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FIG. 1: Phase diagram based on the slave rotor approximation and strong coupling limit, as a function of Hubbard repulsion
U and spin-orbit coupling � (relative to hopping t). The four main phases occuring for moderately strong electron-electron
repulsion are a Metallic phase, Topological Band Insulator (TBI), Topological Mott Insulator phase (TMI), and Gapless Mott
Insulator (GMI). The dashed line denotes an additional zero-gap semiconductor state due to an “accidental” gap closing. The
dotted line schematically separates the large-U region, where magnetic ordering is expected. As discussed in the main text,
long-range Coulomb interactions are expected to induce an excitonic region in the vicinity of the Metal-TBI boundary shown
here.

lattice, which is viewed as the FCC lattice with a tetrahedral basis, Fig. 2(a). Each Ir ion is surrounded by an oxygen
octahedron, Fig. 2(b). In general, these octahedra are somewhat distorted, dependent upon the di↵erence of the
oxygen displacement parameter x from the ideal value of 5/16. We neglect this small distortion (of 5 and 8 percent
for A=Pr,Eu) here, in which case the Ir electrons experience approximately cubic O

h

symmetry, and the crystal field
splits the five d-orbital states into (upper) e

g

doublet and (lower) t2g

triplet. The value of the cubic crystal field
splitting is assumed large compared to the Hund exchange energy, thus the latter is neglected. The on-site spin-orbit
interaction thus is taken to act within the t2g

manifold. In local axes bound to the oxygen octahedron the t2g

orbitals
are d

yz

, d
zx

and d
xy

. In Supplementary Information we present the rotation matrices that turn the cubic axes into
the local octahedral ones at each Ir site. The axes themselves are not shown in Fig. 2 for clarity reasons.
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FIG. 2: a)Pyrochlore lattice of corner-sharing tetrahedra. It can be viewed as the FCC lattice with tetrahedral bases added at
each site. One of such bases, with Ir ions numbered from 0 to 3, is shown. b) Oxygen mediated hopping between Ir sites. Sites
0 (on the left) and 3 (on the right) of the tetrahedral basis are shown (large gray spheres), together with their oxygen octahedral
environment (small red spheres). On the “shared” oxygen site we show its p

y

orbital (green) with respect to the coordinate
system of site 0, and p

x

orbital (blue) with respect to the coordinate system of site 3. Belonging to di↵erent coordinate systems,
these orbitals are not orthogonal, the angle between them being ⇡ 84�. Electrons can hop from local d

yz

orbital on site 0 onto
p

y

, and from the d
xy

orbital on site 3 onto p
x

. Since the two p orbitals are not orthogonal, an e↵ective Ir-Ir hopping is induced.

Now consider the SOI, denoting its strength by �. It is well-known that, projected within the t2g

manifold, the

Early motivation: correlation physics in spin-orbit (topological) matter

D Pesin, L Balents, NatPhys 2010, Topological Mott insulator  
                                          (or A 3D U(1) quantum spin liquid)
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FIG. 3: Electronic band structure of Ir 5d electrons on the pyrochlore lattice at large spin-orbit coupling, �/t!1. Only the
relevant four doubly degenerate bands are shown. A band gap between the filled lower two bands and empty upper two bands
is clearly seen.

orbital angular momentum operator is equal to minus the usual spin-one angular momentum operator L [16]. Thus we
may e↵ectively consider the pseudo-total angular momentum J = L+S, which commutes with the SOI. The multiplet
structure for the usual ` = 1 states is inverted, and the t2g

manifold splits into a j = 1/2 doublet with energy �, and
a j = 3/2 quadruplet with energy ��/2. We will work in the local diagonal basis of the j eigenstates, and introduce a
single label ↵ such that ↵ = 1, 2 and ↵ = 3 . . . 6 denote the doublet and quadruplet, respectively, with orbital energy
"

↵

= � for the doublet and "
↵

= ��/2 for the quadruplet. The specific form of the wave functions of these states are
given in the Supplementary Information.

We assume that hopping between nearest neighbor Ir ions is accomplished via the oxygen atoms nearest to a given
pair, Fig. 2(b). In reality, this is not necessarily the case [17]. However, our assumption minimizes the number of
free parameters, and is resilient to perturbations that are not too strong. The model with oxygen-mediated hopping
is preferable as it contains a single parameter determining the hopping strength: the hopping integral between Ir t2g

states and O p-orbitals (V
pd⇡

in the terminology of Ref. [18]). Integrating out the oxygens, and taking the simplest
on-site Coulomb interaction involving the total charge only, we arrive at the Hubbard Hamiltonian,

H =
X

Ri↵

("
↵

� µ)d†
Ri↵

d
Ri↵

+ t
X

hRi,R

0
i
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d†
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d
Ri↵

� n
d

!2

, (1)

where R and i label the sites of the Bravais lattice and the tetrahedral basis, and n
d

= 5 is the number of 5d-electrons
on each Ir4+ ion. The strength of the hopping is parameterized by a single energy scale t / V 2

pd⇡

/�, where � is the
energy di↵erence between the Ir d and O p states. The procedure to obtain the dimensionless hopping matrices T ii

0

↵↵

0 ,
arising from the Ir-O-Ir hopping path, taking into account the rotation between the local cubic axes of each Ir ion, is
given in the Supplementary Information.

Band structure: The Hamiltonian (1) contains two dimensionless parameters: �/t and U/t, which define the phase
diagram in Fig. 1. It is instructive to consider first various simple limits. For U = 0, we have a free electron model,
which is of course exactly soluble. Due to inversion symmetry, one obtains in general 12 doubly degenerate bands.
For small �/t, these overlap at the Fermi energy and one obtains a metal. For large �/t, the upper 4 bands originating
from the j = 1/2 doublet become well-separated from the lower 8 bands. Because there are four holes per unit cell,
the upper 4 bands are half-filled in total. On inspection, we see (Fig. 3) that they exhibit a band gap, indicating the
formation of a band insulator at large �.

As shown by Fu and Kane [19], one can determine the band topology of an insulator with inversion symmetry either
from the parity of the Hamiltonian eigenstates at time-reversal invariant momenta, or from the number of Dirac points
on the surface of the insulator. Applying the first criterion (see Supplementary Information), we find that the large
�/t state is a pure “strong” TBI of the spinons (the weak Z2 invariants vanish, consistent with cubic symmetry). We
also calculated the surface state spectrum (Fig. 4), which shows the required odd number of intersections with the

Xiangang Wan, Turner, Vishwanath, Savrasov,         PhysRevB 2011,  
Magnetic Weyl semimetal from the Ir correlation driven all-in all-out order.

WAN, TURNER, VISHWANATH, AND SAVRASOV PHYSICAL REVIEW B 83, 205101 (2011)

it was shown that the insulating ground states evolve from a
high-temperature metallic phase via a magnetic transition.9,10

The magnetism was shown to arise from the Ir sites, since it
also occurs in A = Y, Lu, where the A sites are nonmagnetic.
While its precise nature remains unknown, ferromagnetic
ordering is considered unlikely, since magnetic hysteresis is
not observed.

We show that electronic structure calculations can naturally
account for this evolution and point to a novel ground state.
First, we find that magnetic moments order on the Ir sites
in a noncollinear pattern with moment on a tetrahedron
pointing all in or all out from the center. This structure retains
inversion symmetry, a fact that greatly aids the electronic
structure analysis. While the magnetic pattern remains fixed,
the electronic properties evolve with correlation strength. For
weak correlations, or in the absence of magnetic order, a
metal is obtained, in contrast to the interesting topological
insulator scenario of Ref. 8. With strong correlations we find
a Mott insulator with all-in/all-out magnetic order. However,
for the case of intermediate correlations, relevant to Y2Ir2O7,
the electronic ground state is found to be a Weyl semimetal,
with linearly dispersing Dirac nodes at the chemical potential
and other properties described above.

We also mention the possibility of an exotic insulating
phase emerging when the Weyl points annihilate in pairs
as the correlations are reduced; we call it the θ = π axion
insulator. Although our LSDA + U + SO calculations find
that a metallic phase intervenes before this possibility is
realized, we note that local-density approximation (LDA)
systematically underestimates gaps, so this scenario could well
occur in reality. Finally, we mention that modest magnetic
fields could induce a reorientation of the magnetic moments,
leading to a metallic phase. Previous studies include Ref. 18, an
ab initio study which considered ferromagnetism. In Ref. 19,
the tight-binding model of Ref. 8 was extended to include
tetragonal crystal fields, but in the absence of magnetism. The
topological Dirac metal and axion insulator discussed here do
not appear in those works, largely due to the difference of
magnetic order from our study.

We begin by giving a brief overview of the theoretical
ideas that will be invoked in this work, before turning to our
LSDA + U calculations of magnetic and electronic structure
of the pyrochlore iridates. We then discuss the special surface
states that arise in the Weyl semimetal phase and close with
a comparison to existing experiments and conclusions. Our
results are summarized in the phase diagram Fig. 1.

I. WEYL SEMIMETALS AND INVERSION-SYMMETRIC
INSULATORS

Weyl points are points where the valence band and
conduction band touch. The excitations near each Weyl point
k0 are described by an effective Hamiltonian:

HD = E01 + v0 · q1 +
3∑

i=1

vi · qσi . (1)

Energy is measured from the chemical potential, q = k − k0
and (1, σi) are the identity matrix and three Pauli matrices,
respectively. This Hamiltonian is obtained by expanding the

FIG. 1. (Color online) Sketch of the predicted phase diagram
for pyrochlore iridiates. The horizontal axis corresponds to the
increasing interaction among Ir 5d electrons while the vertical axis
corresponds to external magnetic field, which can trigger a transition
out of the noncollinear “all-in/all-out” ground state, which has several
electronic phases.

full Hamiltonian to linear order. No assumptions are needed
beyond the requirement that the two eigenvalues become
degenerate at k0. The velocity vectors vi are generically
nonvanishing and linearly independent. The energy dispersion

is conelike, $E = v0 · q ±
√∑3

i=1(vi · q)2. One can assign a
chirality (or chiral charge) c = ±1 to the fermions defined as
c = sgn(v1 · v2 × v3). Note that, since the 2 × 2 Pauli matrices
appear, our Weyl particles are two-component fermions. In
contrast to regular four component Dirac fermions, it is not
possible to introduce a mass gap. The only way for these modes
to disappear is if they meet with another two-component Weyl
fermion in the Brillouin zone, but with opposite chiral charge.
Thus, they are topological objects. By inversion symmetry, the
band touchings come in pairs, at k0 and −k0, and these have
opposite chiralities (since the velocity vectors are reversed).

This semimetallic behavior would not occur (generically)
in a system without magnetic order. In materials such as
bismuth, with both time reversal and inversion symmetry,
Dirac fermions always contain both left- and right-handed
components and are thus typically gapped.20

When the compound has stoichiometric composition, and
all the Weyl points are related by symmetry, the Fermi energy
can generically line up with the energy of the touching points.
Under these circumstances, the density of states is equal to
zero and the behavior of the Weyl fermions controls the
low-temperature physics of the solid. For example, the ac
conductivity should have a particular frequency dependence,
and novel types of surface states should occur, as discussed
below. Because of the symmetry relating the Weyl points,
their energies E0 must coincide. Then, the Fermi energy is
fixed at the touching points because of the Kohn-Luttinger
theorem: At stoichiometry, there are an integer number of
electrons per unit cell. Hence, the Kohn-Luttinger theorem
implies that the volume of particlelike minus holelike Fermi
surfaces must be a multiple of the volume of the Brillouin

205101-2
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FIG. 5. (Color online) Illustration of surface states arising from bulk Weyl points. (a) The bulk states as a function of (kx,ky) (and arbitrary
kz) fill the inside of a cone. A cylinder whose base defines a one-dimensional circular Brillouin zone is also drawn. (b) The cylinder unrolled
onto a plane gives the spectrum of the two-dimensional subsystem H (λ,kz) with a boundary. On top of the bulk spectrum, a chiral state appears
due to the nonzero Chern number. (c) Meaning of the surface states back in the three-dimensional system. The chiral state appears as a surface
connecting the original Dirac cone to a second one, and the intersection between this plane and the Fermi level gives a Fermi arc connecting
the Weyl points.

semimetal phase is gapless in the bulk, θ is ill defined. As
U is lowered further, the Weyl points shift, with nodes of
opposite chirality approaching one another. If at lower values
of U the Weyl points meet and annihilate again, the resulting
phase will have θ = π . The parities will be the same as in the
Weyl semimetal, since the Weyl points would have annihilated
away from TRIMs. From Table II we can see that indeed
this corresponds to θ = π , since there are 14 negative-parity
filled states, while the Mott insulator corresponds to θ = 0,
having 12 negative-parity filled states. Indeed, the presence
of the intervening Weyl phase can be deduced from the
requirement that θ has to change between these two quantized
values. Similarly, when time-reversal symmetry is present but
inversion absent, a gapless phase must intervene when a change
in topology occurs.33

Unfortunately, within our LSDA + U + SO calculation, a
metallic phase intervenes on lowering U ! 1.0 eV, before the
Weyl points annihilate to give the axion insulator. We point
out this possibility nevertheless, since LDA systematically
underestimates the stability of such gapped phases. Moreover,
it provides an interesting example of a pair of insulators, a Mott
insulator and a smaller U “Slater” insulator, with the same
magnetic order, but which are nevertheless different phases,
which cannot be smoothly connected to one another. Inversion
symmetry is critical in preserving this distinction.

Topological Weyl semimetal. In the semimetal phase, there
are 24 Weyl points. Near each L point there are 3 Weyl
points related by the threefold rotation, which have the same
chiral charge, as well as the inverse images with opposite
chirality. Thus, there are 24 Weyl points, where the valence
and conduction band line up, in the whole Brillouin zone.
Since all are at the same energy by symmetry, the chemical
potential must pass through them. The Fermi velocities at the
Weyl point are found to be typically an order of magnitude
smaller than in graphene. We briefly note that this Weyl
semimetal is a gapless state with power-law forms for various
properties, which will be described in more detail elsewhere.
For example, the density of states N (E) ∝ E2. The small
density of states makes this an insulator at zero temperature
and frequency (as seen experimentally for Y2Ir2O7). The

ac conductivity for a single node with isotropic velocity
v in the free particle limit of the clean system is σ (%) =
e2

12h
|%|
v

. Furthermore, novel magnetoconductance phenomena
are expected in Weyl semimetals, as a consequence of the
Adler-Bell-Jackiw anomaly of Weyl fermions,34 which will
be discussed in future work. Additionally, a Weyl metal must
automatically have surface states, as explained in the next
section.

IV. SURFACE STATES

The Weyl points behave like “magnetic” monopoles in
momentum space whose charge is given by the chirality; they
are actually a source of “Berry flux” rather than magnetic flux.
The Berry connection, a vector potential in momentum space,
is defined by A(k) =

∑N
n=1 i⟨unk|∇k|unk⟩, where N is the

number of occupied bands. As usual, the Berry flux is defined
as F = ∇k × A. To show that there are arcs connecting pairs
of Weyl points, we argue that there is an arc on the surface
Brillouin zone emanating from the projection (k0x,k0y) of each
Weyl point.

The argument is based on the band topology around the
Weyl points. Consider a curve in the surface Brillouin zone
encircling the projection of the bulk Weyl point, which is tra-
versed counterclockwise as we vary the parameter λ : 0 → 2π ;
kλ = [kx(λ),ky(λ)] [see Fig. 5(a)]. We show that the energy ϵλ

of a surface state at momentum kλ crosses E = 0 at some value
of λ. Consider H (λ,kz) = H (kλ,kz), which can be interpreted
as the gapped Hamiltonian of a two-dimensional system (with
λ and kz as the two momenta). The two periodic parameters
λ, kz define the surface of a torus in momentum space. The
Chern number of this two-dimensional band structure is given
by the Berry curvature integration: 1

2π

∫
Fdkzdλ, which, by

the Stokes theorem, simply corresponds to the net monopole
density enclosed within the torus. This is obtained by summing
the chiralities of the enclosed Weyl nodes. Consider the case
when the net chirality is unity, corresponding to a single
enclosed Dirac node. Then, the two-dimensional subsystem
is a quantum Hall insulator with unit Chern number. When the
system is given a boundary at z = 0, we expect a chiral edge

205101-6
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Peculiar one: Pr2Ir2O7

frozen at Tf. The observed T-independent behavior sug-
gests that only a partial fraction of spins freezes, while the
majority remain liquid.

The h111i Ising-like anisotropy of the 4f moments is
confirmed by the field dependence of the magnetization
M!B" along #100$, #110$, and #111$ at 70 mK (Fig. 3). The
4f ground-state-doublet contribution (thick curves) is esti-
mated by subtracting the sum of the Van Vleck and Pauli
paramagnetic contributions, which is estimated from !0B
(Fig. 3). At 13 T, M tends to saturate and approaches a
Brillouin function (thin curves) for noninteracting, local
h111i Ising spins with gJJz % 2:69, consistent with the
CEF analysis [11]. This slow saturation at the field scale,
B& ' kBjT&j=!gJ"BJz" ( 11 T, confirms an AF coupling
with an energy scale of jT&j % 20 K. At low fields, M
becomes isotropic (Fig. 3), as expected for h111i Ising
spins on a pyrochlore lattice [17]. Below 0.3 T, M changes
displaying a nearly constant derivative dM=dB (inset of
Fig. 3). This departure from a Brillouin function also
suggests liquidlike short-range correlations.

When such h111i Ising spins on a pyrochlore lattice
interact only through a nearest-neighbor AF coupling J,
mean-field theory predicts an ‘‘all-in and all-out’’ type of
LRO to appear at T ( J [18]. This indicates that in
Pr2Ir2O7, effects beyond the mean-field theory of nearest-
neighbor AF interaction, such as quantum fluctuations and
longer-range couplings, are crucial to suppress the LRO
down to T ) jT&j. Observed indications of such effects are
(1) the Kondo coupling between the 4f moments and the
5d-conduction electrons, and (2) the RKKY long-range
interactions between the 4f moments.

Although rare, the Kondo effect in Pr-based compounds
[19,20] and low carrier systems [14] has been reported. The
first evidence of Kondo effect in Pr2Ir2O7 is the lnT de-
pendence of the resistivity [Fig. 4(a)]. For such a depen-
dence in a stoichiometric high-quality metal, two mecha-
nisms can be considered: (i) CEF effect and (ii) Kondo

effect. Since the gap to the first excited level is (160 K,
the lnT dependence below 50 K cannot be due to a CEF
effect. Thus, the observed lnT dependence is likely due to
the Kondo effect, and in fact, over a decade in T between
3 K and 35 K, #!T" can be fit to the Hamann’s expression
(solid line) with TK % 25 K [21]. Interestingly, TK is close
to jT&j, and suggests that it is not the single-ion screening,
but the intersite screening that leads to the Kondo effect, as
discussed for low carrier-density and AF correlated Kondo
lattices [14,22]. In addition, the field dependence of the
resistivity is consistent with the Kondo effect [13]; the
negative magnetoresistance is proportional to M2 for all
axes under fields up to 2 T<B& [inset of Fig. 4(a)].

Second, the Kondo effect is also seen in the low T
decrease of the effective Curie constant C!T" ' T!!T";
see Fig. 4(b). The rapid decrease in C!T" below 10 K
suggests that the moment size diminishes owing to
Kondo screening. Correspondingly, !*1!T" follows the
CW law over a decade in T from 1.5 to 16 K [solid line
in the inset of Fig. 4(b)], yielding a slightly smaller effec-
tive moment 2:69"B, and a reduced Weiss temperature,
j$Wj % 1:7 K, in comparison with the high T values
(3:06"B, 20 K). These results and the crossover to lnT de-
pendence below j$Wj indicate partial screening of 4f mo-
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FIG. 3 (color online). Field dependence of the magnetization
M (thick curves) and the Brillouin function of h111i Ising spins
(thin curves) for fields along #100$, #110$, and #111$. Inset: low
field M and its derivative dM=dB along #111$.
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Metallic Spin-Liquid Behavior of the Geometrically Frustrated Kondo Lattice Pr2Ir2O7
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Strongly frustrated magnetism of the metallic pyrochlore oxide Pr2Ir2O7 has been revealed by single
crystal study. While Pr 4f moments have an antiferromagnetic RKKY interaction energy scale of jT!j "
20 K mediated by Ir 5d-conduction electrons, no magnetic long-range order is found except for partial
spin freezing at 120 mK. Instead, the Kondo effect, including a lnT dependence in the resistivity, emerges
and leads to a partial screening of the moments below jT!j. Our results indicate that the underscreened
moments show spin-liquid behavior below a renormalized correlation scale of 1.7 K.

DOI: 10.1103/PhysRevLett.96.087204 PACS numbers: 75.20.Hr, 75.40.Cx, 75.50.Ee

Geometrically frustrated magnets have attracted great
interest because of the possible emergence of novel mag-
netic phases at low temperatures resulting from the sup-
pression of conventional order. Among them, the three-
dimensional pyrochlore lattice of corner sharing tetrahedra
has been studied extensively [1]. It is predicted theoreti-
cally that Heisenberg spins on a pyrochlore lattice with
nearest-neighbor antiferromagnetic (AF) coupling form a
spin-liquid state at T " 0 K [2]. However, only a few
compounds are believed to display a spin-liquid phase,
such as the insulator Tb2Ti2O7 [3].

In metallic systems, the frustration inherent to the pyro-
chlore lattice might also lead to new types of electronic
behavior. One remarkable possibility is the predominance
of the Kondo effect, and concomitant heavy-fermion be-
havior, in nearly localized d- and f-electron systems where
the Kondo temperature is generally too small to overcome
magnetic order without the frustration. Prominent ex-
amples are the heavy-fermion behavior in LiV2O4 and
Y#Sc$Mn2 with itinerant d-electron spins on a pyrochlore
lattice [4,5].

Connecting the two exotic states of frustrated magnets,
insulating spin-liquid and itinerant heavy fermions, there is
another exciting yet unprecedented possibility of metallic
spin liquid [6,7]. Ground states in f-electron based Kondo
lattices are generally classified into Fermi liquid and mag-
netic regimes as the result of the competition between the
Kondo effect and RKKY interactions. If the lattice has
geometrical frustration and the transition temperature is
depressed, the underscreened moments may stay disor-
dered even in the magnetic regime, and form a metallic
spin liquid on the geometrically frustrated Kondo lattice.
(See the inset of Fig. 1.)

There has been a number of reports on metallic systems
among the A2B2O7 pyrochlore oxides possessing localized
moments [1]. Yet, none is known to remain magnetically

disordered down to the lowest temperatures except for the
newly developed pyrochlore iridates [8]. In particular, the
AF correlated Pr 4f moments of Pr2Ir2O7 remain para-
magnetic down to at least 0.3 K in the metallic state due to
the Ir 5d-conduction bands [8]. This places Pr2Ir2O7 as a
candidate for a geometrically frustrated Kondo lattice.

Here we report on strongly frustrated magnetism in
single crystals of Pr2Ir2O7. We find that the h111i Ising-
like Pr3% moments have an AF RKKY interaction energy
scale jT!j " 20 K. However, the dc magnetization down to
70 mK does not exhibit any trace of long-range order
(LRO), except for an indication of partial freezing at
120 mK. Instead, the Kondo effect emerges below jT!j
and leads to a partial screening of the 4f moments, re-
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. When analyzing our results for , we added a constant term
to describe the effect of the spin freezing.

Macroscopically broken time reversal symmetry
The macroscopically broken time reversal symmetry means that the time-reversal operation,
which inverts the spin and orbital angular momenta and the wavevector, , ,
and , as well as the fictitious magnetic field , should not be compensated
by any other symmetry operations of the crystal, e.g., translation, spatial inversion, reflection,
rotation, and their combinations.

Hall and longitudinal resistivities
Figure S1 shows the temperature dependence of the Hall resistivity (left axis) and the longi-
tudinal resistivity (right axis) under a magnetic field of = 0.05 T along the [111] direction.

clearly exhibits a bifurcation between the zero-field cooled (ZFC) and field-cooled (FC) pro-
cesses below 1.5 K, while does not show any bifurcation. Correspondingly, a bifurcation is
visible in but not in as shown in Fig. 2a and in the inset of Fig. 2b within the main text
because of the small Hall angle 0.01.

Metamagnetic transition and “2-in, 2-out” correlation
Figure S2 shows the field dependence of the magnetization along the [100], [110], and [111]
directions at 0.1 K. The clear anisotropy observed at high fields is fully consistent with an Ising-
like anisotropy for Pr 4 moments [S3,S4]. As shown in the inset of Fig. S2 and in Fig. 3b within
the main text, our measurements at 0.03 and 0.06 K clearly reveal a first-order metamagnetic
transition at 2.3 T for fields along the [111] direction. The associated anomaly is observed
already at 0.1 K in the vs. curve for fields along the [111] direction (Fig. S2). No anomaly
is seen for fields applied along the other two crystallographic directions.

The fact that the metamagnetic transition is observed only for fields along the [111] direction
is a clear evidence for the “2-in, 2-out” spin-configuration of Pr 4 moments, and for a FM
coupling between the nearest neighbors. In general, four Ising moments on a tetrahedron form
two distinct configurations, depending on the sign of the nearest-neighbor interaction: an “all-
in, all-out” and the “2-in, 2-out” (Fig. 1b in the main text) spin-configuration, respectively for
antiferromagnetic (AF) and ferromagnetic (FM) interactions. Locally, the “all-in, all-out” state
has no net magnetization. Therefore, to induce a finite magnetization for fields applied along
each one of the crystallographic directions, a metamagnetic transition would have to occur.
However, this is not what is observed in our experiment. In contrast, for the “2-in, 2-out” spin-
configuration, a metamagnetic transition would occur only for fields along the [111] direction
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Figure S2 Field dependence of the magnetization for fields along the [100], [110], and
[111] directions at 0.1 K. Inset: Hysteresis in the magnetization at the metamagnetic
transition for fields along the [111] direction at 0.03 K.

Theoretical calculation
For the tight-binding calculation, we took into account four different angles of rotation of a IrO
octahedron and the associated triply degenerate orbitals in the local coordinate frames.
No significant effect was found from the small splitting of the Ir 5 levels due to the trigonal
crystal-field of the pyrochlore structure. The orbital-dependent electron transfer between
the nearest-neighbor Ir sites was estimated from the Slater-Koster table [S12]. The amplitude
was chosen so that the total bandwidth becomes of the order of 3 eV as obtained by the first-
principles band calculation [S7], which also uncovered a single electron-like Fermi surface with
a carrier concentration comparable to the experimental estimate of per Ir. The relativistic
spin-orbit interaction for the electrons is large, and it has finite matrix elements within the
manifold. We took the spin-orbit coupling strength of eV, which was also estimated

from band structure calculations. The effective AF Kondo coupling to the Pr 4 moments
was estimated to be 4 meV. The calculations have been performed with wavevector meshes
for the zero-field-magnetic configuration shown in Fig. 1d in the main text. An energy broad-
ening of eV has been introduced for practical calculations, which is comparable to the
relaxation rate obtained from the observed longitudinal conductivity .
The results are shown in Fig. S3 (left axis) as a function of the number of electrons per Ir
site. For the expected Ir configuration with 5 , it gives for the zero-field spin
configuration shown in Fig. 1d in the main text.

4

metamagnetic 
transition

Figure 2. Magnetic and crystal structure, and field dependence of the magnetization and
Hall conductivity of Pr2Ir2O7 along the [111] field direction [2]. (a) The pyrochlore lattice is
alternating stacking of kagome and triangular layers along the [111] direction. Under zero field,
the Pr moments most likely form the “2-in, 2-out” configuration as denoted by three red arrows
and one blue arrow in each tetrahedron. Application of the field B along the [111] direction
flips the blue moments and stabilizes the “3-in, 1-out” (1-in, 3-out) configuration formed by four
red arrows. (b) Field dependence of the magnetization M at 0.06 and 0.5 K (left axis) and its
derivative dM/dB at 0.06 K (right axis). (c) Field dependence of the Hall conductivity σH at
0.06 K. Dashed line represents the metamagnetic transition field Bc ∼ 2.3 T. Inset: Low field
(b) M and (c) σH at fixed temperatures. During the measurements, the field was continuously
swept with the rate of 1Oe/s at temperatures T ≤ 0.5 K, while it was fixed at each measurement
field point at T ≥ 0.7 K. The arrows indicate up and down field sweep sequences. (d) Field
dependence of the magnetization M(B) for fields along the [100], [110], and [111] directions at
0.1 K. Inset: Hysteresis in the magnetization M(B) at the metamagnetic transition for fields
along the [111] direction at 0.03 K.
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Theory is very elegant. How about reality? Any materials?

There are many pyrochlore materials ! 
Some of them are actually quantum .

many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery
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Ir conduction electron: Luttinger semimetal
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Some Pr2Ir2O7  sample does order magnetically
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FIG. 2. (color online) Temperature dependence of elastic neu-
tron scattering intensity of Pr2+xIr2−xO7−δ at the position of
the qm = (100) reflection. The intensity measured at T = 2 K
was subtracted as a background. Curve: Ising mean-field the-
ory fit to the data, which yields a transition temperature of
TM = 0.93(1) K. Inset: sketch of the 2-in/2-out magnetic
structure.

Refinement of the magnetic structure using the
propagation vector qm was carried out on the high-
temperature-subtracted T = 0.5 K data collected on
SPINS. Assuming an Ising anisotropy in the [111] di-
rection for Pr3+ moments, as is well established for
Pr2Ir2O7 [5], the best refinement was obtained using an
ordered spin-ice 2-in/2-out structure for moments on a
unit tetrahedron (inset of Fig. 2), yielding an on-site mo-
ment µneu = 1.7(1)µB per Pr3+ ion [32]. The ordered
spin-ice structure is predicted for long-range ordering of
Heisenberg spins on the pyrochlore lattice due to dipole-
dipole interactions [33], although in Pr2Ir2O7 the Ising
nature of the Pr3+ moments and the strong dependence
of the ordering on stoichiometry suggest RKKY interac-
tions also play an important role.
To better understand the spatial and temporal coher-

ence of magnetism below the critical temperature TM , we
now turn to high-resolution magnetic neutron scattering.
The momentum dependence of the high-temperature-
subtracted scattering data [Fig. 3(a)] reveals four mag-
netic Bragg peaks, indexed by (100), (110), (102) and
(112), that appear sharp in both momentum and energy.
A fit to the 0.3 K data integrated over |E| < 0.03 meV
[Fig. 3(b)] yields a Gaussian momentum resolution of
FWHM 0.023(1) Å−1 at the (111) nuclear Bragg peak.
Using a phenomenological expression for the momentum
dependence of the momentum resolution, we fit the data
to a set of Gaussian-convoluted Lorentzian profiles. This
yields the intrinsic half-width-half-maximum (HWHM)
widths κ for each magnetic Bragg peak in Fig. 3(b). From
this analysis we obtain a lower bound ξmin = 1/κmax ≈
170 Å for the spatial correlation length.
The energy dependence of the two lowest-angle mag-

netic Bragg peaks, measured with λ = 9.04 Å, is com-
pared to that of the resolution-limited nuclear Bragg
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FIG. 3. (color online) Elastic and quasielastic neutron scat-
tering intensity of Pr2+xIr2−xO7−δ measured at 0.3 K on
CNCS, T = 1.7 K data subtracted. See text for defini-
tions. (a) Scattering intensity as a function of momentum
and energy, λ = 7.26 Å. (b) Momentum dependence of the
energy-integrated (|E| < 0.03 meV) intensity at T = 0.3 K.
Curve: fit to set of Voigt profiles plus a polynomial back-
ground. (c) Energy dependence at three Bragg positions,
λ = 9.04 Å. Solid curves: fits to Voigt profiles. Dashed
curves: associated Lorentzian broadening.

peak (111) in Fig. 3(c). A fit of the (100) and (110)
magnetic Bragg peaks to a quasielastic Lorentzian pro-
file convoluted with a fixed Gaussian energy resolution
(FWHM γ = 17(1) µeV) yields intrinsic HWHM widths
Γ = 0.9(2) µeV and 0.5(2) µeV, respectively. From this
analysis we obtain an upper bound of ≈ 1 µeV on any
intrinsic broadening, indicating that the observed order
is static on a time scale that exceeds !/Γ ≈ 0.7 ns.
Overall our elastic and quasielastic neutron results re-

veal that our Pr2+xIr2−xO7−δ sample experiences a tran-
sition at TM = 0.93(1) K from a paramagnetic state
to long-range spin-ice order characterized by spatial and
temporal correlations that span at least 170 Å and 0.7 ns,
respectively.

D. Muon spin relaxation

The present µSR studies of Pr2Ir2O7, like those re-
ported previously [9, 12], were carried out using the di-
lution refrigerator at the M15 muon beam channel at

3

Scanning electron microscopy coupled with energy dis-
persive x-ray analysis was used to determine the compo-
sition, yielding x = 0.4(3). Despite the large error, due
to the polycrystalline form of the samples and the impu-
rity phases, these results are consistent with excess Pr.
Furthermore, the lattice constants of all polycrystalline
samples investigated are larger than those of single crys-
tals, which appear to grow with integer stoichiometry.
This increase is also consistent with excess Pr, because
the ionic radius of Pr3+ is greater than that of Ir4+. Thus
the stoichiometry of polycrystalline samples appears to
be Pr2.4Ir1.6O7−δ.

B. Specific heat

a. Experiment. For the specific heat measurement
polycrystalline Pr2+xIr2−xO7−δ and silver powder for
thermal contact were thoroughly mixed with approxi-
mately 1:1 mass ratio and pressed into a solid pellet.
The heat capacity of this sample was measured over the
temperature range 50 mK–4 K by the adiabatic relax-
ation method, using a Quantum Design Physical Prop-
erty Measurement System with the Dilution Refrigera-
tor option. The heat capacity of Pr2+xIr2−xO7−δ was
then obtained by subtracting the known silver contri-
bution [30]. The temperature dependence of the specific
heat Cp of Pr2+xIr2−xO7−δ in zero field is shown in Fig. 1.
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FIG. 1. (color online) Temperature dependence of the specific
heat of Pr2+xIr2−xO7−δ in zero field. Filled circles: experi-
mental total specific heat. Dashed curve: calculated specific
heat due to a reduced nuclear Schottky anomaly (see text).
Open circles: specific heat after subtracting the nuclear Schot-
tky anomaly from the total specific heat.

b. Analysis. The resulting Cp(T ) shows a sharp
peak at TM ≈ 0.8 K, with a characteristic λ shape indi-
cating a bulk phase transition. We associate this tran-
sition with the ordering of the Pr3+ moments. At lower
temperatures another peak in the specific heat is ob-
served, which is attributed to a 141Pr nuclear Schottky

anomaly associated with the hyperfine field Bhf due to
ordered Pr3+ ionic moments. Assuming Bhf is static,
the peak position TS = 0.1 K and amplitude Cp(TS) =
4.6 J/K mole Pr of the Schottky anomaly determine, re-
spectively, an ordered Pr3+ moment µS = 1.7(1)µB/Pr
ion on a fraction f = 0.65(1) of the Pr sites. This mo-
ment value is the same as found from elastic neutron
scattering (Sec. II C): µS = µneu = µPr. Such agreement
is difficult to understand if a fraction 1 − f of the Pr3+

ions are not ordered, since then the neutron scattering
intensity would be correspondingly decreased. The re-
duction of the Schottky anomaly amplitude but not the
ordered moment is discussed further in Sec. III A.

C. Elastic neutron scattering

a. Experiment. Powder elastic and inelastic neu-
tron scattering data were taken from the same
Pr2+xIr2−xO7−δ powder sample on the SPINS Triple
Axis Spectrometer at the NIST Center for Neutron Re-
search (NCNR) and on the Cold Neutron Chopper Spec-
trometer (CNCS) at Oak Ridge National Laboratory
(ORNL) [31]. In both experiments the powder sample
was enclosed in an aluminum can and cooled in 3He
cryostats to base temperatures of ∼0.3 K (ORNL) and
∼0.5 K (NCNR). The can was sealed under 4He atmo-
sphere at room temperature to provide thermal contact
for the powder. The can had an annular insert in or-
der to minimize the effects of the strong neutron ab-
sorption in Ir. On SPINS, measurements were taken
with a neutron wavelength of λ = 4.04 Å (Ei = Ef =
5 meV), with a cooled Be filter in the incoming beam
and 80′ collimation before and after the sample. On
CNCS, measurements were taken with two neutron wave-
lengths, λ = 7.26 Å (Ei = 1.55 meV) and λ = 9.04 Å
(Ei = 1.00 meV). The corresponding full-width-half-
maximum (FWHM) energy resolutions at the elastic line
were γ = 0.024(2) meV and γ = 0.017(1) meV for
λ = 7.26 Å with λ = 9.04 Å, respectively. The data
were normalized to absolute units using the intensity of
the (111) nuclear Bragg peak.
b. Analysis. The momentum dependence of the

elastic intensity was measured on SPINS over the tem-
perature range 0.5–2 K. The lattice constant of the cubic
space group was refined at 2 K to obtain a = 10.672(1) Å.
Extra Bragg peaks were observed below ∼0.9 K, and are
attributed to the ordering of the Pr3+ moments. Their
positions can be indexed using a magnetic propagation
wave vector qm = (100) in reciprocal lattice units of the
Fd3m space group. The temperature dependence of the
first peak, for which Q = |qm|, is shown in Fig. 2. The
order parameter increases continuously below TM , sug-
gesting a second-order phase transition. The data are,
however, also consistent with a heterogeneous distribu-
tion of first-order phase transitions. An Ising mean-field
theory provides an acceptable fit to the data (solid curve
in Fig. 2) with an ordering temperature TM = 0.93(1) K.
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Unstable Spin-Ice Order in the Stuffed Metallic Pyrochlore Pr2+xIr2−xO7−δ
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Specific heat, elastic neutron scattering, and muon spin rotation (µSR) experiments have been
carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr2+xIr2−xO7−δ. Elastic neutron
scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at TM = 0.93 K,
with an ordered moment of 1.7(1)µB/Pr ion at low temperatures. Approximate lower bounds on
the correlation length and correlation time in the ordered state are 170 Å and 0.7 ns, respectively.
µSR experiments yield an upper bound 2.6(7) mT on the local field B4f

loc at the muon site, which
is nearly two orders of magnitude smaller than the expected dipolar field for long-range spin-ice
ordering of 1.7µB moments (120–270 mT, depending on muon site). This shortfall is due in part
to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by
the µ+-induced lattice distortion. For this to be the only effect, however, ∼160 Pr moments out
to a distance of ∼14 Å must be suppressed. An alternative scenario, which is consistent with the
observed reduced nuclear hyperfine Schottky anomaly in the specific heat, invokes slow correlated
Pr-moment fluctuations in the ordered state that average B4f

loc on the µSR time scale (∼10−7 s),
but are static on the time scale of the elastic neutron scattering experiments (∼10−9 s). In this
picture the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds,
which should be observable in a neutron spin echo experiment.

PACS numbers: 75.10.Jm, 75.25.-j, 75.40.Gb, 76.75.+i

I. INTRODUCTION

Geometrically frustrated systems, including pyrochlore
oxides, have been extensively studied because of possi-
ble novel phenomena arising from suppression of con-
ventional order. The series of rare-earth iridate py-
rochlores R2Ir2O7 [1] shows a nonmetal-metal transi-
tion with increasing rare-earth ionic radius [2]. The

∗ Email: macl@physics.ucr.edu.
† Present address: Department of Applied Physics, Stanford Uni-
versity, Stanford, CA 94305, USA.

‡ Present address: School of Physics, Georgia Institute of Technol-
ogy, Atlanta, GA 30332, USA.

§ Present address: School of Physics and Astronomy, University of
Edinburgh, Edinburgh EH9 3FD, Scotland.

¶ Present address: Department of Physics, Tokyo Institute of Tech-
nology, Meguro 152-8551, Japan.

∗∗ Email: satoru@issp.u-tokyo.ac.jp.

compounds with R = Yb, Ho, Dy, Tb, Gd, and Y
are nonmetallic, and those with R = Eu, Sm, and
Nd have metal-insulator transitions to antiferromagnetic
ground states [3]. Only Pr2Ir2O7, with the largest rare-
earth ionic radius among the known pyrochlore iridates,
remains metallic down to low temperatures (at least
50 mK). Novel ground states such as spin ices and spin
liquids have been proposed in the insulating pyrochlore
magnets [4].
In the metallic pyrochlore Pr2Ir2O7 the Pr3+ (J = 4)

crystalline electric field (CEF) ground state is a non-
Kramers doublet that is well isolated from higher CEF
levels and consists of almost pure |±4⟩ states with a
magnetic moment of ∼3.0µB [5]. The anisotropic field
dependence of the magnetization indicates the Pr3+ 4f
moments have Ising-like anisotropy along the ⟨111⟩ easy
directions. The dc susceptibility above 100 K yields an
antiferromagnetic Weiss temperature T ∗ = −20 K that
has been attributed to RKKY interactions between Pr3+

actually “Melko-Hertog-Gingras" spin state 
(obtained numerically for a different and classical system)



2. Pr-magnetism induced Weyl nodes and  
symmetry protected Dirac band touching 

Here we focus on the ordered side/sample.
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What is the impact of the Pr magnetism  
on Ir conduction electrons? 
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7
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on the Ir electron structure from the Pr Ising magnetic
order, so the quantum dynamics of the Pr local moment
is irrelevant for this purpose. In Sec. III of the paper,
we would simply regard the Ising magnetic order that
is observed in Pr2Ir2O7 as a given condition, and this
exchange Hamiltonian is not invoked until in Sec. IV
where the external Zeeman coupling competes with the
exchange and modifies the Pr magnetic order.

The extended interaction for the Pr local moments in
Pr2Ir2O7 is expected because the RKKY interaction that
is mediated by the Ir conduction electrons is not short-
ranged. This is quite di↵erent from the usual rare-earth
magnets where the exchange interaction is often short-
ranged and most of time restricted to the nearest neigh-
bors. The long-range or extended RKKY interaction is
the reason that we point out the Ir conduction drives the
quantum phase transition of the Pr moments.

Due to the Ising nature of the moment in the ap-
proximate exchange model, the ground state is anti-
ferromagnetically ordered with an ordering wavevector
Q = 2⇡(001) for J3z > 0. Clearly, the approximate
model captures the observed magnetic order in Pr2Ir2O7.

C. Pr-Ir coupling

Precisely because of the non-Kramers doublet nature
of the Pr local moment, it was pointed out in Ref. ?
based on the symmetry analysis that, the ⌧z component
couples to the spin density of the Ir conduction electron
while the transverse component would couple to the elec-
tron density. The transverse component may also couple
to the spin current that is even under time reversal. The
general expression for the f -d exchange between the Pr
local moment and the Ir spin density has been obtained in
the previous work. The coupling between the transverse
component ⌧x,y and the Ir electron density was worked
out in Ref. ? . Again, since it is the Ising component ⌧z

of the Pr local moment that develops the magnetic order
in Pr2Ir2O7, the leading order e↵ect on the Ir conduc-
tion electron originates from the coupling between the Ir
spin density and the Pr Ising component. Therefore, we
consider the following f -d exchange between the Pr Ising
moment and the Ir spin density,

H
fd

=
X

hiji

X

i2Pr

X

j2Ir

⌧z
i

[(d†
j↵

�
↵�

2
d
j�

) · v
ij

], (8)

where v
ij

is a vector that defines the coupling between
the Ir spin density and the Pr local moments. For each
Ir ion, there are six Pr ions nearby, and these six Pr ions
form a hexagon with the Ir ion in the hexagon center
(see Fig. 1). Under the nearest-neighbor Kondo-like cou-
pling assumption, the standard symmetry analysis gives
for example

v11 = (, , ), (9)

v12 = (, , ), (10)

v13 = (, , ), (11)

(a) (b)

x

y

z

b1
b2

b3

FIG. 1. The pyrochlore lattice structure for Pr2Ir2O7. (a)
Both Ir and Pr ions form pyrochlore lattices of corner-sharing
tetrahedra. Di↵erent marks are used to distinguish Ir (pink
faces solid edges) and Pr (white faces and dashed edges). (b)
For each Ir ion, six nearest Pr ions form a hexagon with the
Ir ion in the center.

v14 = (, , ), (12)

and other v
ij

’s can be obtained by simple lattice symme-
try operations.

D. Zeeman coupling

Finally, we introduce the Zeeman coupling. Because
only the ⌧z is odd under time reversal, we have the Zee-
man coupling

HZeeman = �gµBB
X

i2Pr

⌧z
i

(ẑ
i

· n̂)

⌘ �h
X

i2Pr

⌧z
i

(ẑ
i

· n̂), (13)

where n̂ is the direction of the external magnetic field.
The ẑ

i

direction is defined locally for each sublattice of
the Pr subsystem.

E. Energy scales

Clearly, the largest energy scale in the model is the
bandwidth and interaction of the Ir conduction interac-
tion. The second largest energy scale is the f -d exchange
coupling. The lowest ones would be the exchange cou-
pling between the Pr moments and the Zeeman coupling.
Since the Zeeman coupling can be tuned experimentally,
the magnetic state of the Pr local moments can thus be
manipulated by the external magnetic field.

III. DIRAC BAND TOUCHINGS AND WEYL
NODES OF THE IRIDIUM SUBSYSTEM

For Pr2Ir2O7, the Ir conduction electrons were found
to develop a Luttinger semimetallic band structure. It is
well-known that the Luttinger semimetal is a parent state
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i

direction is defined locally for each sublattice of
the Pr subsystem.

E. Energy scales

Clearly, the largest energy scale in the model is the
bandwidth and interaction of the Ir conduction interac-
tion. The second largest energy scale is the f -d exchange
coupling. The lowest ones would be the exchange cou-
pling between the Pr moments and the Zeeman coupling.
Since the Zeeman coupling can be tuned experimentally,
the magnetic state of the Pr local moments can thus be
manipulated by the external magnetic field.

III. DIRAC BAND TOUCHINGS AND WEYL
NODES OF THE IRIDIUM SUBSYSTEM

For Pr2Ir2O7, the Ir conduction electrons were found
to develop a Luttinger semimetallic band structure. It is
well-known that the Luttinger semimetal is a parent state

Ir 5d electron: hopping, SOC, interaction ~<1eV

Pr 4f electron: exchange interaction ~10K

(a) (b)

x′

y′

z′

b1
b2

b3

Pr-Ir interaction: f-d exchange ~

Gang Chen’s theory group 

Gang Chen’s theory group



ARTICLES

NATURE PHYSICS DOI: 10.1038/NPHYS1606

0

a b

3

2

1

d

yz

d

xy

p

y

p

x

Figure 2 | Pyrochlore lattice and electron hopping. a, Pyrochlore lattice of corner-sharing tetrahedra. It can be viewed as the face-centred cubic lattice
with tetrahedral bases added at each site. One such base, with Ir ions numbered from 0 to 3, is shown. b, Oxygen-mediated hopping between Ir sites. Sites
0 (on the left) and 3 (on the right) of the tetrahedral basis are shown (large grey spheres), together with their oxygen octahedral environment (small red
spheres). On the ‘shared’ oxygen site we show its p

y

orbital (green) with respect to the coordinate system of site 0, and p

x

orbital (blue) with respect to the
coordinate system of site 3. Belonging to different coordinate systems, these orbitals are not orthogonal, the angle between them being ⇡84�. Electrons
can hop from the local d

yz

orbital on site 0 onto p

y

, and from the d

xy

orbital on site 3 onto p

x

. As the two p orbitals are not orthogonal, an effective Ir–Ir
hopping is induced.
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Figure 3 | Electronic band structure of Ir 5d electrons on the pyrochlore
lattice at large spin–orbit coupling, �/t! 1. Only the relevant four
doubly degenerate bands are shown. A bandgap between the filled lower
two bands and the empty upper two bands is clearly seen.

We note that the anisotropic exchange term,
$
001, is small compared

with the other ones. Spin ordering in this model was considered
in ref. 20. Our Dzyaloshinskii–Moriya term corresponds to the
‘indirect’ case of ref. 20, and |D01|/J ⇡ 0.63, that is, very large
Dzyaloshinskii–Moriya interactions. In this case, a magnetically
ordered ground state is expected, which breaks point-group
symmetries but does not enlarge the unit cell.

Slave-rotor approach
An exact or accurate numerical solution for the full phase diagram
for equation (1) is very challenging, especially at intermediate U/t .
To study it, we use the slave-rotor approximation of ref. 21. This
approach has a number of merits. It becomes exact for U/t = 0,
and captures the bandwidth reduction with increasing U/t . Its
predictions forHubbardmodels on other frustrated lattices without
SOI at intermediate U/t are in agreement with more controlled
approaches such as the path-integral renormalization group22,
Gutzwiller-type variational wavefunctions23 and the variational
cluster method24. As we will see that the Mott transition occurs
at smaller U/t with increasing �/t , we expect that the slave-rotor
approximation should be reasonable to describe it for the full range
of SOI. It clearly fails at large U/t , but we can substitute direct
analysis of the spin–orbital model in that limit.

We decompose the physical electron annihilation operator as
dRi↵ = e�i✓Ri fRi↵ , where the angle ✓Ri is the conjugated variable to the
number of electrons on site R,i (the ‘angular momentum’ of the

rotor), and the ‘spinon’ fRi↵ carries the rest of the degrees of freedom.
The constraint LRi =

P
↵ f

†
Ri↵fRi↵ �nd , restricting the physical part of

the Hilbert space, is treated on average. Furthermore, we use the
mean-field decomposition of the hopping term, which couples the
spinons and rotors according to AB ! AhBi + BhAi. This mean
field theory (MFT) reduces the Hamiltonian (1) to two uncoupled
Hamiltonians for spinons and rotors:

Hf =
X

Ri↵

("↵ �µ�h)f †
Ri↵fRi↵ + tQf

X

hRi,R0 i0i
↵↵0

T ii0
↵↵0 f †

Ri↵fR0 i0↵0

H✓ = U
2

X

Ri

L2Ri +h(LRi +nd)+ tQ✓

X

hRi,R0 i0i
ei✓Ri�i✓R0 i0

Here LRi = �i(@/@✓Ri), the coordinate-independent Lagrange
multiplier h is introduced to treat the constraint on the angular
momentum and the couplings Qf and Q✓ need to be determined
self-consistently fromQf =

⌦
ei✓Ri�i✓Ri0

↵
,Q✓ =P

↵↵0T ii0
↵↵0

⌦
f †
Ri↵fRi0↵0

↵
(note

Q✓  0 in the self-consistent solution). Here we have made the
so-called ‘uniform’ mean-field approximation, on the grounds that
it is the one that smoothly connects to theU/t = 0 limit, and hence
should be appropriate for small to intermediate U/t , the range of
interest. Note that the strength of the spin–orbit interaction, �, is
not renormalized. After the mean-field decomposition, the spinon
and rotor sectors can be solved almost independently, with coupling
only through the self-consistency requirements onQf andQ✓ .

We first consider the spinon Hamiltonian, Hf . It is identical to
the non-interacting electron Hamiltonian, but with renormalized
hopping teff = tQf . All of the preceding analysis carried out forU =0
can therefore be carried over with this replacement. As Qf < 1, we
indeed observe that the dimensionless spin–orbit strength �/(Qf t )
is enhanced by correlations. Physically, however, we must take care
as the f fermions are spinons and therefore their properties do not
necessarily translate directly to the physical electrons.

We now turn to the charge (rotor) sector. H✓ describes rotor
bosons moving on the pyrochlore lattice. The parameter h must
be fixed by charge neutrality, hf †

Ri↵fRi↵i = nd , and hence hLRii = 0.
We therefore take h= 0, which guarantees the latter condition, as
H✓ then has particle–hole symmetry, LRi ! �LRi,✓Ri ! �✓Ri. H✓

is then expected to have two phases. For U/(Q✓ t )⌧ 1, the rotors
are condensed, hei✓Rii 6= 0, whereas for U/(tQ✓ ) � 1, they form
an uncondensed Bose Mott insulator with a gap and hei✓Rii = 0.
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the Pr local moment with the spin density of the Ir con-
duction electrons, and the HZeeman defines the Zeeman
coupling of the Pr local moment to the external magnetic
field.

A. Ir subsystem

We start with the tight-binding model for the Ir con-
duction electrons. The Ir4+ ion has a 5d5 electron con-
figuration, and these five electrons occupy the t2g or-
bitals. The atomic spin-orbit coupling splits the six-
fold degenerate spin and orbital states in the t2g man-
ifold into the lower j = 3/2 quadruplets and the upper
j = 1/2 doublets. Due to the lattice geometry of the py-
rochlore system, the t2g orbitals and the e↵ective spin
J are defined in the local coordinate system of the IrO6

octahedron. For the Ir4+ ion, the lower j = 3/2 quadru-
plets are fully filled, and the upper j = 1/2 doublets are
halfly filled8,43–45. It was shown that, the pyrochlore iri-
date band structure near the Fermi level is well approx-
imated by a tight-binding model based on the j = 1/2
doublets8,12,14. The model is given as

H
tb

=
X

i,j2Ir

X

↵�

t
ij,↵�

d†
i↵

d
j�

, (2)

where d†
i↵

(d
i↵

) creates (annihilates) an electron with
an e↵ective spin ↵ in the j = 1/2 doublet. The hop-
ping t

ij,↵�

includes both the direct electron hoppings
(t

�

and t
⇡

) between the nearest-neighbor Ir ions and
the indirect electron hopping (t

id

) through the interme-
diate oxygen. It has been shown14 that in the regime
�1.67t

id

< t
�

< �0.67t
id

and t
⇡

= �2t
�

/3, the system
becomes a Luttinger semimetal with a quadratic band
touching at the � point. This quadratic band touching
is protected by the cubic lattice symmetry12,38,39. The
Ir conduction electron of Pr2Ir2O7 is described by the
Luttinger semimetal of this tight binding model.

Since all the pyrochlore iridates except Pr2Ir2O7 expe-
rience a metal-insulator transition via the development
of magnetic orders, a Hubbard-U interaction is then in-
troduced to capture this correlation driven Mott tran-
sition. As for Pr2Ir2O7 that remains metallic, it is ex-
pected that the Hubbard-U interaction merely renormal-
izes the bands but does not change the nature of the
Luttinger semimetal. Without losing any generality, we
set t

⇡

= �2t
�

/3, t
id

= �t
�

throughout this work.
Prior theoretical works, that focused on the Ir subsys-

tem, have invoked the k.p theory and the Luttinger model
as the starting point to analyze the correlation e↵ect of
the electrons13,18,46–52. In our case, the “Melko-Hertog-
Gingras” state of the Pr local moments has a large and
finite ordering wavevector and necessarily connect the Ir
bands near the � point with the bands near the ordering
wavevector, so the lattice e↵ects cannot be ignored. As a
result, we cannot start with the k.p theory of the � point
at low energies, and instead, we should begin with the
tight-binding model on the Ir pyrochlore lattice.

B. Pr subsystem

The Pr3+ ion has a 4f2 electron configuration, and
the 4f electron is well localized. The combination of the
atomic spin-orbit coupling and the crystal electric field
creates a two-fold degenerate ground state for the Pr3+

ion. This two-fold ground state degeneracy defines the
non-Kramers doublet nature of the Pr local moment, and
a pseudospin-1/2 operator, ⌧

i

, is introduced to operate on
the two-fold degenerate ground states. The non-Kramers
doublet has a peculiar property under the time reversal
symmetry, i.e.

T : ⌧z
i

! �⌧z
i

, (3)

T : ⌧x
i

! +⌧x
i

, (4)

T : ⌧y
i

! +⌧y
i

, (5)

where the z direction is defined locally on each sublattice
and is given as the local (111) lattice direction of the py-
rochlore system. Here, the magnetic dipolar moment is
purely from the ⌧z component, and the transverse com-
ponents are known to be the quadrupolar moments.

Due to the spin-orbit-entangled nature of the Pr local
moment, the e↵ective interaction between the Pr local
moments is anisotropic in the pseudospin space and also
depends on the bond orientation. The general form of
the interaction is53–55

H̃
ex

=
X

ij

J
z,ij

⌧z
i

⌧z
j

+
X

ij

J?,ij

X

µ,⌫=x,y

⌧µ
i

⌧⌫
j

, (6)

where the interaction between the Ising component ⌧z

and the transverse component ⌧x,y is strictly forbidden
by time reversal symmetry. Here, H̃

ex

di↵ers from H
ex

in Eq. (1). H̃
ex

contains all sources of interactions be-
tween the local moments, and is obtained by integrat-
ing out the Ir conduction electrons. H̃

ex

would contain
both the RKKY interaction and H

ex

. Since the Pr lo-
cal moment is in the spin ice manifold, we thus expect
the nearest-neighbor Ising interaction J

z,ij

is positive and
dominant. The interaction between the transverse com-
ponents creates the quantum fluctuation so that the sys-
tem fluctuates quantum mechanically within the spin ice
manifold. Clearly, the nearest-neighbor interaction alone
cannot generate the finite momentum Ising order of the
Pr system whose magnetic cell is twice the size of the
crystal cell. Further neighbor interactions are required.
We here introduce the third neighbor antiferromagnetic
Ising interaction and approximate H̃

ex

as

H̃
ex

'
X

hiji

J1z⌧
z

i

⌧z
j

+
X

hhhijiii

J3z⌧
z

i

⌧z
j

, (7)

where the interaction between the transverse components
has been abandoned in this approximation. In our pre-
vious work that focuses on the quantum phase transition
of the Pr subsystem, this quantum fluctuation is an im-
portant ingredient to understand the nature of the phase
transition and the nearby phases. In contrast, our pur-
pose in this paper is to understand the feedback e↵ect
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fold degenerate spin and orbital states in the t2g man-
ifold into the lower j = 3/2 quadruplets and the upper
j = 1/2 doublets. Due to the lattice geometry of the py-
rochlore system, the t2g orbitals and the e↵ective spin
J are defined in the local coordinate system of the IrO6

octahedron. For the Ir4+ ion, the lower j = 3/2 quadru-
plets are fully filled, and the upper j = 1/2 doublets are
halfly filled8,43–45. It was shown that, the pyrochlore iri-
date band structure near the Fermi level is well approx-
imated by a tight-binding model based on the j = 1/2
doublets8,12,14. The model is given as

H
tb

=
X

i,j2Ir

X

↵�

t
ij,↵�

d†
i↵

d
j�

, (2)

where d†
i↵

(d
i↵

) creates (annihilates) an electron with
an e↵ective spin ↵ in the j = 1/2 doublet. The hop-
ping t

ij,↵�

includes both the direct electron hoppings
(t

�

and t
⇡

) between the nearest-neighbor Ir ions and
the indirect electron hopping (t

id

) through the interme-
diate oxygen. It has been shown14 that in the regime
�1.67t

id

< t
�

< �0.67t
id

and t
⇡

= �2t
�

/3, the system
becomes a Luttinger semimetal with a quadratic band
touching at the � point. This quadratic band touching
is protected by the cubic lattice symmetry12,38,39. The
Ir conduction electron of Pr2Ir2O7 is described by the
Luttinger semimetal of this tight binding model.

Since all the pyrochlore iridates except Pr2Ir2O7 expe-
rience a metal-insulator transition via the development
of magnetic orders, a Hubbard-U interaction is then in-
troduced to capture this correlation driven Mott tran-
sition. As for Pr2Ir2O7 that remains metallic, it is ex-
pected that the Hubbard-U interaction merely renormal-
izes the bands but does not change the nature of the
Luttinger semimetal. Without losing any generality, we
set t

⇡

= �2t
�

/3, t
id

= �t
�

throughout this work.
Prior theoretical works, that focused on the Ir subsys-

tem, have invoked the k.p theory and the Luttinger model
as the starting point to analyze the correlation e↵ect of
the electrons13,18,46–52. In our case, the “Melko-Hertog-
Gingras” state of the Pr local moments has a large and
finite ordering wavevector and necessarily connect the Ir
bands near the � point with the bands near the ordering
wavevector, so the lattice e↵ects cannot be ignored. As a
result, we cannot start with the k.p theory of the � point
at low energies, and instead, we should begin with the
tight-binding model on the Ir pyrochlore lattice.

B. Pr subsystem

The Pr3+ ion has a 4f2 electron configuration, and
the 4f electron is well localized. The combination of the
atomic spin-orbit coupling and the crystal electric field
creates a two-fold degenerate ground state for the Pr3+

ion. This two-fold ground state degeneracy defines the
non-Kramers doublet nature of the Pr local moment, and
a pseudospin-1/2 operator, ⌧

i

, is introduced to operate on
the two-fold degenerate ground states. The non-Kramers
doublet has a peculiar property under the time reversal
symmetry, i.e.

T : ⌧z
i

! �⌧z
i

, (3)

T : ⌧x
i

! +⌧x
i

, (4)

T : ⌧y
i

! +⌧y
i

, (5)

where the z direction is defined locally on each sublattice
and is given as the local (111) lattice direction of the py-
rochlore system. Here, the magnetic dipolar moment is
purely from the ⌧z component, and the transverse com-
ponents are known to be the quadrupolar moments.

Due to the spin-orbit-entangled nature of the Pr local
moment, the e↵ective interaction between the Pr local
moments is anisotropic in the pseudospin space and also
depends on the bond orientation. The general form of
the interaction is53–55

H̃
ex

=
X

ij

J
z,ij

⌧z
i

⌧z
j

+
X

ij

J?,ij

X

µ,⌫=x,y

⌧µ
i

⌧⌫
j

, (6)

where the interaction between the Ising component ⌧z

and the transverse component ⌧x,y is strictly forbidden
by time reversal symmetry. Here, H̃

ex

di↵ers from H
ex

in Eq. (1). H̃
ex

contains all sources of interactions be-
tween the local moments, and is obtained by integrat-
ing out the Ir conduction electrons. H̃

ex

would contain
both the RKKY interaction and H

ex

. Since the Pr lo-
cal moment is in the spin ice manifold, we thus expect
the nearest-neighbor Ising interaction J

z,ij

is positive and
dominant. The interaction between the transverse com-
ponents creates the quantum fluctuation so that the sys-
tem fluctuates quantum mechanically within the spin ice
manifold. Clearly, the nearest-neighbor interaction alone
cannot generate the finite momentum Ising order of the
Pr system whose magnetic cell is twice the size of the
crystal cell. Further neighbor interactions are required.
We here introduce the third neighbor antiferromagnetic
Ising interaction and approximate H̃

ex

as

H̃
ex

'
X

hiji

J1z⌧
z

i

⌧z
j

+
X

hhhijiii

J3z⌧
z

i

⌧z
j

, (7)

where the interaction between the transverse components
has been abandoned in this approximation. In our pre-
vious work that focuses on the quantum phase transition
of the Pr subsystem, this quantum fluctuation is an im-
portant ingredient to understand the nature of the phase
transition and the nearby phases. In contrast, our pur-
pose in this paper is to understand the feedback e↵ect
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FIG. 1. (Color online) A projective view of R2Ir2O7 in the (111)
plane. Left: The neighboring Ir (in dark red) and R (in light blue)
tetrahedra. “1,2,3,4” label the four sublattices. Ir/R atoms are marked
with big/small (red/blue) circles. Empty/dark/light circles indicate
that the atoms are below/above/in the (111) plane. Right: An IrR6

complex singled out from the left figure.

other hand, under time reversal j → −j. This property leads
to a remarkable simplification of the coupling—only τ z

couples to the Ir spin j. We consider the nearest-neighbor
(NN) R-Ir exchange, which, due to space group symmetry,
is parametrized by two couplings c1,c2. For the single Ir site
labeled Ir1 in Fig. 1, the f -d exchange is

Hfd =
[
c1τ

z
4 − c2

(
τ z

2 + τ z
3

)]
jx

1 +
[
c1τ

z
3 − c2

(
τ z

2 + τ z
4

)]
j

y
1

+
[
c1τ

z
2 − c2

(
τ z

3 + τ z
4

)]
jz

1 + [2 ↔ 2′,3 ↔ 3′,4 ↔ 4′],

(1)

where the labeling of sites is given in Fig. 1. Further details
are given in Appendix. A.

In the Kramers case, the Ising part of the f -d exchange
(coupling of τ z to j) is identical. Transverse exchange
involving τ x,y is also permitted by time-reversal symmetry.
Even in the non-Kramers case, while τ x,y does not couple to the
Ir effective spin, it can couple to the Ir charge density. In both
cases we ignore these transverse couplings, both for simplicity
and because they may be suppressed by strong easy-axis
anisotropy of the f moments along local [111] axes, which is
known to be present in R = Dy, Ho pyrochlore oxides,14 and
may be present more broadly. However, effects of transverse
exchange may be important, and will be an interesting topic
for future study.

For the Ir subsystem, we follow Ref. 6 and include both the
indirect hopping of 5d electrons through oxygen, and direct
hopping between Ir sites, using the following Hubbard model:

HIr =
∑

⟨rr ′⟩

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β + U
∑

r

nr,↑nr,↓, (2)

where d
†
r,α is the electron creation operator, with α =↑ , ↓

labeling the effective spin jz = 1/2, − 1/2 states at site r ,
and nr,α = d

†
r,αdr,α . The sum is over NN pairs of Ir sites. The

direct hoppings (T d
rr ′ ) involve two parameters,6 tσ and tπ , that

describe the σ and π bonding, respectively. To be specific, we
follow Ref. 6 and set tπ = − 2

3 tσ throughout the paper. The
indirect hopping (T id

rr ′) only has one hopping parameter which
we denote as t .4

The R local moments can couple to each other either via su-
perexchange through intermediate atoms, by dipole-dipole in-
teraction, or by the RKKY (Ruderman-Kittel-Kasuya-Yosida)

exchange mediated by Ir electrons. Dipole-dipole interactions
may play an important role for R (= Gd, Tb, Dy, Ho) where a
large local magnetic moment is observed.26 RKKY exchange
is likely to be the dominant exchange for the other compounds,
as the Curie-Weiss temperatures in many of the isostructural
insulating materials R2Sn2O7

32 are of much lower magnitude
than the corresponding iridates. For example, The Curie-Weiss
temperatures &CW are −0.35 K in Pr2Sn2O7 and −1026 or
−20 K33 in Pr2Ir2O7. For the R = Nd compounds, &CW ≈
−0.31 K in the stannate32 and &CW ≈ −19 K in the iridate.26

From the above analysis, we obtain our minimal model
for R2Ir2O7, which includes the R-Ir exchange coupling in
Eq. (1) and the Ir-Ir hopping and interaction Eq. (2), Hmin =
Hfd + HIr.

To analyze the phase diagram we start with the tight-binding
model of the Ir subsystem. Following Ref. 6, a semimetal
phase is obtained for −1.67t ! tσ ! −0.67t . Otherwise, a
strong topological band insulator (STI) with topological class
(1;000) is obtained.34–36 In the semimetal phase, at the
' point there is a quadratic band touching (protected by
cubic symmetry) at the Fermi energy (EF ). There are also
nondispersing bands at EF along the '-L lines; this feature
is a consequence of fine tuning; it can be removed by adding
a weak next-nearest-neighbor hopping (t ′).6 The low-energy
features of the band structure agree rather well with the
first-principles calculation for Y2Ir2O7,5,37 with the differences
that the quadratic '-point touching is below EF and the '-L
lines have a small dispersion.

Due to the Ising form of the coupling, the model with the
f -d exchange does not contain quantum fluctuations of the
f moments, and reduces to a free fermion problem for any
fixed configuration of localized moments. Finding the ground
state amounts to finding the minimum-energy configuration
of local moments. Moreover, certainly c1,c2 ≪ t , so the f -d
exchange can be treated perturbatively, and the leading effect
is to generate a RKKY exchange between the f moments. As
shown in Appendix A, we find that beyond fourth neighbors
the RKKY exchange becomes significantly smaller, so we
keep only up through fourth-neighbor exchange. Using the
Luttinger-Tizsa method,38 we find that the ground state of the
truncated RKKY exchange has a q = 0 magnetic order except
in the light shaded regions of Figs. 2(a) and 2(b). In the light
shaded regions, the hard-spin constraint cannot be satisfied,
and the nature of the ground state is not presently clear.
However, it is likely that the q = 0 magnetic order extends
at least somewhat into to the light shaded regions.

Without losing any generality, we can simply focus on
the case with c1 > 0 and define ( ≡ tan−1(c2/c1) and c ≡√

c2
1 + c2

2. As shown in Figs. 2(a) and 2(b), for most of
parameter space, “all-in all-out” magnetic order is favored,
where every tetrahedron of neighboring R sites has either
all τ z pointing in (i.e., toward the tetrahedron center), or all
pointing out. In the dark shaded region, q = 0 “two-in two-out”
magnetic order is obtained, where on every tetrahedron, two τ z

point in and two point out. (The q = 0 two-in two-out state also
has lowest energy, at least among q = 0 states, in the vertically
hatched regions.) Since no ferromagnetic state is observed
in any R2Ir2O7, we restrict our discussion to all-in all-out
state. Such order of the R subsystem also induces all-in all-out
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other hand, under time reversal j → −j. This property leads
to a remarkable simplification of the coupling—only τ z

couples to the Ir spin j. We consider the nearest-neighbor
(NN) R-Ir exchange, which, due to space group symmetry,
is parametrized by two couplings c1,c2. For the single Ir site
labeled Ir1 in Fig. 1, the f -d exchange is

Hfd =
[
c1τ

z
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(
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where the labeling of sites is given in Fig. 1. Further details
are given in Appendix. A.

In the Kramers case, the Ising part of the f -d exchange
(coupling of τ z to j) is identical. Transverse exchange
involving τ x,y is also permitted by time-reversal symmetry.
Even in the non-Kramers case, while τ x,y does not couple to the
Ir effective spin, it can couple to the Ir charge density. In both
cases we ignore these transverse couplings, both for simplicity
and because they may be suppressed by strong easy-axis
anisotropy of the f moments along local [111] axes, which is
known to be present in R = Dy, Ho pyrochlore oxides,14 and
may be present more broadly. However, effects of transverse
exchange may be important, and will be an interesting topic
for future study.

For the Ir subsystem, we follow Ref. 6 and include both the
indirect hopping of 5d electrons through oxygen, and direct
hopping between Ir sites, using the following Hubbard model:

HIr =
∑

⟨rr ′⟩

(
T d

rr ′,αβ + T id
rr ′,αβ

)
d†

rαdr ′β + U
∑

r

nr,↑nr,↓, (2)

where d
†
r,α is the electron creation operator, with α =↑ , ↓

labeling the effective spin jz = 1/2, − 1/2 states at site r ,
and nr,α = d

†
r,αdr,α . The sum is over NN pairs of Ir sites. The

direct hoppings (T d
rr ′ ) involve two parameters,6 tσ and tπ , that

describe the σ and π bonding, respectively. To be specific, we
follow Ref. 6 and set tπ = − 2

3 tσ throughout the paper. The
indirect hopping (T id

rr ′) only has one hopping parameter which
we denote as t .4

The R local moments can couple to each other either via su-
perexchange through intermediate atoms, by dipole-dipole in-
teraction, or by the RKKY (Ruderman-Kittel-Kasuya-Yosida)

exchange mediated by Ir electrons. Dipole-dipole interactions
may play an important role for R (= Gd, Tb, Dy, Ho) where a
large local magnetic moment is observed.26 RKKY exchange
is likely to be the dominant exchange for the other compounds,
as the Curie-Weiss temperatures in many of the isostructural
insulating materials R2Sn2O7

32 are of much lower magnitude
than the corresponding iridates. For example, The Curie-Weiss
temperatures &CW are −0.35 K in Pr2Sn2O7 and −1026 or
−20 K33 in Pr2Ir2O7. For the R = Nd compounds, &CW ≈
−0.31 K in the stannate32 and &CW ≈ −19 K in the iridate.26

From the above analysis, we obtain our minimal model
for R2Ir2O7, which includes the R-Ir exchange coupling in
Eq. (1) and the Ir-Ir hopping and interaction Eq. (2), Hmin =
Hfd + HIr.

To analyze the phase diagram we start with the tight-binding
model of the Ir subsystem. Following Ref. 6, a semimetal
phase is obtained for −1.67t ! tσ ! −0.67t . Otherwise, a
strong topological band insulator (STI) with topological class
(1;000) is obtained.34–36 In the semimetal phase, at the
' point there is a quadratic band touching (protected by
cubic symmetry) at the Fermi energy (EF ). There are also
nondispersing bands at EF along the '-L lines; this feature
is a consequence of fine tuning; it can be removed by adding
a weak next-nearest-neighbor hopping (t ′).6 The low-energy
features of the band structure agree rather well with the
first-principles calculation for Y2Ir2O7,5,37 with the differences
that the quadratic '-point touching is below EF and the '-L
lines have a small dispersion.

Due to the Ising form of the coupling, the model with the
f -d exchange does not contain quantum fluctuations of the
f moments, and reduces to a free fermion problem for any
fixed configuration of localized moments. Finding the ground
state amounts to finding the minimum-energy configuration
of local moments. Moreover, certainly c1,c2 ≪ t , so the f -d
exchange can be treated perturbatively, and the leading effect
is to generate a RKKY exchange between the f moments. As
shown in Appendix A, we find that beyond fourth neighbors
the RKKY exchange becomes significantly smaller, so we
keep only up through fourth-neighbor exchange. Using the
Luttinger-Tizsa method,38 we find that the ground state of the
truncated RKKY exchange has a q = 0 magnetic order except
in the light shaded regions of Figs. 2(a) and 2(b). In the light
shaded regions, the hard-spin constraint cannot be satisfied,
and the nature of the ground state is not presently clear.
However, it is likely that the q = 0 magnetic order extends
at least somewhat into to the light shaded regions.

Without losing any generality, we can simply focus on
the case with c1 > 0 and define ( ≡ tan−1(c2/c1) and c ≡√

c2
1 + c2

2. As shown in Figs. 2(a) and 2(b), for most of
parameter space, “all-in all-out” magnetic order is favored,
where every tetrahedron of neighboring R sites has either
all τ z pointing in (i.e., toward the tetrahedron center), or all
pointing out. In the dark shaded region, q = 0 “two-in two-out”
magnetic order is obtained, where on every tetrahedron, two τ z

point in and two point out. (The q = 0 two-in two-out state also
has lowest energy, at least among q = 0 states, in the vertically
hatched regions.) Since no ferromagnetic state is observed
in any R2Ir2O7, we restrict our discussion to all-in all-out
state. Such order of the R subsystem also induces all-in all-out
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Magnetic translation of Pr magnetic state
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7

Neel state on square lattice

T̃ ⌘ T � t

3D analogue of the magnetic translation for Neel state
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Symmetry protected Dirac band touching
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FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7
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Band engineering by external magnetic field

1. Magnetic field primarily couples to Pr moments, modifies Pr spin state,  
    thereby indirectly influence the Ir band structure,  
2. Field immediately removes the Dirac band touching, 
3. Field induces Weyl nodes on the Ir band structure as well, anomalous Hall effect
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Γ̃ Z̃ Ã M̃ Γ̃ X̃ R̃
-1.0

-0.5

0.0

0.5

1.0

1.5

(c) (d)

x

y

z

b̃1

b̃2

b̃3

FIG. 2. (a) The Brillouin zone of the original pyrochlore
lattice. (b) Under the Q = 2⇡(001) “Melko-Hertog-Gingras”
spin state, the unit cell is enlarged. The plot is the magnetic
Brillouin zone corresponding to the enlarged unit cell. (c) The
spin configuration of the “Melko-Hertog-Gingras” spin state.
It is a 2-in 2-out spin wave with a finite ordering wavevector.
(d) The folded energy band without f -d exchange term shows
quadratic touching at � point. High symmetry momentum
lines are defined in (b) as red lines.

of various topological phases such as topological insula-
tor and Weyl semimetal. The Pr Ising magnetic order
breaks the time reversal symmetry, and the time rever-
sal symmetry breaking is transmitted to the Luttinger
semimetal of the Ir subsystem through the f -d exchange.
We here study the band structure reconstruction of the
Ir 5d electrons through the above mechanism.

A. Emergent Dirac band touchings

The Pr local moments were found to develop the
“Melko-Hertog-Gingras” spin ice state in the recent sam-
ples with di↵erent Ir and O contents from the old ones.
The “Melko-Hertog-Gingras” spin state breaks the time
reversal and the lattice translation by doubling the crys-
tal unit cell. Due to this interesting magnetic ordering
structure, the combination of the time reversal and cer-
tain lattice translations remains to be a symmetry of the
system. As we show below, this symmetry leads to a
remarkable band structure property of the Ir subsystem
after the band reconstruction.

The reconstructed band structure of the Ir conduction
electrons is governed by the Ir tight binding model and
the f -d exchange, H

tb

+H
fd

. As a comparison, we first
evaluate the Ir band structure in the magnetic Brillouin
zone corresponding to the doubled unit cell due to the
Pr Ising magnetic order. As we depict in Fig. 2, the Ir
conduction electron bands form a Luttinger semimetal
in the absence of the Pr magnetic order and give a

quadratic band touching at the �̃ point. Without losing
any generality, in Fig. 2(a) we choose the “Melko-Hertog-
Gingras” spin state of the Pr moments to have a prop-
agating wavevector Q = 2⇡(001) and the band structure
in Fig. 2(c) is plotted in the magnetic brioullin zone of
Fig. 2(b). Before the appearance of the Pr Ising mag-
netic order, the system has both time reversal and in-
version symmetries, and each band of the Ir electrons
has a two-fold degeneracy. The quadratic band touch-
ing at the � point results from the cubic symmetry. As
the Pr magnetic order appears, the Ir band structure
is immediately modified. Before we present the recon-
structed band structure in details, we first understand
the band structure properties from the symmetry point
of view. For our choice of the propagating wavevector,
the “Melko-Hertog-Gingras” spin state breaks the lat-
tice translations, t1 and t2. Here, t1 and t2 translate
the system by the lattice basis vector b1 ⌘ (0, 1/2, 1/2)
and b2 ⌘ (1/2, 0, 1/2), respectively. It turns out that, the
combination of time reversal and t1 or t2, i.e.,

T̃1 ⌘ t1 � T , T̃2 ⌘ t2 � T , (14)

remains to be a symmetry of the system after the devel-
opment of the Pr magnetic order. These two symmetries
of the “Melko-Hertog-Gingras” spin state are analogous
to the staggered time reversal for the antiferromagnetic
Néel state on a square lattice. Like the pure time rever-
sal, T̃1 and T̃2 are anti-unitary symmetries. Due to the
involvement of the lattice translations, T̃1 and T̃2 do not
lead to the Kramers degeneracy for all the time reversal
invariant momenta. It is ready to confirm that,

T̃1|�̃, "i = i|�̃, , #i, T̃2|�̃, "i = i|�̃, , #i, (15)

T̃1|M̃, "i = i|M̃, #i, T̃2|M̃ "i = �i|M̃, #i, (16)

T̃1|R̃, "i = �i|R̃, #i, T̃2|R̃, "i = �i|R̃, #i, (17)

and T̃ 2
1 = T̃ 2

2 = �1 for the momentum points at �, M
and R; and T̃ 2

1 = T̃ 2
2 = +1 for the momentum points at

X̃, Z̃ and Ã. This immediately indicates that there are
two-fold Kramers degeneracy at the �̃, M̃ and R̃ points
in the magnetic Brioullin zone, but not for the X̃, Z̃ and
Ã points. To confirm the above prediction, we carry out
the explicit calculation of the Ir band structure in the
presence of the Pr magnetic order. As we show in Fig. 3
for four specific choices of the f -d exchange couplings,
there exist emergent two-fold Kramers degeneracies with
Dirac band touchings at the �̃, M̃ and R̃ points.

B. Magnetic Weyl nodes

Besides the emergent and symmetry protected Dirac
band touchings at the �̃, M̃ and R̃ points, we discover the
presence of the Weyl nodes in the reconstructed Ir band
structure in Fig. 3. The reconstructed Ir band structure
is determined by the f -d exchange couplings. The actual
couplings of the f -d exchange in the material Pr2Ir2O7
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(a) (111) (b) (001) (c) (110)

FIG. 5. Phase diagram of the Pr local moments under the ex-
ternal magnetic fields along di↵erent directions. Here “1I3O”
refers to “1-in 3-out” spin configuration.

the Pr magnetic state and then indirectly influences the
Ir band structure through the f -d exchange interaction.
For the Pr subsystem, we consider the following Hamil-
tonian,

HPr = H̃
ex

+HZeeman, (18)

where the exchange part includes both the first neighbor
and third neigbhor Ising exchange interactions. Since
here the Pr local moment is set to be an Ising degree of
freedom, it is ready to obtain the magnetic phase dia-
gram of the Pr moments by comparing energies of candi-
date ground states. The magnetic phase diagram for the
Pr moments is depicted in Fig. 5, where three di↵erent
directions of magnetic fields are considered.

Here we focus on one specific field orientation,
n̂ ⌘ (1, 1, 1)/

p
3, and evaluate the feedback of the Pr

magnetic state on the Ir conduction electrons. Besides
the original “Melko-Hertog-Gingras” spin state, two ad-
ditional spin states are obtained. While the Ir band
structure in the presence of “Melko-Hertog-Gingras” spin
state stays the same as the ones in Sec. III under this ap-
proximation, this should be the caveat of the approxima-
tion of the Pr moment as the Ising spin that ignores the
quantum nature of the Pr moments. In reality, the mag-
netic field would create a finite polarization for the Pr
local moment and modifies the Ir band structure imme-
diately, even though the modification can be small. This
would allow us to move the positions of the Weyl nodes
in the momentum space. The other two spin configura-
tions of the Pr moments, that result from strong magnetic
field, have an ordering wavevectorQ = 0 and restores the
lattice translation symmetry. Hence, we expect two dif-
ferent Ir band structures for these spin configurations. In
Fig. 6, we depict the Ir band structures for specific choices
of the f -d exchanges with two Q = 0 spin configurations
from the phase diagram in Fig. 5(a). Our explicit cal-
culation of the Ir band structure in Fig. 6 shows that
the Dirac band touchings at the �̃(⌘ �), R̃(⌘ L) points
are absent in the magnetic field, and now the magnetic
unit cell is now identical to the crystal unit cell. More-
over, although the time reversal symmetry breaking is
transmited by the Pr spin configuration due to the ex-
ternal magnetic field, the overall e↵ect is that one applies
the time reversal symmetry breaking to the Ir Luttinger
semimetal. Since Luttinger semimetal can be regarded
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FIG. 6. Evolution of the Ir band structure as a function of
f -d exchange parameters for (a-d) “1-in 3-out” and (e-h) “2-
in 2-out” Pr magnetic states with Q = 0 from Fig. 5(a). The
dashed (solid) circle marks the usual (double) Weyl node. In
(a) and (b), one band from L to � is flat. This is accidental for
the nearest-neighbor hopping model and could be dispersive
if further neighbor hoppings are included14. In (g), the Weyl
nodes are actually at di↵erent energies. The energy unit in
the plots is t

id

. The dashed line refers to the Fermi energy.

as the parent state of the Weyl semimetal, it seems nat-
ural to expect the occurrence of the Weyl nodes. Indeed,
as we show in Fig. 7, we obtain the Weyl semimetal (or
Weyl metal) for a large parameter regime in the phase
diagram.

With large magnetic fields along (001) and (110) di-
rections, the Q = 0 state is obtained for the Pr moments
under this approximation (see Fig. 5(b) and (c)). This Pr
spin state is the same as one of the spin states when the
field is applied along (111) direction, and there it does
not bring di↵erent Ir band structures under this approx-
imation.

The Pr magnetic state under 
different direction magnetic field
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(a) Q = 0 (b) Q = 0

FIG. 7. Phase diagram for the Ir band structure in the pa-
rameter space of the f -d exchange couplings for di↵erent Pr
magnetic states from Fig. 5(a). The bold dots in the plots are
the parameter choices for Fig. 6.

V. DISCUSSION

We here summarize our understanding of the rich
physics in Pr2Ir2O7 and suggest future experiments to
further reveal its physics. In the previous field the-
ory work by one of the authors, we pointed out that
the Pr subsystem of Pr2Ir2O7 is proximate to a quan-
tum phase transition from the U(1) quantum spin liquid
to the magnetic order. The proximate magnetic order,
that is obtained from the condensation of the “magnetic
monopoles” in the U(1) quantum spin liquid, breaks the
lattice translation and is precisely the one that is ob-
served in the neutron scattering experiments. This the-
oretical work indicates that the paramagnetic state of
disordered Pr2Ir2O7 sample is a U(1) quantum spin liq-
uid. In the current paper, we focus on the magnetically
ordered Pr2Ir2O7 sample. We have developed a system-
atic modelling to understand the interplay between the
Ir conduction electrons and the Pr local moments for the
material Pr2Ir2O7. We use the existing experimental re-
sults, such as the Luttinger semimetal of the Ir conduc-
tion electrons and the “Melko-Hertog-Gingras” spin state
of the Pr local moments, as the input information for our
theoretical framework, and study the band reconstruc-
tion of the Ir conduction electrons in the presence of the
Pr magnetic order. We predict that the symmetry pro-
tected Dirac cones emerge at part of the time reversal
invariant momenta and the symmetry protection comes
from the magnetic translation symmetry of the “Melko-
Hertog-Gingras” spin state for the Pr subsystem. More-
over, there generically exist Weyl nodes of di↵erent kinds
both in the ordered Pr2Ir2O7 samples and Pr2Ir2O7 in
the external magnetic fields.

Based on our prediction about the non-trivial Ir band
structure after the reconstruction from the Pr magnetic
state, we here propose the future experiments. Cer-
tainly, the non-trivial features of the Ir band structure
in the ordered Pr2Ir2O7 sample (without the magnetic
field) would be best detected by the angle-resolved photo-
emission spectroscopy (ARPES). The optical measure-

ments can also be useful for the inter-band particle-hole
transition near the band touching points. The Dirac
band touchings at some of the time reversal invariant mo-
menta, that are protected by the magnetic translation of
the “Melko-Hertog-Gingras” spin state, would immedi-
ately disappear when the magnetic field is applied. This
prediction may be a sharp feature for the experimen-
tal confirmation. Besides the direct band structure mea-
surement, the magneto-transport can be a useful probe.
Due to the breaking of the cubic symmetry, the Weyl
semimetal that is induced by the external magnetic field
would show anomalous Hall e↵ect. Finally, we point out
the field-driven metal-insulator transition. Although it
was not emphasized in Sec. IV, the large portion of the
semimetal region in the phase diagram of Fig. 4 is con-
verted into the insulating region in the phase diagram
of Fig. 7(a). From the experience in Nd2Ir2O7 with the
dipole-octupole Nd3+ magnetic ions16,31,58,59, this field-
driven metal-insulator transition via the f -d exchange
could be the most visible experimental signature in the
transport measurement.
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Appendix A: Sublattices and crystal momenta for
Pr2Ir2O7

In Pr2Ir2O7, both Ir and Pr pyrochlore lattices are
composed of linked tetrahedra and can be viewed as FCC
lattice with primitive lattice vectors

b1 = (0,
1

2
,
1

2
), (A1)

b2 = (
1

2
, 0,

1

2
), (A2)

b3 = (
1

2
,
1

2
, 0). (A3)

After choosing one of the Ir site as reference point, the
reference positions of four Ir sublattices can be set to be

Ir1 = (0, 0, 0), Ir2 = (0,
1

4
,
1

4
), (A4)

111 magnetic field,  Ir band structure

Magnetic field modifies the Pr magnetic structure, thereby modifies the Ir band structure.  

We predict that external magnetic field destroy the symmetry protected Dirac band 
touching, and Weyl nodes still persist and give to anomalous Hall effect.
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Some Pr2Ir2O7  sample does order magnetically

4

FIG. 2. (color online) Temperature dependence of elastic neu-
tron scattering intensity of Pr2+xIr2−xO7−δ at the position of
the qm = (100) reflection. The intensity measured at T = 2 K
was subtracted as a background. Curve: Ising mean-field the-
ory fit to the data, which yields a transition temperature of
TM = 0.93(1) K. Inset: sketch of the 2-in/2-out magnetic
structure.

Refinement of the magnetic structure using the
propagation vector qm was carried out on the high-
temperature-subtracted T = 0.5 K data collected on
SPINS. Assuming an Ising anisotropy in the [111] di-
rection for Pr3+ moments, as is well established for
Pr2Ir2O7 [5], the best refinement was obtained using an
ordered spin-ice 2-in/2-out structure for moments on a
unit tetrahedron (inset of Fig. 2), yielding an on-site mo-
ment µneu = 1.7(1)µB per Pr3+ ion [32]. The ordered
spin-ice structure is predicted for long-range ordering of
Heisenberg spins on the pyrochlore lattice due to dipole-
dipole interactions [33], although in Pr2Ir2O7 the Ising
nature of the Pr3+ moments and the strong dependence
of the ordering on stoichiometry suggest RKKY interac-
tions also play an important role.
To better understand the spatial and temporal coher-

ence of magnetism below the critical temperature TM , we
now turn to high-resolution magnetic neutron scattering.
The momentum dependence of the high-temperature-
subtracted scattering data [Fig. 3(a)] reveals four mag-
netic Bragg peaks, indexed by (100), (110), (102) and
(112), that appear sharp in both momentum and energy.
A fit to the 0.3 K data integrated over |E| < 0.03 meV
[Fig. 3(b)] yields a Gaussian momentum resolution of
FWHM 0.023(1) Å−1 at the (111) nuclear Bragg peak.
Using a phenomenological expression for the momentum
dependence of the momentum resolution, we fit the data
to a set of Gaussian-convoluted Lorentzian profiles. This
yields the intrinsic half-width-half-maximum (HWHM)
widths κ for each magnetic Bragg peak in Fig. 3(b). From
this analysis we obtain a lower bound ξmin = 1/κmax ≈
170 Å for the spatial correlation length.
The energy dependence of the two lowest-angle mag-

netic Bragg peaks, measured with λ = 9.04 Å, is com-
pared to that of the resolution-limited nuclear Bragg
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FIG. 3. (color online) Elastic and quasielastic neutron scat-
tering intensity of Pr2+xIr2−xO7−δ measured at 0.3 K on
CNCS, T = 1.7 K data subtracted. See text for defini-
tions. (a) Scattering intensity as a function of momentum
and energy, λ = 7.26 Å. (b) Momentum dependence of the
energy-integrated (|E| < 0.03 meV) intensity at T = 0.3 K.
Curve: fit to set of Voigt profiles plus a polynomial back-
ground. (c) Energy dependence at three Bragg positions,
λ = 9.04 Å. Solid curves: fits to Voigt profiles. Dashed
curves: associated Lorentzian broadening.

peak (111) in Fig. 3(c). A fit of the (100) and (110)
magnetic Bragg peaks to a quasielastic Lorentzian pro-
file convoluted with a fixed Gaussian energy resolution
(FWHM γ = 17(1) µeV) yields intrinsic HWHM widths
Γ = 0.9(2) µeV and 0.5(2) µeV, respectively. From this
analysis we obtain an upper bound of ≈ 1 µeV on any
intrinsic broadening, indicating that the observed order
is static on a time scale that exceeds !/Γ ≈ 0.7 ns.
Overall our elastic and quasielastic neutron results re-

veal that our Pr2+xIr2−xO7−δ sample experiences a tran-
sition at TM = 0.93(1) K from a paramagnetic state
to long-range spin-ice order characterized by spatial and
temporal correlations that span at least 170 Å and 0.7 ns,
respectively.

D. Muon spin relaxation

The present µSR studies of Pr2Ir2O7, like those re-
ported previously [9, 12], were carried out using the di-
lution refrigerator at the M15 muon beam channel at

3

Scanning electron microscopy coupled with energy dis-
persive x-ray analysis was used to determine the compo-
sition, yielding x = 0.4(3). Despite the large error, due
to the polycrystalline form of the samples and the impu-
rity phases, these results are consistent with excess Pr.
Furthermore, the lattice constants of all polycrystalline
samples investigated are larger than those of single crys-
tals, which appear to grow with integer stoichiometry.
This increase is also consistent with excess Pr, because
the ionic radius of Pr3+ is greater than that of Ir4+. Thus
the stoichiometry of polycrystalline samples appears to
be Pr2.4Ir1.6O7−δ.

B. Specific heat

a. Experiment. For the specific heat measurement
polycrystalline Pr2+xIr2−xO7−δ and silver powder for
thermal contact were thoroughly mixed with approxi-
mately 1:1 mass ratio and pressed into a solid pellet.
The heat capacity of this sample was measured over the
temperature range 50 mK–4 K by the adiabatic relax-
ation method, using a Quantum Design Physical Prop-
erty Measurement System with the Dilution Refrigera-
tor option. The heat capacity of Pr2+xIr2−xO7−δ was
then obtained by subtracting the known silver contri-
bution [30]. The temperature dependence of the specific
heat Cp of Pr2+xIr2−xO7−δ in zero field is shown in Fig. 1.
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FIG. 1. (color online) Temperature dependence of the specific
heat of Pr2+xIr2−xO7−δ in zero field. Filled circles: experi-
mental total specific heat. Dashed curve: calculated specific
heat due to a reduced nuclear Schottky anomaly (see text).
Open circles: specific heat after subtracting the nuclear Schot-
tky anomaly from the total specific heat.

b. Analysis. The resulting Cp(T ) shows a sharp
peak at TM ≈ 0.8 K, with a characteristic λ shape indi-
cating a bulk phase transition. We associate this tran-
sition with the ordering of the Pr3+ moments. At lower
temperatures another peak in the specific heat is ob-
served, which is attributed to a 141Pr nuclear Schottky

anomaly associated with the hyperfine field Bhf due to
ordered Pr3+ ionic moments. Assuming Bhf is static,
the peak position TS = 0.1 K and amplitude Cp(TS) =
4.6 J/K mole Pr of the Schottky anomaly determine, re-
spectively, an ordered Pr3+ moment µS = 1.7(1)µB/Pr
ion on a fraction f = 0.65(1) of the Pr sites. This mo-
ment value is the same as found from elastic neutron
scattering (Sec. II C): µS = µneu = µPr. Such agreement
is difficult to understand if a fraction 1 − f of the Pr3+

ions are not ordered, since then the neutron scattering
intensity would be correspondingly decreased. The re-
duction of the Schottky anomaly amplitude but not the
ordered moment is discussed further in Sec. III A.

C. Elastic neutron scattering

a. Experiment. Powder elastic and inelastic neu-
tron scattering data were taken from the same
Pr2+xIr2−xO7−δ powder sample on the SPINS Triple
Axis Spectrometer at the NIST Center for Neutron Re-
search (NCNR) and on the Cold Neutron Chopper Spec-
trometer (CNCS) at Oak Ridge National Laboratory
(ORNL) [31]. In both experiments the powder sample
was enclosed in an aluminum can and cooled in 3He
cryostats to base temperatures of ∼0.3 K (ORNL) and
∼0.5 K (NCNR). The can was sealed under 4He atmo-
sphere at room temperature to provide thermal contact
for the powder. The can had an annular insert in or-
der to minimize the effects of the strong neutron ab-
sorption in Ir. On SPINS, measurements were taken
with a neutron wavelength of λ = 4.04 Å (Ei = Ef =
5 meV), with a cooled Be filter in the incoming beam
and 80′ collimation before and after the sample. On
CNCS, measurements were taken with two neutron wave-
lengths, λ = 7.26 Å (Ei = 1.55 meV) and λ = 9.04 Å
(Ei = 1.00 meV). The corresponding full-width-half-
maximum (FWHM) energy resolutions at the elastic line
were γ = 0.024(2) meV and γ = 0.017(1) meV for
λ = 7.26 Å with λ = 9.04 Å, respectively. The data
were normalized to absolute units using the intensity of
the (111) nuclear Bragg peak.
b. Analysis. The momentum dependence of the

elastic intensity was measured on SPINS over the tem-
perature range 0.5–2 K. The lattice constant of the cubic
space group was refined at 2 K to obtain a = 10.672(1) Å.
Extra Bragg peaks were observed below ∼0.9 K, and are
attributed to the ordering of the Pr3+ moments. Their
positions can be indexed using a magnetic propagation
wave vector qm = (100) in reciprocal lattice units of the
Fd3m space group. The temperature dependence of the
first peak, for which Q = |qm|, is shown in Fig. 2. The
order parameter increases continuously below TM , sug-
gesting a second-order phase transition. The data are,
however, also consistent with a heterogeneous distribu-
tion of first-order phase transitions. An Ising mean-field
theory provides an acceptable fit to the data (solid curve
in Fig. 2) with an ordering temperature TM = 0.93(1) K.
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Unstable Spin-Ice Order in the Stuffed Metallic Pyrochlore Pr2+xIr2−xO7−δ
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Specific heat, elastic neutron scattering, and muon spin rotation (µSR) experiments have been
carried out on a well-characterized sample of “stuffed” (Pr-rich) Pr2+xIr2−xO7−δ. Elastic neutron
scattering shows the onset of long-range spin-ice “2-in/2-out” magnetic order at TM = 0.93 K,
with an ordered moment of 1.7(1)µB/Pr ion at low temperatures. Approximate lower bounds on
the correlation length and correlation time in the ordered state are 170 Å and 0.7 ns, respectively.
µSR experiments yield an upper bound 2.6(7) mT on the local field B4f

loc at the muon site, which
is nearly two orders of magnitude smaller than the expected dipolar field for long-range spin-ice
ordering of 1.7µB moments (120–270 mT, depending on muon site). This shortfall is due in part
to splitting of the non-Kramers crystal-field ground-state doublets of near-neighbor Pr3+ ions by
the µ+-induced lattice distortion. For this to be the only effect, however, ∼160 Pr moments out
to a distance of ∼14 Å must be suppressed. An alternative scenario, which is consistent with the
observed reduced nuclear hyperfine Schottky anomaly in the specific heat, invokes slow correlated
Pr-moment fluctuations in the ordered state that average B4f

loc on the µSR time scale (∼10−7 s),
but are static on the time scale of the elastic neutron scattering experiments (∼10−9 s). In this
picture the dynamic muon relaxation suggests a Pr3+ 4f correlation time of a few nanoseconds,
which should be observable in a neutron spin echo experiment.

PACS numbers: 75.10.Jm, 75.25.-j, 75.40.Gb, 76.75.+i

I. INTRODUCTION

Geometrically frustrated systems, including pyrochlore
oxides, have been extensively studied because of possi-
ble novel phenomena arising from suppression of con-
ventional order. The series of rare-earth iridate py-
rochlores R2Ir2O7 [1] shows a nonmetal-metal transi-
tion with increasing rare-earth ionic radius [2]. The
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§ Present address: School of Physics and Astronomy, University of
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compounds with R = Yb, Ho, Dy, Tb, Gd, and Y
are nonmetallic, and those with R = Eu, Sm, and
Nd have metal-insulator transitions to antiferromagnetic
ground states [3]. Only Pr2Ir2O7, with the largest rare-
earth ionic radius among the known pyrochlore iridates,
remains metallic down to low temperatures (at least
50 mK). Novel ground states such as spin ices and spin
liquids have been proposed in the insulating pyrochlore
magnets [4].
In the metallic pyrochlore Pr2Ir2O7 the Pr3+ (J = 4)

crystalline electric field (CEF) ground state is a non-
Kramers doublet that is well isolated from higher CEF
levels and consists of almost pure |±4⟩ states with a
magnetic moment of ∼3.0µB [5]. The anisotropic field
dependence of the magnetization indicates the Pr3+ 4f
moments have Ising-like anisotropy along the ⟨111⟩ easy
directions. The dc susceptibility above 100 K yields an
antiferromagnetic Weiss temperature T ∗ = −20 K that
has been attributed to RKKY interactions between Pr3+

actually “Melko-Hertog-Gingras" spin state 
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“Magnetic monopole” condensation of the pyrochlore ice U(1) quantum spin liquid:
Application to Pr2Ir2O7 and Yb2Ti2O7
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Pyrochlore iridates and pyrochlore ices are two families of materials where novel quantum phenomena
are intertwined with strong spin-orbit coupling, substantial electron correlation, and geometrical frustration.
Motivated by the puzzling experiments on two pyrochlore systems Pr2Ir2O7 and Yb2Ti2O7, we study the proximate
Ising orders and the quantum phase transition out of quantum spin ice U(1) quantum spin liquid (QSL). We apply
the electromagnetic duality of the compact quantum electrodynamics to analyze the condensation of the “magnetic
monopoles” in the U(1) QSL. The monopole condensation naturally and necessarily leads to the Ising orders
that generically break the lattice translation symmetry. We demonstrate that the antiferromagnetic Ising order
with the ordering wave vector Q = 2π (001) is proximate to the U(1) QSL while the ferromagnetic Ising state
with Q = (000) is not proximate to the U(1) QSL. This implies that if there exists a direct transition from the
U(1) QSL to the ferromagnetic Ising order, the transition must be strongly first order. We apply the monopole
condensation to explain the magnetic orders and the transitions in Pr2Ir2O7 and Yb2Ti2O7.

DOI: 10.1103/PhysRevB.94.205107

I. INTRODUCTION

Pyrochlore iridates (R2Ir2O7) [1,2] have stimulated a wide
interest in recent years, and many interesting results, including
topological Mott insulator [3], quadratic band touching [4],
Weyl semimetal [5–8], non-Fermi liquid [9], and so on,
have been proposed. Among these materials, Pr2Ir2O7 is of
particular interest. In Pr2Ir2O7, the Ir system remains metallic
at low temperatures [10]. More intriguingly, no magnetic
order was found except a partial spin freezing of the Pr local
moments due to disorder at very low temperatures in the
early experiments [10–12]. A recent experiment on different
Pr2Ir2O7 samples, however, discovered an antiferromagnetic
long-range Ising order for the Pr moments [13]. While most
theoretical works on pyrochlore iridates focused on the Ir
pyrochlores and explored the interplay between the electron
correlation and the strong spin-orbit coupling of the Ir 5d
electrons [3,14], very few works considered the influence and
the physics of the local moments from the rare-earth sites
that also form a pyrochlore lattice [7,15–17]. In this paper,
we address the local moment physics in Pr2Ir2O7 and propose
that the disordered state of the Pr moments is in the quantum
spin ice (QSI) U(1) quantum spin liquid state. We explore
the proximate Ising order and the confinement transition of
the QSI U(1) quantum spin liquid (QSL) for the Pr local
moments.

The QSI U(1) QSL is an exotic quantum phase of matter and
is described by emergent compact quantum electrodynamics
or, equivalently, by the compact U(1) lattice gauge theory
(LGT) with a gapless U(1) gauge photon and deconfined
spinon excitations [18–20]. Recently, several rare-earth py-
rochlores with 4f electron local moments and systems
alike are proposed as candidates for the QSI U(1) QSLs
[21–31]. In these systems, the predominant antiferromagnetic

*Corresponding author: gangchen.physics@gmail.com

exchange interaction between the Ising components of the
local moments favors an extensively degenerate “2-in–2-out”
spin ice manifold on the pyrochlore lattice [19,21,32–36]. The
transverse spin interaction allows the system to tunnel quantum
mechanically within the ice manifold, giving rise to a U(1)
QSL ground state [35–40].

Like Pr2Ir2O7, the experimental results on the QSI U(1)
QSL candidate materials depend sensitively on the stoichiom-
etry and the sample preparation [21]. In particular, for the
pyrochlore ice system Yb2Ti2O7, while some samples remain
disordered down to the lowest temperature and the neutron
scattering shows a diffusive scattering [22], others develop a
ferromagnetic order [24,41–43]. This suggests that both the Yb
moments in Yb2Ti2O7 and the Pr moments in Pr2Ir2O7 could
be located near a phase transition between a disordered state
[which we propose to be a QSI U(1) QSL] and the magnetic
orders.

FIG. 1. The monopole condensation transition from the QSI U(1)
QSL to the proximate antiferromagnetic Ising order. The dashed
(solid) line represents a thermal crossover (transition). “g” is a tuning
parameter that corresponds to the mass of “magnetic monopole” (see
the discussion in the main text). The inset Ising order has an ordering
wave vector Q = 2π (001). The Pr moment of Pr2Ir2O7 is likely to be
close to this quantum critical point (QCP).

2469-9950/2016/94(20)/205107(14) 205107-1 ©2016 American Physical Society
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Microscopics: different samples have different Fermi energy, induces  
different RKKY interaction between Pr local moments.

The Pr subsystem is proximate to a quantum phase transition  
from pyrochlore ice U(1) QSL to Ising magnetic order.
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“MAGNETIC MONOPOLE” CONDENSATION OF THE . . . PHYSICAL REVIEW B 94, 205107 (2016)

FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (J⃗) on the
hexagon of the dual diamond lattice gives rise to the electric field (E⃗)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈!∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “!∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “!∗

d .” Here, the serif symbols r,r′

label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+ϵr e0

= E0
r,r+ϵr e1

= ϵr , (9)

E0
r,r+ϵr e2

= E0
r,r+ϵr e3

= 0, (10)

where eµ (µ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

⟨rr′⟩
K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link ⟨rr′⟩ of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+ϵr eµ
= E0

r,r+ϵr eµ
− ϵr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa
and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

r,r′

K cos Brr′

−
∑

⟨r,r′⟩
t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±ϵr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eµ

= ξµ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eµ (µ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑

⟨r,r′⟩
t e−i2π ārr′ %

†
r%r′ − µ

∑

r

%
†
r%r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
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FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (J⃗) on the
hexagon of the dual diamond lattice gives rise to the electric field (E⃗)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈!∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “!∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “!∗

d .” Here, the serif symbols r,r′

label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+ϵr e0

= E0
r,r+ϵr e1

= ϵr , (9)

E0
r,r+ϵr e2

= E0
r,r+ϵr e3

= 0, (10)

where eµ (µ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

⟨rr′⟩
K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link ⟨rr′⟩ of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+ϵr eµ
= E0

r,r+ϵr eµ
− ϵr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa
and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

r,r′

K cos Brr′

−
∑

⟨r,r′⟩
t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±ϵr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eµ

= ξµ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eµ (µ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑

⟨r,r′⟩
t e−i2π ārr′ %

†
r%r′ − µ

∑

r

%
†
r%r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (J⃗) on the
hexagon of the dual diamond lattice gives rise to the electric field (E⃗)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈!∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “!∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “!∗

d .” Here, the serif symbols r,r′

label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+ϵr e0

= E0
r,r+ϵr e1

= ϵr , (9)

E0
r,r+ϵr e2

= E0
r,r+ϵr e3

= 0, (10)

where eµ (µ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

⟨rr′⟩
K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link ⟨rr′⟩ of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+ϵr eµ
= E0

r,r+ϵr eµ
− ϵr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa
and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

r,r′

K cos Brr′

−
∑

⟨r,r′⟩
t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±ϵr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eµ

= ξµ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eµ (µ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑

⟨r,r′⟩
t e−i2π ārr′ %

†
r%r′ − µ

∑

r

%
†
r%r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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FIG. 3. The dual diamond lattice and the assignment of the gauge
potential e−i2π ārr′ on the nearest-neighbor links.

where we have introduced "r ≡ eiθr (with |"r| ≡ 1). The
dispersion of the lowest monopole band is given by

$k = −t[4 + 2(3 + cxcy − cxcz + cycz)1/2]1/2 − µ, (15)

where cµ = cos kµ (µ = x,y,z). The degenerate minima of
the lowest band form several lines of momentum points in the
Brillouin zone. One such degenerate line is along the [001]
direction of the Brillouin zone and the minimum energy is
−2

√
2t − µ. Other degenerate lines are readily obtained by

the symmetry operations. The line degeneracy of the band
minima is a consequence of the background flux that frustrates
the monopole hopping.

In the U(1) QSL phase, the monopole is massive and has a
mass gap −2

√
2t − µ. When −2

√
2t − µ < 0, the monopole

is condensed and the system is in the confinement phase. Since
the lowest monopole dispersion has line degeneracies, we need
to break the degeneracy for the monopole condensation. It
is expected that the further neighbor monopole hoppings or
monopole interactions should lift these degeneracies.

Due to the background flux, the lattice symmetry in Hm

is realized projectively, known as projective symmetry group
(PSG) [51]. We use PSG to generate the further-neighbor
monopole hoppings, but do not find obvious degeneracy
breaking even after including the fifth-neighbor monopole
hoppings in Appendix B 2. It is possible that this degeneracy
may be protected by the PSG. However, the line degeneracy
immediately gets lifted if we impose the unimodular constraint
on the monopole field (|"r| = |eiθr | = 1) after the monopole
mass gap vanishes. Physically, the unimodular constraint
originates from the repulsive interaction between monopoles
that suppresses the density fluctuation of the monopoles.
For the degenerate minima along the [001] direction, the
unimodular requirement selects two equivalent momenta

k1 = (0,0,π ), k2 = (0,0,−π ), (16)

and the corresponding monopole configurations are

r ∈ I, ϕ1(r) =
( 1+i

2 + 1−i
2 ei2πx

)
eiπz,

r ∈ II, ϕ1(r) = eiπz,
(17)

r ∈ I, ϕ2(r) =
( 1−i

2 + 1+i
2 ei2πx

)
e−iπz,

r ∈ II, ϕ2(r) = e−iπz,
(18)

where ϕa refers to the monopole configuration at the mo-
mentum ka . Here, ϕ1(r) and ϕ2(r) are time-reversal part-

ners. This is demanded by the time-reversal invariance of
the monopole hopping Hamiltonian. From ϕ1(r) and ϕ2(r),
we implement the PSG transformations and generate in
total 12 symmetry-equivalent monopole configurations (see
Appendix C 1).

After the unimodular constraint is enforced, the monopoles
are condensed at only one of the 12 equivalent solutions, the
spinons are confined, and the system develops an Ising order.
Although the Ising order is induced by the monopole conden-
sation, as monopoles are emergent particles and are not gauge
invariant, the physical property of the monopole condensate is
encoded in the gauge-invariant monopole bilinears. We here
use symmetry to establish the relation between the spin density
τ z and the monopole bilinears. The candidate monopole
bilinears are the monopole density and the monopole current.
Although the monopole density ("†") transforms in the same
way as the spin density (τ z) under the space-group symmetry,
they behave oppositely under the time reversal.

As for the monopole current, from the Maxwell’s equations,
the loop integral of monopole current is the electric flux
through the plaquette enclosed by the loop [see Fig. 2(b)]
[49,50]. We have

τ z
i ∼ Er r ′ ∼

∑

rr′∈!∗
d

Jrr′ ,! (19)

where the pyrochlore site i is the center of the elementary
hexagon !∗

d on the dual diamond lattice, and

Jrr′ ≡ i[⟨"†
r⟩⟨"r′ ⟩e−iārr′ − H.c.] (20)

defines the monopole current on the bond rr′. Here, ⟨"r⟩ is
the expectation value of the monopole field that is taken with
respect to one of the 12 equivalent monopole configurations.
In the inset of Fig. 1, we depict the spin density distribution of
the monopole condensate at k1. The resulting Ising order in the
confinement phase is an antiferromagnetic state with an order-
ing wave vector Q = 2π (001) and is in the “2-in–2-out” ice
manifold. This Ising order breaks the translation symmetry by
doubling the crystal unit cell. Other monopole configurations
give the spin density distributions that are equivalent to the
Q = 2π (001) Ising order under the space-group symmetry.

The translation symmetry breaking of the proximate Ising
order is a generic phenomenon. The background gauge
flux, due to the “2-in–2-out” rule, shifts the monopole
band minimum to finite momenta. Once the monopole is
condensed at the finite momentum, the resulting proximate
Ising order necessarily breaks the translation symmetry. If
the ferromagnetic Ising ordered phase with Q = (000) in
Fig. 2(a), that preserves the translation symmetry, borders
with the QSI U(1) QSL, although this Ising state is still in
the ice manifold, the transition from it to the U(1) QSL must
be strongly first order. In Appendix D, we propose simple
spin models without a sign problem for quantum Monte Carlo
simulation. The models can realize both the ferromagnetic and
antiferromagnetic Ising orders and allow the careful numerical
study of the phase transitions out of the QSI U(1) QSL.
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Let’s forget Pr2Ir2O7. Now given a U(1) QSL, what should we measure?

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (J⃗) on the
hexagon of the dual diamond lattice gives rise to the electric field (E⃗)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈!∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “!∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “!∗

d .” Here, the serif symbols r,r′

label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+ϵr e0

= E0
r,r+ϵr e1

= ϵr , (9)

E0
r,r+ϵr e2

= E0
r,r+ϵr e3

= 0, (10)

where eµ (µ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

⟨rr′⟩
K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link ⟨rr′⟩ of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+ϵr eµ
= E0

r,r+ϵr eµ
− ϵr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa
and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

r,r′

K cos Brr′

−
∑

⟨r,r′⟩
t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±ϵr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eµ

= ξµ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eµ (µ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑

⟨r,r′⟩
t e−i2π ārr′ %

†
r%r′ − µ

∑

r

%
†
r%r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain
the following relations for the crystal momentum of these
states,

q
B

= q
A

+ 2⇡(100), (17)

q
C

= q
A

+ 2⇡(010), (18)

q
D

= q
A

+ 2⇡(001). (19)

Since these scattering states have the same energy, we
thus conclude that the “monopole continuum” of the two
“monopole” excitations have the following enlarged spec-
tral periodicity such that

L

m

(q) = L

m

(q+ 2⇡(100))

= L

m

(q+ 2⇡(010))

= L

m

(q+ 2⇡(001)), (20)

where L

m

(q) is the lower excitation edge of the
“monopole” continuum for a given momentum q because
there is a finite energy cost to excite two “monopoles”.
This enhanced spectral periodicity also appears in the
upper excitation edges of the “monopole” continuum.
There is no symmetry breaking nor any static magnetic
order in the system, but the spectral periodicity is en-
hanced. The spectrum is invariant if one translates
the spectrum by 2⇡(100), 2⇡(010), or 2⇡(001). This
is very di↵erent from the conventional case where the
spectral periodicity is given by the reciprocal lattice vec-
tors, 2⇡(1̄11), 2⇡(11̄1) and 2⇡(111̄), for the FCC bravais
lattice. Therefore, the spectral periodicity enhancement
with a fold Brillouin zone is a strong indication of the
fractionalization in the system.

V. THE “MONOPOLE” MEAN-FIELD THEORY
AND THE CONTINUUM

To explicitly compute the “monopole” dynamics
and demonstrate the spectral periodicity enhancement,
we carry out the mean-field approximation for the
“monopole”-gauge coupling. To capture the ⇡ back-
ground flux, we set the dual gauge potential as6,13

2⇡h↵R,R+eµi = ⇠
µ

(Q · R), (21)

where R 2 I sublattice of the dual diamond lattice, and
R+ e

µ

2 II sublattice of the dual diamond lattice with
e
µ

(µ = 0, 1, 2, 3) the nearest-neighbor vectors connecting
two sublattices. Here e

0

= 1

4

(111), e
1
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4

(11̄1̄), e
2

=
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(1̄11̄), e
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= 1
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(1̄1̄1), (⇠
0

, ⇠
1
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2
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) = (0, 1, 1, 0) and Q =
2⇡(100).

Under this above gauge fixing, we have the “monopole”
mean-field Hamiltonian,

H
MFT

= �t
X

hRR0i

e�i2⇡h↵RR0 i�†
R�R0 � µ

X

R

�†
R�R,(22)

where the “monopole” spectrum is found to be
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FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.

where C

µ

= cos q
µ

(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.
From the momentum and the energy conservation, we
have for the two “monopoles”

q = q
1

+ q
2

+Q, (23)

E = ⌦i1
j1
(q

1

) + ⌦i2
j2
(q

2

), (24)

where q and E are the momentum and energy transfer
of the neutrons, q

1

and q
2

are the crystal momenta of
the two “monopoles”, and the o↵set Q arises from the
dual gauge link that is present in the “monopole” cur-
rent. The minimum (maximum) of the energy E is ob-
tained when i

1

= i
2

= � and j
1

= j
2

= + (i
1

= i
2

= +
and j

1

= j
2

= +). In Fig. 2, we depict the upper and
lower excitation edges of the “monopole” continuum for
a specific choice of “monopole” hopping and chemical po-
tential. Clearly, the spectral periodicity is enhanced in
both plots.
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FIG. 2. (Color online.) (a) The upper excitation edge of the
“monopole” continuum. (b) The lower excitation edge of the
“monopole” continuum. For both figures, we set µ = �3t, and
the � points are the Brillouin zone centers. The important
information of the plot is not the dispersion itself, instead is
the enhanced spectral periodicity as if the Brillouin zone is
folded. Here �0�1 = 2⇡(1̄11) and �0�2 = 2⇡(11̄1) are the
reciprocal lattice vectors.
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(µ = x, y, z). There are four
“monopole” bands: two arise from the two sublattices of
the dual diamond lattice, and two arise from the gauge
fixing that doubles the unit cell.

As we point out in Sec. IV, the “monopole” continuum
is contained in the “monopole” current correlation. Here
we are interested in the spectral structure of the upper
and lower excitation edges of the “monopole” continuum.
From the momentum and the energy conservation, we
have for the two “monopoles”

q = q
1

+ q
2

+Q, (23)

E = ⌦i1
j1
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1

) + ⌦i2
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2
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where q and E are the momentum and energy transfer
of the neutrons, q

1

and q
2

are the crystal momenta of
the two “monopoles”, and the o↵set Q arises from the
dual gauge link that is present in the “monopole” cur-
rent. The minimum (maximum) of the energy E is ob-
tained when i

1

= i
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= � and j
1
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1
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= +
and j

1
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= +). In Fig. 2, we depict the upper and
lower excitation edges of the “monopole” continuum for
a specific choice of “monopole” hopping and chemical po-
tential. Clearly, the spectral periodicity is enhanced in
both plots.

General connection was first understood by Xiao-Gang Wen 2001,2002.  
Essin, Hermele, 2015, GC PRB 96, 195127 (2017)

Upper excitation edge of 
monopole continuum

Lower excitation edge of 
monopole continuum

Projective realization of translation symmetry for monopoles 
leads to enhanced spectral periodicity of monopole continuum.
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Figure 2 | Energy spectra at fixed positions in momentum space. We present constant-momentum cuts 

through our time-of-flight (ToF) inelastic neutron scattering (INS) data measured at a temperature of 0.05 K. The 

integration areas in momentum space are indicated with two vectors, h = [H,H,0] and l = [0,0,L], which 

correspond to the rectangles drawn on Fig. 1c. Data shown on panel a result from a polarized INS experiment 

realized on the instrument HYSPEC. We show the spin flip and non-spin flip scattering measured with neutrons 

that were polarized in the horizontal plane of the instrument, X-SF and X-SNF, respectively. The X-SF scattering 

is a purely magnetic signal. The data on panel a demonstrate the existence of elastic and inelastic (over the 

entire range of accessible energy transfers E) signals that are, unambiguously, magnetic scattering. On panel b 

we show the energy cuts through the unpolarized INS data measured on IN5 and shown on Fig. 1. The 

integration in two specific areas of reciprocal space, where the intense inelastic part of the inelastic spectrum 

centered on E = 0.2 meV is either dominant (blue symbols) or negligible (red symbols), evidences a continuum 

of inelastic scattering attributed to spinon excitations. The black symbols on panel b show an energy spectrum 

through data collected at a temperature of 50 K, scaled by the ratio of the Bose factors at 50 K and 0.05 K, 

which gives an estimate of the inelastic background at 0.05 K. 

 

 

 

   In fact, continuum has been observed in Pr2Hf2O7  
         

( R. Sibille, et al, arXiv 1706.03604). 

Gang Chen’s theory group 

Gang Chen’s theory group



Further suggestions for experiments 1

GC, PRB 96, 195127 (2017) 
Thermal transport in spin ice, Yuji Matsuda, 2016
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Further suggestions for experiments 2

GC, PRB 96, 195127 (2017)

The weak magnetic field polarizes tau^z slightly, and thus modifies  
the background electric field distribution. This further modulates  
monopole band structure, creating “Hofstadter” monopole band,  
which may be detectable in inelastic neutron.

HZeeman = ~B ·
X

i

⌧zi ẑi

“MAGNETIC MONOPOLE” CONDENSATION OF THE . . . PHYSICAL REVIEW B 94, 205107 (2016)

FIG. 2. (a) The Q = (000) ferromagnetic state. (b) The diamond
lattice (in thin black) and the dual diamond lattice (in thick blue). The
link of the diamond lattice goes through the center of the hexagon
of the dual diamond lattice. The monopole loop current (J⃗) on the
hexagon of the dual diamond lattice gives rise to the electric field (E⃗)
on the link of the diamond lattice via the right hand’s rule.

HLGT, that captures the universal properties of the U(1) QSI
QSL [18] is the starting point of our analysis below.

“Magnetic monopoles” are topological defects of the U(1)
gauge field and carry the magnetic charge. To describe the
magnetic transition from the U(1) QSL via the monopole
condensation, it is not so convenient to work with the field
variables in Eq. (7) because the monopole variable is not
explicit [18]. Instead, we apply the electromagnetic duality
[18,46–50] to reformulate the compact U(1) LGT Hamiltonian
and make the monopole explicit. We first introduce an integer-
valued dual U(1) gauge field arr′ that lives on the link of the
dual diamond lattice (see Fig. 2) such that

curl a ≡
∑

rr′∈!∗
d

arr′ ≡ Er r ′ − E0
r r ′ , (8)

where “!∗
d” refers to the elementary hexagon on the dual

diamond lattice and the electric field vector Er r ′ penetrates
through the center of “!∗

d .” Here, the serif symbols r,r′

label the dual diamond lattice sites. We have introduced a
background electric field distribution E0

r r ′ that takes care of
the background charge distribution due to the “2-in–2-out”
ice rule. Each state in the spin ice manifold corresponds to a
background electric field distribution. For our convenience, we
choose a simple electric field configuration that corresponds
to a uniform “2-in–2-out” spin ice state (see Fig. 2) with

E0
r,r+ϵr e0

= E0
r,r+ϵr e1

= ϵr , (9)

E0
r,r+ϵr e2

= E0
r,r+ϵr e3

= 0, (10)

where eµ (µ = 0,1,2,3) are the four vectors that connect the I
sublattice sites of the diamond lattice to their nearest neighbors.
In terms of the dual gauge variables, HLGT is transformed into

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

⟨rr′⟩
K cos Brr′ , (11)

where we have explicitly replaced curl A with the magnetic
field vector Brr′ that lives on the link ⟨rr′⟩ of the dual
diamond lattice and is conjugate to the dual gauge field a with
[Brr′ ,arr′ ] = i. In Eq. (11), we have introduced the electric field

Ē that combines both the background electric field distribution
E0 and the offset in Eq. (7) with

Ēr,r+ϵr eµ
= E0

r,r+ϵr eµ
− ϵr

2
. (12)

Since the dual gauge field a is integer valued, the dual
Hamiltonian Hdual is difficult to work with. Moreover, the
“magnetic monopole” is implicit in the dual gauge field
configuration. To make the monopole explicit, we follow the
standard procedure [18,49,50] to first relax the integer-valued
constraint of the dual gauge field by introducing cos 2πa
and then insert the monopole operators. The resulting dual
theory is described by the “magnetic monopoles” minimally
coupled with the dual U(1) gauge field on the dual diamond
lattice

Hdual =
∑

!∗
d

U

2
(curl a − Ē)2 −

∑

r,r′

K cos Brr′

−
∑

⟨r,r′⟩
t cos(θr − θr′ + 2πarr′), (13)

where the rotor variable e−iθr (eiθr ) creates (annihilates) the
“magnetic monopole” at the dual lattice site r and t > 0.

III. MONOPOLE CONDENSATION AND PROXIMATE
ISING ORDER

In the dual gauge Hamiltonian of Eq. (13), as the monopole
hopping increases, the monopole gap decreases. When the
monopole gap is closed, the monopole is condensed. In the
confinement phase, the E field develops a static distribution,
the B field (the a field) is strongly (weakly) fluctuating.
Therefore, it is legitimate to first ignore the a field fluctuation,
then study the monopole band structure, and condense the
monopoles at the minimum of the monopole band for the
confinement phase [49,50]. In such a dual gauge mean-field-
like treatment, the “U” term in the Hamiltonian enforces
curl ā = Ē, which is solved to fix the gauge for the dual
gauge field. Here, we set the dual gauge field to its static
component ā. The electric field distribution Ē turns into the
dual gauge flux experienced by the “magnetic monopoles” in
the dual formulation. As Ē takes ±ϵr/2, it leads to π flux
of the dual gauge field through each elementary hexagon on
the dual diamond lattice. As it is shown in Fig. 3, we fix
the gauge by setting2ār,r+eµ

= ξµ(q · r), where r ∈ I sublattice
of the dual diamond lattice, eµ (µ = 0,1,2,3) refer to the
four nearest-neighbor vectors of the dual diamond lattice (see
Appendix A 1), (ξ0,ξ1,ξ2,ξ3) = (0110), and q = 2π (100).

In the presence of the background flux, the monopole
nearest-neighbor hopping model on the dual diamond lattice
is given by

Hm = −
∑

⟨r,r′⟩
t e−i2π ārr′ %

†
r%r′ − µ

∑

r

%
†
r%r, (14)

2The gauge choice here is identical to the one used in Ref. [39] for
a different problem.
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FIG. 1. (Color online.) (a) The diamond lattice (in thin line) and its dual diamond lattice (in thick line). The physical spin
is located in the mid of the link on the diamond lattice. The spinons (“monopoles”) hop on the diamond (dual diamond)
lattice. The colored dots correspond to the tetrahedral centers of the pyrochlore lattice. (b) Every buckled hexagon on the
dual diamond lattice traps a “⇡” background dual U(1) flux that is experienced by the “monopole” hopping. “I” and “II” refer
to the two sublattices of the dual diamond lattice. In (c) and (d), the background flux trapped in the (dashed) parallelogram
is identical to the flux in the (colored) buckled hexagon.

correlation contains the contribution of the “monopole”
current correlator.

The above analysis does not provide the information
about the spectral weight of the “monopole” continuum
in the Sz correlation. It was pointed out that increasing
further neighbor Sz-Sz interaction could drive a quantum
phase transition from the U(1) QSL to the Ising order via
the “monopole” condensation13. We thus think that the
systems with extended Sz coupling may have more visible
“monopole” continuum in the INS result.

IV. THE SPECTRAL STRUCTURE OF THE
“MONOPOLE” CONTINUUM

We realize that the physical spin operator, Sz, cre-
ates one “monopole”-“anti-monopole” pair. The dy-
namic spin structure factor of the non-Kramers doublet
would contain a broad “monopole” continuum due to this
“fractionalization” of the spin into the two “monopoles”.
Here we are interested in the generic and unique spectral
structure rather than some specific details that can be
used to uniquely identify the “monopole” continuum in
the INS results.

The “magnetic monopole” hops on the dual diamond
lattice and experiences the dual U(1) gauge flux. The
background gauge flux thus modulates the “monopole”
dynamics. Due to the electric field o↵set, ⌘r/2, that origi-
nates fundamentally from the e↵ective spin-1/2 nature of
the local moment, there exists a background gauge flux
on each hexagon plaquette of the dual diamond lattice
with13

2⇡hcurl↵i = ⇡⌘r ⌘ ⇡ (mod 2⇡). (11)

To see the e↵ect of the background dual gauge flux,
we introduce the translation operator for the “magnetic
monopole”, Tm

µ

, that translates the “monopole” by a ba-
sis lattice vector a

µ

of the dual diamond lattice, where

µ = 1, 2, 3, and a
1

= 1

2

(011), a
2

= 1

2

(101), a
3

= 1

2

(110).
We use the cubic coordinate system and set the lat-
tice constant to unity throughout the paper. As the
“magnetic monopole” hops successively through the par-
allelogram defined by Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 with µ 6= ⌫,
the “monopole” experiences an identical Aharonov-Bohm
flux as the background flux trapped in the hexagon pla-
quette of the dual diamond lattice (see Fig. 1). This is
because of the lattice geometry of the diamond lattice.
Thus, we have the following algebraic relation

Tm

µ

Tm

⌫

(Tm

µ

)�1(Tm

⌫

)�1 = ei⇡ = �1. (12)

This algebraic relation means the lattice translation
symmetry is realized projectively for the “magnetic
monopoles”. The translation symmetry fractionalization
for the “magnetic monopole” is intimately connected to
the spectral periodicity of the “monopole continuum”
54,55,59.
To demonstrate the enhanced spectral periodicity

of the “monopole” continuum, we introduce a 2-
“monopole” scattering state |Ai ⌘ |q

A

; z
A

i, where q
A

is
the total crystal momentum of this state and z

A

repre-
sents the remaining quantum number that specifies the
state54. The translation symmetry fractionalization acts
on the individual “monopole”, such that

T
µ

|Ai ⌘ Tm

µ

(1)Tm

µ

(2)|Ai, (13)

where T
µ

is the translation operator for the system, and
“1” and “2” refer to the two “monopoles” of this state.
By translating one “monopole” by the basis lattice vec-
tor a

µ

, we obtain another three 2-“monopole” scattering
states,

|Bi = Tm

1

(1)|Ai, (14)

|Ci = Tm

2

(1)|Ai, (15)

|Di = Tm

3

(1)|Ai. (16)

It is ready to compare the translation eigenvalues of
these four states by making use of Eq. (12) and obtain

E ⇠ ⌧z
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Summary

1. We point out the Pr local moment is proximate to a quantum phase transition from  
U(1) QSL to the Ising magnetic order in Pr2Ir2O7.  

2.  We point out the presence of monopole continuum in inelastic neutron scattering,  
    and predict the enhanced spectral periodicity.  

3.  We predict the band structure reconstruction of the Ir conduction electrons by  
     the Pr magnetic order. We predict symmetry protected Dirac band touching  
     and topologically protected Weyl nodes. 

4. This work points out the interesting interplay of conduction electron and local moments  
    in hybrid quantum materials.


