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OUTLINE

1. Monopole condensation transition out of U(1) topological order. 

• I propose Pr2Ir2O7 sample is close to quantum phase transition between 
a 3D U(1) topological ordered state and Ising order. 

2. Rare-earth triangular lattice quantum spin liquid: YbMgGaO4

• To my best knowledge, this is the first strong spin-orbit coupled quantum spin liquid 
candidate with odd number of electrons per unit cell and effective spin-1/2 moment.

Gang Chen, arXiv 1602.02230, PRB in press 

Yuesheng Li, Gang Chen*, …, Qingming Zhang*, PRL,115,167203 (2015)  
Yaodong Li, Xiaoqun Wang, Gang Chen*, PRB, 94,035107 (2016) 
Yao Shen, …., Gang Chen*, Jun Zhao*, arXiv 1607.02615 
Yaodong Li,  ….,   Gang Chen*, arXiv 1608.06445 
  
More works are coming up…..



Gang Chen’s theory group 

Gang Chen’s theory group

Reduction vs Emergence

Condensed matter is  
full of emergence
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• Introduction to spin ice, classical and quantum.  

• Magnetic transition of quantum spin ice U(1) quantum spin liquid is the 
confinement transition of compact U(1) lattice gauge theory (or compact 
quantum electrodynamics) 

• Monopole condensation and proximate phases

1. Monopole condensation out of U(1) topological order



Spin ice in rare-earth pyrochlores

RE2M2O7

OVer years, there are a lot of activity in 
spin ice system. 


spin ice is realized in rare earth 
pyrochlore systems, where the rare 
earth ions 

form pyrochlore lattice and 

host the Ising spin. because of the 
crystal field effect, the ising spin 

points either into or out of the center of 
the tetrahedron


The interaction between the ising is 
AFM, it favor 2 spin in 2 spin out of the 
tetrahedra. This is the 2-in 2-out spin 
ice rule. 


Beucase of the analog relation with H 
position in water ice, each O has 4 H 
near it, 2 are close, 2 are further. 
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2-in 2-out  
spin ice rule

2-in 2-out  
water ice rule

+ dipolar

Castelnovo, Gingras, Moessner, Sondhi, Schiffer, 
Penc, …….

from wiki
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Spin ice in rare-earth pyrochloresOVer years, there are a lot of activity in 
spin ice system. 


spin ice is realized in rare earth 
pyrochlore systems, where the rare 
earth ions 

form pyrochlore lattice and 

host the Ising spin. because of the 
crystal field effect, the ising spin 

points either into or out of the center of 
the tetrahedron


The interaction between the ising is 
AFM, it favor 2 spin in 2 spin out of the 
tetrahedra. This is the 2-in 2-out spin 
ice rule. 


Beucase of the analog relation with H 
position in water ice, each O has 4 H 
near it, 2 are close, 2 are further. 
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Classical spin ice

Pauling entropy in spin ice, 
Ramirez, etc, Science 1999



Classical spin ice

Pinch points in spin correlation

•  The “2-in 2-out” states are extensively degenerate. 
•  At T < Jzz, the system thermally fluctuates within the ice manifold, 

leading to classical spin ice and interesting experimental discoveries. 

1. the 2-in 2-out spin ice is actually 
extensively degenerate. On each 
tetrahedron, one can choose any 2 pin in , 
the other 2-out. 


2. at T << Jzz, the system is thermally

fluctuating within the ice manifold, leading to 
classical spin ice and interesting experimental 
consequences. Many of them were published 
in nature and science. 
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Quantum fluctuation can leads to U(1) QSL

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
Sz

i

�
�ijS

+
j + �⇥ijS

�
j

⇥
+ i� j

⌅

H±± = J±±
⇤

⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

•  Pretty much one can add any term to create quantum tunneling, as long as it is not too large to 
induce magnetic order, the ground state is a quantum spin ice !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….

flip 6 spins on the hexagon
or

Ring exchange

quantum  
tunneling

1. But classical spin ice is purely 
classical and  is not a new phase of 
matter. It is smoothly connected to the 
high temperature paramagnetic phase. 


2. In contrast, quantum spin ice is a 
new quantum phase of matter. 
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U(1) QSL is NOT a Landau symmetry breaking phase

Spinon deconfinement

SpinonJzz

energy

Magnetic monopoles
J3
±

J2
zz

gapless  
gauge photon

•  Unlike CSI, QSI is a novel phase of matter. No LRO, no symmetry breaking, cannot be 
understood in Landau’s paradigm!  

•  The right description is in terms of fractionalization and emergent gauge structure.

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Figs from Moessner&Schiffer,2009

as quantum spin ice is a disordered state,

there is no long range order, no symmeetry breaking, it is 
a new phase of matter and cannot be understood 

in the landau’s paradigm of symmetry breaking theory. 
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Important question: Has 3D U(1) QSL been realized in experiments, 
or realized in the context of spin ice?  

What would be the experimental evidence? 

one may wonder if qsi exist in some physical 
system. 


The answer is probably. 


one can write a realistic hamiltonain and 
show, (even prove) the ground state should 
be quantum spin ice.


the real difficulty is to confirm it 
experimentally. 


because it does not have LRO, unlike trivial 
order phase, it is very difficult to confirm it.


TO cofnirm it ,one should observe either

deconfined spinons or emergent gpless 
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•  Kramers’ doublet  

 

•  Non-Kramers’ doublet 

•  Dipole-octupole doublet

Realistic models

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:
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X

hiji
fJzzSz

iS
z
j " J#ðSþ

i S
"
j þ S"

i S
þ
j Þ

þ J##ð!ijS
þ
i S

þ
j þ !'

ijS
"
i S

"
j Þ

þ Jz#½Sz
i ð"ijSþ

j þ "'ijS
"
j Þ þ i $ j)g; (4)

where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
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ffiffi
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p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful

QSL
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quantum
critical

T

H

Hc

FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, Ce2Sn2O7, etc 
no sign problem for QMC on any lattice.  
It supports nontrivial phase like quantum spin ice U(1) quantum spin 
liquid. 

SB Lee, Onoda, Balents, 2012

one may wonder if qsi exist in some physical system. 


The answer is probably. 


one can write a realistic hamiltonain and show, (even prove) the ground 
state should be quantum spin ice.


the real difficulty is to confirm it experimentally. 


because it does not have LRO, unlike trivial order phase, it is very difficult 
to confirm it.


TO cofnirm it ,one should observe either

deconfined spinons or emergent gpless gauge phonton.


Both are hard. The main obstracle here is very small exchange energy 
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Spin Ice
Pyrochlore 

Iridates

Pyrochlore Iridate and Pyrochlore Spin Ice
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Pyrochlore iridates: Pr2Ir2O7 

R2Ir2O7
K Matsuhira, M Wakeshima, Y Hinatsu, S. Takagi 

JPSJ, 2011

Many nice experimental works by S Nakatsuji, P Gegenwart, L Balicas, etc

Ref: D Pesin, L Balents, 2009, Xian-Gang Wan, etc 2010, Witczak-Krempa, Yong Baek Kim, SungBin Lee;  
                                                           Michael Hermele, Gang Chen, etc
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Over the years, there are a lot of effort in pyrohlore iridate. 

in this family of materials, almost all of them experienced a metal-
insulator xtion with some magnetic order, except Pr2Ir2O7.


Pr2Ir2O7 is unique, it remains metallic, and sometimes disordered !


most of the work in the field focus on the iridium system, here i will 
discuss local moment physics. 
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My proposal for Pr2Ir2O7-delta 

Pr local moments are close to a “magnetic” monopole condensation transition from 
quantum spin ice quantum spin liquid to an AFM long-range ordered state. 

The Ir conduction electrons may drive the transition, but do not influence the nature 
of the phase transition. 

page 3

Magnetic monopole condensation in pyrochlore ice quantum spin liquid: application
to Pr2Ir2O7 and Yb2Ti2O7

Gang Chen1,2
1
State Key Laboratory of Surface Physics, Center for Field Theory and Particle Physics,

Department of Physics, Fudan University, Shanghai 200433, China and

2
Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai, 200433, China

(Dated: May 9, 2016)

Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phe-
nomena are intertwined with strong spin-orbit coupling, substantial electron correlation and geo-
metrical frustration. Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7

and Yb2Ti2O7, we study the proximate Ising orders and the quantum phase transition out of quan-
tum spin ice U(1) quantum spin liquid (QSL). We apply the electromagnetic duality of the compact
quantum electrodynamics to analyze the “magnetic monopoles” condensation for U(1) QSL. The
monopole condensation transition represents a unconventional quantum criticality with unusual scal-
ing laws. It naturally leads to the Ising orders that belong to the “2-in 2-out” spin ice manifold and
generically have an enlarged magnetic unit cell. We demonstrate that the antiferormagnetic Ising
state with the ordering wavevector Q = 2⇡(001) is proximate to U(1) QSL while the ferromagnetic
Ising state with Q = (000) is not proximate to U(1) QSL. This implies that if there exists a direct
transition from U(1) QSL to the ferromagnetic Ising state, the transition must be strongly first
order. We apply the theory to Pr2Ir2O7 and Yb2Ti2O7.

Pyrochlore iridates (R2Ir2O7)1,2 have stimulated a wide
interest in recent years, and many interesting results,
including topological Mott insulator3, quadratic band
touching4, Weyl semimetal5–7, non-Fermi liquid8,9 and
so on, have been proposed. Among these materials,
Pr2Ir2O7 is of particular interest. In Pr2Ir2O7, the Ir
system remains metallic at low temperatures10. More in-
triguingly, no magnetic order was found except a partial
spin freezing of the Pr moments due to disorder at very
low temperatures in the early experiments10–12. A re-
cent experiment on di↵erent Pr2Ir2O7 samples, however,
discovered an antiferromagnetic long-range order for the
Pr moments13. While most theory works on pyrochlore
iridates focused on the Ir pyrochlores and explored the
interplay between the electron correlation and the strong
spin-orbit coupling of the Ir 5d electrons3,14,15, very few
works considered the influence and the physics of the lo-
cal moments from the rare-earth sites that also form a
pyrochlore lattice7,16–18. In this paper, we address the
local moment physics in Pr2Ir2O7 and propose that the
disordered state of the Pr moments is likely to be in the
quantum spin ice (QSI) U(1) quantum spin liquid state.
We explore the proximate Ising order and the confine-
ment transition of QSI and argue that Pr2Ir2O7 could be
located near such a confinement transition.

The QSI U(1) QSL is an exotic quantum phase of mat-
ter and is described by emergent compact quantum elec-
trodynamics, or equivalently, by the compact U(1) lattice
gauge theory (LGT) with a gapless U(1) gauge photon
and deconfined spinon excitations19–21. Recently several
rare-earth pyrochlores with 4f electron local moments are
proposed as candidates for QSI U(1) QSLs22–32. In these
systems, the predominant antiferromagnetic exchange in-
teraction between the Ising components of the local mo-
ments favors an extensively degenerate “2-in 2-out” spin
ice manifold on the pyrochlore lattice20,22,33–37. The

FIG. 1. The monopole condensation transition from the QSI
U(1) QSL to the proximate antiferromagnetic Ising state.
The dashed (solid) line represents a thermal crossover (tran-
sition). “g” is a tuning parameter that corresponds to the
mass of “magnetic monopole” (see the discussion in the main
text). The inset Ising order has an ordering wavevector
Q = 2⇡(001). The Pr moment of Pr2Ir2O7 is likely to be
close to this quantum critical point (QCP).

transverse spin interaction allows the system to tunnel
quantum mechanically within the ice manifold, giving
rise to a U(1) QSL ground state36–41. Like Pr2Ir2O7, the
experimental results on these QSL candidate materials
depend sensitively on the stoichiometry and the sample
preparation22. In particular, for the pyrochlore ice sys-
tem Yb2Ti2O7, while some samples remain disordered
down to the lowest temperature and the neutron scatter-
ing shows a di↵usive scattering23,42, others develop a fer-
romagnetic order25,43–45. This suggests that both the Yb
moments in Yb2Ti2O7 and the Pr moments in Pr2Ir2O7

could be located near a phase transition between a dis-
ordered state (that might be a QSI U(1) QSL) and the
magnetic orders.

On the theoretical side, the instability of the QSI U(1)
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this is the take home message. 



a featureless disordered state near an ordered state

frozen at Tf. The observed T-independent behavior sug-
gests that only a partial fraction of spins freezes, while the
majority remain liquid.

The h111i Ising-like anisotropy of the 4f moments is
confirmed by the field dependence of the magnetization
M!B" along #100$, #110$, and #111$ at 70 mK (Fig. 3). The
4f ground-state-doublet contribution (thick curves) is esti-
mated by subtracting the sum of the Van Vleck and Pauli
paramagnetic contributions, which is estimated from !0B
(Fig. 3). At 13 T, M tends to saturate and approaches a
Brillouin function (thin curves) for noninteracting, local
h111i Ising spins with gJJz % 2:69, consistent with the
CEF analysis [11]. This slow saturation at the field scale,
B& ' kBjT&j=!gJ"BJz" ( 11 T, confirms an AF coupling
with an energy scale of jT&j % 20 K. At low fields, M
becomes isotropic (Fig. 3), as expected for h111i Ising
spins on a pyrochlore lattice [17]. Below 0.3 T, M changes
displaying a nearly constant derivative dM=dB (inset of
Fig. 3). This departure from a Brillouin function also
suggests liquidlike short-range correlations.

When such h111i Ising spins on a pyrochlore lattice
interact only through a nearest-neighbor AF coupling J,
mean-field theory predicts an ‘‘all-in and all-out’’ type of
LRO to appear at T ( J [18]. This indicates that in
Pr2Ir2O7, effects beyond the mean-field theory of nearest-
neighbor AF interaction, such as quantum fluctuations and
longer-range couplings, are crucial to suppress the LRO
down to T ) jT&j. Observed indications of such effects are
(1) the Kondo coupling between the 4f moments and the
5d-conduction electrons, and (2) the RKKY long-range
interactions between the 4f moments.

Although rare, the Kondo effect in Pr-based compounds
[19,20] and low carrier systems [14] has been reported. The
first evidence of Kondo effect in Pr2Ir2O7 is the lnT de-
pendence of the resistivity [Fig. 4(a)]. For such a depen-
dence in a stoichiometric high-quality metal, two mecha-
nisms can be considered: (i) CEF effect and (ii) Kondo

effect. Since the gap to the first excited level is (160 K,
the lnT dependence below 50 K cannot be due to a CEF
effect. Thus, the observed lnT dependence is likely due to
the Kondo effect, and in fact, over a decade in T between
3 K and 35 K, #!T" can be fit to the Hamann’s expression
(solid line) with TK % 25 K [21]. Interestingly, TK is close
to jT&j, and suggests that it is not the single-ion screening,
but the intersite screening that leads to the Kondo effect, as
discussed for low carrier-density and AF correlated Kondo
lattices [14,22]. In addition, the field dependence of the
resistivity is consistent with the Kondo effect [13]; the
negative magnetoresistance is proportional to M2 for all
axes under fields up to 2 T<B& [inset of Fig. 4(a)].

Second, the Kondo effect is also seen in the low T
decrease of the effective Curie constant C!T" ' T!!T";
see Fig. 4(b). The rapid decrease in C!T" below 10 K
suggests that the moment size diminishes owing to
Kondo screening. Correspondingly, !*1!T" follows the
CW law over a decade in T from 1.5 to 16 K [solid line
in the inset of Fig. 4(b)], yielding a slightly smaller effec-
tive moment 2:69"B, and a reduced Weiss temperature,
j$Wj % 1:7 K, in comparison with the high T values
(3:06"B, 20 K). These results and the crossover to lnT de-
pendence below j$Wj indicate partial screening of 4f mo-
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Metallic Spin-Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr2Ir2O7
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Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single
crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of jT!j "
20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial
spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges
and leads to a partial screening of the moments below jT!j. Our results indicate that the underscreened
moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.

DOI: 10.1103/PhysRevLett.96.087204 PACS numbers: 75.20.Hr, 75.40.Cx, 75.50.Ee

Geometrically frustrated magnets have attracted great
interest because of the possible emergence of novel mag-
netic phases at low temperatures resulting from the sup-
pression of conventional order. Among them, the three-
dimensional pyrochlore lattice of corner sharing tetrahedra
has been studied extensively [1]. It is predicted theoreti-
cally that Heisenberg spins on a pyrochlore lattice with
nearest-neighbor antiferromagnetic (AF) coupling form a
spin-liquid state at T " 0 K [2]. However, only a few
compounds are believed to display a spin-liquid phase,
such as the insulator Tb2Ti2O7 [3].

In metallic systems, the frustration inherent to the pyro-
chlore lattice might also lead to new types of electronic
behavior. One remarkable possibility is the predominance
of the Kondo effect, and concomitant heavy-fermion be-
havior, in nearly localized d- and f-electron systems where
the Kondo temperature is generally too small to overcome
magnetic order without the frustration. Prominent ex-
amples are the heavy-fermion behavior in LiV2O4 and
Y#Sc$Mn2 with itinerant d-electron spins on a pyrochlore
lattice [4,5].

Connecting the two exotic states of frustrated magnets,
insulating spin-liquid and itinerant heavy fermions, there is
another exciting yet unprecedented possibility of metallic
spin liquid [6,7]. Ground states in f-electron based Kondo
lattices are generally classified into Fermi liquid and mag-
netic regimes as the result of the competition between the
Kondo effect and RKKY interactions. If the lattice has
geometrical frustration and the transition temperature is
depressed, the underscreened moments may stay disor-
dered even in the magnetic regime, and form a metallic
spin liquid on the geometrically frustrated Kondo lattice.
(See the inset of Fig. 1.)

There has been a number of reports on metallic systems
among the A2B2O7 pyrochlore oxides possessing localized
moments [1]. Yet, none is known to remain magnetically

disordered down to the lowest temperatures except for the
newly developed pyrochlore iridates [8]. In particular, the
AF correlated Pr 4f moments of Pr2Ir2O7 remain para-
magnetic down to at least 0.3 K in the metallic state due to
the Ir 5d-conduction bands [8]. This places Pr2Ir2O7 as a
candidate for a geometrically frustrated Kondo lattice.

Here we report on strongly frustrated magnetism in
single crystals of Pr2Ir2O7. We find that the h111i Ising-
like Pr3% moments have an AF RKKY interaction energy
scale jT!j " 20 K. However, the dc magnetization down to
70 mK does not exhibit any trace of long-range order
(LRO), except for an indication of partial freezing at
120 mK. Instead, the Kondo effect emerges below jT!j
and leads to a partial screening of the 4f moments, re-
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Recently, some samples are found AFM ordered.
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. When analyzing our results for , we added a constant term
to describe the effect of the spin freezing.

Macroscopically broken time reversal symmetry
The macroscopically broken time reversal symmetry means that the time-reversal operation,
which inverts the spin and orbital angular momenta and the wavevector, , ,
and , as well as the fictitious magnetic field , should not be compensated
by any other symmetry operations of the crystal, e.g., translation, spatial inversion, reflection,
rotation, and their combinations.

Hall and longitudinal resistivities
Figure S1 shows the temperature dependence of the Hall resistivity (left axis) and the longi-
tudinal resistivity (right axis) under a magnetic field of = 0.05 T along the [111] direction.

clearly exhibits a bifurcation between the zero-field cooled (ZFC) and field-cooled (FC) pro-
cesses below 1.5 K, while does not show any bifurcation. Correspondingly, a bifurcation is
visible in but not in as shown in Fig. 2a and in the inset of Fig. 2b within the main text
because of the small Hall angle 0.01.

Metamagnetic transition and “2-in, 2-out” correlation
Figure S2 shows the field dependence of the magnetization along the [100], [110], and [111]
directions at 0.1 K. The clear anisotropy observed at high fields is fully consistent with an Ising-
like anisotropy for Pr 4 moments [S3,S4]. As shown in the inset of Fig. S2 and in Fig. 3b within
the main text, our measurements at 0.03 and 0.06 K clearly reveal a first-order metamagnetic
transition at 2.3 T for fields along the [111] direction. The associated anomaly is observed
already at 0.1 K in the vs. curve for fields along the [111] direction (Fig. S2). No anomaly
is seen for fields applied along the other two crystallographic directions.

The fact that the metamagnetic transition is observed only for fields along the [111] direction
is a clear evidence for the “2-in, 2-out” spin-configuration of Pr 4 moments, and for a FM
coupling between the nearest neighbors. In general, four Ising moments on a tetrahedron form
two distinct configurations, depending on the sign of the nearest-neighbor interaction: an “all-
in, all-out” and the “2-in, 2-out” (Fig. 1b in the main text) spin-configuration, respectively for
antiferromagnetic (AF) and ferromagnetic (FM) interactions. Locally, the “all-in, all-out” state
has no net magnetization. Therefore, to induce a finite magnetization for fields applied along
each one of the crystallographic directions, a metamagnetic transition would have to occur.
However, this is not what is observed in our experiment. In contrast, for the “2-in, 2-out” spin-
configuration, a metamagnetic transition would occur only for fields along the [111] direction
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Figure S2 Field dependence of the magnetization for fields along the [100], [110], and
[111] directions at 0.1 K. Inset: Hysteresis in the magnetization at the metamagnetic
transition for fields along the [111] direction at 0.03 K.

Theoretical calculation
For the tight-binding calculation, we took into account four different angles of rotation of a IrO
octahedron and the associated triply degenerate orbitals in the local coordinate frames.
No significant effect was found from the small splitting of the Ir 5 levels due to the trigonal
crystal-field of the pyrochlore structure. The orbital-dependent electron transfer between
the nearest-neighbor Ir sites was estimated from the Slater-Koster table [S12]. The amplitude
was chosen so that the total bandwidth becomes of the order of 3 eV as obtained by the first-
principles band calculation [S7], which also uncovered a single electron-like Fermi surface with
a carrier concentration comparable to the experimental estimate of per Ir. The relativistic
spin-orbit interaction for the electrons is large, and it has finite matrix elements within the
manifold. We took the spin-orbit coupling strength of eV, which was also estimated

from band structure calculations. The effective AF Kondo coupling to the Pr 4 moments
was estimated to be 4 meV. The calculations have been performed with wavevector meshes
for the zero-field-magnetic configuration shown in Fig. 1d in the main text. An energy broad-
ening of eV has been introduced for practical calculations, which is comparable to the
relaxation rate obtained from the observed longitudinal conductivity .
The results are shown in Fig. S3 (left axis) as a function of the number of electrons per Ir
site. For the expected Ir configuration with 5 , it gives for the zero-field spin
configuration shown in Fig. 1d in the main text.
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First-order magnetic transition in Yb2Ti2O7

E. Lhotel,1,* S. R. Giblin,2 M. R. Lees,3 G. Balakrishnan,3 L. J. Chang,4 and Y. Yasui5
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The very nature of the ground state of the pyrochlore compound Yb2Ti2O7 is much debated, because
experimental results demonstrate evidence for either a disordered ground state or a long-range ordered ground
state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing
states, such as a quantum spin liquid state or a ferromagnetic state which may originate from an Anderson-Higgs
transition. We present a detailed magnetization study demonstrating a first-order ferromagnetic transition at 245
and 150 mK in a powder and a single-crystal sample, respectively. Its first-order character is preserved up to
applied fields of ∼200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in
the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the
discrepancies between previously published data for Yb2Ti2O7.

DOI: 10.1103/PhysRevB.89.224419 PACS number(s): 75.40.Cx, 64.60.Ej, 75.30.Kz, 75.60.Ej

I. INTRODUCTION

Magnetism affected by geometrical frustration is an active
field due to the ability to generate new and unusual magnetic
phases [1]. In this context, the pyrochlore oxide materials
R2M2O7 (R = rare earth, M = metal) form a very rich family
in which a large diversity of new physics can be explored [2].
Specifically, the rare-earth ions lie on the vertices of corner
sharing tetrahedra, forming the highly frustrated pyrochlore
lattice. Depending on the rare-earth element, the anisotropy of
the spins as well as the exchange and dipolar interactions can
be varied so that different model Hamiltonians can be studied
within this structure. One of the most spectacular realizations
is the spin-ice phase (mainly studied with R = Dy and Ho;
M = Ti) [3,4] in which the local spin arrangement obeys
the ice rule (two spins point into and two spins point out
of every tetrahedron in the structure) and which possesses a
macroscopically degenerate ground state. This state is induced
by the strong uniaxial anisotropy along the local ⟨111⟩ axes
of the tetrahedra, combined with a resultant ferromagnetic
interaction. With these ingredients and in the presence of
strong transverse fluctuations, a new magnetic state is expected
to be stabilized, the quantum spin ice (QSI) in which exotic
excitations are predicted [5–7].

Yb2Ti2O7 has been proposed as a good candidate for
stabilizing the QSI state [8,9]. Indeed, the exchange in
Yb2Ti2O7 is highly anisotropic, with a strong ferromagnetic
component akin to the Ising exchange of spin ice [8,10,11],
despite an XY -like anisotropy perpendicular to the lo-
cal ⟨111⟩ directions [12,13]. At low temperature, using
a model Hamiltonian with anisotropic exchange parame-
ters deduced from experiments, a first-order phase transi-
tion towards a long-range ferromagnetic order is predicted
[9,14–16].

*elsa.lhotel@neel.cnrs.fr

Experimentally, the existence of a long-range magnetic
ordering in this compound is debated, suggesting a fragile
ground state with respect to perturbations. In an early study,
a peak was observed around 210 mK in the specific heat of a
polycrystalline sample [17]. It was later shown to be associated
with a first-order transition and an abrupt slowing down of the
fluctuations in the low-temperature phase [18].

Below the transition, depending on the nature of the
samples (single crystal or polycrystal) and the crystal growth
conditions, different results have been obtained. Some neutron
scattering measurements demonstrate ferromagnetic long-
range order (LRO) [14,19] while others do not [20–22].
A discrepancy is also observed in muon spin relaxation
measurements (µSR) where an anomaly at the transition
is present [18,23] or not [24]. In the meantime, it was
shown that the peak in specific heat strongly depends on the
samples [25,26] so that the presence of a transition towards a
long-range order might depend on the sample quality.

It has been suggested that the specific heat anomaly,
however, does not necessarily correspond to a magnetic
ordering [24,25]. It is therefore essential to probe another
thermodynamic quantity which should be more sensitive to
the magnetic nature of the transition: the magnetization. In
this article, we show that the magnetization of Yb2Ti2O7
presents a first-order transition in both a powder sample
and a single crystal which was shown to develop additional
magnetic intensity on structural peaks [14]. The first-order
nature of the transition invoked in previous studies [14,18,24]
is proved by the existence of a small thermal hysteresis (of a
few millikelvins in width). The transition is accompanied by
strong time-dependent effects. The magnetization value below
the transition temperature is consistent with the stabilization
of a ferromagnetic ordering with a reduced spontaneous
moment, suggesting a strongly fluctuating spin component.
Significantly the first-order behavior occurs below the peak in
the specific heat where only a deviation in the susceptibility is
observed.

1098-0121/2014/89(22)/224419(7) 224419-1 ©2014 American Physical Society
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possible temperature dependence of the spontaneous moment
must be considered, since an increase in the ordered moment
may be expected as the temperature is reduced further below
TC . For the single crystal, our analysis was carried out at 80 mK
which corresponds to TC/2. The same procedure was followed
at 110 mK and the results were found to be comparable. For
the powder sample, we performed the analysis between 80
(about TC/3) and 200 mK, and no significant dependence of the
spontaneous moment with temperature was observed. These
results suggest that the spontaneous moment will not increase
significantly at lower temperature and point out the first-order
nature of the transition.

C. First-order transition and time-dependent effects

A detailed study of the magnetization around the transition
has been performed. To ensure accurate results, measurements
had to be performed with well-controlled temperature
regulation and extremely slow cooling and warming rates. The
protocol was the following: (i) regulate at a given temperature,
(ii) take a large number of measurements (between 40 and 100)
so that the magnetization reaches equilibrium at this tempera-
ture, and (iii) change the temperature with a step of 5 or 2 mK
depending on the measurements. The temperature was ramped
between 80 and 400 mK, cooling and warming the sample.
The equivalent ramping rate is between 9 and 18 mK/h.
The obtained magnetization as a function of temperature for
the single crystal is shown in Fig. 5. It can be seen that at the
transition, at a fixed temperature, a strong relaxation occurs.
As shown in the inset of Fig. 5 where the magnetization is
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applied field H = 5 Oe parallel to the [100] axis at the proximity
of the transition. The temperature was swept in steps of 5 mK and
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FIG. 6. (Color online) (a) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis, extracted from
Fig. 5 with only the equilibrium value of the magnetization plotted
compared to the specific heat data. (b) The equivalent data for the
crushed powder.

plotted as a function of time, at 155 mK, the equilibrium
magnetization is reached after times as long as 600 s.

Figure 6(a) shows the equilibrium values of the magneti-
zation at the transition (obtained from Fig. 5) as a function
of temperature for the single crystal. It can be seen that a
small hysteresis is present (which is much narrower than that
for a fast temperature sweep), indicating a first-order like
behavior. Also shown is the specific heat data on the same
crystal. A subtle change of slope occurs in the magnetization
at the peak in specific heat, while the first-order transition
develops below this peak. The bump observed at ≈180 mK
before the sharp increase is not present in the magnetization
of the powder sample as shown in Fig. 6(b) and might be due
to a sample inhomogeneity, a consequence of difficulties in
sample preparation [25,26].

From the magnetization, it appears, that the first-order
transition occurs around 150 mK in this single crystal. The
transition extends over about 20 mK and the hysteresis width
is about 3 mK. For the powder sample, the transition occurs
around 245 mK, but the width of the transition and the width
of the hysteresis are similar.

Zero-field-cooled–field-cooled (ZFC-FC) magnetization
shows an irreversibility below the temperature of the transition
(see Fig. 7) [34]. In ordered materials, such irreversibility is
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parameters from high-field inelastic neutron scattering experiments. We show that fluctuations in

Yb2Ti2O7 are strong, and that the Hamiltonian may support a Coulombic ‘‘quantum spin liquid’’ ground

state in low magnetic fields and host an unusual quantum critical point at larger fields. This appears

consistent with puzzling features seen in prior experiments on Yb2Ti2O7. Thus, Yb2Ti2O7 is the first

quantum spin liquid candidate for which the Hamiltonian is quantitatively known.
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Rare-earth pyrochlores display a diverse set of fascinat-
ing physical phenomena [1]. One of the most interesting
aspects of these materials from the point of view of funda-
mental physics is the strong frustration experienced by
coupled magnetic moments on this lattice. The best
explored materials exhibiting this frustration are the ‘‘spin
ice’’ compounds, Ho2Ti2O7, Dy2Ti2O7, in which the mo-
ments can be regarded as classical spins with a strong easy-
axis (Ising) anisotropy [2,3]. The frustration of these mo-
ments results in a remarkable classical spin liquid regime
displaying Coulombic correlations and emergent ‘‘mag-
netic monopole’’ excitations that have now been studied
extensively in theory and experiment [4–6].

Strong quantum effects are absent in the spin ice com-
pounds, but can be significant in other rare-earth pyro-
chlores. In particular, in many materials the low-energy
spin dynamics may be reduced to that of an effective spin
S ¼ 1=2 moment, with the strongest possible quantum
effects expected. In this case symmetry considerations
reduce the exchange constant phase space of the nearest-
neighbor exchange Hamiltonian to a maximum of three
dimensionless parameters [7]. The compounds Yb2Ti2O7,
Er2Ti2O7, Pr2Sn2O7 [1] (and possibly Tb2Ti2O7 [8]) are of
this type, and it has recently been argued that the spins in
Yb2Ti2O7 and Er2Ti2O7 are controlled by exchange cou-
pling rather than by the long-range dipolar interactions

which dominate in spin ice [9,10]. This makes these ma-
terials beautiful examples of highly frustrated and strongly
quantum magnets on the pyrochlore lattice. They are also
nearly ideal subjects for detailed experimental investiga-
tion, existing as they do in large high-purity single crystals,
and with large magnetic moments amenable to neutron
scattering studies. Yb2Ti2O7 is particularly appealing
because its lowest Kramers doublet is extremely well
separated from the first excited one [11], and a very large
single-crystal neutron scattering data set is available, al-
lowing us to determine the full Hamiltonian quantitatively,
as we will show. Although we specialize to Yb2Ti2O7 in
the present article, the theoretical considerations and pa-
rameter determination method described here will very
generally apply to all pyrochlore materials where exchange
interactions dominate, and whose dynamics can be
described by that of a single doublet.
Theoretical studies have pointed to the likelihood of

unusual ground states of quantum antiferromagnets on
the pyrochlore lattice [12,13]. Most exciting is the possi-
bility of a quantum spin liquid (QSL) state, which avoids
magnetic ordering and freezing even at absolute zero tem-
perature, and whose elementary excitations carry fractional
quantum numbers and are decidedly different from spin
waves [14]. Although one neutron study [15] supported
ferromagnetic order in Yb2Ti2O7, intriguingly, the major-
ity of neutron scattering measurements have reported a
lack of magnetic ordering and the absence of spin waves
at low fields in this material [16–18]. In a recent study,
sharp spin waves emerged when a magnetic field of 0.5 Tor
larger was applied, suggesting that the system transitioned
into a conventional state [18]. The possible identification
of the low-field state with a quantum spin liquid is
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Experiments: a featureless state near an ordered state

this slide should be quick. 


antoher system is purely local moment,

 also some sample order

soem sample do not order


but order ferromagneically . 

Gang Chen’s theory group 

Gang Chen’s theory group



= chemical pressure, 
      oxygen content ……

featureless
disordered state magnetic order

T

g

Summary of experimental results

•  What is the structure of the magnetic order? 

•  What is the relationship between the featureless disordered  
 state and various magnetic states? 

•  What is the nature of the featureless disordered states? Is it QSI? 

this is a summary of the messy experiments. 


the system is probably near some transition 
between a featureless disordered state and 
magnetic ordered state. 


and the tuning parameter can be 

cheical pressure, oxyten content. 


improtant questions are 


what is 

phase is more importatnt tha nphase transiton.


disordred state is hard to characterize. 


phase tarnsition is more visible in epeirmtnes,


magnetic order is easy to dtect in experimetns. 


One can use proximate phase and phase 
transiton 


Gang Chen’s theory group 

Gang Chen’s theory group



Insight from high-Tc superconductors

One important question is to understand the  
relationship between different phases (and/or orders)

strange 
metal

Fermi 
liquid

Figure from wiki

1. Perturbative treatment (not interesting):  
instability of Fermi liquid;  

2. Attack from top:  
instability of non-Fermi liquid;  

3. Attack from Left,  
attack from Right:  
what is PG (Z2 topological order?) ? 
(Senthil, Balents, Nayak, Fisher 2000-2002); 

4. Attack from bottom: some quantum  
criticality under the SC dome? 

To proceed, one may get some insight from high Tc 
supercond.

i am not an expert of high Tc. people may already 
learned something from prof wenzhengyu and 
fuchunzhang’s talk yesterday. 


this is the high tc phase diagram. 


one important question is to elucidate the relationship 
between different phase or different orderes. 


there are a couple perspectives.


one can for instance, carry out a perturbative approach, 
obtain SC from overdoped fermi liquid regime, this is 
conventional perturbative treamtnet 


some people may think non-fl is more important, one 
should instead attach from top, and regard high sc as 

Gang Chen’s theory group 

Gang Chen’s theory group
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featureless disordered state  

= quantum spin ice spin liquid Ising order

Confinement transition out of U(1) quantum spin liquid

Let there be light: emergent photonExcitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004
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Collective spin dynamics

Here, “monopole” is a spinon !
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photonspinon spinon

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Spinons are deconfined. Spinons are confined !

More generally, for non-Kramers’ doublet, the magnetic transition out of U(1) QSL  
MUST be a confinement transition, this may apply to Tb2Ti2O7.

h⌧zi = 0 h⌧zi 6= 0Gang Chen’s theory group 

Gang Chen’s theory group

I want to porpose that the disordered is spin ice 
quantum spin liquid. and the mangetic transition from it 
to ordered side is a confinemnent transition. 


in quntum spin ice, spinon are deconfined, 


in ordered pahse when tau_z is non zero, as one 
separate two spinous, isince tau is static, it will 
necessary effect the tau_z along the path wawy, in the 
end it has  a energy cost  that grow linearly in the spion 
separtin. 



Lattice gauge theory formalism: technical part

diamond lattice

3

phases.
If one experimentally finds a magnetic ordered state

bordering a disordered state that is fluctuating within
the “2-in 2-out” spin ice manifold, and if the structure of
the magnetic ordered states and the nature of the tran-
sition from QSI are compatible one may postulate the
disordered state is in the QSI phase.

such unconventional phase transition and the corre-
ponding ordered phase that are proximate to a disordered
phase,

order in the Ising direction, order in the direction nor-
mal the spin component along the ... experimental

II. A GENERIC RING EXCHANGE MODEL
AND COMPACT QED FOR QSI

Even though more complicated realistic Hamiltonians
are available for e↵ective spin-1/2 moments with both
Kramers’ and non-Kramers’ doublets on the pyrochlore
lattice, it is known that the spin-1/2 XXZ model on the
pyrochlore lattice,

H =
X

hiji

⇥
�J?(⌧

+
i

⌧�
j

+ ⌧�
i

⌧+
j

) + J
z

⌧z
i

⌧z
j

⇤
, (1)

in the perturbative regime already captures the universal
properties of QSI. Here ⌧±

i

⌘ ⌧x
i

± i⌧y
i

. A large and
positive J

z

favors an extensive degenerate “2-in 2-out”
spin ice configuration. With a transverse exchange J?,
the system can tunnel quantum mechanically within the
ice manifold. It is argued and shown numerically that
QSI is realized for |J?|/Jz less than a critical value. In
the limit with |J?|/Jz ⌧ 1, the 3rd order degenerate
perturbation theory yields a ring exchange model,

Hring = �
X

7p

K

2
(⌧+1 ⌧�2 ⌧+3 ⌧�4 ⌧+5 ⌧�6 + h.c.), (2)

where K = 24J3
?/J

2
z

and “1,· · · ,6” are 6 sites on the
perimeter of the elementary hexagons (“7

p

”) of the py-
rochlore lattice. In fact, the perturbative treatment of
all the realistic models in the Ising limit (with a domi-
nant J

z

) gives the same form of ring exchange model as
Eq. (2).

We now introduce the lattice vector gauge fields as

Err0 ⌘ ⌧z
i

+
1

2
, eiArr0 ⌘ ⌧+

i

, (3)

where the pyrochlore site i resides on the center of
the nearest-neighbor diamond link hrr0i, and r (r0) is
on the diamond I (II) sublattice (see Fig.X). Moreover,
Err0 = �Er0r, Arr0 = �Ar0r and [Err0 , Arr0 ] = i. With
this transformation, Hring is mapped to the compact U(1)
lattice gauge theory on the diamond lattice formed by the
centers of the tetrahedra,

HLGT =
X

hrr0i

U

2
(Err0 �

✏r
2
)2 �

X

7d

K cos(curl A), (4)

where we have added the electric field term with the sti↵-
ness U , ✏r = +1(�1) for r 2 I (II) sublattice, and the
lattice curl (curl A ⌘

P
rr027d

Arr0) defines the inter-
nal magnetic field B through the center of the diamond
hexagon. Here Err0 (Arr0) is integer valued (2⇡ periodic).
In the large U limit, the microscopic ⌧z = ±1/2 is recov-
ered.
Eq. (4) is the standard compact QED Hamiltonian on

the diamond lattice. Although actual values of U and
K in the low energy description of QSI are renormalized
from the perturbative results, Eq. (4) does describe the
universal properties of QSI and is the starting point of
our analysis in the following sections.

III. ELECTROMAGNETIC DUALITY

As we explain in Sec. I, the internal magnetic field in
the confinement phase of the compact QED is strongly
fluctuating and thus the magnetic monopole is con-
densed. Magnetic monopoles are topological defects of
the U(1) gauge field A and carry the magnetic charge.
To describe the confinement transition from QSI via the
monopole condensation, it is not so convenient to work
with the field variables in Eq. (4) because the magnetic
monopoles are not even explicit. In the following, we
use the electromagnetic duality, that is analogous to the
boson-vortex duality in describing superfluid-Mott tran-
sition, to reformulate the compact QED Hamiltonian on
the diamond lattice in Eq. (4) and make the monopole
degrees of freedom explicit.
To carry out the duality transformation, we first in-

troduce an integer-valued dual U(1) gauge field arr0 that
lives on the link of the dual diamond lattice (see Fig.X)
such that

curl a ⌘
X

rr027⇤
d

arr0 ⌘ Err0 � E0
rr0 , (5)

where “7⇤
d

” refers to the elementary hexagon on the dual
honeycomb lattice and the electric field vector Err0 pene-
trates through the center of “7⇤

d

”. We have introduced a
background electric field distribution E0

rr0 that takes care
of the background charge distribution due to the “2-in 2-
out” spin ice rule. Each state in the spin ice manifold
corresponds to an background electric field distribution.
For our convenience, we choose a simple electric field con-
figuration that corresponds to a uniform “2-in 2-out” spin
ice state (see Fig.X) and satisfies

E0
r,r+✏re0

= E0
r,r+✏re1

= ✏r, (6)

E0
r,r+✏re2

= E0
r,r+✏re3

= 0, (7)

where e
µ

(µ = 0, 1, 2, 3) are the four vectors that connect
the I sublattice sites to their nearest neighbors.

In terms of the dual gauge variables, the lattice gauge
theory in Eq. (4) is transformed to

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �
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K cosBrr0 , (8)

H LGT  captures the universal properties of QSI.   

• In an ordered state, <tau_z>!=0, <tau^+> is strongly fluctuating. 

• In the gauge language, “E field” is static, “B magnetic field” is 
strongly fluctuating, the magnetic monopole (carrying magnetic 
charge) is condensed, which confines the electric charge carriers 
(spinons).
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works based on the gauge mean-field approach studied
the instability of QSI by condensing the spinons. The
spinon condensation transition, known as “Anderson-
Higgs transition” in the lattice gauge language, gener-
ically leads to the transverse spin order that is not in
the spin ice manifold [35]. Instead, we here study the
proximate magnetic order and transition out of QSI by
condensing the magnetic monopoles that are topological
excitations of the compact U(1) LGT for the QSI [43].
The monopole condensation transition is the confinement

transition of the compact U(1) LGT [44, 45], and the re-
sulting proximate magnetic ordered state is in the spin
ice manifold and generically breaks the lattice translation
symmetry. We determine the structure of the proximate
magnetic orders of QSI and further predict the nature
of the phase transition from QSI to the nearby magnetic
orders.

Compact QED and electromagnetic duality.—
Even though more complicated realistic Hamiltonians
are available for e↵ective spin-1/2 moments on the py-
rochlore lattice [36–38], it is known that the spin-1/2
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sti↵ness U , ✏r = +1(�1) for r 2 I (II) sublattice, and
the lattice curl (curl A ⌘

P
rr027d

Arr0) defines the in-
ternal magnetic field B through the center of the dia-
mond hexagon (7

d

). In the large U limit, the micro-
scopic ⌧z = ±1/2 is recovered. Although the actual val-
ues of U and K in the low energy description of QSI are

renormalized from the perturbative results, HLGT does
capture the universal properties of QSI [19] and is the
starting point of our analysis below.
Magnetic monopoles are topological defects of the U(1)

gauge field and carry the magnetic charge. To describe
the magnetic transition from QSI via the monopole con-
densation, it is not so convenient to work with the field
variables in Eq. (2) because the monopoles are not ex-
plicit [19]. Instead, we use the electromagnetic dual-
ity [19, 45–50] to reformulate the compact U(1) LGT
Hamiltonian and make the monopole explicit. We first
introduce an integer-valued dual U(1) gauge field arr0 that
lives on the link of the dual diamond lattice (see Fig. 2)
such that

curl a ⌘
X

rr027⇤
d

arr0 ⌘ Err0 � E0
rr0 , (3)

where “7⇤
d

” refers to the elementary hexagon on the dual
honeycomb lattice and the electric field vector Err0 pene-
trates through the center of “7⇤

d

”. Here the serif symbols
r, r0 label the dual diamond lattice sites. We have intro-
duced a background electric field distribution E0

rr0 that
takes care of the background charge distribution due to
the “2-in 2-out” ice rule. Each state in the spin ice man-
ifold corresponds to a background electric field distribu-
tion. For our convenience, we choose a simple electric
field configuration that corresponds to a uniform “2-in
2-out” spin ice state (see Fig. 2) with

E0
r,r+✏re0

= E0
r,r+✏re1

= ✏r, (4)

E0
r,r+✏re2

= E0
r,r+✏re3

= 0, (5)

where e
µ

(µ = 0, 1, 2, 3) are the four vectors that connect
the I sublattice sites to their nearest neighbors. In terms
of the dual gauge variables, HLGT is transformed into

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0 , (6)

where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice and is conjugate to the dual gauge
field a with [Brr0 , arr0 ] = i. In Eq. (6), we have introduced
the electric field Ē that combines both the background
electric field distribution E0 and the o↵set in Eq. (2) with
Ēr,r+✏reµ = E0

r,r+✏reµ
� ✏r/2.

Because the dual gauge field a is integer valued, the
dual Hamiltonian Hdual is di�cult to work with. More-
over, the magnetic monopole is implicit in the gauge field
configuration. To make the monopole explicit, we fol-
low the standard procedure, first relax the integer valued
constraint of the dual gauge field by introducing cos 2⇡a
and then insert the monopole operators. The resulting
dual theory is described by the magnetic monopoles min-
imally coupled with the dual U(1) gauge field on the dual
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where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice. In Eq. (8), we have introduced the
electric field vector Ē that combines both the background
electric field distribution E0 and the o↵set in the electric
field term of Eq. (4). We have

Ēr,r+✏re0 = Ēr,r+✏re1 = �✏r
2
, (9)

Ēr,r+✏re2 = Ēr,r+✏re3 = +
✏r
2
. (10)

Just like the conjugation relation between the electric
field E and the gauge field A, the magnetic field B is
conjugate to the dual gauge field a with

[Brr0 , arr0 ] = i. (11)

Because the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is di�cult to work with. Moreover,
the magnetic monopole excitation are also implicit in
the gauge field configuration. To make the magnetic
monopole explicit, we follow the standard procedure and
first relax the integer valued constraint of the dual gauge
field by inserting a cos 2⇡a such that

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(2⇡arr0). (12)

Now both the B field and the a field are real valued, and
the newly-introduced “cos 2⇡a” term simply pins the a
field to integer values. Such a manipulation preserves all
the symmetries of the system and does not change the
universal physics and the generic structure of the phase
diagram.

In QSI, the magnetic monopole is a gapped excitation,
and the gap is of the order of the magnetic field sti↵ness
K. The gapped magnetic monopole is implicit in the
configurations of gauge fields in the dual Hamiltonian.
We now insert the magnetic monopole variable into the
dual Hamiltonian and have

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

r,r0

t cos(✓r � ✓r0 + 2⇡arr0). (13)

The resulting dual theory is described by magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice. Here e�i✓r (ei✓r) creates
(annihilates) the magnetic monopole at the dual lattice
site r.

IV. MONOPOLE CONDENSATE AND
MAGNETIC ORDER

In this section, we use the theoretical framework of the
previous sections and discuss the monopole condensate

in the confinement phase of the compact QED. In the
dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the the monopole band will
touch zero energy and the monopole is condensed. In
the confinement phase, as the E field develops a static
distribution, the B field is strongly fluctuating and the a
field is weakly fluctuating. Therefore, it is legitimate to
first ignore the fluctuation of the dual gauge field a and
study the monopole spectrum to uncover the monopole
band mininum and the condensate for the confinement
phase. In such a gauge mean-field-like treatment, the
“U” term in the Hamiltonian enforces that

curl ā = Ē, (14)

which is solved to fix the gauge for the dual gauge field.
Here we have set the dual gauge field to its static com-
ponent ā. Through Eq. (14), the background electric
field distribution in the dual formulation turns into the
dual gauge flux experienced by the magnetic monopoles.
Because the background electric field takes either ✏r/2
or �✏r/2, this gives rise to ⇡ flux of dual gauge field
through each elementary hexagon on the dual diamond
lattice. We fix the gauge by choosing

ār,r+eµ = ⇠
µ

(q · r), (15)

where r 2 I sublattice of the dual diamond lattice, e
µ

(µ = 0, 1, 2, 3) refer to the 4 nearest-neighbor vectors
of the dual diamond lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and
q = 2⇡(100).
In the presence of the background flux, the monopole

hopping Hamiltonian on the dual diamond lattice is given
as

H
m

= �
X

r,r0

t e�i2⇡ā
rr0�†

r�r0 , (16)

where we have introduced a unimodular field �r ⌘ ei✓r

with |�r| ⌘ 1. It is straightforward to work out the
dispersion of the lowest monopole band that is

⌦k = �t
q
4 + 2

p
3 + c

x

c
y

� c
x

c
z

+ c
y

c
z

, (17)

where c
x

= cos k
x

, c
y

= cos k
y

, c
z

= cos k
z

. The mini-
mum of this band occurs at several lines of momentum
points in the Brioullin zone. One such degenerate line of
momentum points is

(k
x

, k
y

, k
z

) = (0, 0, arbitrary), (18)

and the minimum energy is �2
p
2t (see Fig.X). Other

degenerate lines are readily obtained by the symmetry
operations.
The line degeneracy of the band minima is a conse-

quence of the background flux that frustrates the hop-
ping of the monopoles. These degeneracies are acciden-
tical and are not protected by symmetry. It is expected

Motrunich, Senthil 2005, 
Bergman, Fiete, Balents 2006

Proximate magnetic order generically  
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where e

µ

(µ = 0, 1, 2, 3) are the four vectors that con-
nect the I sublattice sites of the diamond lattice to their
nearest neighbors. In terms of the dual gauge variables,
HLGT is transformed into

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

hr,r0i

K cosBrr0 , (9)

where we have explicitly replaced curl A with the mag-
netic field vector Brr0 that lives on the link hrr0i of the
dual diamond lattice and is conjugate to the dual gauge
field a with [Brr0 , arr0 ] = i. In Eq. (9), we have introduced
the electric field Ē that combines both the background
electric field distribution E0 and the o↵set in Eq. (5) with

Ēr,r+✏reµ = E0
r,r+✏reµ

� ✏r
2
. (10)

Since the dual gauge field a is integer valued, the
dual Hamiltonian Hdual is di�cult to work with. More-
over, the “magnetic monopole” is implicit in the dual
gauge field configuration. To make the monopole ex-
plicit, we follow the standard procedure19, first relax the
integer valued constraint of the dual gauge field by intro-
ducing cos 2⇡a and then insert the monopole operators.
The resulting dual theory is described by the magnetic
monopoles minimally coupled with the dual U(1) gauge
field on the dual diamond lattice,

Hdual =
X

7⇤
d

U

2
(curl a� Ē)2 �

X

r,r0

K cosBrr0

�
X

hr,r0i

t cos(✓r � ✓r0 + 2⇡arr0), (11)

where e�i✓r (ei✓r) creates (annihilates) the “magnetic
monopole” at the dual lattice site r.

Monopole condensation and proximate Ising order. In
the dual gauge Hamiltonian of Eq. (11), as the monopole
hopping increases, the monopole gap decreases. When
the monopole gap is closed, the monopole is condensed.
In the confinement phase, the E field develops a static
distribution, the B field (the a field) is strongly (weakly)
fluctuating. Therefore, it is legitimate to first ignore the
a field fluctuation, then study the monopole band struc-
ture, and condense the monopoles at the minimum of the
monopole band for the confinement phase51,52. In such
a dual gauge mean-field-like treatment, the “U” term in
the Hamiltonian enforces curl ā = Ē, which is solved to
fix the gauge for the dual gauge field. Here we set the
dual gauge field to its static component ā. The elec-
tric field distribution Ē turns into the dual gauge flux
experienced by the “magnetic monopoles” in the dual
formulation. As Ē takes ±✏r/2, it leads to ⇡ flux of the
dual gauge field through each elementary hexagon on the
dual diamond lattice. As it is shown in Fig. 3, we fix the
gauge by setting ār,r+eµ = ⇠

µ

(q · r), where r 2 I sublat-
tice of the dual diamond lattice, e

µ

(µ = 0, 1, 2, 3) refer
to the four nearest-neighbor vectors of the dual diamond
lattice, (⇠0, ⇠1, ⇠2, ⇠3) = (0110) and q = 2⇡(100).

FIG. 3. The dual diamond lattice and the assignment of the
gauge potential e�i2⇡ārr0 on the nearest neighbor links.

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lat-
tice is given by

H
m

= �
X

hr,r0i

t e�i2⇡ā
rr0�†

r�r0 , (12)

where we have introduced �r ⌘ ei✓r (with |�r| ⌘ 1). The
dispersion of the lowest monopole band is given by

⌦k = �|t|[4 + 2(3 + cxcy � cxcz + cycz)
1/2]1/2, (13)

where c
µ

= cos k
µ

(µ = x, y, z). The degenerate minima
of the lowest band form several lines of momentum points
in the Brioullin zone. One such degenerate line is along
the [001] direction of the Brioullin zone and the minimum
energy is �2

p
2|t|. Other degenerate lines are readily ob-

tained by the symmetry operations. The line degeneracy
of the band minima is a consequence of the background
flux that frustrates the monopole hopping. These contin-
uous degeneracies are accidentical and are not protected
by symmetry. It is expected that the further neighbor
monopole hopping or monopole interactions should lift
these degeneracies.
Because of the background flux, the lattice symmetry

in H
m

is realized projectively, known as projective sym-
metry group (PSG)54. We use PSG to generate the fur-
ther neighbor monopole hoppings55, but do not find ob-
vious degeneracy breaking. Instead, the line degeneracy
immediately gets lifted if we impose the unimodular con-
straint of the monopole field (|�r| = 1). This unimodular
constraint, that originates from the repulsive interaction
between monopoles, suppresses the magnitude fluctua-
tion of the monopole fields. For the degenerate minima
along the [001] direction, the unimodular requirement se-
lects the monopole configurations at two equivalent mo-
menta

k1 = (0, 0,⇡), k2 = (0, 0,�⇡), (14)

and the corresponding monopole configurations are
⇢

r 2 I, '1(r) = ( 1+i

2 + 1�i

2 ei2⇡x)ei⇡z,
r 2 II, '1(r) = ei⇡z,

(15)

⇢
r 2 I, '2(r) = ( i+1

2 + i�1
2 ei2⇡x)e�i⇡z,

r 2 II, '2(r) = ie�i⇡z,
(16)
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The very nature of the ground state of the pyrochlore compound Yb2Ti2O7 is much debated, because
experimental results demonstrate evidence for either a disordered ground state or a long-range ordered ground
state. Indeed, the delicate balance of exchange interactions and anisotropy is believed to lead to competing
states, such as a quantum spin liquid state or a ferromagnetic state which may originate from an Anderson-Higgs
transition. We present a detailed magnetization study demonstrating a first-order ferromagnetic transition at 245
and 150 mK in a powder and a single-crystal sample, respectively. Its first-order character is preserved up to
applied fields of ∼200 Oe. The transition stabilizes a ferromagnetic component and involves slow dynamics in
the magnetization. Residual fluctuations are also evidenced, the presence of which might explain some of the
discrepancies between previously published data for Yb2Ti2O7.
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I. INTRODUCTION

Magnetism affected by geometrical frustration is an active
field due to the ability to generate new and unusual magnetic
phases [1]. In this context, the pyrochlore oxide materials
R2M2O7 (R = rare earth, M = metal) form a very rich family
in which a large diversity of new physics can be explored [2].
Specifically, the rare-earth ions lie on the vertices of corner
sharing tetrahedra, forming the highly frustrated pyrochlore
lattice. Depending on the rare-earth element, the anisotropy of
the spins as well as the exchange and dipolar interactions can
be varied so that different model Hamiltonians can be studied
within this structure. One of the most spectacular realizations
is the spin-ice phase (mainly studied with R = Dy and Ho;
M = Ti) [3,4] in which the local spin arrangement obeys
the ice rule (two spins point into and two spins point out
of every tetrahedron in the structure) and which possesses a
macroscopically degenerate ground state. This state is induced
by the strong uniaxial anisotropy along the local ⟨111⟩ axes
of the tetrahedra, combined with a resultant ferromagnetic
interaction. With these ingredients and in the presence of
strong transverse fluctuations, a new magnetic state is expected
to be stabilized, the quantum spin ice (QSI) in which exotic
excitations are predicted [5–7].

Yb2Ti2O7 has been proposed as a good candidate for
stabilizing the QSI state [8,9]. Indeed, the exchange in
Yb2Ti2O7 is highly anisotropic, with a strong ferromagnetic
component akin to the Ising exchange of spin ice [8,10,11],
despite an XY -like anisotropy perpendicular to the lo-
cal ⟨111⟩ directions [12,13]. At low temperature, using
a model Hamiltonian with anisotropic exchange parame-
ters deduced from experiments, a first-order phase transi-
tion towards a long-range ferromagnetic order is predicted
[9,14–16].

*elsa.lhotel@neel.cnrs.fr

Experimentally, the existence of a long-range magnetic
ordering in this compound is debated, suggesting a fragile
ground state with respect to perturbations. In an early study,
a peak was observed around 210 mK in the specific heat of a
polycrystalline sample [17]. It was later shown to be associated
with a first-order transition and an abrupt slowing down of the
fluctuations in the low-temperature phase [18].

Below the transition, depending on the nature of the
samples (single crystal or polycrystal) and the crystal growth
conditions, different results have been obtained. Some neutron
scattering measurements demonstrate ferromagnetic long-
range order (LRO) [14,19] while others do not [20–22].
A discrepancy is also observed in muon spin relaxation
measurements (µSR) where an anomaly at the transition
is present [18,23] or not [24]. In the meantime, it was
shown that the peak in specific heat strongly depends on the
samples [25,26] so that the presence of a transition towards a
long-range order might depend on the sample quality.

It has been suggested that the specific heat anomaly,
however, does not necessarily correspond to a magnetic
ordering [24,25]. It is therefore essential to probe another
thermodynamic quantity which should be more sensitive to
the magnetic nature of the transition: the magnetization. In
this article, we show that the magnetization of Yb2Ti2O7
presents a first-order transition in both a powder sample
and a single crystal which was shown to develop additional
magnetic intensity on structural peaks [14]. The first-order
nature of the transition invoked in previous studies [14,18,24]
is proved by the existence of a small thermal hysteresis (of a
few millikelvins in width). The transition is accompanied by
strong time-dependent effects. The magnetization value below
the transition temperature is consistent with the stabilization
of a ferromagnetic ordering with a reduced spontaneous
moment, suggesting a strongly fluctuating spin component.
Significantly the first-order behavior occurs below the peak in
the specific heat where only a deviation in the susceptibility is
observed.

1098-0121/2014/89(22)/224419(7) 224419-1 ©2014 American Physical Society
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possible temperature dependence of the spontaneous moment
must be considered, since an increase in the ordered moment
may be expected as the temperature is reduced further below
TC . For the single crystal, our analysis was carried out at 80 mK
which corresponds to TC/2. The same procedure was followed
at 110 mK and the results were found to be comparable. For
the powder sample, we performed the analysis between 80
(about TC/3) and 200 mK, and no significant dependence of the
spontaneous moment with temperature was observed. These
results suggest that the spontaneous moment will not increase
significantly at lower temperature and point out the first-order
nature of the transition.

C. First-order transition and time-dependent effects

A detailed study of the magnetization around the transition
has been performed. To ensure accurate results, measurements
had to be performed with well-controlled temperature
regulation and extremely slow cooling and warming rates. The
protocol was the following: (i) regulate at a given temperature,
(ii) take a large number of measurements (between 40 and 100)
so that the magnetization reaches equilibrium at this tempera-
ture, and (iii) change the temperature with a step of 5 or 2 mK
depending on the measurements. The temperature was ramped
between 80 and 400 mK, cooling and warming the sample.
The equivalent ramping rate is between 9 and 18 mK/h.
The obtained magnetization as a function of temperature for
the single crystal is shown in Fig. 5. It can be seen that at the
transition, at a fixed temperature, a strong relaxation occurs.
As shown in the inset of Fig. 5 where the magnetization is
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FIG. 5. (Color online) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis at the proximity
of the transition. The temperature was swept in steps of 5 mK and
100 extractions were made at each temperature (∼30 min at each
temperature). Inset: Isotherm as a function of time t at T = 155 mK
when warming (red circles) and when cooling (blue squares). The
lines are fitted to the exponential: M
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FIG. 6. (Color online) (a) M/H vs T for the single crystal in an
applied field H = 5 Oe parallel to the [100] axis, extracted from
Fig. 5 with only the equilibrium value of the magnetization plotted
compared to the specific heat data. (b) The equivalent data for the
crushed powder.

plotted as a function of time, at 155 mK, the equilibrium
magnetization is reached after times as long as 600 s.

Figure 6(a) shows the equilibrium values of the magneti-
zation at the transition (obtained from Fig. 5) as a function
of temperature for the single crystal. It can be seen that a
small hysteresis is present (which is much narrower than that
for a fast temperature sweep), indicating a first-order like
behavior. Also shown is the specific heat data on the same
crystal. A subtle change of slope occurs in the magnetization
at the peak in specific heat, while the first-order transition
develops below this peak. The bump observed at ≈180 mK
before the sharp increase is not present in the magnetization
of the powder sample as shown in Fig. 6(b) and might be due
to a sample inhomogeneity, a consequence of difficulties in
sample preparation [25,26].

From the magnetization, it appears, that the first-order
transition occurs around 150 mK in this single crystal. The
transition extends over about 20 mK and the hysteresis width
is about 3 mK. For the powder sample, the transition occurs
around 245 mK, but the width of the transition and the width
of the hysteresis are similar.

Zero-field-cooled–field-cooled (ZFC-FC) magnetization
shows an irreversibility below the temperature of the transition
(see Fig. 7) [34]. In ordered materials, such irreversibility is
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FIG. 2. (color online) Temperature dependence of elastic neu-
tron scattering intensity of Pr2+xIr2−xO7−δ at the position of
the qm = (100) reflection. The intensity measured at T = 2 K
was subtracted as a background. Curve: Ising mean-field the-
ory fit to the data, which yields a transition temperature of
TM = 0.93(1) K. Inset: sketch of the 2-in/2-out magnetic
structure.

Refinement of the magnetic structure using the
propagation vector qm was carried out on the high-
temperature-subtracted T = 0.5 K data collected on
SPINS. Assuming an Ising anisotropy in the [111] di-
rection for Pr3+ moments, as is well established for
Pr2Ir2O7 [5], the best refinement was obtained using an
ordered spin-ice 2-in/2-out structure for moments on a
unit tetrahedron (inset of Fig. 2), yielding an on-site mo-
ment µneu = 1.7(1)µB per Pr3+ ion [32]. The ordered
spin-ice structure is predicted for long-range ordering of
Heisenberg spins on the pyrochlore lattice due to dipole-
dipole interactions [33], although in Pr2Ir2O7 the Ising
nature of the Pr3+ moments and the strong dependence
of the ordering on stoichiometry suggest RKKY interac-
tions also play an important role.
To better understand the spatial and temporal coher-

ence of magnetism below the critical temperature TM , we
now turn to high-resolution magnetic neutron scattering.
The momentum dependence of the high-temperature-
subtracted scattering data [Fig. 3(a)] reveals four mag-
netic Bragg peaks, indexed by (100), (110), (102) and
(112), that appear sharp in both momentum and energy.
A fit to the 0.3 K data integrated over |E| < 0.03 meV
[Fig. 3(b)] yields a Gaussian momentum resolution of
FWHM 0.023(1) Å−1 at the (111) nuclear Bragg peak.
Using a phenomenological expression for the momentum
dependence of the momentum resolution, we fit the data
to a set of Gaussian-convoluted Lorentzian profiles. This
yields the intrinsic half-width-half-maximum (HWHM)
widths κ for each magnetic Bragg peak in Fig. 3(b). From
this analysis we obtain a lower bound ξmin = 1/κmax ≈
170 Å for the spatial correlation length.
The energy dependence of the two lowest-angle mag-

netic Bragg peaks, measured with λ = 9.04 Å, is com-
pared to that of the resolution-limited nuclear Bragg
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FIG. 3. (color online) Elastic and quasielastic neutron scat-
tering intensity of Pr2+xIr2−xO7−δ measured at 0.3 K on
CNCS, T = 1.7 K data subtracted. See text for defini-
tions. (a) Scattering intensity as a function of momentum
and energy, λ = 7.26 Å. (b) Momentum dependence of the
energy-integrated (|E| < 0.03 meV) intensity at T = 0.3 K.
Curve: fit to set of Voigt profiles plus a polynomial back-
ground. (c) Energy dependence at three Bragg positions,
λ = 9.04 Å. Solid curves: fits to Voigt profiles. Dashed
curves: associated Lorentzian broadening.

peak (111) in Fig. 3(c). A fit of the (100) and (110)
magnetic Bragg peaks to a quasielastic Lorentzian pro-
file convoluted with a fixed Gaussian energy resolution
(FWHM γ = 17(1) µeV) yields intrinsic HWHM widths
Γ = 0.9(2) µeV and 0.5(2) µeV, respectively. From this
analysis we obtain an upper bound of ≈ 1 µeV on any
intrinsic broadening, indicating that the observed order
is static on a time scale that exceeds !/Γ ≈ 0.7 ns.
Overall our elastic and quasielastic neutron results re-

veal that our Pr2+xIr2−xO7−δ sample experiences a tran-
sition at TM = 0.93(1) K from a paramagnetic state
to long-range spin-ice order characterized by spatial and
temporal correlations that span at least 170 Å and 0.7 ns,
respectively.

D. Muon spin relaxation

The present µSR studies of Pr2Ir2O7, like those re-
ported previously [9, 12], were carried out using the di-
lution refrigerator at the M15 muon beam channel at

Magnetic order is discovered in 
some samples. (MacLaughlin, etc, 2015)

it turns out the magnetic phase is 

Pr22y is a prxoiamte pmagnetic order, 
the state is q=2pi AFM


while YTO magnetic start is Q=FM is 
not proximate to QSI.

the tasniont is 1st order.

thati is what the observe in experiments 
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Magnetic monopole condensation in pyrochlore ice quantum spin liquid: application
to Pr2Ir2O7 and Yb2Ti2O7
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Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phe-
nomena are intertwined with strong spin-orbit coupling, substantial electron correlation and geo-
metrical frustration. Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7

and Yb2Ti2O7, we study the proximate Ising orders and the quantum phase transition out of quan-
tum spin ice U(1) quantum spin liquid (QSL). We apply the electromagnetic duality of the compact
quantum electrodynamics to analyze the “magnetic monopoles” condensation for U(1) QSL. The
monopole condensation transition represents a unconventional quantum criticality with unusual scal-
ing laws. It naturally leads to the Ising orders that belong to the “2-in 2-out” spin ice manifold and
generically have an enlarged magnetic unit cell. We demonstrate that the antiferormagnetic Ising
state with the ordering wavevector Q = 2⇡(001) is proximate to U(1) QSL while the ferromagnetic
Ising state with Q = (000) is not proximate to U(1) QSL. This implies that if there exists a direct
transition from U(1) QSL to the ferromagnetic Ising state, the transition must be strongly first
order. We apply the theory to Pr2Ir2O7 and Yb2Ti2O7.

Pyrochlore iridates (R2Ir2O7)1,2 have stimulated a wide
interest in recent years, and many interesting results,
including topological Mott insulator3, quadratic band
touching4, Weyl semimetal5–7, non-Fermi liquid8,9 and
so on, have been proposed. Among these materials,
Pr2Ir2O7 is of particular interest. In Pr2Ir2O7, the Ir
system remains metallic at low temperatures10. More in-
triguingly, no magnetic order was found except a partial
spin freezing of the Pr moments due to disorder at very
low temperatures in the early experiments10–12. A re-
cent experiment on di↵erent Pr2Ir2O7 samples, however,
discovered an antiferromagnetic long-range order for the
Pr moments13. While most theory works on pyrochlore
iridates focused on the Ir pyrochlores and explored the
interplay between the electron correlation and the strong
spin-orbit coupling of the Ir 5d electrons3,14,15, very few
works considered the influence and the physics of the lo-
cal moments from the rare-earth sites that also form a
pyrochlore lattice7,16–18. In this paper, we address the
local moment physics in Pr2Ir2O7 and propose that the
disordered state of the Pr moments is likely to be in the
quantum spin ice (QSI) U(1) quantum spin liquid state.
We explore the proximate Ising order and the confine-
ment transition of QSI and argue that Pr2Ir2O7 could be
located near such a confinement transition.

The QSI U(1) QSL is an exotic quantum phase of mat-
ter and is described by emergent compact quantum elec-
trodynamics, or equivalently, by the compact U(1) lattice
gauge theory (LGT) with a gapless U(1) gauge photon
and deconfined spinon excitations19–21. Recently several
rare-earth pyrochlores with 4f electron local moments are
proposed as candidates for QSI U(1) QSLs22–32. In these
systems, the predominant antiferromagnetic exchange in-
teraction between the Ising components of the local mo-
ments favors an extensively degenerate “2-in 2-out” spin
ice manifold on the pyrochlore lattice20,22,33–37. The

FIG. 1. The monopole condensation transition from the QSI
U(1) QSL to the proximate antiferromagnetic Ising state.
The dashed (solid) line represents a thermal crossover (tran-
sition). “g” is a tuning parameter that corresponds to the
mass of “magnetic monopole” (see the discussion in the main
text). The inset Ising order has an ordering wavevector
Q = 2⇡(001). The Pr moment of Pr2Ir2O7 is likely to be
close to this quantum critical point (QCP).

transverse spin interaction allows the system to tunnel
quantum mechanically within the ice manifold, giving
rise to a U(1) QSL ground state36–41. Like Pr2Ir2O7, the
experimental results on these QSL candidate materials
depend sensitively on the stoichiometry and the sample
preparation22. In particular, for the pyrochlore ice sys-
tem Yb2Ti2O7, while some samples remain disordered
down to the lowest temperature and the neutron scatter-
ing shows a di↵usive scattering23,42, others develop a fer-
romagnetic order25,43–45. This suggests that both the Yb
moments in Yb2Ti2O7 and the Pr moments in Pr2Ir2O7

could be located near a phase transition between a dis-
ordered state (that might be a QSI U(1) QSL) and the
magnetic orders.

On the theoretical side, the instability of the QSI U(1)

Subsidiary order and weak divergence

g is the mass of the monopole

The critical theory is described by gapless monopoles coupled with a fluctuating U(1) gauge field in 3+1D. 

�(Q) ⇠ � lnTa unusual weak divergence “subsidiary order” (Kivelson) !
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that the further neighbor monopole hopping or monopole
interactions should lift these degeneracies.

Because of the background flux, the space group sym-
metry is realized projectively, which is known as projec-
tive symmetry group (PSG) (see XXX). Under PSG, each
symmetry operation (S) of the Fd3̄m space group on the
monopole field is associated with a gauge transformation
⇤
S

(r),

S : �r ! �
Sr e

�i⇤S(r). (19)

We use PSG to generate monopole hoppings up to 5th
neighbors, but do not find obvious degeneracy break-
ing. On the other hand, the line degeneracy immedi-
ately gets lifted if we impose the unimodular constraint
of the monopole field. The unimodular constraint of
the monopole field is like the interaction between the
monopoles and forces the magnitude of the monopole
fields to be uniform. Among the degenerate momenta
of Eq. (18), the unimodular requirement picks up two
equivalent solutions with

k1 = (0, 0,⇡), k2 = (0, 0,�⇡), (20)

and the corresponding eigenvectors are
⇢

r 2 I, '1(r) = ( 1+i

2 + 1�i

2 ei2⇡x)ei⇡z,
r 2 II, '1(r) = ei⇡z,

(21)

⇢
r 2 I, '2(r) = ( i+1

2 + i�1
2 ei2⇡x)e�i⇡z,

r 2 II, '2(r) = ie�i⇡z.
(22)

Using the PSG transformations, we generate 10 other
equivalent solutions from the above results. In total,
there are 12 symmetry equivalent solutions.

When the monopole is bose condensed, the spinons are
confined and the system develops magnetic order. Al-
though the magnetic ordering transition is induced by
monopole condensation, as monopoles are emergent de-
grees of freedom that are not gauge invariant, the physi-
cal information of the monopole condensate is encoded in
the gauge invariant monopole bilinears. Again, symme-
try is a powerful tool to establish the relation between
the relevant physical observables and the monopole bi-
linears. We want to find the monopole bilinears that are
related to the spin density ⌧z. The candidate monopole
bilinears are the monopole density and the monopole cur-
rent. Although the monopole density (�†�) transforms
in the same way as the spin density (⌧z) under the space
group transformation, they behave oppositely under the
time reversal transformation. So we turn out attention
to the monopole current. As the loop integral of mag-
netic monopole current is the electric flux through the
plaquette enclosed by that loop, we have

⌧z
i

⇠ Err0 ⇠
X

rr027⇤
d

Jrr0 , (23)

where the pyrochlore site i is the center of the elemen-
tary honeycomb 7⇤

d

on the dual diamond lattice, and

Jrr0 ⌘ i(h�†
r ih�r0ie�iārr0 � h.c.) defines the monopole cur-

rent. Here h�ri is the expectation value of the monopole
field that is taken with respect to one of the twelve equiv-
alent solutions. In Fig.X, we depict the spin density dis-
tribution of the monopole condensate at k1. The result-
ing magnetic state is an antiferromagnetic state with the
ordering wavevector 2⇡(001), although the four spins on
each tetrahedron still obey the “2-in 2-out” spin ice rule.

V. CRITICAL THEORY

In the previous section, we have established that the
monopole interaction in the confinement phase selects 12
equivalent monopole condensates which leads to 12 sym-
metry equivalent magnetic ordering structures. Near the
confinement transition, the fluctuations of the monopole
condensate and the gauge fields are strong. One can
then obtain a standard Landau-Ginzburg-Wilson expan-
sion of the action in terms of the monopole condensate in
the vincinity of the phase transition. We introduce the
slowly-varying monopole fields �

a

via the expansion

�r =
12X

a=1

'
a

(r)�
a

, (24)

where '
a

(r) (a = 1, · · · , 12) are the 12 discrete monopole
modes that span the ground state manifold of the
monopole condensate. Again, we use PSG transforma-
tion of the monopole field � to generate the PSG for
the slowly-varying fields �

a

. With monopole PSG, we
generate the symmetry allowed e↵ective action for the
monopole condensation transition,

L =
X

a

⇥
|(@

µ

� iã
µ

)�
a

|2 +m2|�
a

|2
⇤
+

F
µ⌫

2

2

+u0(
X

a

|�
a

|2)2 + · · · , (25)

where we have restored the gauge field fluctuation by cou-
pling the �

a

fields to the fluctuating dual U(1) gauge field
ã
µ

, 1
2Fµ⌫

2 is the Maxwell term with F
µ⌫

⌘ @
µ

ã
⌫

� @
⌫

ã
µ

,
and “· · · ” contains the anisotropic quartic terms that
break the U(12) symmetry. This is a multi-component
Ginzburg-Landau theory in 3+1D which is the upper
critical dimension of the theory. One expects the phase
transition of this theory is either a Gaussian fixed point
or a weakly first order transition driven by fluctua-
tions. Both possibilities suggest that the mean-field
treatment of the phase transition should be valid for a
very wide range of length scales. In a mean-field descrip-
tion, the monopole field correlator at the critcal point is
h�†

a

(k,!)�
b

(k,!)i ⇠ �
ab

/(k2 + !2)
Insert Figure of pyrochlore lattice, diamond lattice.

From pyrochlore lattice diamond lattice and diamond lat-
tice and its dual diamond lattice.
what may modify the e↵ective interaction between lo-

cal moment: 1. oxygen context shift chemical potential
2. other minor structural di↵erence in di↵erent samples
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where '
a

refers to the monopole configuration at the mo-
mentum k

a

. From the above results, we use the PSG
transformations and generate in total twelve symmetry
equivalent solutions.

After the unimodular constraint is enforced, the
monopoles are condensed at only one of the equivalent
solutions, the spinons are confined and the system devel-
ops an Ising order. Although the Ising order is induced
by the monopole condensation, as monopoles are emer-
gent particles and are not gauge invariant, the physical
property of the monopole condensate is encoded in the
gauge invariant monopole bilinears. Again, symmetry
is a powerful tool to establish the relation between the
spin density ⌧z and the monopole bilinears. The can-
didate monopole bilinears are the monopole density and
the monopole current. Although the monopole density
(�†�) transforms in the same way as the spin density
(⌧z) under the space group symmetry, they behave op-
positely under the time reversal.

As for the monopole current, from the Maxwell’s equa-
tions, the loop integral of monopole current is the elec-
tric flux through the plaquette enclosed by the loop (see
Fig. 2b)51,52. We have

⌧z
i

⇠ Err0 ⇠
X

rr027⇤
d

Jrr0 , (17)

where the pyrochlore site i is the center of the elemen-
tary honeycomb 7⇤

d

on the dual diamond lattice, and

Jrr0 ⌘ i(h�†
r ih�r0ie�iārr0 � h.c.) defines the monopole cur-

rent. Here h�ri is the expectation value of the monopole
field that is taken with respect to one of the equivalent
solutions. In the inset of Fig. 1, we depict the spin
density distribution of the monopole condensate at k1.
The resulting Ising order in the confinement phase is
an antiferromagnetic state with an ordering wavevector
Q = 2⇡(001), and the four spins on each tetrahedron
obey the “2-in 2-out” ice rule. This Ising state breaks
the translation symmetry by doubling the crystal unit
cell.

The translation symmetry breaking of the proximate
magnetic state is a generic phenomenon. The background
gauge flux, due to the “2-in 2-out” rule, shifts the min-
imum of the monopole band to finite momenta. Once
the monopole is condensed at the finite momentum, the
resulting proximate Ising order necessarily breaks the
translation symmetry. If, however, the ferromagnetic
Ising order with Q = (000) in Fig. 2a, preserves the
translation symmetry and borders with the QSI U(1)
QSL, the transition beween this ferromagnetic Ising or-
der and U(1) QSL must be strongly first order. In the
Method, we write down simple models that do not have a
sign problem for quantum Monte Carlo simulation. The
models can realize both the ferromagnetic and antifer-
romagnetic Ising orders and allow the careful numerical
study of the phase transitons out of the QSI U(1) QSL.

Critical theory of monopole condensation. The
monopole interaction in the confinement phase selects

FIG. 4. The bubble diagram of the “magnetic monopole”.

twelve equivalent monopole condensates that correspond
to twelve symmetry equivalent Ising orders. In the
vicinity of the monopole condensation transition, the
monopole condensate and the gauge fields fluctuate
strongly. We thereby carry out a Landau-Ginzburg-
Wilson expansion of the action in terms of the monopole
condensate and gauge field in the vincinity of the phase
transition. We introduce the slowly-varying monopole
fields �

a

via the expansion

�r =
12X

a=1

'
a

(r)�
a

, (18)

where '
a

(r) (a = 1, · · · , 12) are the twelve discrete
monopole modes that span the ground state manifold
of the monopole condensate. With the monopole PSG,
we generate the symmetry allowed e↵ective action for the
monopole condensation transition,

L =
X

a

⇥
|(@

µ

� iã
µ

)�
a

|2 +m2|�
a

|2
⇤
+

F
µ⌫

2

2

+u0(
X

a

|�
a

|2)2 + u1

X

a 6=b

|�
a

|2|�
b

|2 + · · · , (19)

where we have restored the gauge field fluctuation by
coupling the �

a

fields to the fluctuating part of the dual
U(1) gauge field ã

µ

, 1
2Fµ⌫

2 is the Maxwell term with
F
µ⌫

⌘ @
µ

ã
⌫

� @
⌫

ã
µ

, “· · · ” contains further anisotropic
terms that are marginal for the critical properties, m is
the mass of the monopole and is set by the band gap
of the monopole band structure. The e↵ective action
in Eq. (19) is a standard multi-component Ginzburg-
Landau theory in 3+1D that is the upper critical di-
mension of the theory. One expects the phase transi-
tion of this theory to be governed by a Gaussian fixed
point or belong to a weakly first order transition driven
by fluctuations51–53,56,57. Both possibilities suggest that
the mean-field treatment of the phase transition should
be su�cient for a rather wide range of length scales. In
a mean-field description, the monopole field correlator at
the critical point (with the monopole mass m = 0) is

h�†
a

(k,!)�
b

(k,!)i ⇠ �
ab

k2 + !2
. (20)

According to Eq. (17), the spin susceptibility at the or-
dering wavevector Q is simply given by the bubble dia-
gram of monopole fields (see Fig. 3) and is thus logarith-
mically divergent at low temperatures with

�(Q) ⇠ ln
1

T
. (21)
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More experimental prediction for Pr2Ir2O7-delta

EF

Particle-hole excitations are  
centered at Gamma point

SEEING THE LIGHT: EXPERIMENTAL SIGNATURES OF . . . PHYSICAL REVIEW B 86, 075154 (2012)

FIG. 12. (Color online) Relationship between the dispersion of
the magnetic photon excitation ω(k) [see Eq. (67)], and the equal
time structure factor S

yy
spin(k,t = 0) [see Eq. (90)] in a quantum spin

ice. The photon dispersion ω(k) in the (h,h,l) plane is plotted above
the corresponding equal-time structure factor, demonstrating how the
photon disperses out of the (suppressed) pinch points at reciprocal
lattice vectors. Note that the intensity of the scattering S

yy
spin(k,t =

0) → 0 where ω(k) → 0 [see Eq. (105)]. Results were calculated
within the lattice field theory [see Eq. (40)] for W = 0, with energy
measured in units such that h̄ = 1.

We can use the spectral representation of Z(k) [see Eq. (80)]
to write

sin (k · hml) sin (k · hnl) = 1
4

4∑

λ=1

ωλ(k)2

KU
ηmλ(k)η∗

λn(k).

(103)

Since the only contributions to the RHS of Eq. (103) come from
the two dispersing modes λ = 1, 2, [see Eq. (78)], Eq. (101)

simplifies to

S
αβ

0 (k) = 1
4

ω(k)2

KU

2∑

λ=1

∑

mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂).

(104)

Expanding in the first Brillouin zone, for k ≈ 0, we find
∑

mn

ηmλ(k)η∗
λn(k)(êm · α̂)(ên · β̂) ≈ 1

3

for α = β = y,z and zero otherwise. It follows that

S
yy
spin(k ≈ 0,ω ≈ 0) = Szz

spin(k ≈ 0,ω ≈ 0)

∝ ω(k) δ[ω − ω(k)]. (105)

Therefore at low energies, in the first Brillouin zone,
inelastic neutron scattering experiments will resolve the
magnetic photon excitation as a ghostly, linearly dispersing
peak, with intensity vanishing as I ∝ ω(k), as noted in Ref. 70.
However, at higher energies and in other Brillouin zones, the
momentum dependence of ηmλ(k)η∗

λn(k) in Eq. (104) will
lead to a significant variation in the intensity of the signal
at fixed ω. This behavior is illustrated in Fig. 13, where we
have plotted the intensity of scattering I (k,ω) [see Eq. (91)]
for an experiment performed using unpolarised neutrons. The
corresponding quasielastic scattering, and the path within the
[h,h,l] plane, are shown in Fig. 14.

The phenomenology of this photon excitation stands in
stark contrast to conventional antiferromagnets, whose linearly
dispersing spin-wave excitations have the greatest intensity
approaching the zero-energy magnetic Bragg peak associated
with magnetic order. The difference between these two
problems stems from the fact that the photon is a quantized
excitation ofA, while neutron scattering measures correlations
of B. The lattice curl needed to relate one to the other
introduces additional factors of ζλ(k) in S

αβ
spin(k,ω) [see

Eq. (87)], which leads to the suppression of spectral weight at
low energies.

FIG. 13. (Color online) Ghostly magnetic “photon” excitation as it might appear in an inelastic neutron scattering experiment on a quantum
spin ice realising a quantum ice ground state, for a series of cuts along high symmetry directions in reciprocal space. The prediction of the lattice
field theory H′

U(1) [see Eq. (40)] for inelastic scattering by unpolarized neutrons, I (k,ω) [see Eq. (91)] has been convoluted with a Gaussian of
variance 0.3 c a−1

0 to represent the finite energy resolution of the instrument. The intensity of scattering vanishes as ω → 0 and is strongest at
high energies. Energy is measured in units such that h̄ = 1 and the photon dispersion calculated for W = 0.

075154-17

Fig from Benton, etc, PRB 2012

Emergent gauge photons are  
near the suppressed pinch points

The energy scales are different, maybe inelastic neutron scattering can work.  
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Summary
• I have studied the phase diagram near quantum spin ice quantum spin liquid. 

• Using field theoretic technique, I have obtained the structure of the magnetic 

states and the nature of the magnetic transition. 

• I use the theoretical results to explain the puzzling experiments in Pr2Ir2O7 and 

Yb2Ti2O7. It implies the disordered phase is a quantum spin ice U(1) quantum 

spin liquid.

Work in progress:  sign problem free model that demonstrates both 
proximate and unproximate magnetic transition out of QSI QSL.

Ref: Gang Chen, arXiv:1602.02230, longer talk can be found at KITP website last Sep.
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2. Rare-earth triangular lattice quantum spin liquid: YbMgGaO4

Yuesheng Li, Gang Chen*, …, Qingming Zhang*, PRL,115,167203 (2015)  
Yaodong Li, Xiaoqun Wang, Gang Chen*, PRB, 94,035107 (2016) 
Yao Shen, …., Gang Chen*, Jun Zhao*, arXiv 1607.02615 
Yaodong Li,  ….,   Gang Chen*, arXiv 1608.06445 
  
More works are coming up…..



Outline

•  A general introduction to quantum spin liquids

•  Spinon Fermi surface U(1) quantum spin liquid

•  Rare earth triangular lattice quantum spin liquid and  
  experiment prediction

•  Control spinons in a quantum spin ice U(1) quantum  
  spin liquid



Neel vs Landau (1930-40s)

Neel Landau

H = J
X

hiji
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e n e r g i e s  ex t rapo la te  r a t h e r  smooth ly  to 

E r a i l r o a d  ~ -0 .490  NJ + 0. 005 (13) 

which should be quite a c c u r a t e  and is u n m i s t a k e a b l y  be t t e r  than the sp in -wave  

resu l t .  

A l e s s  a c c u r a t e  ex t r apo la t ion  may  be made  f rom the l inea r  chain  via 

the r a i l r o a d  t r e s t l e  to the en t i r e  t r i ang le  la t t ice .  One finds 

E A ~- -(0. 54 .+. 0 . 0 1 ) N J .  (14) 

This  is n e a r l y  20% lower  than the sp in -wave  ene rgy  (11) of the Ndel s tate.  It 

s e e m s  a l m o s t  c e r t a i n  that it 
3 4 

r e p r e s e n t s  the ene rgy  of a , r  ,, ,, /, , .  ,, ,, ? 
I / l t / l / 

qua l i t a t ive ly  d i f fe ren t  s tate.  I 2 
j r  i r  iw iw / i  Sw l i t  iv Z i i  w 

I I S I O~ nS n' I '  I e d S ~ f • I Let us make some 

br ie f  c o m m e n t s  about the na ture  

of this  s tate .  A d i s c l a i m e r  is / 

in o rde r :  we r ea l l y  know ve ry  / / / ~kk ~k / 

l i t t le  about it. On the o ther  -- 

hand, there are a few very / / / ~k ~k / / / 
bas ic  th ings  which  can be said.  b) - -  / / / 

We note that w h e r e v e r  two 
bonds a r e  pa ra l l e l  ne ighbors ,  FIG. 3 

such as  (12) and (34) in Fig.  3a, Random a r r a n g e m e n t s  of pa i r  bonds on a 
t r i ang le  la t t ice .  (a) Shows a r e g u l a r  a t -  

e i t he r  (S 1" S 2) or  (S 3 • $4) p ro -  r a n g e m e n t  with 2N/4 a l t e r n a t i v e  d i s t inc t  
v ides  a m a t r i x  e l e m e n t  to the pa i r ings  ( " rhombus"  approx imat ion) .  
d e g e n e r a t e  conf igura t ion  (23)(41), (b) An a r b i t r a r y  a r r a n g e m e n t .  

while  only (S1S3) g ives  a m a t r i x  e l e m e n t  of opposi te  sign. Thus  we can a lways  
gain ene rgy  by l inea r ly  combin ing  d i f fe ren t  conf igura t ions  in which such bonds 
a r e  in t e rchanged .  Since t h e r e  a r e  in any r a n d o m  conf igura t ion  like Fig. 3b 

g r e a t  n u m b e r s  of s e t s  of pa ra l l e l  bonds,  one can a r r i v e  at any conI igu ra t ion  
f r o m  any other ;  and r e t u r n  to the o r ig ina l  one by ve ry  many paths.  What is 

not c l e a r  is that one wil l  r e t u r n  to the s ame  s ta te  in the s a m e  phase by t r a -  
ve r s ing  d i f f e ren t  paths. If one did,  the s ta te  would be e s s e n t i a l l y  a Bose  con-  
densed  s ta te  of pa i r -bonds  with a f o rm  of ODLRO. This would be c lo se ly  r e -  
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energies extrapolate rather smoothly to 

Erailroad ~ -0.490 NJ + 0. 005 (13) 

which should be quite accurate and is unmistakeably better than the spin-wave 

result. 

A less accurate extrapolation may be made from the linear chain via 

the railroad trestle to the entire triangle lattice. One finds 

E A ~- -(0. 54 .+. 0.01)NJ. (14) 

This is nearly 20% lower than the spin-wave energy (11) of the Ndel state. It 

seems almost certain that it 3 4 
represents the energy of a ,r ,, ,, /, ,. ,, ,, ? I / l t / l / 
qualitatively different state. I 2 
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hand, there are a few very / / / ~k ~k / / / 
basic things which can be said. b) -- / / / 

We note that wherever two 
bonds are parallel neighbors, FIG. 3 

such as (12) and (34) in Fig. 3a, Random arrangements of pair bonds on a 
triangle lattice. (a) Shows a regular at- 

either (S 1" S 2) or (S 3 • $4) pro- rangement with 2N/4 alternative distinct 
vides a matrix element to the pairings ("rhombus" approximation). 
degenerate configuration (23)(41), (b) An arbitrary arrangement. 

while only (S1S3) gives a matrix element of opposite sign. Thus we can always 
gain energy by linearly combining different configurations in which such bonds 
are interchanged. Since there are in any random configuration like Fig. 3b 

great numbers of sets of parallel bonds, one can arrive at any conIiguration 
from any other; and return to the original one by very many paths. What is 

not clear is that one will return to the same state in the same phase by tra- 
versing different paths. If one did, the state would be essentially a Bose con- 
densed state of pair-bonds with a form of ODLRO. This would be closely re- 
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bonds"  in m e t a l s .  As  o b s e r v e d  by Pau l ing ,  a pure  s ta te  of th i s  
type  would be insu la t ing ;  it would r e p r e s e n t  an a l t e r n a t i v e  s ta te  
to the  N6el  a n t t f e r r o m a g n e t i c  s ta te  for  S = 1/2.  An e s t i m a t e  of 
i ts  e n e r g y  is m a d e  in one case .  

Many y e a r s  ago Pau l i ng  gave a " r e s o n a t i n g  va l ence  bond" t h e o r y  of 

m e t a l s  (1) which  v i r t ua l l y  ignored  the  e l e c t r o n  gas  na tu re  of the  m e t a l l i c  s ta te  

and in s t ead  t r i e d  to r e l a t e  the  b inding  e n e r g i e s  s e m i q u a n t i t a t i v e l y  to known 

v a l e n c e  bond c o n c e p t s .  Only r e c e n t l y  ha s  the  conven t iona l  F e r m i  gas  t h e o r y  

begu n  to a d d r e s s  i t se l f  m o r e  a n a l y t i c a l l y  to the s a m e  p r o b l e m s .  But P a u l i n g ' s  

a t t e m p t  l e a v e s  behind  a ve ry  i n t e r e s t i n g  p r o b l e m  of p r inc ip l e :  i s  a s ta te  in 

which  va lence  bonds  move  a r o u n d  f r e e l y  b e t w e e n  p a i r s  of a t o m s  a m e t a l  in 

fact  ? Does  it conduc t  e l e c t r i c i t y  in the c h a r a c t e r i s t i c  m e t a l l i c  w a y ?  More  
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it is very illuminating to trace the 
motivation of great physicists. 
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High temperature superconductivity (1986)

The idea is to view Mott insulator (QSL) as the parent state of high-temperature superconductor.  
In the QSL, there are preformed Cooper pairs. Doping it allows to Cooper pairs to condense and  
lead to superconductivity. 
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Two milestones of 20th century  
condensed matter physics

Landau

Landau Fermi liquid theory Landau symmetry breaking theory

These two paradigms break down after the  
discovery of fractional quantum Hall effect in 1980s. 
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Quantum spin liquid

•  Quantum spin liquid is a new quantum phase of matter, and cannot be 
characterized by Landau symmetry breaking, instead by emergent gauge 
structure and deconfined fractionalized excitations. 

QSL is robust against any local perturbation. So it should exist in Nature ! 

•  QSL, its existence, is very clear, at least at the level of theory.  
 
  - Exactly solvable model with QSL ground state: e.g. Kitaev model and extension.  
  - Classification of QSLs: many distinct symmetry enriched QSLs (XG Wen etc).  
  - Numerical solutions: DMRG, QMC, exact diagonalization, etc.
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QSL: existing experiments

organics: kappa-(BEDT-TTF)2Cu2(CN)3, EtMe3Sb[Pd(dmit)2]2, κappa−H3(Cat-EDT-TTF)2   
herbertsmithite (ZnCu3(OH)6Cl2), Ba3NiSb2O9, Ba3CuSb2O9, LiZn2Mo3O8, ZnCu3(OH)6Cl2 
volborthite (Cu3V2O7(OH)2), BaCu3V2O3(OH)2, [NH4]2[C7H14N][V7O6F18], Na2IrO3, CsCu2Cl4,  
CsCu2Br4, NiGa2S4, He-3 layers on graphite, etc 

Na4Ir3O8, IrO2, Ba2YMoO6, Yb2Ti2O7, Pr2Zr2O7, Pr2Sn2O7, Tb2Ti2O7, Nd2Zr2O7, FeSc2S4, etc

• 2D triangular and Kagome lattice

• 3D pyrochlore, hyperkagome, FCC lattice, diamond lattice, etc

• Ultracold atom and molecules on optical lattices: temperature is too high now. 

Some candidate materials have already been ruled out. 
Not being a QSL does not necessarily mean the physics is not interesting ! 
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•  Spinon Fermi surface U(1) quantum spin liquid



Any guiding rule to find QSL? Not really. 

Frustrated lattice?           Honeycomb Kitaev model. 
Frustrated interaction?    We do not really know unless we identify the interaction. 
Low dimensionality?       3D lattice also has QSL.  
Odd electrons per cell?  Many QSLs have even electrons per cell. 

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2016).

Lieb Oshikawa Hastings Vishwanath

Gang Chen’s theory group 

Gang Chen’s theory group



Gang Chen’s theory group 

Gang Chen’s theory group
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is the first strong spin-orbit coupled QSL with odd number of electrons and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. I think it is spinon Fermi surface U(1) QSL. 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We understand the microscopic Hamiltonian and the physical mechanism.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4
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• observation of T2/3 heat capacity
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• Entropy: effective spin-1/2 local moments

YbMgGaO4

Our proposal for ground state: spinon Fermi surface U(1) QSL.



Microscopics
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Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �

T ⌧ �At              , the only active DOF is the ground state  
doublet that gives rise to an effective spin-1/2. 
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Can this kind of system support a QSL ground state?  Yes.

Filling constraints for spin-orbit coupled insulators in symmorphic and

non-symmorphic crystals

Haruki Watanabe,1 Hoi Chun Po,1 Ashvin Vishwanath,1, 2 and Michael P. Zaletel3

1
University of California, Berkeley, California 94720.
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux
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We determine conditions on the filling of electrons in a crystalline lattice to obtain the equivalent of
a band insulator - a gapped insulator with neither symmetry breaking nor fractionalized excitations.
We allow for strong interactions, which precludes a free particle description. Previous approaches
that extend the Lieb-Schultz-Mattis argument invoked spin conservation in an essential way, and
cannot be applied to the physically interesting case of spin-orbit coupled systems. Here we introduce
two approaches, the first an entanglement based scheme, while the second studies the system on
an appropriate flat ‘Bieberbach’ manifold to obtain the filling conditions for all 230 space groups.
These approaches only assume time reversal rather than spin rotation invariance. The results depend
crucially on whether the crystal symmetry is symmorphic. Our results clarify when one may infer
the existence of an exotic ground state based on the absence of order, and we point out applications
to experimentally realized materials. Extensions to new situations involving purely spin models are
also mentioned.

I. INTRODUCTION

Insulating states of matter arise, in clean systems, as
a result of a commensuration between particle density
and a crystalline lattice or a magnetic field. Mott in-
sulators are a particularly interesting class, with an odd
number of electrons in each unit cell. Their low energy
physics is captured by a spin model with an odd number
of S = 1/2 moments in the unit cell. A powerful result
due to Lieb, Schultz, and Mattis in 1D1, later extended
to higher dimensions by Hastings and Oshikawa2,3, holds
that if all symmetries remain unbroken, the ground state
must be ‘exotic’ - such as a Luttinger liquid in 1D, or
a quantum spin liquid in higher dimensions, with frac-
tional ‘spinon’ excitations. These exotic states cannot be
represented as simple product states, as a consequence
of long ranged quantum entanglement. This general re-
sult has experimental consequences - indeed no sign of
magnetic or spatial symmetry breaking is observed down
to temperatures that are orders of magnitude below the
intrinsic energy scales in certain materials4, including
the quasi 2DMott insulators -(BEDT-TTF)2Cu2(CN)3,
�0Pd(dmit)2 and Herbertsmithite ZnCu3(OH)6Cl2, as
well as the 3D Mott insulator Na4Ir3O8. Hence if we
can apply the Hastings-Oshikawa-LSM theorem (col-
lectively referred to as HOLSM) to these systems, a
strong case is made for an exotic ground state (assuming
that the e↵ects of disorder can be ignored). However,
HOLSM invoke spin rotation invariance in an essential
way, which is typically broken in real materials due to
spin-orbit coupling. These e↵ects are not small: Her-
bertsmithite has SO(3)-breaking Dzyaloshinskii-Moriya
terms thought to be on the order of 10% of the Heisen-
berg coupling5,6. In the anti-ferromagnetic hyperkagome
compound Na4Ir3O8, the physics is even dominated by
spin-orbit coupling e↵ects and charge fluctuation is sig-
nificant4. Physically, the only exact symmetry is time
reversal (TR) symmetry, and the crystal translations and

charge conservation which allow us to define the filling.
Can HOLSM be extended to this physically more realistic
situation?
In this work we show that it indeed can, although en-

tirely di↵erent theoretical approaches are needed. We
argue that if a spin-orbit coupled insulator at odd fill-
ing is time-reversal symmetric, its ground state must, in
a precise sense, be exotic. We introduce two theoreti-
cal approaches that, like the flux threading arguments
of HOLSM, are non-perturbative, but di↵ers from them
in that conservation of spin is not assumed. The first is
an entanglement based approach that allows us to prove
that symmetric, gapped and unfractionalized insulators -
the interacting analog of a band insulator, with a unique
ground state on both the plane and torus - are only al-
lowed at even integer fillings ⌫ = 2m. For brevity we re-
fer to such symmetric short-range entangled insulators as
‘sym-SRE’ insulators. A corollary of this result is that at
odd integer fillings, Mott insulating phases must either
break a symmetry or have a ground state degeneracy
on certain geometries due to other, more exotic, mech-
anisms. A special case of this result in 1D spin models
was previously discussed in Ref. 7. Here we will extend
it to higher dimensions and allow for charge fluctuations.
This constraint on filling arises even when translations

are the only spatial symmetries. What if additional sym-
metries are present, such as the 230 space groups of 3D
crystals? It turns out that additional constraints ap-
pear only for the non-symmorphic space groups, where
the minimal filling at which a sym-SRE insulator arises
is at least ⌫ = 4. We find lower bounds on the mini-
mal filling for all 157 non-symmorphic space groups, and
these bounds are shown to be the tightest possible for
a large majority of them. Earlier results on noninter-
acting band structures8–10 had pointed out that in non-
symmorphic crystals there are required band touchings
leading to larger minimal fillings. In Refs. 11 and 12
this was generalized to interacting systems using flux

ar
X

iv
:1

50
5.

04
19

3v
3 

 [c
on

d-
m

at
.st

r-
el

]  
26

 Ju
l 2

01
5

May 2015

“this kind of system” means effective spin-1/2, spin-orbit 
coupling, odd number of electron per cell. 


as you may know, there are many theoretical works trying to 
constrain the possible states from being exisitg .
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What is the physical origin of the QSL?

Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X

hiji

⇥
J
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Sz

i

Sz

j
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+

i
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where S±
i

= Sx

i

± iSy

i

, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
2

,a
3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order
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4f electron is very localized, and dipolar interactions weak. 

The spin-1/2 XXZ model supports conventional order. 

(Yamamoto, etc, PRL 2014)
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A. Luttinger-Tisza method

Here we treat the e↵ective spin Si as a classical vector
that satisfies the hard spin constraint |Si| = 1/2. Follow-
ing Luttinger and Tisza18, we first replace the hard spin
constraint with a global constraint such that

X

i

|Si|2 =
N

4
, (3)

where N is the total number of spins. The classical spin
Hamiltonian is then minimized under this global con-
straint. If the energy minimum turns out to satisfy the
local hard spin constraint as well, then this energy mini-
mum is the true classical ground state.

There are four parameters, Jzz, J±, J±±, Jz±, in the
generic spin model. We first consider the parameter
regime when the anisotropic interaction vanishes with
J±± = 0 and Jz± = 0. In this regime the spin model
reduces to the XXZ model. From the Curie-Weiss tem-
perature results on single crystal YbMgGaO4 samples3,
one finds that both Jzz and J± are antiferromagnetic and
J±/Jzz ⇡ 0.915 which is fixed to this value throughout
the paper. The ground state of this XXZ model is simply
the well-known 120� ordered state with the spins orient-
ing in the xy plane. The ordering wavevector of the 120�

state is at

kc =

✓
4⇡

3
, 0

◆
, (4)

or its symmetry equivalent wavevectors.
Now we discuss the e↵ect of the anisotropic spin in-

teractions. With a small |J±±|, the minimum of the
classical Hamiltonian under the global constraint slightly
deviates from the 120� state and occurs at incommen-
surate wavevectors. In strong spin-orbit coupled insu-
lators, however, the incommensurate ordering is generi-
cally not favored. Because of the intrinsic spin anisotropy
that originates from the strong spin-orbit coupling19, to
optimize the spin anisotropy, the ordered spin moments
cannot orient freely like the case for an incommensurate
state. As a result, we generically have the commensurate
spin orders in the strong spin-orbit coupled insulators.
Apart from the general understanding, we here provide
more specific reasons. Due to the low symmetry of the
spin Hamiltonian, the eigenstate that corresponds to the
minimum is generically unique, hence one cannot find two
orthogonal eigenvectors to construct an incommensurate
spiral state that satisfies the hard spin constraint on ev-
ery lattice site. Therefore, the incommensurate state can-
not be a true classical ground state, and we tentatively
regard the 120� state as the candidate classical ground
state in the regime with a small J±±.

With a large |J±±| and/or a large |Jz±|, the minimum
of the classical spin Hamiltonian occurs at

ks =

✓
0,

2⇡p
3

◆
, (5)

a T = 0 phase diagram

J±±/Jzz

J z
±/

J z
z

I
III
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FIG. 4. (Color online.) (a) The classical phase diagram in
the zero temperature limit. The solid phase boundaries de-
termined by the Luttinger-Tisza method, and the colored re-
gions are determined by classical Monte Carlo simulation. (b)
Ordering wave vectors kc and ks drawn in the first Brillouin
zone (the hexagon) for the three phases. (c) The 120� or-
der in regin I with spins pointing in the xy plane. (d) The
stripe order in regin II with spins pointing in the yz plane.
(e) The stripe order in region III with spins pointing along
the x direction.

or its symmetry equivalent wavevectors. Remarkably,
this minimum state satisfies the hard spin constraint and
is thus a true ground state. The spin configuration with
this ordering wavevector has a stripe order, i.e., the spins
order ferromagnetically along one lattice direction and
antiferromagnetically along the remaining two lattice di-
rections. To obtain the classical phase diagram in Fig. 4a,
we compare the energies of the 120� state and the stripe
ordered phases. In the region I of the phase diagram,
the 120� state is obtained. In the region II and III, we
find two stripe ordered phases with di↵erent spin orien-
tations. Without loss of generality, we fix the ordering
wavevector of the stripe phase to be ks = (0, 2⇡/

p
3).

Due to the locking of the spin orientation and the or-
dering wavevector, the spin configuration is fixed as well.
With this choice of the ordering wavevector, the spins
are pointing in the yz plane20 and x direction in region
II and region III, respectively (see Fig. 4).

Here we elucidate the structure of the classical ground
state phase diagram. The magnetic phases for a negative

8

ha†ia†iaiaji = 2ha†iai iha†iaji+ ha†ia†i ihaiaji, (25)

ha†ia†iaia†ji = 2ha†iai iha†ia†ji+ ha†ia†i ihaia†ji, (26)

ha†iaia†jaji = ha†iai iha†jaji+ ha†ia†jihaiaji
+ha†iajiha†jai i, (27)

ha†iaia†ja†ji = ha†iai iha†ja†ji+ 2ha†ia†jihaia†ji, (28)

ha†ia†ia†jaji = 2ha†ia†jiha†iaji+ ha†ia†i iha†jaji, (29)

ha†ia†ia†ja†ji = 2ha†ia†jiha†ia†ji+ ha†ia†i iha†ja†ji. (30)

The decoupling of the cubic and quintic terms leads
to linear terms in the Dyson-Maleev bosons that should
all cancel out by the stability requirement of the classical
ground state. Therefore, the decoupling of the cubic and
quintic terms does not introduce extra quadratic terms
into the spin-wave Hamiltonian.

After defining the Fourier transform of the Dyson-
Maleev boson operators, the quadratic spin-wave Hamil-
tonian can be organized as

Hsw =
X

k2BZ0

(A†
k, A�k)

✓
Fk G†

k
Gk F�k

◆✓
Ak

A†
�k

◆
, (31)

where Ak = (a1k, a2k) is the vector of the Dyson-Maleev
boson annihilation operator, the subindices “1” and “2”
label the two sublattices of the magnetic unit cell, and
BZ0 is the magnetic Brioullin zone of the stripe ordered
phase. Fk and Gk are 2 ⇥ 2 matrices and depend on
the mean field parameters that were introduced as bo-
son bilinears. The quadratic spin wave Hamiltonian is
diagonalized by the standard Bogoliubov transformation
Qk

33,

✓
Bk

B†
�k

◆
= Qk

✓
Ak

A†
�k

◆
, (32)

where Bk = (b1k, b2k) refers to the set of Bogoliubov
bosons, and Qk is a 4 ⇥ 4 matrix that defines the Bo-
goliubov transformation. From the ground state of the
quadratic spin wave Hamiltonian, we evaluate the mean-
field boson bilinears (ha†iai i, ha†iaji, ha†ia†i i, and ha†ia†ji).
As the spin wave Hamiltonian depends on these boson
bilinears, so we solve for them self-consistently by an it-
eration method.

The quantum correction to the magnetic order is eval-
uated by

�m = ha†iai i =
1

N

X

i

ha†iai i

=
1

2
{ 1

N

X

k

2X

i=1

[Q†
kQk]ii � 1}, (33)

where N is the nubmer of lattice sites and we have used
the simple fact that the state in region III is invariant
under the combined operation of time reversal and the
translation T2. If �m > S, the quantum fluctuation is
very strong and completely melts the magnetic order.

0
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FIG. 8. (Color online.) Quantum correction (�m) to the
magnetic orders that is calculated within the self-consistent
spin wave theory on a 80⇥ 80 lattice. The region near phase
boundary where �m exceeds the spin magnitude with �m �
1/2 is marked in beige.

As we show in Fig. 8, the quantum fluctation is indeed
quite strong and melts the magnetic order in the regions
near the phase boundary. This suggests the ground state
is likely to be disordered in these regions.

V. MAGNETIC EXCITATIONS WITH AND
WITHOUT EXTERNAL MAGNETIC FIELDS

In this section, we study the properties of the magnetic
excitations in di↵erent ordered phases as well as in the
presence of strong magnetic fields.

A. Linear spin wave theory for the three ordered
phases

Since the quantum fluctuation is found to be very weak
deep inside each ordered phases, it is legitimate to apply
the linear spin wave theory to study the magnetic exci-
tation in the strongly ordered regimes. In Fig. 9, we plot
the representative spin wave dispersions for the three or-
dered phases. Due to the anisotropic spin interaction,
the system does not have any continuous symmetry, so
generically the spin wave spectrum is fully gapped. This
is indeed the case for the two stripe ordered phase in
Fig. 9a,b. In Fig. 9c, the parameters are chosen that the
spin model reduces to a XXZ model. Due to the continu-
ous U(1) symmetry breaking, the spin wave spectrum has
one gapless mode. As one moves away from this special
point, we expect the spectrum should be gapped.

B. Polarized phases and strong magnetic fields

For the rare earth magnets, the 4f electrons are very
localized. As a result, the exchange interaction between
the rare earth local moments are usually very small. For

Anisotropic spin interaction  
could potentially stabilize QSL.
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formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is

(a) 

b 

c 
0 

(b) 

(c) 

t' t 

c 

0 
a* 
a 

FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 

Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  
kappa−H3(Cat-EDT-TTF)2 a new one!
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Low energy property of spinon Fermi surface U(1) QSL: 
spinon non-Fermi liquid

Classes of QSLs

• Topological QSLs

• full gap

• U(1) QSL

• gapless emergent “photon”

• Algebraic QSLs

• Relativistic CFT (power-laws)

• Spinon Fermi surface QSL
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Spinon Fermi surface coupled 
with dynamical U(1) gauge field: 
instanton event is suppressed. 

   Sung-Sik Lee, PRB 78, 085129(08).

   Hermele et al., PRB 70, 214437 (04)

ons parametrized by the direction of their velocities !or an-
gular momentum" and each fermion contributes a finite
scaling dimension to the total scaling dimension of the in-
stanton operator. In the second part !Sec. IV", the fluctua-
tions of the noncompact gauge field are considered together
with instantons. To control the gauge fluctuations, we con-
sider a large N limit. In this case, vertex corrections are neg-
ligible and we can obtain a definite scaling transformation
under which the low-energy theory remains invariant. The
key difference from the previous studies19,21 is that in the
present approach all points on the Fermi surface are treated
on the equal footing rather than focusing on a local patch in
the momentum space. This enables us to define the scaling
dimension of the instanton operator, taking into account the
whole Fermi surface. With the fluctuating noncompact gauge
field, fermion modes—which have different Fermi
velocities—are no longer decoupled, and we cannot simply
sum the scaling dimensions of different modes as we did in
the noninteracting case. However, in the low-energy limit,
only small-angle scatterings are important because momenta
of the gauge field are scaled down while the circumference
of the Fermi surface is unchanged under the scale transfor-
mation. This implies that two fermion fields on different
points on the Fermi surface are essentially decoupled at low
energies. Therefore, there are still infinitely many indepen-
dent 1+1D fermion modes, which contribute to the scaling
dimension of instanton at low energies. By using this prop-
erty, we can argue that the scaling dimension of an instanton
is infinite also at the interacting fixed point. Finally, in Sec.
V, we consider the case with a small N of the order of 1,
which is directly pertinent to the U!1" spin liquid state with
two flavors !spin up and down" of spinons11,12 proposed for
!− !BEDT−TTF"2Cu2!CN"3.9 With a small N, the Fermi sur-
face is strongly coupled with the fluctuating gauge field and
vertex corrections cannot be ignored. This makes it difficult
to find an explicit form of a scaling transformation for the
strongly interacting fixed point. However, one can see that
the essential properties, which make the scaling dimension of
instanton infinite, does not depend on the specific form of a
scaling transformation. Actually, the existence of an ex-
tended Fermi surface and the fact that only small-angle scat-
terings are important at low energies are enough to argue that
the scaling dimension of instanton remains to be infinite and
instantons are irrelevant at a strongly interacting fixed point
for any nonzero N.

II. ANGULAR REPRESENTATION OF FERMI SURFACE

We start by considering N flavors of fermions coupled
with a compact U!1" gauge field in 2+1D,

S =# d3x$" j
!!!0 − ia0 − #F"" j +

1
2m

" j
!!− i " − a"2" j

+
1

4g2 f#$f#$% . !1"

Here " j is the fermion field with N flavors, j=1,2 , .. ,N, and
a#= !a0 ,a" is the U!1" gauge field with #=0,1 ,2. #F is the
chemical potential, g is the gauge coupling, and f#$ is the

field strength tensor. Summation over the repeated flavor in-
dex j is implied. In the energy-momentum space, the action
becomes
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Here p and l denote energy-momentum vectors and %p= (P(2
2m

−#F. Integrating out high-energy fermion modes outside a
momentum shell with a width ( near the Fermi surface, we
obtain the low-energy effective action S=S0+S1, where
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Here, the Fermi velocity has been set to one. Fermion mo-
mentum is represented in the polar coordinate,30 where k
+(k(−kF is the deviation of momentum from the Fermi sur-
face in the radial direction and * is the angular coordinate as
is shown in Fig. 1!a". We use the approximation, ,dk
=,d(k((k(,d*-kF,dk,d*, and redefine the fermion field
as + j!) ,k ,*"+kF

1/2" j)) ,k1= !kF+k"cos * ,k2= !kF+k"sin **.
K.NkF is the diamagnetic term. a*= k̂* ·a is the spatial
gauge field parallel to the fermion momentum along k̂*

= !cos * , sin *". ql= k̂* ·q and qt= !k̂*,q"z are the momentum
components of the gauge field, which are parallel and per-
pendicular to k̂*, respectively. Note that a0!$ ,ql ,qt ;*" and
a*!$ ,ql ,qt ;*" in the second line of Eq. !3" implicitly depend
on * because ql and qt are measured in reference to k̂* as
shown in Fig. 1!b". ( is the momentum cutoff of the fermi-
ons near the Fermi surface and (̃ is the cutoff of the gauge
field. For (-kF, we can ignore the quadratic term k2 /2m,
which is irrelevant at low energies.
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tions of the noncompact gauge field are considered together
with instantons. To control the gauge fluctuations, we con-
sider a large N limit. In this case, vertex corrections are neg-
ligible and we can obtain a definite scaling transformation
under which the low-energy theory remains invariant. The
key difference from the previous studies19,21 is that in the
present approach all points on the Fermi surface are treated
on the equal footing rather than focusing on a local patch in
the momentum space. This enables us to define the scaling
dimension of the instanton operator, taking into account the
whole Fermi surface. With the fluctuating noncompact gauge
field, fermion modes—which have different Fermi
velocities—are no longer decoupled, and we cannot simply
sum the scaling dimensions of different modes as we did in
the noninteracting case. However, in the low-energy limit,
only small-angle scatterings are important because momenta
of the gauge field are scaled down while the circumference
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mation. This implies that two fermion fields on different
points on the Fermi surface are essentially decoupled at low
energies. Therefore, there are still infinitely many indepen-
dent 1+1D fermion modes, which contribute to the scaling
dimension of instanton at low energies. By using this prop-
erty, we can argue that the scaling dimension of an instanton
is infinite also at the interacting fixed point. Finally, in Sec.
V, we consider the case with a small N of the order of 1,
which is directly pertinent to the U!1" spin liquid state with
two flavors !spin up and down" of spinons11,12 proposed for
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face is strongly coupled with the fluctuating gauge field and
vertex corrections cannot be ignored. This makes it difficult
to find an explicit form of a scaling transformation for the
strongly interacting fixed point. However, one can see that
the essential properties, which make the scaling dimension of
instanton infinite, does not depend on the specific form of a
scaling transformation. Actually, the existence of an ex-
tended Fermi surface and the fact that only small-angle scat-
terings are important at low energies are enough to argue that
the scaling dimension of instanton remains to be infinite and
instantons are irrelevant at a strongly interacting fixed point
for any nonzero N.
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Here, the Fermi velocity has been set to one. Fermion mo-
mentum is represented in the polar coordinate,30 where k
+(k(−kF is the deviation of momentum from the Fermi sur-
face in the radial direction and * is the angular coordinate as
is shown in Fig. 1!a". We use the approximation, ,dk
=,d(k((k(,d*-kF,dk,d*, and redefine the fermion field
as + j!) ,k ,*"+kF

1/2" j)) ,k1= !kF+k"cos * ,k2= !kF+k"sin **.
K.NkF is the diamagnetic term. a*= k̂* ·a is the spatial
gauge field parallel to the fermion momentum along k̂*

= !cos * , sin *". ql= k̂* ·q and qt= !k̂*,q"z are the momentum
components of the gauge field, which are parallel and per-
pendicular to k̂*, respectively. Note that a0!$ ,ql ,qt ;*" and
a*!$ ,ql ,qt ;*" in the second line of Eq. !3" implicitly depend
on * because ql and qt are measured in reference to k̂* as
shown in Fig. 1!b". ( is the momentum cutoff of the fermi-
ons near the Fermi surface and (̃ is the cutoff of the gauge
field. For (-kF, we can ignore the quadratic term k2 /2m,
which is irrelevant at low energies.

SUNG-SIK LEE PHYSICAL REVIEW B 78, 085129 !2008"

085129-2

gauge photon is overly Landau-damped.
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Spin wave vs (fractionalized) spinon continuum

range [19]. Furthermore, and most importantly, our ex-
tracted exchange parameters correctly reproduce relative
intensities as well as the shape of the spin wave dispersion
for each of the five directions. Agreement is excellent for
H ¼ 2 T, showing that these parameters produce a robust
description of the field-induced ferromagnetic state. We
note, however, that there is a significant quantitative dis-
agreement with the exchange parameters quoted in
Refs. [9,10] (see Appendix H).

Implications.—The excellent agreement with spin wave
theory for fieldsH " 2 T clearly indicates that the high field

state is accurately modeled semiclassically, and is smoothly
connected to the fully polarized limit. Theoretically, the
ground state in this regime breaks no symmetries, and sup-
ports a ferromagnetic polarization along the axis of the
applied field (for the h110i field used in the experiment).
However, the semiclassical analysis clearly and dramatically
fails at small fields, where the measurements show no signs
of spontaneous long-range order [18]. The classical zero-
field ground state for our Hamiltonian parameters has a large
spontaneous polarization along the h100i axis. Extension of
this analysis to a T > 0mean-field theory wrongly predicts a

FIG. 1. The measured SðQ; !Þ at T ¼ 30 mK, sliced along various directions in the HHL plane, for both H ¼ 5 T (first row) and
H ¼ 2 T (third row). The second and fourth rows show the calculated spectrum for these two field strengths, based on an anisotropic
exchange model with five free parameters (see text) that were extracted by fitting to the 5 T data set. For a realistic comparison to the
data, the calculated SðQ; !Þ is convoluted with a Gaussian of full-width 0.09 meV. Both the 2 T and 5 T data sets, composed of spin
wave dispersions along five different directions, are described extremely well by the same parameters. (Note that r.l.u. stands for
reciprocal lattice units.)

FIG. 2. Representations of the HHL scattering plane, showing the FCC Brillouin-zone boundaries and the corresponding zone centers
(labeled in terms of the conventional simple-cubic unit cell). Blue lines indicate the directions of the five different cuts shown in Fig. 1.

QUANTUM EXCITATIONS IN QUANTUM SPIN ICE PHYS. REV. X 1, 021002 (2011)

021002-3

spinon continuum in Cs2CuCl4 
Masanori, etc NatPhys 2009 
but these are 1d spinons ! 

Neutron scattering

• In a quantum spin liquid, the elementary 
spin excitations are fractional, S=1/2 spinons

• Most of the information is in the 
continuum!

neutron

spinon S=1/2

K,Ω 

K-k,Ω -ω

k,ω
magnon S=1

k-k’,ω-ω’

k’,ω’

broad peak with 
ω=ε(k’)+ε(k-k’)

spin wave in Yb2Ti2O7 
L Savary, et al, PRX 2011
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Huge spinon continuum at all energies
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Figure 3: Intensity contour plot of spin excitation spectrum along the high-symmetry momentum directions. a, Intensity contour plot

along the (1/2-K/2, K, 0) and (1, K, 0) directions as illustrated in b. Vertical dashed lines represent the high-symmetry points, and dotted lines

indicate the upper bounds of spin excitation energy. b, Sketch of reciprocal space. Dashed lines indicate the Brillouin zone boundaries.
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Figure S3: Calculation of 0-flux Hamiltonian. a, Spinon dispersion !k of the 0-flux Hamiltonian. The grey plane marks the Fermi level at
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always possible to excite a spinon particle-hole pair with the momenta near the zone boundary, the spectral

intensity is not considerably a↵ected at the zone boundary as E increases. Therefore, the broad continuum

continues to cover a large portion of the Brillouin zone at a finite E.

The stability of the spinon Fermi surface U(1) quantum spin liquid against the spinon confinement has

been addressed extensively in literatures4,5. It was proposed and understood that the large densities of

gapless fermionic spinons on the spinon Fermi surface help suppress the instanton events of the compact

U(1) gauge field for a two-dimensional U(1) quantum spin liquid4,5. The proliferation of the instanton

events is the cause of the confinement for a U(1) quantum spin liquid without gapless spinons6. Since

the instanton event is suppressed here, the compactness of the U(1) gauge field is no longer an issue,

and the low-energy property of our U(1) quantum spin liquid is then described by gapless spinons on

the Fermi surface coupled with a noncompact U(1) gauge field5,7,8. Due to the coupling to the gapless

spinons, the U(1) gauge photon is over-damped and becomes very soft. The soft gauge photon further

scatters the fermionic spinons strongly, gives a self-energy correction to the spinon Green’s function, and

kills the spinon quasi-particle weight5,7–9. The resulting spinon non-Fermi liquid state has an enhanced


