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Symmetry enriched quantum spin ices 

•  Present a realistic model on pyrochlore lattice: XYZ model  

•  This model does not have a sign problem for quantum Monte  
  Carlo simulation.  
 
                   In fact, no sign problem on any lattice ! 
 

•  This model supports two distinct (or symmetry enriched)  
    quantum spin ice (or U(1) spin liquid) phases.
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Outline

•  Introduction to classical spin ice and quantum spin ice  
 

•  Realistic XYZ model from octupole-dipole moment on  
  pyrochlore lattice 
 

•  Symmetry enriched quantum spin ice ground states and  
  material survey. 



Classical spin ice in pyrochlores

Why ice?
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Pyrochlore Ising model

Ground state is extensive degenerate ! Why?
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two-in two-out ice rule 
in spin ice ice rule in water ice

•   Dy2Ti2O7 and Ho2Ti2O7: Ising local moment from 
spin-orbit coupling + crystal electric field

•  AFM Ising interaction in 

Extensive classical  
ground state degeneracy  

(also see Chapter 5, 
Phase transition and critical phenomena

Prof Yu Lu & Hao Bolin)

Ramirez, Bramwell, Gingras,etc 2000s, Castelnovo, Moessner, Sondhi etc 2000s, CL Henley

pyrochlore lattice
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Experimental consequences of spin ice rules
• T < J, the spins are thermally fluctuating within classical ground state  

manifold that is demanded by spin ice rule 

• 2. Pinch points in neutron scattering: 
dipolar like spin correlation is a 

consequence of spin ice constraint 

Material and experiment

Pauling’s entropy

Dy2Ti2O7, Ho2Ti2O7

f electron local moment  
pyrochlore lattice 
strongly Ising moment
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1. Pauling entropy: missing entropy due to the
extensive ground state degeneracy 

A Ramirez, etc, Nature 1997

Consequence 1: pinch points

because of “Gauss’ law” constraint
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II. COARSE-GRAINING, FOURIER MODE
FLUCTUATIONS, AND LONG-RANGE

CORRELATIONS

In this section, I present the steps leading to power-law
correlations using the framework of a continuum theory,
in the ideas appear more transparently.

A. Ice mapping and local polarization

In fact the pyrochlore (Ising) ground states map 1-
to-1 onto those of the well-known diamond-lattice ice
model [11, 35], in which the degrees of freedom are ar-
rows along the lattice bonds. In the map, every tetra-
hedron center becomes a vertex of the diamond lattice,
while the spin sites map to bond centers of the dia-
mond lattice. Each spin ti = +1(−1) maps to an ar-
row pointing along the corresponding diamond lattice
edge, in the positive (negative) sense from the even to
the odd vertex. This well-known mapping [11, 35, 36]
is also used to model the “spin ice” system Dy2Ti2O7

(and also Ho2Ti2O7), wherein local ⟨111⟩ anisotropy
plus ferromagnetism makes a highly frustrated Ising
model [13, 14, 15, 16].) The ground state condition –
net spin of every tetrahedron is zero – maps to the “ice
rule” the numbers of incoming and outgoing arrows are
equal at every vertex [9].

The key object in this paper is the ice polarization field.
On a diamond-lattice bond a polarization tium(i) can be
defined, aligned from the even to odd diamond-lattice
vertex if the spin is up, oppositely if it is down; here
m(i) is the local 3-fold axis of site i. On every diamond
vertex, we define the mean of this polarization over the
surrounding tetrahedron of spins:

P(Rα) ≡
∑

i∈α

tium(i). (2.1)

The six possible ground-state configurations of that
tetrahedron correspond to P(Rα) = (±1, 0, 0), (0,±1, 0),
or (0, 0,±1).

Finally, the coarse-grained arrow field P(r) is the
coarse-grained polarization averaged over some larger
neighborhood and assumed to vary smoothly.

B. Effective free energy and correlations

The ground-state entropy density is a function of the
average polarization. A subensemble of states in which P
is large (which can be forced by boundary conditions) has
relatively little freedom for rearrangements of the spins
or arrows; indeed, for a saturated polarization such as
P = (1, 0, 0) the ensemble consists of a single microstate.
Thus it is very plausible that the entropy density has a
maximum for zero polarization. Therefore, to lowest or-
der, the total free energy (arising entirely from entropy),

as a function of coarse-grained P(r), has the form

Ftot({P(r)})/T = v−1
cell

∫

d3r1
2κ|P(r)|2, (2.2)

where vcell = a3/4 is the volume of a primitive unit cell.
The “stiffness” κ is dimensionless, as appropriate since it
is purely entropic in origin.

Corresponding to the condition (1.5), i.e. the ice rule,
P(r) satisfies a divergence constraint

∇ · P(r) = 0 (2.3)

like a magnetic field without monopoles. Eqs. (2.2) and
(2.3) look, respectively, like the field energy of a mag-
netic (or electric) field, and its divergence constraint, in
the absence of monopoles (or charges). These equations,
together, signify that that the probability distribution of
the (long-wavelength portion of) the polarization field is
the (constrained) Gaussian distribution

Prob({P(r)}) ∝ e−F ({P(r)})/T
∏

r

δ(∇ ·P(r)) (2.4)

Fourier transforming (2.2) simply gives Ftot =
∑

k

1
2κ|P(k)|2, so a naive use of equipartition would give

⟨Pµ(−k)Pν(k)⟩ = (1/κ)δµν . But the divergence con-
straint (2.3) imposes

k · P(k) = 0 (2.5)

in Fourier space. Thus the correct result has the longi-
tudinal fluctuations projected out:

⟨Pµ(−k)Pν(k)⟩ =
1

κ

(

δµν −
kµkν

|k|2
)

, (2.6)

Fourier transforming (2.6) back to direct space gives

⟨Pµ(0)Pν(r)⟩ ∼=
4π

κ

[

δ(r) +
1

r3
(δµν − 3r̂µr̂ν)

]

(2.7)

at large separations r (where r̂ ≡ r/|r|.) Correlations
have the spatial dependence of a dipole-dipole interac-
tion, which is a power law. Models that exhibit such
correlations – including the pyrochlore system, so often
described as “liquid-like”, – are thus, in a sense, in a crit-
ical state. [The generalization of (2.7) for d-dimensional
real space. would be a 1/rd decay.]

This criticality was first appreciated in the ice model
itself, being detected originally in a simulation [38]. A
functional form with a dipolar singularity like (2.6) was
produced by a clever random-walk approximation to a
series expansion [39]. The universal explanation, made
here, that dipolar correlations arise from (2.2) with the
divergence condition, was first put forward to explain
experiments on two-dimensional ice-like systems [10].

Ref. 45 have also presented an ansatz equivalent to
(2.4), derived the dipolar correlations, and confirmed
them by simulations, for the dimer covering of a sim-
ple cubic lattice. [See their eq. (3).] The 1/|r|3 decay
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Classical spin ice is certainly very interesting, but it is not a new 
phase of matter.  
 
It is smoothly connected to the high temperature paramagnet 
phase.  
 
In contrast, quantum spin ice is a new quantum phase of matter.



Quantum spin ice: early theory work with toy models
•  A toy “XXZ” model: introduce quantum tunneling within the  

classical ground state manifold

Hermele, Fisher, Balents, PRB 2004 
Isakov, etc, PRL 2008 
Shannon, etc, PRB 2012 
Onoda, etc, ArXiv 2014

Quantum spin ice Spin order

Critical point

continuous magnetic ordering transition at a temperature of
TMF
c ¼ 3:2 K (see Appendix F). The experimental indica-

tions of a zero-field transition to long-range order are mixed
[15,17], but early specific heat measurements [22] found an
anomaly at Tc ¼ 214 mK, and Mössbauer spectroscopy
[16] suggested a transition at 240 mK. This temperature is
approximately 14 times lower than TMF

c . If there is magnetic
ordering at all, it appears to be substantially suppressed,
indicating strong fluctuations—classical, quantum, or both.

The presence of strong fluctuations makes a QSL ground
state plausible in low fields. We now use the Hamiltonian
parameters to suggest the nature of this state. To do so, we
rewrite the zero-field Hamiltonian in terms of spins quan-
tized along the local C3 axis for each site, similarly to
Ref. [20]:

H ¼
X
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where here S#
i are local spin coordinates, Jzz ¼

" 1
3 ½2J1 " J2 þ 2ðJ3 þ 2J4Þ), J# ¼ 1

6 ð2J1 " J2 " J3 "
2J4Þ, J## ¼ 1

6 ðJ1 þ J2 " 2J3 þ 2J4Þ, and Jz# ¼ 1
3
ffiffi
2

p ðJ1 þ
J2 þ J3 " J4Þ, and the matrices !ij, "ij consist of
unimodular complex numbers (given in Appendix A).
From the fits in Eq. (3), we find, in meV,

Jzz ¼ 0:17# 0:04; J# ¼ 0:05# 0:01;

J## ¼ 0:05# 0:01; Jz# ¼ "0:14# 0:01;
(5)

where the uncertainties have been estimated by treating
those in Eq. (3) as Gaussian random variables. Note that
the strongest interaction is Jzz > 0, which precisely coin-
cides with the nearest-neighbor spin ice model. The model
with only J# and Jzz has been studied theoretically [13,23].
It does indeed support a QSL ground state for sufficiently
small J#=Jzz. For larger J#=Jzz, the ground state is instead
a magnet with hS#i i ! 0 [23]. While the actual value of
J#=Jzz * 0:3 would place this model in the magnetic state
[23], the Jz# interaction, in particular, is non-negligible in
Yb2Ti2O7, and preliminary theoretical work suggests that
it tends to stabilize the QSL state. Indeed, in perturbation
theory, the leading effect of the Jz# coupling is to induce,
in the effective Hamiltonian, a term close to the Rokhsar-
Kivelson interaction of Ref. [13] (see Appendix G), which
was shown to stabilize the QSL [13,24]. Although pertur-
bation theory is, strictly speaking, only valid for
Jz#=Jzz + 1, the conclusions of this analysis are likely
to extend to a larger range of values. A nonperturbative
study of the full Hamiltonian in Eq. (4) is beyond the scope
of this paper, but will be reported in a future publication.
Given the uncertainty in the phase boundary for the QSL
state, we cannot disregard the possibility that an ideal
sample of Yb2Ti2O7 would be magnetically ordered,

but that such order is here disrupted by crystal defects,
inducing, for example, the formation of nanoscale domain
walls. This possibility should be pursued further in the
future, taking into account the new understanding of the
Hamiltonian. We proceed now to discuss the implications
of the alternative possibility of a zero-field QSL state.
Many of the key properties of the QSL state of the Jzz "

J# model were established in Ref. [13]. Conceptually, it is
a quantum analog of the classical regime of Coulombic
correlations observed in spin ice [5]. Specifically, where
spin ice realizes an analog of magnetostatics, the QSL state
of Eq. (4) embodies a complete fictitious quantum electro-
dynamics. In this phase, the magnetic monopoles of spin
ice become full-fledged coherent excitations of the system.
In addition, the QSL supports dual electric monopoles and
a dynamical emergent photon mode at low energies. The
complex and largely diffuse character of the scattering in
zero field [18] may well be a consequence of the combi-
nation of these diverse excitations. Indeed, where a neutron
can create just one spin wave (S ¼ 1) excitation, the S ¼
1=2 magnetic monopoles are excited in pairs with no
individual momentum-conservation constraints. A careful
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FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
‘‘electric’’ (yellow sphere) monopoles, and an emergent photon
(wavy line). The field Hc marks a quantum critical point: the
confinement phase transition. For H >Hc, the ground state is a
simple field-polarized ferromagnet (FM), and the elementary
excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
transition.
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FIG. 3. Schematic phase diagram in the temperature (T)
magnetic-field (H) plane, for a material in the QSL phase of
Eq. (1) at T ¼ H ¼ 0. At a low field and temperature, the QSL
state supports exotic excitations: ‘‘magnetic’’ (red sphere) and
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excitations are conventional magnetic dipoles. The gradations
in gray scale indicate crossovers to the quantum critical
region between them, governed by the T ¼ 0 confinement phase
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•  Quantum spin ice does not have any conventional spin ordering.  

•  It is a new quantum phase of matter that is characterized by emergent   
gapless U(1) gauge photon and fractionalized excitations.  

Let there be two lights !

Quantum spin ice in L  =  quantum charge ice in charge sector

From the properties of quantum spin ice, we can identify the corresponding properties  
for the charge sector !

In short, one light is responsible for charge fractionalizaton, 
the other light is responsible for spin-charge separation. 

Excitations
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qe
2 �qe

2

fermionic  
spinon

Compact QED: gapless U(1) gauge photon mediates the long-range interaction  
between the spinons (monopoles). 

Properties of quantum spin ice 

Emergent “light”
Deconfined “spinons” (also called monopoles): 
only cost a finite energy to separate them apart

Balents, Nature 2010Gang Chen’s theory group 

Gang Chen’s theory group



Theory is very elegant. How about reality? Any materials?

There are many pyrochlore materials ! 
Some of them are actually quantum .

many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery

many many pyrochlore materials

1. rare-earth pyrochlores: Ho2Ti2O7, Dy2Ti2O7, Ho2Sn2O7, Dy2Sn2O7, 
    Er2Ti2O7, Yb2Ti2O7, Tb2Ti2O7, Er2Sn2O7, Tb2Sn2O7, Pr2Sn2O7,  
    Nd2Sn2O7, Gd2Sn2O7, …….

2. rare-earth B-site spinel: CdEr2S4,CdEr2Se4, CdYb2S4, CdYb2Se4, 
    MgYb2S4, MgYb2S4, MnYb2S4, MnYb2Se4, FeYb2S4, CdTm2S4 
    CdHo2S4, FeLu2S4, MnLu2S4, MnLu2Se4, ….

means lots of opportunity for experimental discovery

Jung Hoon Han’s talk

HgCr2Se4 (double WSM) 
Xu, Weng, Wang, Dai, Fang, PRL 2011

Gang Chen’s theory group 

Gang Chen’s theory group
some courtesy from L Savary



Outline

•  Introduction to classical spin ice and quantum spin ice  
 

•  Realistic XYZ model from octupole-dipole moment on  
  pyrochlore lattice 
 

•  Symmetry enriched quantum spin ice ground states and  
  material survey. 
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Dipole-octupole doublet: local physics
• Local moments with d electrons on pyrochlores: effective spin-1/2

Local Hamiltonian allowed by  
point group symmetry (D3d)

n
jz = 3/2

jz = �3/2

Gang Chen, Balents, PRB 2008 
Jackeli, Khaliullin,       PRL 2009, 
Witczak-Krempa, Gang Chen, YB Kim, Balents, Annual Review of CMP, 2014

SOC + trigonal distortion + onsite interaction

2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for all

Ht2g = ��` · S +Htri +Hint

Pt2gLPt2g = �` je↵ = `+ S

Iridates:               , five d electron in t2g manifold. 
What about                 ? e.g.           in Cd2Os2O7

Ir4+(5d5)

d1 and d3 Os5+

in octahedral 
environment

Gang Chen’s theory group 

Gang Chen’s theory group



Dipole-octupole doublet

Bertin, etc,  J. Phys: cond.mat 2012

• Why is this Kramers doublet so special?

1-dimensional representations of the point group!

R(2⇡/3)|Jz = ±3/2i = �|Jz = ±3/2i

• Symmetry demands that 1d irrep should also occur for f electron moments

j = 3/2, 9/2, 15/2, · · ·

e.g. Dy2Ti2O7 (j=15/2) local Kramers doublet wavefunction

J. Phys.: Condens. Matter 24 (2012) 256003 A Bertin et al

Figure 2. Description of low-temperature neutron scattering spectra measured at constant scattering vector Q on powder samples. Left:
spectrum of Tb2Ti2O7 from Mirebeau et al [25]; see the left panel of figure 5 of this reference. Right: spectrum of Er2Ti2O7 from Champion
et al [24]; see the top panel of figure 3 of this reference. The solid lines result from a simultaneous fit to the two spectra. The presence of an
additional CEF excitation around 7.3 meV for Tb2Ti2O7, not described here and previously, suggests the existence of two inequivalent Tb
sites [12]. This interpretation may be backed by specific heat measurements, the result of which depends strongly on the sample preparation
method [37–39]. For the two fits a background intensity is added, described by a first-order polynomial of the energy.

Table 5. Ground-state wavefunctions for six compounds of the R2Ti2O7 pyrochlore series computed with the Bm
n parameters displayed in

table 2.

Tb |�±
0 i = 0.266|±5i ⌥ 0.133|±2i � 0.129|⌥1i ⌥ 0.946|⌥4i

Dy |�±
0 i = 0.981|± 15

2 i ± 0.190|± 9
2 i � 0.022|± 3

2 i ⌥ 0.037|⌥ 3
2 i + 0.005|⌥ 9

2 i ± 0.001|⌥ 15
2 i

Ho |�±
0 i = �0.979|±8i ± 0.189|±5i � 0.014|±2i ± 0.070|⌥1i � 0.031|⌥4i ± 0.005|⌥7i

Er |�±
0 i = 0.471|± 13

2 i ± 0.421|± 7
2 i � 0.569|± 1

2 i ⌥ 0.240|⌥ 5
2 i + 0.469|⌥ 11

2 i
Tm |�0i = 0.147|6i � 0.692|3i � 0.692|�3i � 0.147|�6i
Yb |�±

0 i = 0.376|± 7
2 i ± 0.922|± 1

2 i � 0.093| ⌥ 5
2 i

wavefunctions as well as the rare-earth spectroscopic g
factors.

From the methodology point of view, this work
introduces a very simple method for a reliable determination
of the rare-earth crystal-field parameters for a series of
isostructural rare-earth compounds. Its success requires the
availability of inelastic CEF neutron scattering data for a
sufficiently large number of compounds of the series.

Obviously our method does not apply if the interactions
between the CEF and other excitations, e.g. phonons, vary
much within the series. In addition, our method assumes the
interactions between the CEF excitations to be small. We
basically neglect the influence of the excited multiplets on the
ground-state multiplet. Theoretically, the contribution of the
excited multiplets may not be negligible. Referring to table
1.1 of the textbook by Jensen and MacKintosh [46], the first
excited multiplet is located at a temperature equal or larger
than 4750 K in temperature units for all the rare earths we
consider, with the exception of Tb3+ for which it is only
2900 K. It remains to be checked that our method can be
theoretically justified. In any case, we have so far obtained a
nice account of all the published inelastic neutron scattering
data, which only concern the ground-state multiplets. We
account not only for the position of the energy levels but also
for the intensity of the CEF transitions which depend on the
wavefunctions. This suggests that we have at least reached
a very reasonable phenomenological model for the R2Ti2O7
series local properties at low energy, which are of interest in
the framework of frustration.

Acknowledgments
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Symmetry properties

C3 : Sµ ! Sµ

M : Sx,z ! �Sx,z, Sy ! Sy

I : Sµ ! Sµ

• Space group symmetry

Td ⇥ I ⇥ translations

Td = {C3,M}and

Important: Sx and Sz transform identically (as a dipole),   
     while Sy transforms as an octupole moment under M.

n
Sz =

1

2
|3
2
ih3
2
|� 1

2
|� 3

2
ih�3

2
|

S+ = |3
2
ih�3

2
|, S� = |� 3

2
ih3
2
|

Define 
spin operator

Fd3̄m



XYZ model: a realistic model beyond Heisenberg

• Nearest neighbour exchange from symmetry

H =
X

hiji

J
z

Sz

i

Sz

j

+ J
x

Sx

i

Sx

j

+ J
y

Sy

i

Sy

j

+J
xz

�
Sx

i

Sz

j

+ Sz

i

Sx

j

�

Same on every bond !

Apply a global rotation around y axis in the 
effective spin space and obtain XYZ model

H =
X

hiji

J̃
z

S̃z

i

S̃z

j

+ J̃
x

S̃x

i

S̃x

j

+ J̃
y

S̃y

i

S̃y

j

“TOY” XXZ 
model

“Realistic” XYZ 
model

also realistic is Savary-Balents’ model for dipolar doublets.  
Curnoe PRB 2008 Savary & Balents PRL 2011; SB Lee & Balents PRB 2012

Fd3̄m
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Unfrustrated regime: Magnetic order

1. J̃
z

< 0 and |J̃
z

| � J̃
x,y

, then hS̃z

i

i 6= 0.

This is an “all-in all-out” AFM state with magnetic dipolar order.

2. J̃
x

< 0 and |J̃
x

| � J̃
y,z

, then hS̃x

i

i 6= 0.

This state is not distinct from the first state on symmetry grounds. 

3. J̃
y

< 0 and |J̃
y

| � J̃
x,z

, then hS̃y

i

i 6= 0.

This state is distinct from the above two states! 
It has an AFM-octupolar order but no dipolar order.



Quantum spin ice and phase diagram

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
Z

J̃x

J̃y

J̃z

J̃x

J̃y

�1.0 �0.5 0.0 0.5 1.0
�1.0

�0.5

0.0

0.5

1.0

�1 1

1

�1

AIAO

AFO

FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.

Acknowledgements. – We thank Leon Balents, Michel

Study phase on a cube: �1  ˜J
x,y,z

 1.

J̃z = 1:

Phase diagram by gauge 
mean field theory.

No sign problem for quantum Monte Carlo in the shaded region !

three dimensional 
phase diagram



Non-perturbative parton construction

Spin flip creates spinon-antispinon pair on 
neighboring diamond sites. 

S±
i = �†

r�r0s±rr0

where s±rr0 = e±iArr0 is the gauge field.

and gauge charge is defined as

Qr = (�1)r
X

i2r

Sz
i

invariant under local U(1) gauge transformation

�r ! �re
i�r

s±rr0 ! s±rr0ei�r�i�r0

* Framework is developed by Balents in L Savary, Balents, 2012, SB Lee, S Onoda, Balents 2012

here treating Sz as gauge electric field

spin flip

r

r’
i
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Apply to XYZ

8

In dQSI, equal-time dipolar spin correlations are given
by h ~E ~Ei electric field correlations, which fall o↵ as 1/r4.
The above results can be used to determine the corre-
sponding (but more subtle) result for oQSI. First, we note
that ⌧zr can be viewed as a vector field on the diamond
lattice, transforming as a time-reversal odd pseudovec-
tor (i.e. identical to ~E in dQSI). Therefore, in the long
wavelength limit, ⌧zr transforms as T+

1

.
To proceed, we need to construct the operator in the

(Gaussian) oQSI continuum theory with smallest scal-
ing dimension, that also transforms as T+

1

and is time-

reversal odd. We have dim ~E = dim ~B = 2, and
dim @µ = 1. Also the derivative @µ transforms as T�

1

.
For example, we need to consider operators of the form
@µ ~E⌫ , which transforms as T�

1

⌦ T+

2

. Decomposing this
into irreducible representations, we find that T+

1

does not
appear in the tensor product, and this operator does not
contribute to the dipolar spin correlations. Proceeding in
this fashion, the desired operator is instead of the form
Oµ⌫� = @µ@⌫( ~E)�, with dimOµ⌫� = 4. The correspond-
ing correlations fall o↵ as a power law with exponent
twice the scaling dimension, so the oQSI dipolar correla-
tions fall o↵ as 1/r8.

This result ignores the role of long-range dipolar in-
teraction, which is potentially significant in f -electron
systems, but its main purpose is to illustrate a sharp
di↵erence between dQSI and oQSI. In addition, if one
restricts to the XYZ Hamiltonian only (i.e. includes no
longer-range exchange), the Z

2

⇥ Z
2

symmetry actually
implies that dipolar correlations fall o↵ exponentially in
oQSI, since both ⌧z and ⌧x transform non-trivially under
Z
2

⇥ Z
2

.

VII. GAUGE MEAN FIELD THEORY

The formalism of gauge mean field theory (gMFT)
for the pyrochlore lattice was introduced in Refs. 3 and
6. This mean-field theory is anchored to the QSI phase
known to occur in the easy-axis limit [5], and allows one
to assess the competition between QSI and magnetically

ordered phases. Here, we adapt the gMFT formalism
specifically to the pyrochlore XYZ model.

A. Slave particles

The ground state of H
e↵

[Eq. (87)] is a U(1) quantum
spin liquid whose low energy physics is described by com-
pact quantum electrodynamics in 3 + 1 dimensions[4, 5].
In the gauge theory language, the “two-in-two-out” spin
ice rule becomes Gauss’ law, and the ⌧̃±r breaks the ice
rule by creating electrically charged spinon excitations
on neighboring tetrahedra. The J± term describes the
hopping of spinons on the dual diamond lattice sites.
Following Refs. 3 and 6, to make the spinons and gauge

field explicit, we enlarge the physical Hilbert space by
writing the spin operators as
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= �†
r s

+

r,r+e
i

�r+e
i

(92)

⌧̃zr,r+e
i

= szr,r+e
i

, (93)

where r is an A sublattice site of the diamond lattice,
and ei connects r to its neighbors on the dual diamond
lattice. �†

r (�r ) is the spinon creation (annihilation) op-
erator at site r, and szrr0 , s

±
rr0 are spin-1/2 operators that

act as gauge fields. Since the spinons are bosonic, we
further write �†

r = ei�r (�r = e�i�r), where �r is a 2⇡
periodic angular variable and �†

r�r = 1 by construction.
In the above equations, the physical Hilbert space has
been enlarged to the the combined space of the spinons
and gauge field. To project back to the physical Hilbert
space, we implement the following constraint,

Qr = ⌘r
X

i

szr,r+⌘rei

, (94)

where ⌘r = ±1 for r 2 A/B sublattice. Here Qr is the
spinon number operator and satisfies

[�r, Qr0 ] = i�rr0 . (95)

The XYZ model Hamiltonian [Eq. (86)] can be rewritten as
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The J±± term now appears as an interaction between spinons. The above Hamiltonian is manifestly invariant under
the local U(1) gauge transformation (�r ! �re�i�r , s±rr0 ! s±rr0e

±i(�r0��r)).

Rewrite the XYZ model to manifest the gauge structure
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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FIG. 3. (Color online). Left: Unit cube in (J̃
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) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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gMFT, the phase transition is 1st order (2nd order) at the
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the exchange is frustrated, and QSI is likely to be much more
stable than for J̃
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< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
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= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃
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+ J̃
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� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃
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< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
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= 1 and
J̃
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= 1 faces, while oQSI occurs on the J̃
y
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While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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Material survey

Two well-known systems:

• Pyrochlores A2B2O7,
A = Nd, Er, Dy, … ?
e.g. ,
Nd2Ir2O7, Nd2Sn2O7, Nd2Zr2O7, etc
Dy2Ti2O7,
Cd2Os2O7, etc

• Spinels AB2X4, B = lanthanide?
e.g.  CdEr2Se4

be equal to ðR=2Þ lnð3=2Þ ¼ 1:68 Jmol$1 K$1, the residual
entropy associated with proton disorder in water ice [15]
and, in spin ice, with the extensive degeneracy of the
frozen state associated with the ice-rules [14].

Figure 1 shows the magnetic contribution (CMAG=T) to
the specific heat for CdEr2Se4, obtained after subtracting
the phonon and CEF contributions from the experimental
data [the best fit is obtained with a Debye temperature
!D ¼ 167:84ð39Þ K and the first excited CEF level at
46.96(29) K above the ground state; see inset of Fig. 1].
CMAG shows no sign of long-range order but a broad peak
centered at %0:95 K with a rapid fall to zero in the low-
temperature side, associated in the titanates with the freez-
ing of the R3þ moments in the spin ice state [7]. Most
importantly, the entropy recovered by integration of
CMAG=T between 0.3 and 20 K is about 4:2 Jmol$1 K$1,
which differs from S ¼ R ln2 expected for the noninteract-
ing Ising spins by 1:56 Jmol$1 K$1, a value close to the

zero-point entropy of a spin ice ground state. The recovery
of the zero-point entropy on application of a magnetic field
[the integrated entropy S up to 13 K in a field of 0.5 T
amounts to more than 90% of the total spin entropy,
compared to 76% in zero field (Fig. 3 bottom)], is also
consistent with spin ice behavior, as has been shown for
Dy2Ti2O7 [7]. Note that although the integration of
CMAG=T has been made for T ' 0:3 K, the absence of
any ordering feature in the ac-" below the freezing tem-
perature, Tp, (see below) completely rules out a large
discrepancy in S from our calculated value. Note also
that extrapolating the experimental curve below 0.3 K us-
ing a Schottky function adds only 0:025 Jmol$1 K$1 to the
total entropy, 2 orders of magnitude smaller than the
quoted value of 4:2 Jmol$1 K$1.
Figure 1 therefore constitutes irrefutable experimental

evidence of the spin ice behavior in CdEr2Se4. The task is
now to establish that the system satisfies the anisotropy and
exchange requirements for its existence. In CdEr2Se4, the
first indication of strong anisotropy of the Er3þ ions comes
from the field dependence of the dc magnetization (Fig. 2).
On cooling, the magnetization approaches saturation at a
value close to half of the free ion maximum # ¼ 9#B,
indicative of strong anisotropy and, a priori, reminiscent of
the behavior in spin ice [16]. However, a half-
magnetization plateau does not uniquely support h111i
uniaxial anisotropy as it is also found in Er2Ti2O7 [16]
with planar anisotropy. Further evidence is thus needed to
prove this point and it comes from a calculation of the
effect the change in the local coordination environment of
the Er3þ ions has on the single-ion CEF levels. In fact, a
close look at the spinel and pyrochlore structures of
CdEr2Se4 and Er2Ti2O7, respectively, shows that, in the
titanate, each R3þ ion is surrounded by eight oxygens
forming a distorted cube with two shortened R-O distances
lying along the h111i axes. In the spinel structure, on the
other hand, each R3þ has six nearest-neighbor Se2$ ions in
an almost perfect octahedral environment. None of the Er-
Se bonds points along the threefold axes. We have calcu-

FIG. 1 (color online). Magnetic specific heat and correspond-
ing integrated entropy (per mole of Er) for CdEr2Se4, showing a
reasonable agreement with the predicted S value for the degen-
erate 2 in 2 out spin ice state, R ln2-ðR=2Þ lnð3=2Þ. The error in
SðTÞ has been estimated from the error bars of the parameters
fitted in the calculation of CMAG. Inset: phonon, CEF, and
magnetic contributions to CðTÞ.

FIG. 2 (color online). Experimental (symbols) and calculated
(solid lines) field dependence of the magnetization of a poly-
crystalline sample of CdEr2Se4.
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Figure 3 | Specific heat versus temperature of Dy2Ti2O7 in zero field.
Previous experimental results had no signature of an upturn below 0.6 K
(refs 2,8–11). The Dy nuclear hyperfine contribution (dashed line) is
insignificant at these temperatures30.
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Figure 4 | Specific heat and entropy for single-crystal Dy2Ti2O7 versus
temperature. a, Specific heat divided by temperature, c(T)/T, was
integrated from 0.34 to 12 K, where data from ref. 8 were used above 1 K.
b, The resulting cumulative entropy does not plateau at Pauling’s residual
value, as was previously reported2. Inset shows low-temperature detail.

to approximately 105 s at 0.34 K. These timescales are also
consistent with the Arrhenius behaviour observed with magnetic
measurements14–16, which provides compelling evidence that spin
relaxation is responsible for the slow thermal relaxation. Our
measurements became restricted by long timescales below 0.34 K
(0.45 K for the powder sample), where the material can require >1
week of equilibration. These timescales should provide guidance
for any experiment (for example, µSR or neutron scattering)
aimed at probing equilibrium characteristics of Dy2Ti2O7 in
this temperature range.

We have shown, contrary to popular understanding from the
body of experimental work so far, that thermally equilibrated,
nominally stoichiometric Dy2Ti2O7 does not possess Pauling’s
entropy at zero temperature (Fig. 4). Furthermore, the absence
of a low-temperature plateau in the entropy at Pauling’s value
provides powerful evidence that the spin-ice state in Dy2Ti2O7
disappears once the long internal equilibration times of thismaterial
are accounted for. By measuring over short timescales, earlier
investigations that obtain Pauling’s residual entropy were able to
capture spin-ice-like properties even at the lowest temperatures.We
conclude that the ground state of thermally equilibratedDy2Ti2O7 is
not a degenerate manifold of spin-ice states, and therefore its effect
on spin-ice andmonopole characteristics calls for further study.

The question still remains: what is the true ground state of
spin ice? Although the MDG model does agree qualitatively with
our results, it may be improved by the inclusion of perturbative
spin exchanges beyond the nearest neighbour29. The mechanisms
responsible for spin dynamics leading up to an ordered state
may be attributable to cluster-like processes involving six or more
spins, instead of the less energetically favourable single-monopole
event12,13. Compelling evidence for this type of process has already
been suggested by quantum mechanical models of spin ice, where
the Pauling degeneracy is lifted by a ground state formed through
the coherent superposition of classical spin-ice configurations6.
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Some experiments may need to invoke  
the spin exchange beyond Ising like. 
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Summary

• We propose a realistic XYZ model based on a  
octupole-dipole doublet on the pyrochlore lattice. 

• This realistic model supports two distinct symmetry enriched 
quantum spin ice phases. 

• This model should be well understood by quantum Monte 
Carlo simulation. 

Thank you for your attention !


