Wilson Ratio enhancement in a quantum spin liquid candidate: $\text{Na}_4\text{Ir}_3\text{O}_8$ (hyperkagome)

Gang Chen
University of Colorado, Boulder

Collaborator: Prof. Yong-Baek Kim
(University of Toronto)

Acknowledge Dr. Perry and Prof. Takagi for sharing their experimental results

KITP conference 2012
Quantum spin liquid candidates

Triangle

\[\kappa - (ET)_2Cu_2(CN)_3, EtMe_3Sb[Pd(dmit)_2]_2, \]
\[LiZn_2Mo_3O_8 \]
\[He - 3 on graphite layer \]

Kagome

\[Cu_3Zn(OH)_6Cl_2 (kapellasite), \]
\[BaCu_3V_2O_8(OH)_2 (vesignieite), \]
\[ZnCu_3(OH)_6Cl_2 (herbertsmithite) \]

FCC

\[Ba_2YM_0O_6 \]

Pyrochlore

some \[R_2TM_2O_7 \]
\[R= \text{rare earth, } TM= \text{transition metal} \]

Hyperkagome

\[Na_4Ir_3O_8 \]

Quantum spin ice
Quantum spin liquid candidates

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangle</td>
<td>(\kappa - (ET)_2Cu_2(CN)_3, EtMe_3Sb[Pd(dmit)_2]_2, LiZn_2Mo_3O_8)</td>
</tr>
<tr>
<td>Kagome</td>
<td>(Cu_3Zn(OH)_6Cl_2) (kapellasite), (BaCu_3V_2O_8(OH)_2) (vesignieite), (ZnCu_3(OH)_6Cl_2) (herbertsmithite)</td>
</tr>
<tr>
<td>FCC</td>
<td>(Ba_2YM_2O_6)</td>
</tr>
<tr>
<td>Pyrochlore</td>
<td>some (R_2TM_2O_7), (R =) rare earth, (TM =) transition metal</td>
</tr>
<tr>
<td>Hyperkagome</td>
<td>(Na_4Ir_3O_8)</td>
</tr>
</tbody>
</table>

4d, 5d and f electrons: Spin-orbit coupling is expected to be important, and may lead to some new physics.
Outline

Part 1. Review experiments and current theories

Part 2. Present a possible explanation for the experiments
Na$_4$Ir$_3$O$_8$: a hyperkagome Ir sublattice

- Na$_4$Ir$_3$O$_8$
- hyperkagome
- pyrochlore

Na$_4$Ir$_3$O$_8$ has a hyperkagome sublattice of Ir ions.

Ir$_3$: regular triangle
5d: 5
LS: $\frac{1}{2}$

Ir$^{4+}$

Na$_4$Ir$_3$O$_8$: a hyperkagome Ir sublattice

- hyperkagome
- kagome

12 sites per unit cell
3 sites per unit cell

Y. Okamoto, et al, H. Takagi
Polycrystal sample

From Prof. Takagi’s talk

Curie-Weiss fit:

\[\mu_{\text{eff}} = 1.96 \mu_B \quad \text{close to spin-1/2} \]

\[\Theta_{\text{CW}} = -650 \text{K} \]

No indication of ordering down to 2K from \(C_v \) and \(\chi \) NMR measurement confirms the absence of magnetic ordering. (See Prof. Takagi’s talk on Monday)

\[\chi|_{T \to 0} = \text{constant} \]

\[C_v/T|_{T \to 0} = \text{constant} \]

Very large Wilson Ratio, 35!

Y. Okamoto, et al, H. Takagi
Wilson Ratios of some QSL candidates

Table 1 | Some experimental materials studied in the search for QSLs

<table>
<thead>
<tr>
<th>Material</th>
<th>Lattice</th>
<th>S</th>
<th>Θ_{CW} (K)</th>
<th>R^*</th>
<th>Status or explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ-(BEDT-TTF)$_2$Cu$_2$(CN)$_3$</td>
<td>Triangular†</td>
<td>½</td>
<td>$-375\ddagger$</td>
<td>1.8</td>
<td>Possible QSL</td>
</tr>
<tr>
<td>EtMe$_2$Sb[Pd(dmit)$_2$]$_2$</td>
<td>Triangular†</td>
<td>½</td>
<td>$(375-325)\ddagger$</td>
<td>? ~1.0-3.0</td>
<td>Possible QSL</td>
</tr>
<tr>
<td>Cu$_3$V$_2$O$_7$(OH)$_2$$\cdot$2H$_2$O (volborthite)</td>
<td>Kagomé†</td>
<td>½</td>
<td>-115</td>
<td>6</td>
<td>Magnetic</td>
</tr>
<tr>
<td>ZnCu$_3$(OH)$_2$Cl$_2$ (herbertsmithite)</td>
<td>Kagomé</td>
<td>½</td>
<td>-241</td>
<td>?</td>
<td>Possible QSL</td>
</tr>
<tr>
<td>BaCu$_3$V$_2$O$_6$(OH)$_2$ (vesignieite)</td>
<td>Kagomé†</td>
<td>½</td>
<td>-77</td>
<td>4</td>
<td>Possible QSL</td>
</tr>
<tr>
<td>Na$_4$Ir$_3$O$_8$</td>
<td>Hyperkagomé</td>
<td>½</td>
<td>-650</td>
<td>70 30-40</td>
<td>Possible QSL</td>
</tr>
<tr>
<td>Cs$_2$CuCl$_4$</td>
<td>Triangular†</td>
<td>½</td>
<td>-4</td>
<td>0</td>
<td>Dimensional reduction</td>
</tr>
<tr>
<td>FeS$_2$S$_4$</td>
<td>Diamond</td>
<td>2</td>
<td>-45</td>
<td>230</td>
<td>Quantum criticality</td>
</tr>
</tbody>
</table>

BEDT-TTF, bis(ethylenedithio)-tetrathiafulvalene; dmit, 1,3-dithiole-2-thione-4,5-ditholate; Et, ethyl; Me, methyl. *R is the Wilson ratio, which is defined in equation (1) in the main text. For EtMe$_2$Sb[Pd(dmit)$_2$]$_2$ and ZnCu$_3$(OH)$_2$Cl$_2$, experimental data for the intrinsic low-temperature specific heat are not available, hence R is not determined. †Some degree of spatial anisotropy is present, implying that $J' \neq J$ in Fig. 1a. ‡A theoretical Curie–Weiss temperature (Θ_{CW}) calculated from the high-temperature expansion for an $S = ½$ triangular lattice; $\Theta_{CW} = 3J/2k_B$ using the J fitted to experiment.

Wilson Ratio quantifies spin fluctuations that enhance the susceptibility.

Basic physics in Na$_4$Ir$_3$O$_8$

Fermi gas
He-3 (almost localized fermi liquid) $W = 1$
Fe-Superconductor (Fe$_{1.04}$Te$_{0.67}$Se$_{0.33}$) $W = 4$
Fe-Superconductor (Fe$_{1.04}$Te$_{0.67}$Se$_{0.33}$) $W = 5.7$

- Strong spin-orbit coupling (Z=77)
- Multi-orbital bands, 3 t2g orbitals
- Close to metal-insulator transition (true for almost all iridates under current investigation)

With SOC, spin-rotational symmetry is broken, large Wilson Ratio is certainly possible, e.g. ordered AFMagnet with gapped spin-wave excitations $W = \infty$
New data: schematic plots

- Single-crystal metallic sample (*R. Perry*, et al, unpublished, Prof. Takagi’s group)

Small change (~18%) in linear-T heat capacity

Large enhancement of magnetic susceptibility. Susceptibility increases with resistivity (several other single-crystal samples)
Summary of the experiments: schematic plots

\[\gamma \equiv \frac{C_v}{T} \bigg|_{T \to 0} \]

Control parameter: carrier concentration? chemical pressure? etc?

Wilson Ratio

\[W = \frac{\pi^2 \chi/\mu_B^2}{3 \gamma/k_B^2} \]

Q1: Why is \(W \) (or \(\chi \)) enhanced in the insulating phase?
Q2: Why is \(W \) (or \(\chi \)) so sensitive to Mott transition?
Current theoretical work on Na$_4$Ir$_3$O$_8$

U(1) QSL
M. Lawler, et al

Z$_2$ QSL
M. Lawler, et al
Y. Zhou, et al

VBS
E. J. Bergholtz, et al

Other works focus on various other things

John M. Hopkinson, et al

G. Chen, et al
D. Podolsky, et al
T. Micklitz, et al
M. R. Norman, et al
D. Podolsky, et al

Formation of local moment in the strong Mott regime

$\begin{align*}
\text{IrO}_6 & \\
\text{e}_g & \quad \text{crystal field splitting} \\
\text{t}_{2g} & \\
xy, xz, yz & \quad \text{SOC}
\end{align*}$
Theoretical proposals

Spinon fermi surface: (nearly) linear-T C_v, constant χ (Heisenberg model)

If other interactions are included to break spin-rotational symmetry, large W might be obtained for this state.

Suppress C_v by spinon pairing to enhance W (interesting)

Explain the susceptibility remaining constant by large SOC $\lambda \gg \Delta$

Expect suppressed C_v from metal to QSL, and also superconductivity in metallic side just like kappa-ET organics

Similar series expansion like Huse+Singh’s work on kagome

Complicated ground state: 72 sites in one cell

a bit hard to explain power-law C_v and constant χ over a large temperature range
Extended Hubbard Model

\[\mathcal{H} = \mathcal{H}_{\text{hop}} + \mathcal{H}_{\text{soc}} + \mathcal{H}_{\text{ion}} + \mathcal{H}_{\text{int}} \]

- **\(\mathcal{H}_{\text{hop}} \)**: Tight-binding model
- **\(\mathcal{H}_{\text{soc}} \)**: Atomic spin-orbit coupling
- **\(\mathcal{H}_{\text{ion}} \)**: Single-ion (crystal field) term due to IrO\(_6\) distortion (drive transition from TBI to metal in 227 iridates)
- **\(\mathcal{H}_{\text{int}} \)**: Multiorbital interactions

Tight-binding model

- **\(\sigma \)-bonding**
- **\(\pi \)-bonding**
- Indirect hop through oxygen

\[t_\sigma = 1, \quad t_\pi = 0.2, \quad t_2 = 0.5 \]

No band insulator

\[\text{Na}_4\text{Ir}_3\text{O}_8 \]

\[\text{IrO}_6 \text{ (slightly distorted)} \]

\[\text{Na} \]

\[\text{Ir} \]

\[\text{O} \]

\[t_\sigma \]

\[t_\pi \]

\[t_2 \]

T. Micklitz, et al

M. R. Norman, et al

Wilson ratio for the non-interacting case

\[\mathcal{H}_0 = \mathcal{H}_{\text{hop}} + \mathcal{H}_{\text{soc}} + \mathcal{H}_{\text{ion}} \]

\[t_\sigma = 1, t_\pi = 0.2, t_2 = 0.5 \]

\[W = 1, \lambda/t_\sigma \]

Two anisotropic parameters

- \(D = 0 \)
- \(D = 0.4 \)

Same reason why Heisenberg model is relevant for \(\text{Sr}_2\text{IrO}_4 \)

\[\mathbf{M}_i \equiv \mu_B(\mathbf{L}_i + 2\mathbf{S}_i) \]

\(W \neq 1 \) is because of the hybridization of different orbitals

Multi-orbital interactions

\[H_{\text{int}} = U \sum_{i,m} \hat{n}_{i,m,\uparrow} \hat{n}_{i,m,\downarrow} + \frac{U'}{2} \sum_{i,m \neq m'} \hat{n}_{i,m} \hat{n}_{i,m'} + \frac{J}{2} \sum_{i,m \neq m'} d_{im\sigma}^\dagger d_{im'\sigma'}^\dagger d_{im'\sigma} d_{im\sigma} + \frac{J'}{2} \sum_{i,m \neq m'} d_{im\uparrow}^\dagger d_{im\downarrow}^\dagger d_{im'\downarrow} d_{im'\uparrow} \]

\[i \text{ is a position index.} \]
\[m \text{ is an orbital index.} \]

In atomic limit,

\[U = U' + J + J' \]
\[J = J' \]

Rewrite interaction,

\[H_{\text{int}} = H_{\text{c-int}} + H_{\text{ex-int}} \]
\[H_{\text{c-int}} = \frac{U}{2} \sum_i (\hat{n}_i - 5)^2 \]
\[H_{\text{ex-int}} = -J \sum_{i,m \neq m'} \hat{n}_{i,m} \hat{n}_{i,m'} + \frac{J}{2} \sum_{i,m \neq m'} d_{im\sigma}^\dagger d_{im'\sigma'}^\dagger d_{im'\sigma} d_{im\sigma} + \frac{J'}{2} \sum_{i,m \neq m'} d_{im\uparrow}^\dagger d_{im\downarrow}^\dagger d_{im'\downarrow} d_{im'\uparrow} \]

U is the energy scale for excessive electron/charge occupation.

J is the energy scale for electron distribution among different spin and orbital states.

\(H_{\text{ex-int}} \) is like an onsite exchange interaction in the Kugel-Khomskii picture.

Strong coupling mean field: slave-rotor theory

\[\mathcal{H} = \mathcal{H}_{\text{hop}} + \mathcal{H}_{\text{soc}} + \mathcal{H}_{\text{ion}} + \mathcal{H}_{\text{c-int}} \]

Original electron Hamiltonian

\[H_{\text{hop}} = \sum_{R_{i}i'm'} t_{mm'}^{ii'} d_{im\sigma}^{\dagger}(R)d_{im'\sigma}(R') + h.c. \]

\[H_{\text{c-int}} = \frac{U}{2} \sum_{R_{i}} \left(\sum_{m,\alpha} d_{im\alpha}^{\dagger}(R)d_{im\alpha}(R) - 5 \right)^2 \]

\[H_{\text{ion}} = D \sum_{R_{i}\alpha} (L_{i}^{\mu})_{mn}^{2} d_{im\alpha}^{\dagger}(R)d_{im\alpha}(R) \]

\[H_{\text{soc}} = \frac{\lambda}{2} \sum_{R_{i}} \mathbf{L}_{mn} \cdot \sigma_{\alpha\beta} d_{im\alpha}^{\dagger}(R)d_{in\beta}(R) \]

Slave-rotor approach to obtain fermionic spinons

(see Prof. Senthil's talk)

\[d_{im\alpha} = e^{-i\theta_{i}} f_{im\alpha} \]

\[L_{i}(R) = \sum_{m\sigma} f_{im\sigma}(R)f_{im\sigma}(R) - 5 \]

\[[\theta_{i}, L_{i}] = i \]

Slave-rotor mean field Hamiltonian

\[H_{f} = Q_{f} \sum_{R_{i}i'm'} (t_{mm'}^{ii'} f_{im\sigma}^{\dagger}(R)f_{im'\sigma}(R') + h.c.) \]

\[+ \frac{\lambda}{2} \sum_{R_{i}} \mathbf{L}_{mn} \cdot \sigma_{\alpha\beta} f_{im\alpha}^{\dagger}(R)f_{in\beta}(R) + D \sum_{R_{i}\alpha} (L_{i}^{\mu})_{mn}^{2} f_{im\alpha}^{\dagger}(R)f_{im\alpha}(R) \]

\[H_{L} = \frac{U}{2} \sum_{R_{i}} L_{i}^{2}(R) + \sum_{R_{i}} (hL_{i}(R) + 5h) + Q_{r} \sum_{R_{i},R'i'} e^{i\theta_{i}(R) - i\theta_{i'}(R')} + h.c. \]

\[Q_{f} \equiv \langle e^{i\theta_{i}(R) - i\theta_{i'}(R')} \rangle_{\theta} \]

\[Q_{r} \equiv \sum_{mm'} t_{mm'} \langle f_{im\sigma}^{\dagger} f_{im'\sigma}(R) \rangle_{f} \]

Slave-rotor phase diagram

\[\langle e^{-i\theta_i} \rangle \neq 0, \; Z \neq 0, \; \text{spin and charge are confined, we have a “correlated FL”}. \]

\[\langle e^{-i\theta_i} \rangle = 0, \; Z = 0, \; \text{we have a “U(1) QSL”}. \]

From left to right, the single-ion anisotropies are

\[D = 0.8t_\sigma \]
\[D = 0.4t_\sigma \]
\[D = 0.2t_\sigma \]
\[D = 0 \]

Three energy scales: SOC, correlation, bandwidth

Two observations (also see Prof. Balents’ talk):

1. SOC enhances correlation effects. Strong correlation physics may be seen in 4d/5d electron system

2. Correlation effects enhance SOC. SOC may be also important even in 3d electron system in certain cases: FeSc$_2$S$_4$, ZnV$_2$O$_4$, etc

Onsite exchange interaction

We put the onsite exchange interaction in the spinon mean field hamiltonian.

\[
H_{\text{ex-int}} = \sum_i \left[-J \sum_{m \neq m'} f_{im\sigma}^\dagger f_{im\sigma} f_{im'\sigma'}^\dagger f_{im'\sigma'} + \frac{J}{2} \sum_{m \neq m'} f_{im\sigma}^\dagger f_{im'\sigma}^\dagger f_{im\sigma'} f_{im'\sigma'}
+ \frac{J}{2} \sum_{m \neq m'} f_{im\uparrow}^\dagger f_{im\downarrow}^\dagger f_{im'\downarrow} f_{im'\uparrow} \right]
\]

\[
H_f \rightarrow H_f + H_{\text{ex-int}}
\]

Study Wilson ratio along the dashed line

\[M_i \equiv \mu_B (L_i + 2S_i) \]

Correlated FL with SOC

U(1) QSL

\[
\lambda/t_\sigma
\]

\[
M_i \equiv \mu_B (L_i + 2S_i)
\]

Study Wilson ratio along the dashed line

\[
\frac{\lambda}{t_\sigma}
\]
Both “effective mass” and fermi surfaces are changed due to SOC

\[J \lesssim 0.1 U_c \]

From bottom to top,\n\[\begin{align*}
J &= 0 \\
J &= 0.2 t_\sigma \\
J &= 0.3 t_\sigma \\
J &= 0.4 t_\sigma
\end{align*} \]

relevant energy scales: \(J \) and bandwidth
Summary

Na₄Ir₃O₈ is likely to be a U(1) quantum spin liquid with spinon fermi surfaces.
The large Wilson ratio might arise from the combined effect of spin-orbit coupling, correlation and onsite spin-orbital exchange.
(other possible explanation, gauge fluctuations?)

For experiments,

Other experiments: resonant inelastic x-ray scattering (planned), thermal conductivity (seems like a metal), quantum oscillations (too soft gauge field? O. Motrunich, PRB 2005)

Can similar physics be observed in related materials?
e.g. nonmagnetic R₂Ir₂O₇, Os-compounds, etc