(Some) Frontiers of Quantum Magnetism Theory

Gang Chen
Fudan University

Outline

1．Topological（Weyl）magnons：realization and detection

2．Intertwined magnetic multipolar orders and selective measurements

Topological insulator

Surface Dirac cone protected by time reversal symmetry， emerges from bulk－boundary／surface correspondence．

Weyl semimetal

k．p theory $\quad H_{D}=E_{0} \mathbb{1}+\mathbf{v}_{0} \cdot \mathbf{q} \mathbb{1}+\sum_{i=1}^{3} \mathbf{v}_{i} \cdot \mathbf{q} \sigma_{i}$ ．
Chirality of Weyl node

$$
c=\operatorname{sgn}\left(\mathbf{v}_{1} \cdot \mathbf{v}_{2} \times \mathbf{v}_{3}\right)
$$

To obtain WSM，one has to break either time reversal or inversion， e．g．TaAs（break inversion），magnetic WSM is not found yet．

These are all topological electrons, or electron band topology. But we are interested in magnetism here.

Where is (this kind of) topology in our field?

Weyl magnons：generalities and specialties

spin－wave spectrum of a 3D antiferromagnet

Ref：F－Y Li，Y－D Li，Y Kim，L Balents，Y Yu，G．C． Nature Comm 2016

Analogous to the Weyl electrons：
＊bulk－boundary correspondence
＊robust band touching
＊surface arcs

Differs from the Weyl electrons：
＊charge neutral
＊bosonic，no Fermi surface／energy
＊response to the magnetic field
＊Due to the magnetic order and the spin Hamiltonian

Concrete example with breathing pyrochlore

Breathing Pyrochlore

Regular Pyrochlore
K. Kimura, S. Nakatsuji, and T. Kimura, PhysRevB 2014,

Yoshihiko Okamoto, Gøran J. Nilsen, J. Paul Attfield, and Zenji Hiroi, PhysRevLett 2013,
Yu Tanaka, Makoto Yoshida, Masashi Takigawa, Yoshi- hiko Okamoto, and Zenji Hiroi, PhysRevLett 2014.

Existing experiments on Cr－based breathing pyrochlores

The systems have magnetic orders

A minimal model

Fei-Ye Li
(Fudan)

As there is no orbital degeneracy for the $3 d^{3}$ electron configuration of Cr^{3+} ions, the orbital angular momentum is fully quenched and the Cr^{3+} local moment is well described by the total spin $S=3 / 2$ via the Hund's rule. As

$$
\begin{aligned}
H= & J \sum_{\langle i j\rangle \in \mathrm{u}} \mathbf{S}_{i} \cdot \mathbf{S}_{j}+J^{\prime} \sum_{\langle i j\rangle \in \mathrm{d}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} \\
& +D \sum_{i}\left(\mathbf{S}_{i} \cdot \hat{z}_{i}\right)^{2}
\end{aligned}
$$

There would also be the Dzyaloshinskii-Moriya interaction due to the absence of inversion symmetry. But let's not worry about it now, since it is subleading.

Mean－field ground states

Treating spins as classical vectors，simple algebra gives some rules for ground states

$$
\begin{aligned}
\sum_{\langle i j\rangle \in \mathrm{u}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} & \sim \frac{1}{2}\left(\sum_{i \in \mathrm{u}} \mathbf{S}_{i}\right)^{2} \\
\sum_{\langle i j\rangle \in \mathrm{d}} \mathbf{S}_{i} \cdot \mathbf{S}_{j} & \sim \frac{1}{2}\left(\sum_{i \in \mathrm{~d}} \mathbf{S}_{i}\right)^{2}
\end{aligned}
$$

Then worry about the single－ion anisotropy

$$
D \sum_{i}\left(\mathbf{S}_{i} \cdot \hat{\mathbf{z}}_{i}\right)^{2}
$$

easy－axis vs easy－plane

Easy－plane：order by quantum disorder

$$
\mathbf{S}_{i}^{\mathrm{cl}} \equiv S \hat{m}_{i}=S\left(\cos \theta \hat{x}_{i}+\sin \theta \hat{y}_{i}\right)
$$

$$
\begin{aligned}
& \mathbf{S}_{i} \cdot \hat{\mathbf{m}}_{i}=S-a_{i}^{\dagger} a_{i} \\
& \mathbf{S}_{i} \cdot \hat{\mathbf{z}}_{i}=(2 S)^{1 / 2}\left(a_{i}+a_{i}^{\dagger}\right) / 2 \\
& \mathbf{S}_{i} \cdot\left(\hat{\mathbf{m}}_{i} \times \hat{\mathbf{z}}_{i}\right)=(2 S)^{1 / 2}\left(a_{i}-a_{i}^{\dagger}\right) /(2 i) \\
& \\
& \begin{aligned}
& H_{\mathrm{sw}}=\sum_{\mathbf{k}} \sum_{\mu, v}\left[A_{\mu v}(\mathbf{k}) a_{k, \mu}^{\dagger} a_{k, v}+B_{\mu v}(\mathbf{k}) a_{-k, \mu} a_{k, v}\right. \\
&\left.\quad+\quad B_{\mu v}^{*}(-\mathbf{k}) a_{k, \mu}^{\dagger} a_{-k, v}^{\dagger}\right]+E_{\mathrm{cl}}
\end{aligned}
\end{aligned}
$$

 b

d

Selection from quantum zero－point energy

Phase diagram

Dashed line is NOT phase boundary. region I and II are the same phase.

Weyl magnon and surface arcs

Different color means different chirality
｜Surface states of a slab．The slab is cleaved along the［111］$]$

Response to the magnetic field

Figure 5 ｜The evolution of Weyl nodes under the magnetic field．Applying a magnetic field along the global z direction， $\mathbf{B}=B \hat{\mathbf{z}}$ ，Weyl nodes are shifted but still in $k_{z}=0$ plane．They are annihilated at Γ when magnetic field is strong enough．Red and blue indicate the opposite chirality．（a，f）：$B=0,0.1 \mathrm{~J}$ ， $0.5 \mathrm{~J}, 0.9 \mathrm{~J}, 1.0 \mathrm{~J}, 1.1 \mathrm{~J}$ ．We have set $D=0.2 \mathrm{~J}, \mathrm{~J}^{\prime}=0.6 \mathrm{~J}$ and $\theta=\pi / 2$ ．

How to probe in a REAL experiment？

1．Neutron scattering：detect the Weyl nodes as well as the consequence （the surface arc states that connect the Weyl nodes）．

2．Thermal Hall effect：magnon Weyl nodes contribute the thermal currents that are tunable by external magnetic field．

3．Optically：as Weyl node must appear at finite energy，one needs to use pump－probe measurement．

Other pyrochlores

Spin－1 pyrochlore

$\mathrm{Y}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right)$	－1250K	AFM transition at 76 K	noncollinear AFM $\boldsymbol{Q}=\mathbf{0}$
$\mathrm{Tl}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right)$	－956K	structure transition at 120 K	gapped paramagnet
$\mathrm{Eu}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right)$	－	Ru order at 118 K	Ru order
$\mathrm{Pr}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Pr}^{3+}\left(4 f^{2}\right)$	－224K	Ru AFM order at 162 K	Ru AFM order
$\mathrm{Nd}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Nd}^{3+}\left(4 f^{3}\right)$	－168K	Ru AFM order at 143K	Ru AFM order
$\mathrm{Gd}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Gd}^{3+}\left(4 f^{7}\right)$	－10K	Ru AFM order at 114K	Ru AFM order $\boldsymbol{Q}=\mathbf{0}$
$\mathrm{Tb}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Tb}^{3+}\left(4 f^{8}\right)$	－16K	Ru AFM order at 110K	Ru AFM order $\boldsymbol{Q}=\mathbf{0}$
$\mathrm{Dy}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Dy}^{3+}\left(4 f^{9}\right)$	－10K	Ru AFM order at 100 K	Ru AFM order
$\mathrm{Ho}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Ho}^{3+}\left(4 f^{10}\right)$	－4K	Ru AFM order at 95 K	Ru FM order $\boldsymbol{Q}=\mathbf{0}$
$\mathrm{Er}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Er}^{3+}\left(4 f^{11}\right)$	－16K	Ru AFM order at 92 K	Ru AFM order $\boldsymbol{Q}=\mathbf{0}$
$\mathrm{Yb}_{2} \mathrm{Ru}_{2} \mathrm{O}_{7}$	$\mathrm{Ru}^{4+}\left(4 d^{4}\right), \mathrm{Yb}^{3+}\left(4 f^{13}\right)$	－	Ru AFM order at 83 K	Ru AFM order
$\mathrm{Y}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	$\mathrm{Mo}^{4+}\left(4 d^{2}\right)$	－200K	Mo spin glass at 22 K	Mo spin glass
$\mathrm{Lu}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	$\mathrm{Mo}^{4+}\left(4 d^{2}\right)$	－160K	Mo spin glass at 16 K	Mo spin glass
$\mathrm{Tb}_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}$	$\mathrm{Mo}^{4+}\left(4 d^{2}\right), \mathrm{Tb}^{3+}\left(4 f^{8}\right)$	20K	spin glass at 25 K	spin glass

Spin－3／2 pyrochlore

ular pyrochlore system．Besides the Co－pyrochlore and Cr－spinel，the Mn－pyrochlore $\left(\mathrm{A}_{2} \mathrm{Mn}_{2} \mathrm{O}_{7}\right)$ is another ideal spin－ $3 / 2$ system．These materials were studied in the 1990s after the discovery of giant magnetoresistance ${ }^{18}$ ． Since most of these Mn－pyrochlores are well ordered，it would be exciting to explore the topological magnons in these materials．

Further extension of topological magnons

1．Chern number of 2 D magnon bands
2．Dirac magnon
3．Nodal loop magnon

Refs：
Pershoguba，etc A．Balatsky，PRX 2018，
KangKang Li，etc Yuan Li，Chen Fang，PRL 2017，
Max Hirschberger，Robin Chisnell，Young S．Lee，N．P．Ong，PRL 2015

Outline

1．Topological（Weyl）magnons：realization and detection

2．Intertwined magnetic multipolar orders and selective measurements

Selective measurements of intertwined multipolar order on a triangular lattice with non－Kramers doublets

Changle Liu，Yao－Dong Li，GC，1805．01865

Rare－earth triangular lattice magnets：spin liquid

Rare-earth triangular lattice magnets: abundance

Compound	Magnetic ion	Space group	Local moment	$\Theta_{\mathrm{CW}}(\mathrm{K})$	Magnetic transition	Frustration para. f	Refs.
$\mathrm{YbMgGaO}_{4}$	$\mathrm{Yb}^{3+}\left(4 f^{13}\right)$	R 3 m	Kramers doublet	-4	PM down to 60 mK	$f>66$	$[4]$
$\mathrm{CeCd}_{3} \mathrm{P}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-60	PM down to 0.48 K	$f>200$	$[5]$
$\mathrm{CeZn}_{3} \mathrm{P}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-6.6	AFM order at 0.8 K	$f=8.2$	$[7]$
$\mathrm{CeZn}_{3} \mathrm{As}_{3}$	$\mathrm{Ce}^{3+}\left(4 f^{1}\right)$	$\mathrm{P6}_{3} / m m c$	Kramers doublet	-62	Unknown	Unknown	$[8]$
$\mathrm{PrZn}_{3} \mathrm{As}_{3}$	$\mathrm{Pr}^{3+}\left(4 f^{2}\right)$	$\mathrm{P}_{3} / m m c$	Non-Kramers doublet	-18	Unknown	Unknown	$[8]$
$\mathrm{NdZn}_{3} \mathrm{Ass}_{3}$	$\mathrm{Nd}^{3+}\left(4 f^{3}\right)$	$\mathrm{P}_{3} / m m c$	Kramers doublet	-11	Unknown	Unknown	$[8]$

Magnetism in the $\mathrm{KBaRE}\left(\mathrm{BO}_{3}\right)_{2}(\mathrm{RE}=\mathrm{Sm}, \mathrm{Eu}, \mathrm{Gd}, \mathrm{Tb}, \mathrm{Dy}, \mathrm{Ho}, \mathrm{Er}, \mathrm{Tm}$, Yb, Lu) series: materials with a triangular rare earth lattice
M. B. Sanders, F. A. Cevallos, R. J. Cava

Department of Chemistry, Princeton University, Princeton, New Jersey 08544

Ternary chalcogenides LiRS2, NaRSez, KRSez, RbRSe2,

Non－Kramers doublets

1．z component is the dipolar component，x, y are quadrupolar components
2．Only z（or Ising）component couples to external magnetic field．

Complete models for rare－earth triangular magnets

Usual Kramers doublet such as Yb ion in YbMgGaO4

$$
\begin{aligned}
& H=\sum_{\langle i j\rangle} J_{z z} S_{i}^{z} S_{j}^{z}+J_{ \pm}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right)+J_{ \pm \pm}\left(\gamma_{i j} S_{i}^{+} S_{j}^{+}+\gamma_{i j}^{*} S_{i}^{-} S_{j}^{-}\right) \\
& -\frac{i J_{z \pm}}{2}\left[\left(\gamma_{i j}^{*} S_{i}^{+}-\gamma_{i j} S_{i}^{-}\right) S_{j}^{z}+S_{i}^{z}\left(\gamma_{i j}^{*} S_{j}^{+}-\gamma_{i j} S_{j}^{-}\right)\right]
\end{aligned}
$$

Dipole－octupole doublet（not yet discovered，but should exist on triangular lattice）

$$
H=\sum_{\langle i j\rangle} J_{z} S_{i}^{z} S_{j}^{z}+J_{x} S_{i}^{x} S_{j}^{x}+J_{y} S_{i}^{y} S_{j}^{y}+J_{y z}\left(S_{i}^{z} S_{j}^{y}+S_{i}^{y} S_{j}^{z}\right)
$$

Non－Kramers doublet

$$
\begin{aligned}
H=\sum_{\langle i j\rangle} & J_{z z} S_{i}^{z} S_{j}^{z}+J_{ \pm}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) \\
& +J_{ \pm \pm}\left(\gamma_{i j} S_{i}^{+} S_{j}^{+}+\gamma_{i j}^{*} S_{i}^{-} S_{j}^{-}\right),
\end{aligned}
$$

Anisotropic spin model for non－Kramers doublet

$$
\begin{gathered}
H=\sum_{\langle i j\rangle} J_{z z} S_{i}^{z} S_{j}^{z}+J_{ \pm}\left(S_{i}^{+} S_{j}^{-}+S_{i}^{-} S_{j}^{+}\right) \\
+J_{ \pm \pm}\left(\gamma_{i j} S_{i}^{+} S_{j}^{+}+\gamma_{i j}^{*} S_{i}^{-} S_{j}^{-}\right)
\end{gathered}
$$

in which，$\gamma_{i j}$ is a bond－dependent phase factor，and takes
$1, e^{i 2 \pi / 3}$ and $e^{-i 2 \pi / 3}$ on the $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}$ and \boldsymbol{a}_{3} bond（see
＊This model differs from the XXZ spin model by having an extra anisotropic spin interaction．
＊The model is anisotropic both in the spin space and in the position space． This is the consequence of the spin－orbit entanglement．
＊The spin components have distinct physical meanings．

Mean-field phase diagram

x, y components are quadrupole moments,
z component is dipole moment.
so, AFzAFxy is antiferro-dipolar and antiferro-quadrupolar orders, also known as super-solid in the XXZ limit.

List of magnetic phases

states	order types	elastic neutron
F_{xy}	pure quadrupolar	no Bragg peak
120° Néel	pure quadrupolar	no Bragg peak
Stripe $_{\mathrm{y}}$	pure quadrupolar	no Bragg peak
$\mathrm{AF}_{\mathrm{z}} \mathrm{F}_{\mathrm{xy}}$	intertwined multipolar	Bragg peak at K
$\mathrm{AF}_{\mathrm{z}} \mathrm{AF}_{\mathrm{xy}}$	intertwined multipolar	Bragg peak at K
AF_{z} Stripe	intertwined multipolar	Bragg peak at K

TABLE II．The list of ordered phases in the phase diagram of Fig． 3.

Geometric frustration and multipolarness

The intertwined multipolar orders arises from the combination of geometrical frustration and the multipolar nature of the local moments.

With only geometrical frustration, the system would produce usual dipolar magnetic order.

With only spin-orbit-entangled local moments, the system would not have intertwined multipolar ordering structure.

What does neutron scattering measure？

The quadrupolar order is not directly visible from conventional magnetic measurement．

Despite this fact，the dynamical measurement is able to reveal the consequence of the quadrupolar orders．

What is essential here is the non－commutative relation between the dipole component and the quadrupole component．

The Sz component couples linearly with the external magnetic field． Likewise，the neutron spin would only couple to the dipole moment Sz． Therefore，the inelastic neutron scattering would measure the Sz－Sz correlation

$$
\begin{aligned}
& \mathcal{S}^{z z}(\mathbf{q}, \omega>0) \\
& \quad=\frac{1}{2 \pi N} \sum_{i j} \int_{-\infty}^{+\infty} \mathrm{d} t e^{i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)-i \omega t}\left\langle S_{i}^{z}(0) S_{j}^{z}(t)\right\rangle
\end{aligned}
$$

(b) Stripe $_{y}$

Magnetic excitations

FIG. 6. Dynamic spin structure factors for the phases discussed in Sec. III, obtained from the linear spin wave theory. The representative parameters for different subfigures are given. The plots here are intensity plots. We also plot the full spin wave dispersions in Appendix. C.

Connection to Kitaev interactions

$$
\begin{aligned}
S_{i}^{a} & \equiv \sqrt{\frac{2}{3}} S_{i}^{x}+\sqrt{\frac{1}{3}} S_{i}^{z}, \\
S_{i}^{b} & \equiv \sqrt{\frac{2}{3}}\left(-\frac{1}{2} S_{i}^{x}+\frac{\sqrt{3}}{2} S_{i}^{y}\right)+\sqrt{\frac{1}{3}} S_{i}^{z}, \\
S_{i}^{c} & \equiv \sqrt{\frac{2}{3}}\left(-\frac{1}{2} S_{i}^{x}-\frac{\sqrt{3}}{2} S_{i}^{y}\right)+\sqrt{\frac{1}{3}} S_{i}^{z},
\end{aligned}
$$

$$
\begin{aligned}
H= & \sum_{\langle i j\rangle \in \alpha}\left[J \boldsymbol{S}_{i} \cdot \boldsymbol{S}_{j}+K S_{i}^{\alpha} S_{j}^{\alpha}\right. \\
& +\sum_{\beta, \gamma \neq \alpha} \Gamma\left(S_{i}^{\alpha} S_{j}^{\beta}+S_{i}^{\beta} S_{j}^{\alpha}+S_{i}^{\alpha} S_{j}^{\gamma}+S_{i}^{\gamma} S_{j}^{\alpha}\right) \\
& \left.+\sum_{\beta, \gamma \neq \alpha}(K+\Gamma)\left(S_{i}^{\beta} S_{j}^{\gamma}+S_{i}^{\gamma} S_{j}^{\beta}\right)\right]
\end{aligned}
$$

So there are a lot of Kitaev materials !

Summary 2

1．In geometric frustrated system，intertwined multipolar orders could emerge．

2．The manifestation of the multipolar orders is rather non－trivial，both in the static and dynamic measurements．

3．The non－commutative observables／operators can be used to reveal the dynamics of hidden orders．

