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Part 1. Theory of cluster Mott insulators



Outline of Part 1

• A 2D cluster magnet: LiZn2Mo3O8 

• The theory of cluster Mott insulator in 2D 

• Summary



T. McQueen

One surprising experiment on 
LiZn2Mo3O8

2.  Triangular lattice Hubbard model at 1/2 filling

1. Triangular lattice Heisenberg model 
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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• Why unusual? neither model works.

• Further low-temperature experiments: NMR, muSR,  
neutron scattering, proposed as a spin liquid candidate. 
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Organic spin liquids?

formation of a band with a Fermi surface possibly attributed
to spinons.
Samples were prepared by the electrochemical oxidation

of H2Cat-EDT-TTF molecules in the presence of a base
[30,36]. For poly-crystalline samples of ∼16 mg, we
measured the static magnetic susceptibility at 1 T employ-
ing a magnetic property measurement system (Quantum
Design) in the temperature region from 2 to 300 K. The
diamagnetic contribution was corrected using Pascal’s law.
The magnetic properties of three distinct crystals (#1, 2,
and 3) below 2 K were probed by torque magnetometry,
adopting a microcantilever [37]. The high sensitivity of this
method allowed the detection of a considerably weak signal
of the paramagnetic torque on a single crystal with typical
mass less than 0.7 μg. All the torque measurements were
made using a 20 T superconducting magnet with a dilution
refrigerator down to T ¼ 50 mK at Tsukuba Magnet
Laboratories, NIMS.
Temperature dependence of the static magnetic suscep-

tibility χðTÞ is presented in Fig. 2. As temperature
decreases, χðTÞ monotonically increases and takes a broad
maximum around T ∼ 20 K. On further cooling, although
χðTÞ turns to decrease rapidly, there is no clear evidence of
a magnetic transition down to 2 K. Instead, the maximum
of χ observed at T ∼ 20 K points to the development
of an antiferromagnetic correlation without any LRMO.
The entire temperature dependence of χ is roughly
described by the S ¼ 1=2 Heisenberg antiferromagnetic
model of an isotropic triangular lattice [38,39], with an

antiferromagnetic exchange-coupling constant J=kB∼
80–100 K. This result indicates that the spin frustration
derived from the geometry of the triangle is inherent in the
system, and profoundly affects the magnetic properties.
To shed light on the magnetic properties at lower

temperatures, we measured the magnetic torque. As the
magnetic torque only detects the anisotropic susceptibility
in principle, the isotropic contribution from impurity spins
is naturally eliminated, providing us with the intrinsic low-
temperature magnetic properties. Figure 3(a) and 3(b)
shows the magnetic torque as a function of the field angle
τðθÞ measured at T ¼ 0.4 K, with the field rotation in the
a$–b and a$–c planes [see Figs. 1(a) and 1(c)], respectively.
For both rotations, one finds a sinusoidal angular variation
in τ, following an expression τðθÞ ¼ A sin 2ðθ þ θ0Þ, as
shown by the solid lines in the figures. Here, A and θ0
represent the amplitude and phase factor of the sinusoidal
function, respectively. Similar sinusoidal behavior is
observed at all temperatures (down to T ∼ 50 mK) and
field strengths (up to H ¼ 17 T) investigated. As shown by
the arrows in Figs. 3(a) and 3(b), the phase factor θ0
gradually shifts with an increase in the magnetic field,
simultaneously with a pronounced enhancement of the
amplitude A of the sinusoidal function. The detail of the
phase shift for a$–b and a$–c rotations is summarized as
the field dependence of θ0 for the various temperatures and
samples in Figs. 3(c) and 3(d), respectively. Below 4 K, in
the weak-field regime, θ0 is continuously modified by the
magnetic field, while θ0 is little affected by the field above
∼11 T, at which the phase shift reaches approximately
10°–20°. At 15 K, however, θ0 has weak field dependence
up to 17 T, indicating that the phase shift occurs at
temperatures lower than 15 K. The field evolution of the
amplitude AðHÞ of the sinusoidal torque curve is presented
in Fig. 3(e) and its inset. For both field rotations, AðHÞ
increases rapidly with respect to the applied field, which is
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FIG. 1 (color online). (a) Molecular arrangement in a two-
dimensional layer (b-c plane) of κ-H. The dotted ellipsoids
denote the strongly dimerized molecules. (b) A schematic of
the anisotropic triangular lattice with transfer integrals t0 and t.
The closed circles and the arrows on them represent the sites of
the triangular lattice composed of the dimerized molecules and
the S ¼ 1=2 spins, respectively. (c) The interlayer packing
structure viewed in the a-c plane. The adjacent layers are
connected by hydrogen bonds. The dotted ellipsoids represent
dimerized molecules similar to those described in (a).
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FIG. 2 (color online). Static magnetic susceptibility as a
function of temperature χðTÞ. The closed circles represent data
of susceptibility. The solid lines denote the susceptibility curve
based on the S ¼ 1=2 Heisenberg antiferromagnetic model of an
isotropic triangular lattice with an exchange-coupling constant
J=kB ¼ 80 and 100 K (Refs. [38,39]).
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The single crystals of !-!ET"2Cu2!CN"3 were prepared
by the standard electrochemical method [4,5]. The mag-
netic susceptibility was measured for a polycrystalline
sample in a temperature range from 1.9 to 298 K at 0.32 T.
The 1H NMR experiments were performed for a poly-
crystalline sample in a temperature range of 1.4–200 K at
a field of 3.9 T and for a single crystal weighing 76 "g in
a range of 32 mK–36 K at 2.2 T applied normal to the
conducting plane. The latter measurements were per-
formed using the dilution refrigerator of the top-loading
type with the crystal soaked to the 3He-4He mixture. The
absence of Cu2# impurity (< 0:01%) was confirmed by
EPR before the 1H NMR measurement. The NMR spectra
were obtained by the fast Fourier transformation of the
quadrature-detected echo signals. The relaxation curves
of nuclear magnetization were obtained from the recov-
ery of the echo intensity following saturation comb pulses
and the solid-echo pulse sequence, !#=2"x $ !#=2"y.

Temperature dependence of the static susceptibility, $,
of !-!ET"2Cu2!CN"3 is shown in Fig. 2, where the core
diamagnetic contribution of $4:37% 10$4 emu=mol is
already subtracted. With decreasing temperature, $ in-
creases slightly and shows a very broad maximum around

70 K (5:4% 10$4 emu=mol). Below 50 K, $ starts to
decrease rapidly, but remains to be paramagnetic even
at 1.9 K (2:9% 10$4 emu=mol). The behavior is quite
different from that of !-!ET"2Cu&N!CN"2'Cl which shows
a monotonous decrease with temperature and the weak
ferromagnetism below 27 K due to canting of the AF
ordered spins [9]. The temperature dependence of $ for
!-!ET"2Cu2!CN"3 is fitted to the high-temperature series
expansion of spin S ( 1=2 triangular-lattice Heisenberg
model [11] as shown in Fig. 2, where the &6=6' and &7=7'
Padé approximants are adopted with J ( 250 K. This
model was successful in explaining $ of another or-
ganic triangular-lattice system [12]. The peak tempera-
ture is much lower than the J value, suggesting that the
strong spin frustration suppresses the development of
the short-range spin correlations. The difference between
the experimental result and the Heisenberg model may
be partially attributed to the weak spin localization in
the present system situated in the vicinity of the Mott
transition.

Figure 3 shows the temperature dependence of the 1H
NMR spectra of a single crystal of !-!ET"2Cu2!CN"3
along with the previous result of !-!ET"2Cu&N!CN"2'Cl
for comparison [9]. The width and the shape of the spectra
of both salts above 30 K represent typical nuclear dipole
interactions between the protons in the ethylene groups of
ET molecules. Since the shape of the spectra is sensitive
to the direction of the external static magnetic field, the
difference of the spectra between the two salts at high
temperatures is explained by the difference in the orien-
tation of ET molecules against the applied field and does
not matter. A remarkable difference in the shape of the

FIG. 2. Temperature dependence of the magnetic susceptibil-
ity of the randomly orientated polycrystalline samples of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9]. The core dia-
magnetic susceptibility is already subtracted. The solid and
dotted lines represent the result of the series expansion of the
triangular-lattice Heisenberg model using &6=6' and &7=7'
Padé approximants, respectively, with J ( 250 K. The low-
temperature data of !-!ET"2Cu2!CN"3 below 30 K are ex-
panded in the inset.

FIG. 3. (a) 1H NMR absorption spectra for single crystals of
!-!ET"2Cu2!CN"3 and !-!ET"2Cu&N!CN"2'Cl [9] under the
magnetic field perpendicular to the conducting planes.
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* No magnetic order down to 32mK
* Constant spin susceptibility at zero temperature

Other experiments: transport,  
heat capacity, optical absorption, etc, 
Unfortunately, no neutron scattering so far.

NMR

kappa-(BEDT-TTF)2Cu2(CN)3,  
EtMe3Sb[Pd(dmit)2]2,  
kappa−H3(Cat-EDT-TTF)2 a new one!
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U/t
Fermi liquid 

metal U(1) QSL with spinon Fermi surface 120-degree order

Hubbard Model : parent model of many 
phases (Metal, SC, AF, Spin Liquid, …)

Heisenberg model
120° AF order U/t

Fermi Liquid
Mott

transition

Metal I n s u l a t o r

Charge fluctuations / geometrical frustration may disrupt spins from 
ordering even at T=0 near the metal-insulator transition.

Mott  
transition

supported by various different numerics

weak Mott regime strong Mott regime

T SenthilSung-Sik Lee P Lee

These are high order processes, but  

Motrunich

• Physical mechanism for weak Mott insulator spin liquids: perturbation in t/U
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Remark (on the mechanism NOT the properties):  
1. There is no sharp distinction between the charge fluctuations in the weak and strong Mott regimes.  
2.  Strong charge fluctuation in the weak Mott regime is a quantitative description.  
3.  Interesting physics occurs in the spin sector, but charge sector is completely trivial !

Question / observation (this goes beyond just spin liquid): 
1. What if the change fluctuation is very strong, and in the most extreme case,  

the charge sector forms a quantum charge liquid Mott insulator?   
2. What if the charge fluctuation leads to some structure in the charge sector?  

Spin sector is surely to be influenced in a non-trivial way. This would lead to  
a striking experimental consequence. If it is observed, it gives us confidence  
on the theoretical framework that we are developing. 

U/t
Fermi liquid 

metal U(1) QSL with spinon Fermi surface 120-degree order

weak Mott regime strong Mott regime
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Cluster structure of LiZn2Mo3O8  
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Figure 1 | LiZn2Mo3O8 structure. a, A single Mo3O13 cluster shows the local coordination of each Mo atom. b, A spin-polarized molecular orbital diagram
for Mo3O13H15 (C3v

). There is one unpaired electron per cluster, distributed over all Mo atoms, with a large energy gap to the next available state. The
hybrid functional produces an estimate of the on-site repulsion energy, U ⇠ 1.2 eV. A1, A2 and E are the irreducible representation labels for each orbital
level from the C3v

point group. c, Top-down view of the Mo3O8 layer showing the triangular network formed by the Mo3O13 S = 1/2 clusters.
d, A schematic representation of the magnetic Mo3O8 layers separated by LiZn2 in LiZn2Mo3O8.

Curie constant of C = 0.08. This Curie constant is one-third
that of the high-temperature value, indicating that two-thirds
of the spins contribute negligibly to the magnetic suscepti-
bility below T = 96K as the Curie constant scales with the
number of moments.

Neutron powder diffraction experiments at T = 12K indicate
that long-range magnetic order does not develop below the
T ⇡ 96K transition (Supplementary Fig. S1). Instead, our results
are consistent with two-thirds of the effective spins condensing
into magnetic singlets. Although our data are not sufficient to
unambiguously determine whether these singlets are static, making
a valence-bond solid, or dynamic, making a resonating valence-
bond state, neutron powder diffraction data suggest that the singlets
are indeed dynamic: at T = 12K, LiZn2Mo3O8 maintains the
trigonal R3m symmetry that exists at T = 300K. In most cases,
static singlets form a valence-bond network and distort the lattice
to a lower symmetry. Unambiguous determination of the ground
state warrants further study, but the ground state of LiZn2Mo3O8 is
unusual and reflective of the strong geometricmagnetic frustration.

Changes in the experimentally measured heat capacity fur-
ther elucidate the unusual electronic behaviour in LiZn2Mo3O8
(Fig. 2b). LiZn2Mo3O8 does not undergo a transition to long-range
magnetic order above T = 0.1K: there is no sharp ⌦ transition of
the heat capacity as a function of temperature. Instead there is only

an upturn in the specific heat capacity data below T = 1K. Applied
magnetic fields ofµoH =1 T andµoH =9 T (Fig. 2b inset) radically
modulate the behaviour of the low-temperature data. Such large
changes from small magnetic fields are surprising given the large
Weiss temperature and are probably a result of magnetic frustration
in the system. Geometric frustration prevents the formation of
long-range order and results in low-lying magnetic excitations
perturbed by an applied field. Simple models, such as a multilevel
Schottky anomaly, do not adequately describe the low-temperature
data (see Supplementary Information); further studies are needed
to examine and understand the behaviour in detail.

The magnetic entropy change of LiZn2Mo3O8, accounting for
the extra lattice contribution from lithium when compared with
Zn2Mo3O8 (Fig. 2c and Supplementary Fig. S2), also indicates
the condensation of two-thirds of the available spins. The total
expected magnetic entropy change for a S = 1/2 system is
R · ln(2)(= 5.76 J K�1 mol fu�1), compared with the experimental
value of 8(3) J K�1 mol fu�1 from T = 0.1 to T = 400K. On
cooling from T = 400K, we observe a gradual and continuous
loss of entropy, approximately two-thirds of the expected S= 1/2
value from T = 400K to T = 100K. Critically, the change in
the linear regions of magnetic susceptibility is not accompanied
by a sharp transition in the entropy, supporting the claim that
these spins condense into singlets, rather than adopt long-range
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Model

Claim: a single-band extended Hubbard model on an anisotropic Kagome lattice  
            with 1/6 electron filling.

2

smaller Curie-Weiss temperature (⇥L
CW = �14K) from

the high temperature one (⇥H
CW = �220K) and a much

reduced Curie constant which is 1/3 of the high temper-
ature one.

FIG. 1. (Color online.) (a) Mo
3

triangular clusters are orga-
nized into a triangular lattice structure. (b) After connecting
the longer neighboring Mo-Mo bonds in the down triangles,
the system becomes a kagome lattice. b

1

,b
2

are two kagome
lattice vectors that connect neighboring unit cells. We use r’
to label the kagome lattice unit cell and ‘A,B,C’ to label three
sublattices.

In a very recent theoretical work,11 Flint and Lee fol-
lowed the suggestion by the experiments8 and considered
the possibility of an emergent honeycomb lattice that is
centered by weakly coupled dangling spins. In their anal-
ysis, the emergent honeycomb system may form a gapped
QSL phase while the remaining dangling spin moments
dominate the low-temperature magnetic property which
then explains the 1/3 spin susceptibility anomaly. Their
theory invokes the phonon degrees of freedom to work in
a way to generate the emergent honeycomb lattice for the
spin system. Such a scenario might be plausible. In this
paper, however, we explore an alternative explanation
for the experiments that is based on electronic degrees of
freedom and their interactions.

We consider a generic extended Hubbard model for
the unpaired Mo electrons. The model is defined on an
kagome lattice with a 1/6 electron filling and is given as

H =
X

hiji2u

[�t1(c
†
i�

c
j�

+ h.c.) + V1ni

n
j

]

+
X

hiji2d

[�t2(c
†
i�

c
j�

+ h.c.) + V2ni

n
j

]

+
X

i

U

2
(n

i

� 1

2
)2, (1)

where c†
i�

(c
i�

) creates (annihilates) an electron with
spin � at lattice site i, and t1, V1 and t2, V2 are nearest-
neighbor electron hopping and interaction on the up tri-
angles (denoted as ‘u’) and the down triangles (denoted
as ‘d’) (see Fig.1a), respectively. n

i

=
P

�

c†
i�

c
i�

is the
electron density at site i.

Why is this model (Eq.1) is appropriate for
LiZn2Mo3O8? Firstly, the Mo sites do form a kagome
lattice with a shorter (longer) nearest-neighbor bond on
the up (down) Mo3 triangular cluster. There is one un-
paired Mo electron for each up triangular cluster, giving

rise to 1/6 electron filling for the Hubbard model. Sec-
ondly, LiZn2Mo3O8 is found to be a Mott insulator with
a charge gap ⇠ 0.12eV.8 The charge gap is not very large,
so it is more appropriate to model the system with a Hub-
bard model. Seven valence electrons are localized on each
up Mo3 triangular cluster. Supported by a molecular or-
bital calculation, six of the seven electrons localize into
Mo-Mo bonds holding the cluster together.8 The seventh
electron remains unpaired in a totally symmetric (A1)
molecular orbital with equal contributions from all three
Mo atoms.8 This A1 molecular orbital is an equal weight
superposition of relevant electron orbital on each Mo sites
of the up Mo3 cluster.8 The extended Hubbard model in
Eq.1 simply moves one step back, being constructed di-
rectly from the relevant electron orbitals on the Mo sites
and also respecting the R3̄m space group symmetries.
We include the on-site Hubbard-U interaction as well as
two inter-site repulsions V1 and V2. Even though the
down triangles are larger in size than the up triangles
in LiZn2Mo3O8, because of the large spatial extension of
the 4d Mo electron orbitals we think it is necessary to
include the inter-site repulsion V2 for the down triangles.
Since the charge gap is relatively small, it makes sense to
explore possible proximate phases in LiZn2Mo3O8. For
LiZn2Mo3O8 one expects t1 > t2 and U > V1 > V2.
While still keeping the Hubbard-U as the largest energy
scale, we study the phase diagram of this model in much
broader parameter regimes in this paper.

Because of the fractional electron filling, the Mott tran-
sition is driven by the inter-site repulsion rather than the
on-site Hubbard interaction U and the electrons are lo-
calized on the triangular clusters of the kagome lattice
instead of the lattice sites. The electrons become local-
ized on the up (down) triangles when the inter-site re-
pulsion on up (down) triangles overweights the kinetic
energy gain from hoppings between up (down) triangles.
Because of the asymmetry between the up and down tri-
angles of the kagome lattice, the Mott localization on the
up and down triangles does not need to occur simulta-
neously. Therefore, two types of cluster Mott insulating

phases are clearly expected.

For the first kind of cluster Mott insulator, the inter-
site repulsion on one type (up or down) of triangles over-
weights the kinetic energy gain from hoppings between
this types of triangles and causes the electron localiza-
tion on these triangles while the inter-site repulsion on
the other type of triangles remains weak compared to
the kinetic energy gain from hopping between these tri-
angles. The electron occupation number on the triangles
with localized electrons is fixed to one electron per tri-
angle while the electron number on the other type of tri-
angles remains strongly fluctuating. This Mott insulator
is named as the type-I cluster Mott insulator. Moreover,
the triangular clusters that host localized electrons form
a triangular lattice. In the weak Mott regime, we show
the local spin moments form a U(1) QSL with the spinons
filling half the lowest kagome spinon band. We further
show this U(1) QSL is smoothly connected to the weak

t1, V1

A

B C
t2, V2

* Large U alone cannot localize the electron. 
* V1 and V2 are needed: because it is 4d orbital,  
   and also to localize the electron in the clusters.

• Minimal model allowed by symmetry [require quantum chemistry understanding]
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Generic phase diagram

spin sector is spin liquid
Here t1/t2 = 4, no qualitative difference  

for different t1/t2
snapshots of electron occupation in type-I CMI

V2 is small, V1 is large

* Electrons are localized in one type of triangles in type-I CMI; 
* Electrons are localized in both types of triangles in type-II CMI. 

FL-metal

type-Iu CMI

type-Id  
CMI

type-II  
CMI
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• A “simple” understanding: 
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Sub-Mott-gap process: correlated electron motion

3rd order process in type-II CMI

dimer resonating 

6

identifying the rotor operators as the spin ladder opera-
tors, e±i✓i = L±

i

where

L±
i

|Lz

i

= ⌥1

2
i = |Lz

i

= ±1

2
i. (8)

Thus the corresponding e↵ective spin-L model reads

Hch =
X

hiji

⇥�Je↵
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(L+
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L�
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+ h.c.) + V
ij

Lz

i

Lz

j

⇤

+Be↵
X

i

Lz

i

, (9)

in which we have made a uniform mean-field approxima-
tion such that h

i

+ 3(V1 + V2) ⌘ Be↵. The 1/6 elec-
tron filling is mapped to the total “magnetization” con-
dition N

s

�1 P
i

Lz

i

= � 1
6 , where N

s

is the total number
of Kagome lattice sites.

(a) (b)

FIG. 4. (Color online.) (a) eA, eB and eC are three vectors
that connect the center of an up-triangle to the centers of the
neighboring down-triangles. (b) The centers of the triangles
on the Kagome lattice form a DHL.

The type-II CMI appears when the interactions V1, V2

are dominant over the hoppings t1, t2. In terms of the ef-
fective spin Lz

i

, the electron charge localization condition
in the type-II CMI is

X

i2u

Lz

i

= �1

2
,

X

i2d

Lz

i

= �1

2
. (10)

In the type-II CMI, the allowed e↵ective spin configura-
tion is “2-down 1-up” in every triangle. These allowed
classical spin configuration are extensively degenerate.
The presence of the transverse e↵ective spin exchanges
lifts the classical ground state degeneracy and the ef-
fective interaction can be obtained from a third-order
degenerate perturbation theory. The resulting e↵ective
ring exchange Hamiltonian is given as

Hch,ring = �
X

7
Jring(L

+
1 L

�
2 L

+
3 L

�
4 L

+
5 L

�
6 + h.c.), (11)

where “7” refers to the elementary hexagon of the

Kagome lattice, Jring = 6(Jeff
1 )3

V

2
2

+ 6(Jeff
2 )3

V

2
1

and “1,2,3,4,5,6”

are the 6 vertices on the perimeter of the elementary
hexagon on the Kagome lattice (see Fig. 5).

FIG. 5. (Color online.) The two collective hopping processes
that contribute to the ring electron hopping or the ring ex-
change in Eq. (11). The (red) solid ball represents the electron
or the charge rotor.

We now map the e↵ective Hamiltonian Hch,ring into a
compact U(1) lattice gauge theory on the DHL. We in-
troduce the lattice U(1) gauge fields (E,A) by defining24

Lz

r,µ ⌘ Lz

r+
eµ
2

= Er,r+eµ , (12)

L±
r,µ ⌘ L±

r+
eµ
2

= e±iAr,r+eµ (13)

where r 2 u, Err0 = �Er0r, and Arr0 = �Ar0r.
The centers (labelled as r, r0) of the triangles form a
dual honeycomb lattice (see Fig. 4). The fields E and
A are identified as the electric field and the vector
gauge field of the compact U(1) lattice gauge theory
and [Er,r+eµ , Ar,r+eµ ] = �i. With this identification,
the local “2-down 1-up” charge localization condition in
Eq. (10) is interpreted as the “Gauss’ law’’ for the emer-
gent U(1) lattice gauge theory. The e↵ective ring ex-
change Hamiltonian Hch,ring reduces to a gauge “mag-
netic” field term on the DHL,

Hch,ring = �2Jring
X

9
cos(�⇥A), (14)

where �⇥A is a lattice curl defined on the ‘9’ that refers
to the elementary hexagon on the honeycomb lattice. As
this internal gauge structure emerges at low energies in
the charge sector, in the following we will refer this gauge
field as the U(1)ch gauge field.

B. Slave-particle construction and mean-field
theory

Since the gauge theory in the charge sector is a com-
pact U(1) gauge theory defined on a 2D lattice, it would
be confining due to the well-known non-perturbative in-
stanton e↵ect if all the elementary excitations (except for
“photon”) is gapped. However, in our case, the spinon
excitations are gapless and possess spinon Fermi surfaces.
While these spinons do not directly couple to U(1)ch
gauge field, they would interact with charge excitations in
terms of U(1)sp gauge field and then can indirectly couple
to U(1)ch gauge field via the charge excitations. Thus, a
deconfined phase of the U(1)ch gauge field may still be
allowed if spinon Fermi surface fluctuations can suppress
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Kagome lattice
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This collective tunnelling process preserves the center of mass of 3 electrons !
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settles down to a nonzero value on the left of the transition,
at v/t!"0.25, whereas it scales to zero on the right, for
v/t!"0.15. The transition is located around v/t!"0.2,
where the scaling appears inconclusive. From this, we think
it is conservative to estimate the transition point between the
two phases to be located at v/t!"0.2#0.05.
We conclude this section by addressing potential system-

atic errors arising from the introduction of the discretization
in the stacking direction, since the mapping to the quantum
dimer model is exact in the continuum limit only.
In Fig. 5, we show the plots of mrms vs v/t for a system of

2304 sites using different couplings in the stacking direction,
K", thus varying # , at a fixed quantum temperature. It can be
seen that the transition sharpens up as # is increased, but
moves only little as # changes from 10 to 20. As the quan-
tum temperature is lowered by a factor of 2 at #!20, the
transition sharpens further but again does not move signifi-
cantly. These effects are therefore certainly within the error
bars we give for the value of the critcal v/t . The case of the
largest system we have studied $also displayed in Fig. 5%
clearly also falls into this range.
We note that the absence of finite-size effects at v!0,

upon increasing the number of layers, N, at fixed &C and L,

implies the existence of a gap in this part of the phase dia-
gram. This is not surprising since at that point, we are far
away from the phase transition, which is first order at any
rate. However, this observation makes the existence of a gap-
less excitation at this point, suggested in Ref. 13, seem rather
unlikely. More generally, our results fit snugly into the ex-
pectations from the height representation analysis as well the
analysis of the transverse field Ising models $see below as
well% and so there seems little doubt that the analysis in Ref.
13 is flawed.

V. PHASE DIAGRAM

The phase diagram we have thus obtained is depicted in
Fig. 6. The columnar-plaquette phase transition is of first
order, whereas the one at the RK point is a second-order one,
albeit with the somewhat peculiar feature that, coming from
the right, it appears to be first order as no fluctuations are
visible leading up to the critical point. However, coming
from the left, a gap closes, giving rise to the gapless resonon
excitations.1
There are a number of theoretical reasons which lead us to

conclude that the transition from plaquette to columnar VBS
is first order, as the simulations suggest. Within the frame-
work of the Landau-Ginzburg-Wilson theory,15 the critical
point corresponds to the vanishing of the coefficent of the
sixfold clock term, so that the system could in principle fluc-
tuate between all the degenerate XY states $including the
columnar and plaquette ones% without encountering any bar-
riers. However, higher ‘‘harmonics’’ $clock terms% will pre-
sumably come into play as they are unlikely to vanish at
exactly the same point as the leading one; it is these which
will prevent the barriers between the plaquette and columnar
state from vanishing.
Further, we note that the symmetry groups of the two

VBS’s are not such that one of them is a subgroup of another,
which would be a criterion within Landau theory for a con-
tinuous transition. This is in fact a somewhat subtle point as
both phases break translational symmetry and retain a sixfold
rotational symmetry. However, when trying to form domains
of one phase within another, it turns out that the centers of
rotational symmetry lie in distinct places for the two phases.
This point, incidentally, is somewhat simpler in the square

lattice, where the columnar phase breaks translational sym-
metry in one direction and also rotational symmetry, whereas
the plaquette phase breaks translational symmetry in both
directions but retains a fourfold rotational symmetry.

VI. STACKED MAGNETS

Our simulations apply equivalently to the hexagonal
dimer model and to the stacked triangular magnets. We

FIG. 4. Scaling of mrms as a function of L"1, the inverse of the
linear system size. &Qt!0.083, #!10.

FIG. 5. Development of mrms as a function of # and &Q . The
dashed line is for 5184 sites; the others are for 2304 sites. Reducing
the discretization error $increasing #% and lowering the quantum
temperature $increasing N) sharpen up the transition.

FIG. 6. Phase diagram of the quantum dimer model on the hex-
agonal lattice. The nature of the ordered phases is indicated above
the axis.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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frustrated Heisenberg antiferromagnets on the hexagonal lat-
tice. Such magnets are prime candidates for being described
by the quantum dimer model, and it turns out that the
Heisenberg model with competing interactions does indeed
seem to realize the order present in two of the phases of the
QDM.23
Turning to the QDM, its Hilbert space consists of hard-

core dimer coverings of the hexagonal lattice. The Hamil-
tonian acts on each hexagonal plaquette of the lattice. It con-
tains two terms, a kinetic (T̂) and a potential (V̂) one. The
former generates a plaquette resonance move by rotating a
triplet of dimers by 60° !see Fig. 1", in analogy to the ben-
zene resonance.24 The latter is diagonal in the dimer basis
and simply counts the number of plaquettes able to resonate
!‘‘flippable plaquettes’’".
The Hamiltonian of the QDM can thus be represented as a

sum over plaquettes of the following plaquette Hamiltonian:

!1"
It has one free parameter, namely, the ratio of the strength of
the potential and kinetic terms, v/t .
The structure of this paper is as follows. In Sec. II, we

discuss the phases which one might expect to encounter in
the model under consideration. Section III contains a sum-
mary of the methods used to establish the results that follow.
The numerical results on the QDM are presented in Sec. IV,
from which the phase diagram !Sec. V" follows. We then
discuss implications for the study of magnets, namely, trian-
gular stacked Ising !Sec. VI" and S!1/2 hexagonal Heisen-
berg !Sec. VII" models. We close with a conclusion in Sec.
VIII.

II. CANDIDATE PHASES

As mentioned above, the QDM on the hexagonal lattice is
closely connected to its square lattice version. Hence a num-
ber of known exact statements on the square lattice carry
over mutatis mutandis to the hexagonal lattice. First, for v
"t , the ground state is the staggered state, !#$, depicted in

Fig. 1!a". This follows from the fact that a lower bound on
the energy per plaquette is min%0,v#t&, and only !#$ satu-
rates this bound for v"t , with HQDM!#$!0. The dimer con-
figuration corresponding to !#$ turns out to constitute a to-
pological sector of its own. !Two configurations belong to
the same topological sector if one can be obtained from an-
other by strictly local rearrangements of the dimers.1"
As one decreases v through t, the ground state moves into

another sector, which contains an exponentially large number
of dimer configurations. The two candidate phases in this
sector are depicted in Figs. 1!b" and 1!c"; these are the
plaquette and columnar valence-bond solids, respectively. In
fact, for v/t→#' , one can see that the ground state will be
the columnar state, as this maximizes the number of flippable
plaquettes favored by the potential term.
The point v/t!1 is the RK point where each equal-

amplitude superposition over a winding number sector is a
ground state. An analysis in terms of height representations25
shows that there is a diverging correlation length as one ap-
proaches this point from v$t and that the critical theory is
Gaussian. In the same language the two candidate states
mentioned above for v$t are flat but the competition be-
tween them cannot be settled in the same analysis. We now
turn to an alternative mapping of the physics of the QDM
which will allow us to settle that question by computation.

III. USEFULMAPPINGS AND NUMERICALMETHOD

This alternative, duality, mapping crisply distinguishes
between the different phases. This mapping takes the QDM
in d!2 onto a classical, stacked, frustrated, anisotropic Ising
magnet in d!2%1 on its dual lattice.5 The Hamiltonian for
that model reads

(CHIsing!K)*
+i j$

, i, j#K- *
+ii!$

, i, i!%(CvC*
i

.Bi,0 .

!2"
Here, the , is the Ising variable defined on the sites of a
stacked triangular lattice; the sum on +i j$ runs over nearest-
neighbor pairs in the plane, whereas the one on +ii!$ is over
pairs in adjacent layers. Bi is the in-plane exchange field
experienced by spin i; if it is zero, the corresponding dimer
plaquette is flippable.
To generate equivalent Hilbert spaces, one has to take the

limit of infinite exchange in the planes, K)→%' , as there is
a one-to-one correspondence between the hard-core dimer
coverings on the hexagonal lattice and the Ising model
ground states on the triangular lattice, up to a global spin
reversal.26
The equivalence then holds in the scaling limit K-

→%' , with the quantum inverse temperature (Q given by
(Qt!exp(2K-)/N/0/N, where N is the number of stacked
layers, so that the zero-temperature limit corresponds to a
system with infinite extent in the stacking direction. The con-
version of parameters between the classical !C" and quantum
!Q" problems proceeds via the formula vQ /t!(CvC0 . In the
following, the quoted values of v/t are to be understood as
referring to the quantum problem. Note that 0 !which we
will quote in the following" quantifies the discretization

FIG. 1. Dimer patterns on the hexagonal lattice: !a" staggered,
!b" plaquette, and !c" columnar. The marked links have a high prob-
ability of being occupied by a dimer in the respective phases. Note
that in each case, there are only two inequivalent sets of links. A
dimer plaquette move effected by T̂ consists of rotating the three
dimers surrounding a plaquette !like the one labeled with a plus" by
60°.
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• Remarks: 
 
* The plaquette charge order is a local charge “RVB”.  
   (This is not Anderson’s spin singlet RVB).  
* One may simply view each resonating hexagon as a benzene molecule.   
* It is a collective behaviour of 3 electrons.  
* It is a quantum effect. 

• A model study in 2001

• plaquette charge order

Gang Chen’s theory group 

Gang Chen’s theory group



• High energy d.o.f. (charge) usually influences low energy d.o.f. (spin). More practically,  
low d.o.f serves as a probe of the physical properties of the high energy d.o.f.. 

• Spin state reconstruction by the charge 
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FIG. 11. (Color online.) Three singlet positions that are
related by the 3-fold rotation.

What is the physical origin of this local 4-fold degener-
acy? Clearly, the 2-fold degeneracy of sz = ±1/2 arises
from the time-reversal symmetry and the Kramers’ the-
orem. The remaining 2-fold degeneracy comes from the
point group symmetry of the resonating hexagon. This
is easy to see if we freeze the positions of the 3 electrons.
To be concrete, let us fix the electrons to the sites 1,3,5
in Fig. 11. To optimize the exchange interaction, 2 elec-
trons must form a spin singlet, which leaves the remain-
ing electron as a dangling spin-1/2 moment. As shown
in Fig. 11, this singlet can be formed between any pair
of the electrons and the di↵erent locations of the spin
singlet are related by the 3-fold rotation. Even though
there seems to be 3 possible singlet positions, only 2 of
them are linearly independent, which gives to the 2-fold
⌧z degeneracy which survives even when the ring electron
hopping is turned on. As a result, the pseudospin ⌧ is
even under time-reversal and acts on the space of the sin-
glet position or equivalently the dangling spin position.
In fact, the two states in Eqs. (29) and (30) comprise the
E irreducible representation of the C3v point group.

B. Kugel-Khomskii model

Now we consider the spin and pseudospin interaction
between neighboring resonating hexagons. The neigh-
boring resonating hexagons are connected by a “bow-
tie” that is composed of one up and one down-triangle.
The local moment interaction comes from the remaining
exchange interaction between the 2 electron spins that
reside on the four outer vertices of the bow-tie. To be
concrete, we consider the bow-tie that connects the two
resonating hexagons at the R and R + a1 (see Fig. 1).
To derive the local moment interaction, one just needs to
project the remaining electron spin exchange interaction
onto the 4-fold ground state manifold of each resonat-
ing hexagon. To this end, we first write down the inter-
hexagon exchange interaction between the electrons at
the bow-tie vertices,

H 0
ex = �J 0

4
[n4(R) + n5(R)][n1(R+ a1) + n2(R+ a1)]

+J 0[S4(R)n4(R) + S5(R)n5(R)]⇥ [S1(R+ a1)

⇥n1(R+ a1) + S2(R+ a1)n2(R+ a1)], (31)

where we have considered the exchange interactions for
electrons at all 4 pairs of the sites. The exchange paths of
these pairs all go through the center vertex of the bow-
tie and thus are of equal length. As a result, we only
introduce one exchange coupling J 0 for the four pairs in
the above equation. Moreover, since J 0 is the exchange
coupling between the spins after the system develops the
PCO, clearly J 0 should be smaller than the intra-hexagon
exchange coupling J in Eq. (27).
We project H 0

ex onto the local ground state manifold
at resonating hexagon sites R and R + a1 and then ex-
press the resulting interaction in terms of the spin and
pseudospin operators. The e↵ective interaction on other
bonds can be obtained similarly. The final local moment
interaction reduces to a Kugel-Khomskii model[19] that
is defined on the ETL, which to the order of O(K2/K1)
is given as

HKK =
J 0

9

X

R

X

µ=x,y,z

⇥
s(R) · s(R+ a

µ

)
⇤

⇥[1 + 4⇡µ(R)][1� 2⇡µ(R+ a
µ

)] (32)

where the new set of pseudospin operators are defined

as ⇡x,y(R) = � 1
2⌧

z(R)⌥
p
3
2 ⌧x(R),⇡z(R) = ⌧z(R), and

a
x

= a1,ay = a2 and a
z

= �a1 � a2. In Eq. (32),
the exchange coupling is significantly reduced after the
projection compared to the original exchange coupling in
Eq. (31).
Since the pseudospin ⌧ does not directly couple to the

external magnetic field, the low-temperature Curie-Weiss
temperature (⇥L

CW) and Curie constant (CL) are straight-
forward to compute from HKK,

⇥L
CW = �z

t

s(s+ 1)

3

J 0

9
, CL =

g2µ2
Bs(s+ 1)

3kB

N�

3
,(33)

where z
t

= 6 is the coordination number for nearest
neighbors of the triangular lattice. The above results are
again consistent with the lower temperature 1/3 Curie-
constant of the spin susceptibility in LiZn2Mo3O8.
This Kugel-Khomskii model involves the spin-spin in-

teraction, the pseudospin-pseudospin interaction and also
the spin-pseudospin interaction, which make the model
analytically intractable. In the absence of the spin-
pseudospin interaction, the Heisenberg spin exchange
model would favor the classical 120-degree state. The
presence of spin-pseudospin interaction, however, com-
petes with the Heisenberg term, destabilizes the 120-
degree state and may potentially favor a spin liquid state.
Such a spin liquid, if exists, could be smoothly connected
to the U(1) QSL of the intermediate coupling regime in
Sec. III C. We leave this question for the future work.
Despite its complicated form, the Kugel-Khomskii

model becomes tractable in the presence of a strong ex-
ternal magnetic field. We apply a strong magnetic field to
fully polarize the local spin moments such that sz = 1/2
in every ETL unit cell but at the same time keep the
field from polarizing all the electron spins in the system.
The remaining active local moments are the pseudospins

An effective Kugel-Khomskii model on  
the emergent triangular lattice

K. Kugel D. Khomskii



Explanation for fractional spin susceptibility at finite temperatures

type-II CMI (PCO)

1. Expect 1st order finite temperature transition,  
peak at ~100K, (was interpreted as Li freezing.)  
smeared out 1st transition?  

2.   High resolution X-ray, RIXS 
3.   Nuclear quadrupolar resonance: electric field  
      gradient  (suggested to me by Baskaran) 



VijJ
ex

K
hop

U

double electron  
occupancy on 
a lattice site

double electron  
occupancy on  

a cluster

collective electron  
hopping on a  

hexagon

superexchange 
of the spins

energy 
scale

tij

single electron  
hopping

Summary: the cascade of energy scales

Below the Mott gap: usual superexchange process,  
                                 new collective charge fluctuation (hallmark).

Gang Chen’s theory group 
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Cluster Mott Insulator: a new class of Mott insulators

Electrons (or bosonic particles) are localized on some cluster units instead of the lattice sites. 
These cluster units build the lattice. 

Mg2Mo3O8, Mn2Mo3O8, Fe2Mo3O8, Co2Mo3O8, Ni2Mo3O8, Zn2Mo3O8, Cd2Mo3O8

LiScMo3O8, LiYMo3O8, LiInMo3O8, LiSmMo3O8, LiGdMo3O8, LiTbMo3O8, 
LiDyMo3O8, LiHoMo3O8, LiErMo3O8, LiYbMo3O8

NbO2, Mg3Nb6O11, Ba1.14Mo8O16, NaMo4O6,  GaTa4Se8, GaNb4S8, GaNb4Se8 , 
many organic materials……

A large class of cluster magnets (Mott insulators)

Cluster magnets can even be systematically fabricated in organic chemistry !

triangle clusters in kagome  
(J. Atwood, nature mat 2002) tetrahedral cluster in pyrochlore

Gang Chen’s theory group 

Gang Chen’s theory group



Further extensions

• Extension to three dimensional materials 

• Extension to bosonic systems.



3D CMI as U(1) quantum charge liquidExcitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004

Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004

qe
2 �qe

2

fermionic  

• Low-energy physics of the charge is described by an emergent (compact) quantum 
electrodynamics in 3+1D. Charge excitation carries 1/2 the electron charge !

charge ice rule

Excitations

• Where spin ice realizes “emergent 
magnetostatics”, the QSL is “emergent 
compact quantum electrodynamics”

• coherent propagating monopoles = 
“spinons”

• dual (electric) monopoles 

• artificial photon

Hermele et al, 2004

two internal U(1) gauge fields here

Gang Chen’s theory group 

Gang Chen’s theory group



• (Inelastic) X-ray scattering measures U(1) gauge field correlation  
in the charge sector

4

the electron occupation number per tetrahedron is 1, i.e.P
i2tet

Lz
i = �1. The low energy model of the charge sec-

tor is then obtained through the ring hopping processes
of the rotors around a hexagon (see Fig. 1(b)). In the
end, the charge occupation-number constraint and the
low energy model are identical to the 1

2

-magnetization
plateau state of a spin- 1

2

XXZ model on the pyrochlore
lattice in a uniform magnetic field[16]. It is known that
the 1

2

-magnetization plateau state is a U(1) QSL with the
same universal properties as the quantum spin ice[16].
Therefore, the charge sector for the 1

8

-filled case is also a
U(1)

ch

FCL with the same low energy excitations as the
1

4

-filled case.
Strong Mott regime. Here we turn to the strong Mott

regime with V � t. Let us start with the cluster Mott
insulator at the 1

8

-filling, where the electrons on neighbor-
ing tetrahedra are always separated by one unoccupied
site (see Fig. 1(b)). The dominant interaction arises from
the ring hopping processes of the three electrons on the
hexagon and is described by

H
e↵

= �Je

ring

X

hexagon

X

↵��

(c†
1↵c2↵c

†
3�c4�c

†
5�c6�

+c†
1↵c6↵c

†
5�c4�c

†
3�c2� + h.c.), (7)

where Je

ring

= 6t3

V 2 is the electron ring hopping ampli-
tude. This interaction does not transfer charges between
tetrahedra, but does transfer spin quantum numbers and
hence overwhelms any other spin-spin interactions that
arise from higher order processes. We emphasize that
Eq.7 cannot be cast into the usual form of pairwise spin
interactions or ring exchange, which is an important dif-
ference between the cluster Mott insulators and conven-
tional magnets. In conventional magnets, the spin mo-
ment can be considered as being coupled to a mean mag-
netic field generated by the exchange interactions from
neighboring spins and if this mean magnetic field does
not fluctuate strongly, the spin tends to align with this
field and develop magnetic ordering. For the cluster Mott
insulator here, such a mean magnetic field cannot be de-
fined from the interaction in Eq.7 and thus we do not
expect simple magnetic ordering. Then, for the spin sec-
tor, we may expect the QSL from the weak Mott regime
to remain in the strong Mott regime. For the charge
sector, we note that the e↵ect of Eq.7 on the charge exci-
tations is identical to the charge rotor hopping processes
in Eq.4. Following the same reasoning as presented for
the weak Mott regime, we expect the same U(1)

ch

FCL
to arise in the strong Mott regime.

In the strong Mott regime for the 1

4

-filling, there ex-
ists a superexchange spin-spin interaction between near-
est neighbor sites with the exchange coupling J

ex

=
4t2

U�V + 8t3

V 2 . Since this energy scale J
ex

is larger than or
comparable to the electron ring hopping amplitude Je

ring

,
the FCL/QSL may survive or be destabilized depending
on di↵erent parameter regimes[29].

Discussion. We now discuss the experimental signa-
tures related to these exotic cluster Mott insulators. We
begin with the principal physical properties in the vincin-
ity of the Mott transition. The Mott transition is con-
tinuous in the mean-field theory, but might turn to a
weakly first order transition upon including U(1)

ch

gauge
fluctuations[30]. Even in that case, the first order e↵ect
may be important only at extremely low temperatures.
So for a rather wide temperature range, the physics near
the Mott transition is controlled by the critical fraction-
alized charge bosons coupled to the U(1)

ch

and U(1)
sp

gauge fields, and the fermionic spinons coupled to the
U(1)

sp

gauge field. Similarly to the half-filled case stud-
ied earlier[7], the dynamical critical exponent for the
charge boson (fermionic spinon with U(1)

sp

) is z = 1
(z = 3). Hence we expect two crossover temperature
scales for specific heat and electric resistivity, respec-
tively. Due to further fractionalization of charge exci-
tations, the tunneling density of states at the transition
would be highly suppressed as N crit

tunn

(!) ⇠ !4 instead of
!2 as in the half-filled case[7].

The low energy U(1)
ch

gauge field originates from
the electron charge fluctuations and may be probed by
elastic and/or inelastic X-ray scattering. Similarly to
the spin structure factor in the quantum spin ice[22,
23, 25, 31], the inelastic charge structure factor of the
cluster Mott insulator at low energies can be regarded
as the emergent “electric-field” correlator and is given
by Im[E↵

�k,�!E
�
k,!] / [�↵� � k↵k�

k2 ]! �(! � v|k|), where
Er+ 1

2eµ
⌘ Lz

r,r+eµ

eµ

|eµ| = (nr+ 1
2eµ

� 1

2

) eµ

|eµ| and r 2 A dia-

mond sublattice. Here v is the speed of the U(1)
ch

gauge
photon.

The cluster Mott insulator is expected to lose
the quantum coherence around a temperature T ⇤ ⇠
max[Je

ring

, Jex] in the Mott regime. In the temperature
range T ⇤ <⇠ T <⇠ V , the cluster electron occupation-
number constraint still holds and the system is described
by a thermal charge liquid, where degenerate charge con-
figurations are equally allowed. Similarly to the classi-
cal spin ice[15], the equal-time charge structure factor is

given by hE↵
�kE

�
k i / �↵�� k↵k�

k2 , which leads to the pinch
point structures in the k space [15, 19–21].

There exist several candidate materials for 1

4

- or
1

8

-filled pyrochlore lattice systems. Various spinels
such as LiV

2

O
4

(with V3.5+:d1.5)[10], CuIr
2

S
4

(with
Ir3.5+:d5.5)[13] and GaTa

4

Se
8

(with Ta3.25+:d1.75)[11]
may be good candidates for 1

4

- and 1

8

-filling cases. The �-
pyrochlore system CsW

2

O
6

(with W5.5+: d0.5)[12] may
also be a promising system where the physics discussed
here can be explored.
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pitality during his visit to Rice University when a related
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Pinch points in equal-time charge structure  
factor at T > ring hopping. “classical charge ice”

I(!) ⇠ !

emergent light in quantum charge ice !
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Framework: a new parton construction

ci� = e�i✓ifi�

charge-qe 
spinless boson 

charge-neutral 
spin-1/2 fermion 

one U(1) gauge field

• The slave rotor construction is used to describe the conventional 
Mott insulator, e.g. triangular lattice Hubbard model at 1/2 filling
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U(1)c ⇥ U(1)sptwo U(1) gauge fields: 

• A new parton gauge construction is required for cluster Mott insulators 
to capture additional U(1) gauge structure in the charge sector
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Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4
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(Dated: September 16, 2015)

YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na

4

Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is the first strong spin-orbit coupled QSL with odd number of electrons and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. I think it is spinon Fermi surface U(1) QSL. 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We understand the microscopic Hamiltonian and the physical mechanism.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4
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• observation of T2/3 heat capacity
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• Entropy: effective spin-1/2 local moments

YbMgGaO4

Our proposal for ground state: spinon Fermi surface U(1) QSL.

Gang Chen’s theory group 

Gang Chen’s theory group



Microscopics
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Figure 1 

  

Yb3+ ion: 4f13 has J=7/2 due to SOC.

J=7/2 �

T ⌧ �At              , the only active DOF is the ground state  
doublet that gives rise to an effective spin-1/2. 
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Advantage for neutron scattering

Continuum excitation 
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LETTERRESEARCH

To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.
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Two Major Questions

1. Whether the continuum represents the fractionalized  
    spinon excitation? Probably most important !  
   
              (Our new work will appear soon. ) 

2.  What is the physical origin of the QSL physics ?
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2

Hamiltoninan. We here confirm the e↵ective spin-1/2
nature of the Yb3+ local moments at low temperatures
from the heat capacity and the magnetic entropy mea-
surements in high-quality single crystal samples. Because
the Yb3+ ion contains odd number of electrons, the ef-
fective spin is described by a Kramers’ doublet. Based
on this fact, we theoretically derive the symmetry al-
lowed spin Hamiltonian that is non-Heisenberg-like and
involves four distinct spin interaction terms because of
the strong SOC. Combining the spin susceptibility results
along di↵erent crystallographic directions and the elec-
tron spin resonance (ESR) measurements in single crystal
samples, we quantitatively confirm the anisotropic form
of the spin interaction. We argue that the QSL physics
in YbMgGaO

4

may originate from the anisotropic spin
interaction. To our knowledge, YbMgGaO

4

is probably
the first strong spin-orbit coupled QSL candidate system
that contains odd number of electrons per unit cell with
e↵ective spin-1/2 local moments.

Experimental technique.—High-quality single crystals
(⇠ 1cm) of YbMgGaO

4

, as well as the non-magnetic iso-
structural material LuMgGaO

4

[54], are synthesized by
the floating zone technique. X-ray di↵ractions (XRD)
are performed on the cutting single crystals to confirm
the crystallization, the crystallographic orientation and
the absence of the impurity phase, and for the sin-
gle crystal structure refinements [55]. The high qual-
ity of the crystallization was confirmed by the narrow
XRD rocking curves with �2✓ ⇠ 0.06o and 0.04o on
ab planes for YbMgGaO

4

and LuMgGaO
4

crystals, re-
spectively. Magnetization (⇠ 60mg of YbMgGaO

4

single
crystals) and heat capacity measurements (10 ⇠ 20mg
of YbMgGaO

4

and LuMgGaO
4

single crystals) were per-
formed using a Quantum design physical property mea-
surement system along and perpendicular to the c axis
at 1.8 ⇠ 400K under 0 ⇠ 14T. The magnetic susceptibil-
ities of single crystals agree with that of powder samples,
�k/3+2�?/3 ' �

Powder

. The ESR measurements (⇠
60mg of YbMgGaO

4

single crystals) at 1.8 ⇠ 50K along
di↵erent crystallographic orientations were performed us-
ing a Bruker EMX plus 10/12 CW-spectrometer at X-
band frequencies (f ⇠ 9.39GHz); the spectrometer was
equipped with a continuous He gas-flow cryostat.

Kramers’ doublet and exchange Hamiltonian.—The
Yb3+ ion in YbMgGaO

4

has an electron configuration
4f13, and from the Hund’s rules the orbital angular mo-
mentum (L = 3) and the spin (s = 1/2) are entangled,
leading to a total angular momentum J = 7/2. Un-
der the trigonal crystal electric field, the eight-fold de-
generate J = 7/2 states are splitted into four Kramers’
doublets [38–41, 48]. By fitting the heat capacity results
with an activated behavior, we find the local ground state
doublet is well separated from the first excited doublet by
an energy gap � ⇠ 420K. This indicates that only the
local ground state doublet is active at T ⌧ �. More-
over, the magnetic entropy reaches to a plateau at Rln 2

FIG. 2. (Color online.) (a, b) The magnetization of the
YbMgGaO4 single crystals measured at 10, 6, 3 and 1.9K.
The dashed lines are linear fits of the experimental results
for fields above 12T at 1.9K. The solid curves are the cor-
responding magnetization calculated by the molecular field
approximation. (c, d) The inverse spin susceptibilites (af-
ter subtracting the Van Vleck paramagnetism) fitted by the
Curie-Weiss law (in dashed lines) for the YbMgGaO4 single
crystals.

per mol Yb3+ around 40K, which is consistent with the
thermalization of the 2-fold degenerate ground state dou-
blet [53, 54].
As it is analogous to the local moments in the py-

rochlore ice systems [27], one can introduce an e↵ective
spin-1/2 degree of freedom, S

i

, that acts on the local
ground state doublet. The low-temperature magnetic
properties are fully captured by these e↵ective spins. Be-
cause the 4f electron is very localized spatially [28], it is
su�cient to keep only the nearest-neighbor interactions
in the spin Hamiltonian [56]. Via a standard symme-
try analysis, we find the generic spin Hamiltonian that
is invariant under the R3̄m space group symmetry of
YbMgGaO

4

is given by

H =
X

hiji

⇥
J
zz

Sz

i

Sz

j

+ J±(S
+

i

S�
j

+ S�
i

S+

j

)

+J±±(�ijS
+

i

S+

j

+ �⇤
ij

S�
i

S�
j

)

� iJ
z±
2

(�⇤
ij

S+

i

Sz

j

� �
ij

S�
i

Sz

j

+ hi $ ji)
⇤
, (1)

where S±
i

= Sx

i

± iSy

i

, and the phase factor �
ij

=
1, ei2⇡/3, e�i2⇡/3 for the bond ij along the a

1

,a
2

,a
3

di-
rection (see Fig. 1), respectively. This generic Hamil-
tonian includes all possible microscopic processes that
contribute to the nearest-neighbor spin interaction. The
highly anisotropic spin interaction in H is a direct
consequence of the spin-orbit entanglement in the lo-
cal ground state doublet. Moreover, the antisymmet-
ric Dzyaloshinskii-Moriya interaction is prohibited in the
Hamiltonian because of the inversion symmetry.
Magnetization and magnetic susceptibility.—In order

4f electron is very localized, and dipolar interactions weak. 

The spin-1/2 XXZ model supports conventional order. 

(Yamamoto, etc, PRL 2014)
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Evidence for a spinon Fermi surface in a triangular-
lattice quantum-spin-liquid candidate
Yao Shen1, Yao-Dong Li2, Hongliang Wo1, Yuesheng Li3, Shoudong Shen1, Bingying Pan1, Qisi Wang1, H. C. Walker4, 
P. Steffens5, M. Boehm5, Yiqing Hao1, D. L. Quintero-Castro6, L. W. Harriger7, M. D. Frontzek8, Lijie Hao9, Siqin Meng9, 
Qingming Zhang3,10,11, Gang Chen1,11,12 & Jun Zhao1,11

A quantum spin liquid is an exotic quantum state of matter in 
which spins are highly entangled and remain disordered down to 
zero temperature. Such a state of matter is potentially relevant to 
high-temperature superconductivity and quantum-information 
applications, and experimental identification of a quantum spin 
liquid state is of fundamental importance for our understanding 
of quantum matter. Theoretical studies have proposed various 
quantum-spin-liquid ground states1–4, most of which are 
characterized by exotic spin excitations with fractional quantum 
numbers (termed ‘spinons’). Here we report neutron scattering 
measurements of the triangular-lattice antiferromagnet YbMgGaO4 
that reveal broad spin excitations covering a wide region of the 
Brillouin zone. The observed diffusive spin excitation persists at 
the lowest measured energy and shows a clear upper excitation 
edge, consistent with the particle–hole excitation of a spinon Fermi 
surface. Our results therefore point to the existence of a quantum 
spin liquid state with a spinon Fermi surface in YbMgGaO4, which 
has a perfect spin-1/2 triangular lattice as in the original proposal4 
of quantum spin liquids.

In 1973, Anderson4 proposed the idea of a quantum spin liquid 
(QSL) in the study of the triangular-lattice Heisenberg antiferromagnet. 
This idea was revived after the discovery in 1986 of high-temperature 
superconductivity5. A QSL, as currently understood, does not fit into 
Landau’s conventional paradigm of symmetry-breaking phases1,2,6,7, 
and is instead an exotic state of matter characterized by spinon excita-
tions and emergent gauge structures1–3,6. The search for QSLs in models 
and materials8–12 has been partly facilitated by the Oshikawa–Hastings–
Lieb–Schultz–Mattis (OHLSM) theorem, which hints at the possibility 
of QSLs in Mott insulators with odd electron fillings and a global U(1) 
spin rotational symmetry13–15. Indeed, a continuum of spin excitations 
has been observed in the kagome-lattice material ZnCu3(OD)6Cl2  
(refs 12, 16). However, the requirement of the U(1) spin  rotational 
symmetry prevents the application of the OHLSM theorem in 
strongly spin–orbit-coupled Mott insulators, in which the spin 
 rotational  symmetry is completely absent. A recent theory addressed 
this  limitation of the OHLSM theorem, arguing that, as long as time- 
reversal symmetry is preserved, the ground state of a spin–orbit- 
coupled Mott insulator with odd electron fillings must be exotic17.

The triangular antiferromagnet YbMgGaO4 (refs 18, 19) displays no 
indication of magnetic ordering or symmetry breaking at  temperatures 
as low as 30 mK, despite the energy scale for spin interaction being 
equivalent to a temperature of approximately 4 K. Because of the strong 
spin–orbit coupling of the Yb electrons, YbMgGaO4 was the first QSL 
to be proposed that was unlike those in the OHLSM theorem19. The 

thirteen 4f electrons of the Yb3+ ion form the spin–orbit-entangled 
Kramers  doublets that are split by the D3d crystal electric fields20–22. 
At  temperatures considerably lower than the crystal field gap (about 
420 K), the  magnetic properties of YbMgGaO4 are captured by the 
ground-state doublet that is described by an effective spin-1/2 local 
moment; this is confirmed by a measured magnetic entropy of Rln(2) 
per Yb3+ ion18, where R is the ideal gas constant. Figure 1a, b shows that 
the YbO6  octahedra form well-separated triangular layers. Because of 
the large difference in chemistry between Yb3+ and the non- magnetic 
Mg2+/Ga3+ ions, intra-triangular-layer impurities are prevented 
in YbMgGaO4 (refs 18, 19, 21). Hence, the Yb system is a spin-1/2 
 antiferromagnet on a perfect triangular lattice.

1State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China. 2School of Computer Science, Fudan University, Shanghai 200433, China. 
3Department of Physics, Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China. 4ISIS Facility, Rutherford 
Appleton Laboratory, STFC, Chilton, Didcot OX11 0QX, UK. 5Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France. 6Helmholtz-Zentrum Berlin für Materialien und 
Energie, D-14109 Berlin, Germany. 7NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA. 8Quantum Condensed Matter 
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393, USA. 9Neutron Scattering Laboratory, China Institute of Atomic Energy, Beijing 102413, China. 10Department of 
Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China. 11Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China. 12Center for Field Theory 
and Particle Physics, Fudan University, Shanghai 200433, China. 

0 10 20
0

1

2

1/
F

(×
10

6  
m

ol
 Y

b3+
 p

er
 m

3 )

ZFC
H      c
H     c

Temperature (K)

0 50 100 150 200 250 300
Temperature (K)

0

1

2

F 
(×

10
–6

 m
3  

pe
r m

ol
 Y

b3+
)

ZFC, H   c 
ZFC, H   c 

FC, H    c 
FC, H   c 

c

3

b

x

y

x y

z

Yb3+

a

O2–

Mg2+/Ga3+

Figure 1 | Crystal structure and magnetic susceptibility of a single 
crystal of YbMgGaO4. a, Schematic of the YbMgGaO4 crystal structure. 
The dashed line indicates the unit cell. b, A triangular layer of Yb3+ 
ions and oxygen. c, Direct-current magnetic susceptibility χ measured 
under zero-field cooling (ZFC) and field cooling (FC) for single crystals 
of YbMgGaO4, under magnetic fields (H =  1 T) applied perpendicular 
and parallel to the c axis. Paramagnetic behaviour is observed at low 
temperature with no obvious differences between ZFC and FC data. The 
inset shows the inverse susceptibility 1/χ at low temperature (≤ 20 K), 
fitted with the Curie–Weiss law (dashed line). The fitting results in Curie 
temperatures of ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =  − 3.2 K for perpendicular 
and parallel magnetic fields, respectively.
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Ga/Mg disorder may do something too. But not very clear 
at this stage.  
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Conservative treatment

Yao-Dong Li 

4

A. Luttinger-Tisza method

Here we treat the e↵ective spin Si as a classical vector
that satisfies the hard spin constraint |Si| = 1/2. Follow-
ing Luttinger and Tisza18, we first replace the hard spin
constraint with a global constraint such that

X

i

|Si|2 =
N

4
, (3)

where N is the total number of spins. The classical spin
Hamiltonian is then minimized under this global con-
straint. If the energy minimum turns out to satisfy the
local hard spin constraint as well, then this energy mini-
mum is the true classical ground state.

There are four parameters, Jzz, J±, J±±, Jz±, in the
generic spin model. We first consider the parameter
regime when the anisotropic interaction vanishes with
J±± = 0 and Jz± = 0. In this regime the spin model
reduces to the XXZ model. From the Curie-Weiss tem-
perature results on single crystal YbMgGaO4 samples3,
one finds that both Jzz and J± are antiferromagnetic and
J±/Jzz ⇡ 0.915 which is fixed to this value throughout
the paper. The ground state of this XXZ model is simply
the well-known 120� ordered state with the spins orient-
ing in the xy plane. The ordering wavevector of the 120�

state is at

kc =

✓
4⇡

3
, 0

◆
, (4)

or its symmetry equivalent wavevectors.
Now we discuss the e↵ect of the anisotropic spin in-

teractions. With a small |J±±|, the minimum of the
classical Hamiltonian under the global constraint slightly
deviates from the 120� state and occurs at incommen-
surate wavevectors. In strong spin-orbit coupled insu-
lators, however, the incommensurate ordering is generi-
cally not favored. Because of the intrinsic spin anisotropy
that originates from the strong spin-orbit coupling19, to
optimize the spin anisotropy, the ordered spin moments
cannot orient freely like the case for an incommensurate
state. As a result, we generically have the commensurate
spin orders in the strong spin-orbit coupled insulators.
Apart from the general understanding, we here provide
more specific reasons. Due to the low symmetry of the
spin Hamiltonian, the eigenstate that corresponds to the
minimum is generically unique, hence one cannot find two
orthogonal eigenvectors to construct an incommensurate
spiral state that satisfies the hard spin constraint on ev-
ery lattice site. Therefore, the incommensurate state can-
not be a true classical ground state, and we tentatively
regard the 120� state as the candidate classical ground
state in the regime with a small J±±.

With a large |J±±| and/or a large |Jz±|, the minimum
of the classical spin Hamiltonian occurs at

ks =

✓
0,

2⇡p
3

◆
, (5)

a T = 0 phase diagram
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FIG. 4. (Color online.) (a) The classical phase diagram in
the zero temperature limit. The solid phase boundaries de-
termined by the Luttinger-Tisza method, and the colored re-
gions are determined by classical Monte Carlo simulation. (b)
Ordering wave vectors kc and ks drawn in the first Brillouin
zone (the hexagon) for the three phases. (c) The 120� or-
der in regin I with spins pointing in the xy plane. (d) The
stripe order in regin II with spins pointing in the yz plane.
(e) The stripe order in region III with spins pointing along
the x direction.

or its symmetry equivalent wavevectors. Remarkably,
this minimum state satisfies the hard spin constraint and
is thus a true ground state. The spin configuration with
this ordering wavevector has a stripe order, i.e., the spins
order ferromagnetically along one lattice direction and
antiferromagnetically along the remaining two lattice di-
rections. To obtain the classical phase diagram in Fig. 4a,
we compare the energies of the 120� state and the stripe
ordered phases. In the region I of the phase diagram,
the 120� state is obtained. In the region II and III, we
find two stripe ordered phases with di↵erent spin orien-
tations. Without loss of generality, we fix the ordering
wavevector of the stripe phase to be ks = (0, 2⇡/

p
3).

Due to the locking of the spin orientation and the or-
dering wavevector, the spin configuration is fixed as well.
With this choice of the ordering wavevector, the spins
are pointing in the yz plane20 and x direction in region
II and region III, respectively (see Fig. 4).

Here we elucidate the structure of the classical ground
state phase diagram. The magnetic phases for a negative

8

ha†ia†iaiaji = 2ha†iai iha†iaji+ ha†ia†i ihaiaji, (25)

ha†ia†iaia†ji = 2ha†iai iha†ia†ji+ ha†ia†i ihaia†ji, (26)

ha†iaia†jaji = ha†iai iha†jaji+ ha†ia†jihaiaji
+ha†iajiha†jai i, (27)

ha†iaia†ja†ji = ha†iai iha†ja†ji+ 2ha†ia†jihaia†ji, (28)

ha†ia†ia†jaji = 2ha†ia†jiha†iaji+ ha†ia†i iha†jaji, (29)

ha†ia†ia†ja†ji = 2ha†ia†jiha†ia†ji+ ha†ia†i iha†ja†ji. (30)

The decoupling of the cubic and quintic terms leads
to linear terms in the Dyson-Maleev bosons that should
all cancel out by the stability requirement of the classical
ground state. Therefore, the decoupling of the cubic and
quintic terms does not introduce extra quadratic terms
into the spin-wave Hamiltonian.

After defining the Fourier transform of the Dyson-
Maleev boson operators, the quadratic spin-wave Hamil-
tonian can be organized as

Hsw =
X

k2BZ0

(A†
k, A�k)

✓
Fk G†

k
Gk F�k

◆✓
Ak

A†
�k

◆
, (31)

where Ak = (a1k, a2k) is the vector of the Dyson-Maleev
boson annihilation operator, the subindices “1” and “2”
label the two sublattices of the magnetic unit cell, and
BZ0 is the magnetic Brioullin zone of the stripe ordered
phase. Fk and Gk are 2 ⇥ 2 matrices and depend on
the mean field parameters that were introduced as bo-
son bilinears. The quadratic spin wave Hamiltonian is
diagonalized by the standard Bogoliubov transformation
Qk

33,

✓
Bk

B†
�k

◆
= Qk

✓
Ak

A†
�k

◆
, (32)

where Bk = (b1k, b2k) refers to the set of Bogoliubov
bosons, and Qk is a 4 ⇥ 4 matrix that defines the Bo-
goliubov transformation. From the ground state of the
quadratic spin wave Hamiltonian, we evaluate the mean-
field boson bilinears (ha†iai i, ha†iaji, ha†ia†i i, and ha†ia†ji).
As the spin wave Hamiltonian depends on these boson
bilinears, so we solve for them self-consistently by an it-
eration method.

The quantum correction to the magnetic order is eval-
uated by

�m = ha†iai i =
1

N

X

i

ha†iai i

=
1

2
{ 1

N

X

k

2X

i=1

[Q†
kQk]ii � 1}, (33)

where N is the nubmer of lattice sites and we have used
the simple fact that the state in region III is invariant
under the combined operation of time reversal and the
translation T2. If �m > S, the quantum fluctuation is
very strong and completely melts the magnetic order.
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FIG. 8. (Color online.) Quantum correction (�m) to the
magnetic orders that is calculated within the self-consistent
spin wave theory on a 80⇥ 80 lattice. The region near phase
boundary where �m exceeds the spin magnitude with �m �
1/2 is marked in beige.

As we show in Fig. 8, the quantum fluctation is indeed
quite strong and melts the magnetic order in the regions
near the phase boundary. This suggests the ground state
is likely to be disordered in these regions.

V. MAGNETIC EXCITATIONS WITH AND
WITHOUT EXTERNAL MAGNETIC FIELDS

In this section, we study the properties of the magnetic
excitations in di↵erent ordered phases as well as in the
presence of strong magnetic fields.

A. Linear spin wave theory for the three ordered
phases

Since the quantum fluctuation is found to be very weak
deep inside each ordered phases, it is legitimate to apply
the linear spin wave theory to study the magnetic exci-
tation in the strongly ordered regimes. In Fig. 9, we plot
the representative spin wave dispersions for the three or-
dered phases. Due to the anisotropic spin interaction,
the system does not have any continuous symmetry, so
generically the spin wave spectrum is fully gapped. This
is indeed the case for the two stripe ordered phase in
Fig. 9a,b. In Fig. 9c, the parameters are chosen that the
spin model reduces to a XXZ model. Due to the continu-
ous U(1) symmetry breaking, the spin wave spectrum has
one gapless mode. As one moves away from this special
point, we expect the spectrum should be gapped.

B. Polarized phases and strong magnetic fields

For the rare earth magnets, the 4f electrons are very
localized. As a result, the exchange interaction between
the rare earth local moments are usually very small. For
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where nO = 0, 1. For translations, one can always
choose a gauge such that WT1

r = (i�x)n1 ,WT2
r =

(i�x)n2ei�2[x,y]�
z

with n1, n2 = 0, 1 and �2[0, y] = 0. The
group relation in Eq. (3) further demands n1 = n2 = 0.
Thus the group relation in Eq. (1) gives WT1

r = 1,WT2
r =

eix�1�
z

, where �1 is the flux through each unit cell of the
triangular lattice and takes the value of 0 or ⇡ [46]. The
PSGs with �1 = 0 (⇡) are labeled by U1A (U1B). Among
the sixteen algebraic PSGs that we find, eight unphysical
solutions have T 2 = 1 for the spinons and give vanishing
spinon hoppings everywhere. In Tab. I and the Supple-
mentary information, we list the remaining eight PSGs
that have T 2 = �1 consistent with the fact that fermionic
spinons are Kramers doublets [46].

Mean-field states.—Here we obtain the spinon mean-
field Hamiltonian from Tab. I and explain why the
U1A00 state stands out as the candidate ground state
for YbMgGaO4. We start with the U1A states. Among
the four U1A states, the U1A10 state gives a vanish-
ing mean-field Hamiltonian for the spinon hoppings be-
tween the first and the second neighbors, the remain-
ing ones except the U1A00 state all have symmetry pro-
tected band touchings at the spinon Fermi level (see
Fig. 2). To illustrate the idea [53], we consider the
U1A01 state where the spinon Hamiltonian has the form
HU1A01

MF =
P

k h↵�

(k)f†
k↵fk� in the momentum space

and h(k) is a 2⇥ 2 matrix with

h(k) = d0(k)I2⇥2 +
3X

µ=1

d
µ

(k)�µ. (13)

For this band structure there are nondegenerate band
touchings at �, M and K points that are pro-
tected by the PSG of the U1A01 state. Under C6,
the PSG demands that [54] spinons to transform as
fk" ! �e�i⇡/3f†

�C

�1
6 k,#, fk# ! ei⇡/3f†

�C

�1
6 k,". Applying

C6 three times and keeping HMF invariant, we require
h(k) = �[�yh(k)�y]T which forces d0(k) = 0. The time
reversal symmetry (T = i�y ⌦ I2⇥2K) further requires
that d

µ

(k) = �d
µ

(�k). Thus we have symmetry pro-
tected band touchings with h(k) = 0 at the time reversal
invariant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole trans-
formation is involved for C6 [46]. Using those two sym-
metries, we further establish the band touching at the K
points. Likewise, for the U1A11 state, the PSG demands
the band touchings at � and M points. Because there
are only two spinon bands for the U1A states, these band
touchings generically occur at the spinon Fermi level.

Due to the Dirac band touchings at the Fermi level, the
low-energy dynamic spin structure factor, that measures
the spinon particle-hole continuum, is concentrated at a
few discrete momenta that correspond to the intra-Dirac-
cone and the inter-Dirac-cone scatterings [36]. Clearly,
this is inconsistent with the recent inelastic neutron scat-
tering result that observes a broad continuum covering a

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t

0
1 and t2 are hoppings in their

spinon mean-field Hamiltonians [46]. The Dirac cones are
highlighted in dashed circles. The dashed line refers to the
Fermi level. (d) The Brioullin zone of the triangular lattice.

rather large portion of the Brillouin zone [36, 37].
For the U1B states, the spinons experience a ⇡ back-

ground flux in each unit cell. The direct consequence of
the ⇡ background flux is that the U1B states support an
enhanced periodicty of the dynamic spin structure in the
Brillouin zone [45, 55, 56]. Such an enhanced periodicity
is absent in the inelastic neutron scattering result [36, 37].
In particular, unlike what one would expect for an en-
hanced periodicity, the spectral intensity at the � point
is drastically di↵erent from the one at the M point in the
existing experiments [36, 37].
The above analysis leads to the conclusion that the

U1A00 state is the most promising candidate U(1) QSL
for YbMgGaO4, and this conclusion is independent from
any microscopic model. The spinon mean field Hamilto-
nian, allowed by the U1A00 PSG, is remarkably simple
and is given as [57]

HU1A00
MF = �t1

X

hrr0i,↵
f†
r↵fr↵ � t2

X

hhrr0ii,↵
f†
r↵fr↵, (14)

where the spinon hopping is isotropic for the first
and the second neighbors. This mean-field state only
has a single band that is 1/2-filled, so it has a large
spinon Fermi surface. From HU1A00

MF , we construct the
mean-field ground state by filling the spinon Fermi sea,
| U1A00

MF i = Q
✏k<✏F

f†
k"f

†
k# |0i, where ✏k is the spinon dis-

persion and ✏F is the spinon Fermi energy. The mean-
field variational energy is

Evar = h U1A00
MF |Hspin| U1A00

MF i, (15)

where Hspin =
P

hrr0i JzzS
z

rS
z

r0 + J±(S
+
r S�

r0 + S�
r S+

r0) +

J±±(�rr0S+
r S+

r0 + �⇤
rr0S�

r S�
r0)� i

2Jz±[(�
⇤
rr0S+

r � �rr0S�
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U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

The U1A00 state is the spinon Fermi surface state that we proposed in 
Shen, et al, Nature.
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r WT2
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r WC6
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U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].
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Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
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ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
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is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
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are given by [45, 48–51]
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where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
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symmetries are realized projectively and form the projec-
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metry transformation O, the mean-field ansatz should
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can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
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symmetry turns into the following group relation for the
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indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
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LETTER RESEARCH

METHODS
Sample growth and characterizations. High-quality YbMgGaO4 single crystals 
were synthesized using the optical floating zone technique19. A representative  
single crystal, which is optically transparent with mirror-like cleaved surfaces, is 
shown in Extended Data Fig. 1a. Our X-ray diffraction (XRD) measurements 
revealed that all of the reflections from the cleaved surface could be indexed by 
(0, 0, L) peaks of triangular YbMgGaO4; no impurity phases were observed 
(Extended Data Fig. 1b). The full-width at half-maximum (FWHM) of the rocking 
curve of the (0, 0, 18) peak was about 0.009°, indicating an extremely high crystal-
lization quality (Extended Data Fig. 1c). This was confirmed by the sharp and clear 
diffraction spots in the X-ray Laue pattern (Extended Data Fig. 1d). Powder XRD 
patterns on ground single crystals also revealed no indication of impurity phases 
(Extended Data Fig. 1e). The Rietveld refinements31 confirm that the XRD pattern 
can be described by the R m3  space group. The refined structural parameters are 
given in Extended Data Table 1. These results suggested that the YbMgGaO4 single 
crystal possessed a perfect triangular lattice with no detectable impurities. This is 
consistent with previous measurements that have demonstrated that the impurity/
isolated spins are less than 0.04% in similar samples18,19. Although the Mg/Ga site 
disorder in the non-magnetic layers does not directly affect the exchange interac-
tion between the Yb local moments, it may have an indirect effect and could lead 
to some exchange disorder. It seems that this disorder is not significant, because 
no signs of spin freezing were observed. A QSL is often stable against weak local 
perturbations, provided that the perturbation is irrelevant or not significant. 
Therefore, if a QSL is realized as the ground state for YbMgGaO4, then the possible 
exchange disorder will not destabilize this state if the disorder strength is not  
significant.

In addition, the field dependence of magnetization in our single  crystal 
 displayed a linear behaviour above 12 T (Extended Data Fig. 1f),  indicative 
of a fully  polarized state. The Van Vleck susceptibility extracted from the 
 linear-field-dependent magnetization data was subtracted in the inset of Fig. 1c.
Neutron scattering experiments. INS measurements were carried out on the 
ThALES cold triple-axis spectrometer at the Institut Laue-Langevin, Grenoble, 
France, and at the FLEXX cold triple-axis spectrometer in the BER-II reactor at 
Helmholtz-Zentrum Berlin, Germany32. For the ThALES experiment, silicon (111) 
was used as a monochromator and analyser; the final neutron energies were fixed at 
Ef =  3 meV (energy resolution of about 0.05 meV), Ef =  3.5 meV (energy resolution 
of about 0.08 meV) or Ef =  4 meV (energy resolution of about 0.1 meV). For the 
FLEXX experiment, pyrolythic graphite (002) was used as a monochromator and 
analyser. Contamination from higher-order neutrons was eliminated through a 
velocity selector installed in the front of the monochromator. The final neutron 
energy was fixed at Ef =  3.5 meV (energy resolution of about 0.09 meV). Three (six) 
pieces of single crystals with total a mass of about 5 g (19 g) were coaligned in the 
(HK0) scattering plane for the ThALES (FLEXX) experiment. The FWHM of the 
rocking curve of the coaligned crystals for the ThALES and FLEXX experiments 
were approximately 0.95° and 0.92°, respectively. The elastic neutron scattering 
experiment was carried out at the WAND neutron diffractometer at the High 
Flux Isotope Reactor, Oak Ridge National Laboratory, USA; one single crystal was 
used for the experiment, with the incident wavelength λ =  1.488 Å (Extended Data  
Fig. 2). For the low-temperature experiments, a dilution insert for the standard 4He 
cryostat was used to reach temperatures down to around 30–70 mK.

Because of the non-uniform shape of the single crystal, the relatively large 
sample volume and the extremely broad spin-excitation spectrum, the neutron 
beam self-attenuation (by the sample) may require consideration. In most cases 
the self-attenuation is dependent on only the distance traversed by the  neutrons 
through the sample. We observed the self-attenuation effect in an elastic  incoherent 
scattering image of our sample at 20 K, which exhibited an anisotropic intensity 
distribution (Extended Data Fig. 3a). The self-attenuation effect was also observed 
in the raw constant-energy images (Extended Data Fig. 3b–f), which were shown 
to be anisotropic, with slightly higher intensities occurring at approximately 
the same direction as that observed in the elastic incoherent scattering images. 
The self- attenuation can be corrected by normalizing the data with the elastic 
 incoherent scattering image; that is, the elastic incoherent scattering intensity, 
which is dependent on the sample position (ω) and scattering angle (2θ), is  
converted to a linear attenuation correction factor for the scattering images 
 measured at different energies. The normalized constant-energy images are 
 presented in Fig. 2a–e, revealing a nearly isotropic intensity distribution.

Extended Data Fig. 4 shows the spin excitation spectrum at 20 K, which is 
 broadened and weakened compared with that at 70 mK (discussed below).
Spinon Fermi surface and dynamic spin structure factor. Here we explain the 
spinon mean-field state that is used to explain the dynamic spin structure factor 
of the neutron scattering experiments. As we proposed in the main text, a QSL 
with a spinon Fermi surface gives a compatible explanation for the INS results 
for YbMgGaO4.

To describe the candidate spinon-Fermi-surface QSL state in YbMgGaO4, we 
formally express the Yb3+ effective spin as the bilinear combination of the 
 fermionic spinon with spin †σ=∑αβ α αβ βS f fi i i

1
2

 and a Hilbert space constraint  
†∑ =α α αf f 1i i , where σαβ is a vector whose three components are the Pauli matrices 

and †
αfi  ( fiα) creates (annihilates) a spinon with spin α =  ↑ , ↓  at site i. For the QSL 

with a spinon Fermi surface, we propose a minimal mean-field Hamiltonian HMFT 
for the spinons on the  triangular lattice. We consider a uniform spinon hopping 
with a zero background flux:

† †∑ ∑µ=− + . . −α α α α
〈 〉

H t f f f f( h c ) (1)
ij

i j
i

i iMFT

where t is the mean-field parameter, which represents the hopping amplitude 
between nearest-neighbour sites. The chemical potential µ is included to impose 
the Hilbert space constraint on average. Here, we have treated the spinons freely 
by neglecting the gauge fluctuations. This mean-field state gives a single spinon 
dispersion

∑ω µ=− ⋅ −k at cos( )k
a

i
{ }i

where {ai} are six nearest-neighbour vectors of the triangular lattice. Owing to the 
Hilbert space constraint, the spinon band is half-filled, leading to a large Fermi 
surface in the Brioullin zone (Extended Data Fig. 5a).

INS measures the dynamic spin structure factor

∫∑
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where N is total number of lattice sites, the summation goes over all eigenstates, 
| Ω〉  refers to the spinon ground state with the spinons filling the Fermi sea, E0 is 
the energy of the ground state and En(p) is the energy of the nth excited state with 
momentum p. In the actual calculation, owing to the energy resolution of the 
experiments, the δ function is taken to have a broadening: 

δ η
η

− =
/π

− +
ε

ε
E

E
( )

( )2 2

where η is the broadening and ε is the measured energy. Because †=∑+
+ ↑ ↓S f fp k k p k , 

the summation in equation (2) would be over all possible spin-1 excited states that 
are characterized by one spinon particle–hole pair crossing the spinon Fermi 
 surface (Fig. 2g) with a total momentum p and a total energy E. As we show in  
Fig. 2f and Extended Data Fig. 5b, and discuss in the main text, this spinon- Fermi-
surface QSL state gives the three crucial features of the INS results: (1) the broad 
continuum that covers the large portion of the Brioullin zone; (2) the broad 
 continuum persisting from the lowest energy transfer to the highest energy 
 transfer; and (3) the clear upper excitation edge near the Γ  point.

In our calculation of Fig. 2f and Extended Data Fig. 5b, we choose the lattice 
size to be 40 ×  40 and η =  1.2t, in accordance with the energy and momentum 
resolution of the instruments. The energy scale of Fig. 2f is set to be 7.5t.

Here we explain the details of the dynamic spin structure factor in Fig. 2f and 
Extended Data Fig. 5b, based on the particle–hole excitation of the spinon Fermi 
surface. For an infinitesimal energy transfer, the neutrons simply probe the spinon 
Fermi surface. Because the spinon particle and hole can be excited anywhere near 
the Fermi surface, the neutron spectral intensity appears from p =  0 to p =  2kF, 
where kF is the Fermi wavevector. Because | 2kF|  already exceeds the first Brillouin 
zone, the neutron spectral intensity then covers the whole Brillouin zone  including 
the Γ  point. For a small but finite E, as we explain in the main text, a minimal 
momentum transfer pmin ≈  E/vF is required to excite the spinon particle–hole 
pairs. Therefore, the spectral intensity gradually moves away from the Γ  point as 
E increases. Because it is always possible to excite the spinon particle–hole pair with 
the momenta near the zone boundary, the spectral intensity is not greatly affected 
at the zone boundary as E increases. Thus, the broad continuum continues to cover 
a large portion of the Brillouin zone at a finite E.

With the free spinon mean-field model HMFT, we further calculate the spectral 
weight along the energy direction for fixed momenta. The discrepancy between the 
theoretical results in Extended Data Fig. 5d and the experimental results in Extended 
Data Fig. 5e occurs at low energies. We attribute this low-energy  discrepancy to 
the fact that the free spinon theory ignores the gauge fluctuations. The enhance-
ment of the low-energy spectral weight compared to the free spinon results is 
then identified as possible evidence of strong gauge fluctuations in the system;  
we elaborate on this in the following discussion of the heat capacity  behaviour.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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FIG. 3. (a) S(q,!) along the high-symmetry momentum
lines from HU1A00

MF with t2 = 0.2t1. The spinon bandwidth
B = 9.6t1. (b) The RPA corrected SRPA(q,!) along the
high symmetry momentum lines. We have set the parame-
ters in the spin model to be J±/Jzz = 0.915, J±±/Jzz = 0.35,
and Jz±/Jzz = 0.2. The ratio Jzz/t1 is obtained from
Refs. [33, 36] and fixed to be 1.0 for concreteness.

⇥Sz

r0 + Sz

r(�
⇤
rr0S

+
r0 � �rr0S

�
r0)] is the microscopic spin

model that was introduced in Refs. 33 and 35, and �rr0

is a bond-dependent phase factor due to the spin-orbit-
entangled nature of the Yb moments [35, 46]. For the
specific choice of exchange couplings with J± = 0.915J

zz

in the following, we find the minimum variational energy
Evar = �0.39J

zz

and occurs at t2 = 0.2t1 [46]. Here, the
expectation values of the J±± and J

z± interactions sim-
ply vanish, and this is an artifact of the free spinon mean-
field theory with the isotropic hoppings in Eq. (14). We
here establish that the U1A00 state is a spinon Fermi
surface U(1) QSL.

Spectroscopic properties.—For the U1A00 state, the
dynamic spin structure essentially detects the spinon
particle-hole excitation across the Fermi surface. The
information about the Fermi surface is encoded in the
profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon
mean-field theory [46] (see Fig. 3a). Qualitatively similar
to the mean-field theory with only first neighbor spinon
hoppings, the improved free-spinon mean-field theory of
HU1A00

MF captures the crucial features of the inelastic neu-
tron scattering results [36, 37]. The spinon particle-hole
continuum covers a large portion of the Brillouin zone,
and vanishes beyond the spinon bandwidth. More im-
portantly, the “V-shape” upper excitation edge near the
� point in Fig. 3a was clearly observed in the experi-
ments [36, 37], and the slope of the “V-shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, HU1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry
that is brought by the J±± and J

z± interactions. To
incorporate the J±± and J

z± interactions, we here follow
the phenomenological treatment for the “t-J” model in
the context of cuprate superconductors [58] and consider
H = HU1A00

MF +H 0
spin, where H 0

spin are the J±± and J
z±

interactions. In the parton construction, H 0
spin is treated

as the spinon interactions and thus introduces the spin
rotational symmetry breaking. With a random phase

approximation (RPA) for the interactionH 0
spin, we obtain

the dynamic spin susceptibility [58]

�RPA(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (16)

where �0 is the free-spinon susceptibility, and J (q) is
the exchange matrix from H 0

spin [46]. The renormalized

SRPA(q,!) can be read o↵ from �RPA via SRPA(q,!) =

� 1
⇡

Im
⇥
�RPA(q,!)

⇤+�
and is plotted in Fig. 3b.

The very precise values of J±± and J
z± cannot be de-

termined from the existing data-rich neutron scattering
experiment in a strong field normal to the triangular
plane. This is partly due to the experimental resolu-
tion and others [46], and is also due to the fact that
the linear spin wave spectrum for the field normal to
the plane is independent of J

z± and is not quite sen-
sitive to J±± [35, 39]. In Fig. 3b, instead, we choose
(J±±, Jz±) to fall into the disordered region of the phase
diagram in Ref. [35] where the quantum fluctuations are
expected to be strong [35, 46]. While the free spinon
theory already captures the main features of the neutron
scattering data [36, 37], the anisotropic spin interaction
H 0

spin, included by RPA, merely redistributes the spectral
weight in the momentum space. We find in Fig. 3b that,
the low-energy spectral weight at M is slightly enhanced,
a feature observed in Refs. 36 and 37. From our choice
of the parameters, it is plausible that this peak results
from the proximity to a phase with a stripe-like magnetic
order [35, 36, 39, 46].
Discussion.—We have demonstrated that the spinon

Fermi surface U(1) QSL gives a consistent explanation
of the inelastic neutron scattering result in YbMgGaO4.
Moreover, the anisotropic spin interaction, slightly en-
hances the spectral weight at the M points. The
U(1) gauge fluctuation in the spinon Fermi surface U(1)
QSL [42, 43] was suggested to be the cause for the sub-
linear temperature dependence of the heat capacity in
YbMgGaO4 [35, 36, 39, 44].
In YbMgGaO4, the exchange coupling between the Yb

moments is relatively weak [33]. It is feasible to fully po-
larize the spin with experimentally accessible magnetic
fields [35, 37, 39]. The polarized state is a simple prod-
uct state with short-range quantum entanglement. Since
the ground state of YbMgGaO4 is expected to be ex-
otic [36, 39], there is a quantum phase transition from an
exotic state with long-range quantum entanglement to a
simple product state with short-range quantum entan-
glement as one increases the magnetic field. This field-
driven transition is necessarily a unconventional tran-
sition beyond the traditional Landau’s paradigm and
has not been studied in the previous spin liquid candi-
dates [59–62]. The smooth growth of the magnetization
with varying external fields indicates a continuous tran-
sition [33]. Since we propose YbMgGaO4 to be a spinon
Fermi surface U(1) QSL and gapless, the transition would
be associated with the openning of the spin gap at the
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FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.

The representation is chosen to be �(1,2,3,4,5) = (�x ⌦
1,�z ⌦ 1,�y ⌦ ⌧x,�y ⌦ ⌧y,�y ⌦ ⌧z). �a and �ab is odd
under time reversal except when a = 4 or b = 4. The
Hamiltonian is thus

h(k) =
5X

a=1

d
a

(k)�a +
5X

a<b=1

d
ab

(k)�ab (71)

For the U1B00 state,

d3(k) = t01 sin(kx/2�
p
3k

y

/2),

d4(k) = t01 cos(kx/2 +
p
3k

y

/2),

d5(k) = �2t01 sin(kx),
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y

/2),
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/2),
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p
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),

d35(k) = 2t2 sin(3kx/2�
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3k

y

/2),

d45(k) = 2t2 cos(3kx/2 +
p
3k

y

/2). (72)

B. The U1B01 state

d3(k) = t2 sin(3kx/2 +
p
3k

y

/2),

d4(k) = �t2 cos(3kx/2�
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3k

y

/2),
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),
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3t2 sin(3kx/2 +
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/2),

d24(k) = �
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y

/2). (73)

C. The U1B10 state

d3(k) = �
p
3t1 sin
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3k

y

)/2
⇤
,

d4(k) =
p
3t1 cos
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(k
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+
p
3k

y

)/2
⇤
,

d23(k) = �t1 sin
⇥
(k

x

�
p
3k

y

)/2
⇤
,

d24(k) = �t1 cos
⇥
(k

x

+
p
3k

y

)/2
⇤
,

d25(k) = 2t1 sin kx. (74)
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FIG. 1. (a-e) Dynamic spin structure factor for the free spinon theory of the U1A00 state with di↵erent values of t2/t1. (f-h)
The evolution of SRPA(q,!) as a function of J±±. In all subfigures, the energy transfer is normalized against the corresponding
bandwidth B. The parameter ↵ is defined as J

zz

/t1.
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where we have omitted J±± and J
z± because they do not

conserve spin, therefore their contribution to Evar is zero.
This is an artifact of the free spinon theory of HU1A00

MF
that only includes isotropic spinon hoppings for the first
two neighbors.

As we describe in the main text, we treat the J±± and
J
z± interaction as the spinon interaction. We include

the spinon interaction and compute the dynamic spin
susceptibility by a standard random phase approximation
(RPA). The RPA susceptibility is given by

�(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (69)

where J (q) is the spin exchange matrix from H 0
spin

J (q) =

0

BB@

0 �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 0 (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (70)

with uq = cos(q · a1), vq = 1
2 (cos(q · a2) + cos(q · a3)),

and wq = 1
2 (cos(q · a2)� cos(q · a3)).

V. THE U1B STATES

In this section we use PSG to determine the free spinon
mean-field Hamiltonian for the U1B states to the first and
second spinon hoppings. In Fig. 2, we further present
their spectroscopic features for comparison. Like the
notation for U1As, the U1B states are also labeled by
U1Bn

C2nC6 .

A. The U1B00 state

For ⇡-flux states, the dynamic spin structure factor has
a enhanced periodicity due to anticommutative lattice
translations. A direct consequence of the periodicity is
that � and M become equivalent, and the V-shaped upper
excitation edge in Ref. 2 cannot be reproduced for the
U1B states.
We choose the spinon basis in the momentum space

fk,I = (f
A,k,", fB,k,", fA,k,#, fB,k,#)

T , where A and B
denote the two inequivalent sites in each unit cell due
to ⇡-flux.
The Hamiltonian is written in terms of the Dirac ma-

trices �a and their anticommutators �ab = [�a,�b]/(2i).
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FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.
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Summary

1. I present a theory for cluster Mott insulator  
that is motivated by LiZn2Mo3O8. 

2. I review the experiments and present some  
    recent theory progress on YbMgGaO4. 


