K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Dy$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Dy$^{3+}$(4f9)</td>
<td>-10K</td>
<td>Ru AFM order at 100K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Ho$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Ho$^{3+}$(4f10)</td>
<td>-4K</td>
<td>Ru AFM order at 95K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Er$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Er$^{3+}$(4f11)</td>
<td>-16K</td>
<td>Ru AFM order at 92K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Yb$_2$Ru$_2$O$_7$</td>
<td>Ru$^{4+}$(4d4), Yb$^{3+}$(4f13)</td>
<td>-</td>
<td>Ru AFM order at 83K</td>
<td>Ru AFM order $Q = 0$</td>
</tr>
<tr>
<td>Y$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$(4d2)</td>
<td>-200K</td>
<td>Mo spin glass at 22K</td>
<td>Mo spin glass</td>
</tr>
<tr>
<td>Lu$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$(4d2)</td>
<td>-160K</td>
<td>Mo spin glass at 16K</td>
<td>Mo spin glass</td>
</tr>
<tr>
<td>Tb$_2$Mo$_2$O$_7$</td>
<td>Mo$^{4+}$(4d2), Tb$^{3+}$(4f8)</td>
<td>20K</td>
<td>spin glass at 25K</td>
<td>spin glass</td>
</tr>
</tbody>
</table>

on the systems with more known results. Ho$_2$Ru$_2$O$_7$ was studied using neutron scattering measurements in a nice paper [109] by C.R. Wiebe et al. The authors revealed the Ru moment order at ~95 K and the Ho moment order at ~1.4 K. The high temperature Ru magnetic order is consistent with the splayed FM with a splayed angle $\alpha \approx 41^\circ$. Under the internal exchange

The Heisenberg point requires more “quantum” treatment.

Heisenberg point $D = 0, D_z = 0$
- classical ground states are extensively degenerate
- strong quantum fluctuations and
- fundamental distinctions between spin-1/2 and spin-1
Relation to spin-3/2 pyrochlores:

- The same model actually applies to the spin-3/2 pyrochlore materials (e.g. Mn-based pyrochlores)

- Local spin anisotropy acts on it quite differently, \(D_Z (S_i \cdot \hat{z}_i)^2 \).

The quantum paramagnetic phase is absent since no Sz=0 state.

- The magnetic orders, if they occur, would be similar to the spin-1 pyrochlore system. The magnetic excitations would have similar properties, too.
Summary

1. We propose a minimal spin model for spin-1 pyrochlores

2. The competing phases and topological excitations are discussed.

3. Various materials’ realization and relevance are clarified.

Fei-Ye Li, GC, PRB 98, 045109 (2018)