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Kramers’ doublet: R3+ with odd number of electrons

Non-Kramers’ doublet / singlet: R3+  with even number of electrons

Rare-earth local moments: a crude classification 
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SUPPLEMENTARY INFORMATION FOR “A
SEMICLASSICAL STUDY OF THE GENERIC
SPIN MODEL ON A TRIANGULAR LATTICE”

Space group symmetry and the generic spin model
for YbMgGaO4

FIG. 1. The formation of the local ground state Kramers’
doublet under the combination of spin-orbit coupling (SOC)
and the crystal electric field (CEF). Please refer the text for
the detailed description.

The Yb3+ ion contains thirteen 4f electrons. Accord-
ing to the Hund’s rule, we should have the total spin
s = 1/2 and the orbital angular momentum L = 3 for
the Yb3+ ion. The fourteen-fold spin and orbital degen-
eracy should be lifted when the atomic spin-orbit cou-
pling and the crystal electric field are considered. For
the 4f electrons, the atomic spin-orbit coupling should
be considered before the crystal electric field. As we show
in Fig. 2, the atomic spin-orbit coupling entangles the or-
bital angular momentum and the total spin, leading to
a total angular momentum J = 7/2. Just like the case
for the quantum spin ice candidate Yb2Ti2O7 [32], the
crystal electric field of the D3d point group further splits
the eight J = 7/2 states into four pairs of Kramers’ dou-
blets. The ground state doublet is well separated from
other excited doublets with an energy gap � and thus
can be treated as an e↵ective spin-1/2 degree of freedom
at the temperature that is much lower than the energy
gap [7, 32]. This e↵ective spin-1/2 degree of freedom for
the Yb3+ ion is further supported by the low tempera-
ture magnetic entropy that is measured to be R ln 2 per
spin [6, 7].

This e↵ective spin, denoted as S in the main text, re-
sults from the spin-orbital entanglement of the Yb3+ 4f
electrons. As a consequence, under the space group sym-
metry operation, both the position and the orientation
of the spins are transformed as

Sr ! Det[Ô] · Ô�1 · SÔ·r+t, (1)

where Ô and t are the matrix and the vector that specify
the rotation part and the translation part of the space
group operation, respectively. In contrast, in a magnetic
system whose local moment is purely given by the total
spin, the spin rotational symmetry would be decoupled
from the space group symmetry operation. The latter

merely acts on the positions of the spin moments and
does not rotate the spin components. This is the key dif-
ference between the strong spin-orbit coupled Mott insu-
lators and a conventional Mott insulator with quenched
orbital degrees of freedom.

FIG. 2. The space group symmetry operation for the Yb
triangular layer.

As we explain in the main text, the interlayer Yb spin
coupling is much weaker than the intralayer one. We thus
keep the symmetry operation within each Yb triangu-
lar layer. The R3̄m space group symmetry contains two
translations (T1 and T2) along the two crystallographic
axes, the three-fold rotation (C3) around the z direction,
the two-fold rotation (C2) around the diagonal direction,
and an inversion (I) about the lattice site. With these
symmetries and their transformations on the spin oper-
ators, it is ready to obtain the generic spin Hamiltonian
that describes the interaction between the Yb local mo-
ments,
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Frustration parameters

In Fig. 3 and Fig. 4, we dissemble the three-
dimensional plots of the transition temperature and the
frustration parameter into a set of two-dimensional plots.

Self-consistent spin wave theory

In this section, we provide a detailed derivation of the
spin wave theory. We focus the discussion on the stripe
ordered phase in region III, and the spin wave theory
in other ordered regions can be obtained likewise. As
we show in the main text, the spins in region III orient
in the ±x̂ directions. We introduce the Dyson-Maleev
representation for the spin operators [29, 30]

Si · m̂i = �S + a†
iai , (3)

Yb2Ti2O7
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Dipole-octupole doublet

The classification of local moments is a bit crude ! 

One should carefully examine the wavefunction of the local doublet.

Yi-Ping Huang, GC*, Michael Hermele 
arXiv 1311.1231, Phys. Rev. Lett.112,167203 (2014)
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• Local moments on pyrochlore lattice:  effective spin-1/2

d electrons under D3d 
point group crystal field

n jz = 3/2

jz = �3/2

Local physics: start with t2g electrons 

octahedral  
CEF
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FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for all

d3 configuration
(jz = ±1/2)e.g. 5d transition metalGang Chen’s theory group 
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• Why is this Kramers doublet so special ?

ONE-dimensional representations of the point group !

R(2⇡/3)|Jz = ±3/2i = �|Jz = ±3/2i

R(2⇡/3) ⌘ e�i 2⇡
3 Jz

= e�i 2⇡
3 ⇥(± 3

2 ) = e⌥i⇡ = �1

|Jz = +3/2i time reversal
|Jz = �3/2i
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• Also applies to 4f electron moments on pyrochlore

More generally, …

e.g.

J. Phys.: Condens. Matter 24 (2012) 256003 A Bertin et al

Figure 2. Description of low-temperature neutron scattering spectra measured at constant scattering vector Q on powder samples. Left:
spectrum of Tb2Ti2O7 from Mirebeau et al [25]; see the left panel of figure 5 of this reference. Right: spectrum of Er2Ti2O7 from Champion
et al [24]; see the top panel of figure 3 of this reference. The solid lines result from a simultaneous fit to the two spectra. The presence of an
additional CEF excitation around 7.3 meV for Tb2Ti2O7, not described here and previously, suggests the existence of two inequivalent Tb
sites [12]. This interpretation may be backed by specific heat measurements, the result of which depends strongly on the sample preparation
method [37–39]. For the two fits a background intensity is added, described by a first-order polynomial of the energy.

Table 5. Ground-state wavefunctions for six compounds of the R2Ti2O7 pyrochlore series computed with the Bm
n parameters displayed in

table 2.

Tb |�±
0 i = 0.266|±5i ⌥ 0.133|±2i � 0.129|⌥1i ⌥ 0.946|⌥4i

Dy |�±
0 i = 0.981|± 15

2 i ± 0.190|± 9
2 i � 0.022|± 3

2 i ⌥ 0.037|⌥ 3
2 i + 0.005|⌥ 9

2 i ± 0.001|⌥ 15
2 i

Ho |�±
0 i = �0.979|±8i ± 0.189|±5i � 0.014|±2i ± 0.070|⌥1i � 0.031|⌥4i ± 0.005|⌥7i

Er |�±
0 i = 0.471|± 13

2 i ± 0.421|± 7
2 i � 0.569|± 1

2 i ⌥ 0.240|⌥ 5
2 i + 0.469|⌥ 11

2 i
Tm |�0i = 0.147|6i � 0.692|3i � 0.692|�3i � 0.147|�6i
Yb |�±

0 i = 0.376|± 7
2 i ± 0.922|± 1

2 i � 0.093| ⌥ 5
2 i

wavefunctions as well as the rare-earth spectroscopic g
factors.

From the methodology point of view, this work
introduces a very simple method for a reliable determination
of the rare-earth crystal-field parameters for a series of
isostructural rare-earth compounds. Its success requires the
availability of inelastic CEF neutron scattering data for a
sufficiently large number of compounds of the series.

Obviously our method does not apply if the interactions
between the CEF and other excitations, e.g. phonons, vary
much within the series. In addition, our method assumes the
interactions between the CEF excitations to be small. We
basically neglect the influence of the excited multiplets on the
ground-state multiplet. Theoretically, the contribution of the
excited multiplets may not be negligible. Referring to table
1.1 of the textbook by Jensen and MacKintosh [46], the first
excited multiplet is located at a temperature equal or larger
than 4750 K in temperature units for all the rare earths we
consider, with the exception of Tb3+ for which it is only
2900 K. It remains to be checked that our method can be
theoretically justified. In any case, we have so far obtained a
nice account of all the published inelastic neutron scattering
data, which only concern the ground-state multiplets. We
account not only for the position of the energy levels but also
for the intensity of the CEF transitions which depend on the
wavefunctions. This suggests that we have at least reached
a very reasonable phenomenological model for the R2Ti2O7
series local properties at low energy, which are of interest in
the framework of frustration.
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[8] Yaouanc A, Dalmas de Réotier P, Glazkov V, Marin C,

Bonville P, Hodges J A, Gubbens P C M, Sakarya S and
Baines C 2005 Phys. Rev. Lett. 95 047203
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• Effective spin-1/2 under lattice symmetry
Td ⇥ I ⇥ translations

C3 : Sµ ! Sµ

M : Sx,z ! �Sx,z, Sy ! Sy

I : Sµ ! Sµ

Td = {C3,M}and

Important: Sx and Sz transform identically (as a dipole),   
  while Sy transforms as an octupole moment under mirror.

n
Sz =

1

2
|3
2
ih3
2
|� 1

2
|� 3

2
ih�3

2
|

S+ = |3
2
ih�3

2
|, S� = |� 3

2
ih3
2
|

Symmetry properties

Tetrahedral Group



A small transformation into XYZ model

H =
X

hiji

J
z

Sz

i

Sz

j

+ J
x

Sx

i
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j

+ J
y
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i
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i
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Rotation around the y axis 
in the effective spin space

HXYZ =
X

hiji
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XYZ model
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Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

classical spin ice

+ quantum 
fluctuations

S. Curnoe, 2008
S. Onoda, 2010

XXZ model can lead to U(1) QSL

Hzz = Jzz

�

�i,j⇥

Sz
i Sz

jH = Hzz + H± + Hz± + H±±

Hamiltonian

Hz± = Jz±
⇧

⇤i,j⌅

⇤
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�
�ijS
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�
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⇤i,j⌅

�
�ijS

+
i S+

j + �⇥ijS
�
i S�

j

⇥

H± = �J±
⇤

⇥i,j⇤

�
S+

i S�
j + S�

i S+
j

⇥

+

+

classical NN spin ice

+ quantum 
fluctuations

= “quantum spin ice”

+ dipolar

S. Curnoe, 2008
S. Onoda, 2010

•  Pretty much one can add any term to create quantum tunneling, as long as it is 
not too large to induce magnetic order, the ground state is a U(1) QSL !

+ · · · · · · Hermele, Fisher, Balents, 
Moessner, Isakov, YB Kim….

J±
Jzz

U(1) QSL long-range order
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Emergent Quantum Electrodynamics

Spinon deconfinement

SpinonJzz

energy

“Magnetic” monopoles
J3
±

J2
zz

gapless  
gauge photon

Consequence 2: monopoles and defects

X

i2tet

Sz
i = ⇢m

Gauss’ law for magnetic charge

Figs from Moessner&Schiffer,2009

Emergent electric field 

Emergent vector potential

Sz ⇠ E

S± ⇠ e±iA
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Symmetry enriched quantum spin ice on pyrochlore

Yi-Ping Huang, GC*, Michael Hermele 
arXiv 1311.1231, Phys. Rev. Lett.112,167203 (2014)
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properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].

�1 1

QSI

XX
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FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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dQSI vs oQSI

• Both phases have identical thermodynamical properties,  
e.g.   T3 heat capacity

• Different dipolar static spin correlation: 
     dQSI:   < Sz(0) Sz(r) >  ~ 1/r4. 
     oQSI:   < Sz(0) Sz(r) >  ~ 1/r8,  
         with nearest-neighbor Z2xZ2 symmetry,  decay exponentially. 
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• may generally apply to any Kramers’ doublets with  J > 1/2 ! 

e.g,  Ce: Ce2Sn2O7

What makes a DO doublet is the wavefunction, not the J value ! 
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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the classical ground state is the all-in–all-out FeF3 structure
[34,35]. The introduction of strong quantum effects may
melt the classical order to produce a type of spin liquid,
rather as in other unfrustrated quantum antiferromagnets. In
this Letter, we report on Ce2Sn2O7, a pyrochlore magnet
based on Ce3þ (4f1, 2F5=2). The local moments have h111i
Ising anisotropy, and we find that although antiferromag-
netic spin correlations develop below approximately 1 K,
there is no sign of magnetic order down to 0.02 K. The
magnetic moment is small, suggesting that the magnetic
dipolar couplings are much smaller than magnetic
exchange interactions. This makes Ce2Sn2O7 an excellent
model material to look for novel exchange-induced QSLs
on the pyrochlore lattice.
The low-temperature magnetic properties of Ce3þ pyro-

chlores have been little studied, probably because of the
difficulty to stabilize the magnetic Ce3þ oxidation state in
preference to the nonmagnetic Ce4þ (4f0). In Ce2Sn2O7, a
compound previously investigated for its oxygen storage
capabilities [36], the trivalent rare-earth can be readily
stabilized by taking advantage of a solid state oxydo-
reductive reaction during which Sn0 is oxidized to Sn4þ

while reducingCe4þ to the requiredCe3þ. Our sampleswere
produced using this method. Their oxygen stoichiometry,
obtained from the thermogravimetric analysis procedure,
reported in Ref. [36], is 7.00" 0.01. The absence of
excess oxygen indicates that all cerium cations are in their
trivalent oxidation state and that diffraction data can be
fitted assuming a stoichiometric formula unit. The Rietveld
refinement of a neutron powder diffraction pattern is shown
in Fig. 1 and gives the lattice parameter 10.6453(3) Å
at 1.5 K (space group: Fd3̄m). The value of the atomic
coordinate x for the oxygen atomOð48fÞ is 0.3315(3), in the
range of the typical values forA2B2O7 compounds [37]. The
Ce—Oð48fÞ bond length is 2.600" 0.003 Å, close to the
sum of the ionic radii (2.68 Å), while the Ce—O0ð8bÞ bond
(pointing along the local h111i direction) has a length of
2.305" 0.003 Å, which is markedly shorter than 2.68 Å,

as usually observed in rare-earth pyrochlores. Attempts to
refine antisite cation disorder (0.5" 2.5%) and oxygen
Frenkel disorder (0.36" 0.16%), which can induce stuffing
effects and disordered exchange interactions, respectively,
did not provide evidence for structural defects.
Magnetization (M) data weremeasured in the temperature

(T) range from 1.8 to 370 K in an applied magnetic field (H)
of 1000 Oe using a Quantum Design MPMS-XL super-
conducting quantum interference device (SQUID) magne-
tometer. Additional magnetization, and ac-susceptibility,
measurements were made as a function of temperature
and field, from T ¼ 0.07 to 4.2 K and from H ¼ 0 to
8 × 104 Oe, using SQUID magnetometers equipped with a
miniature dilution refrigerator developed at the Institut Néel-
CNRS Grenoble. The heat capacity (Cp) of a pelletized
sample was measured down to 0.3 K using a Quantum
Design physical properties measurement system (PPMS).
Muon spin relaxation (μSR) measurements were performed
at the LTF spectrometer of the Swiss Muon Source, in the
range from T ¼ 0.02 to 0.8 K. Muons were longitudinally
polarized and spectra were recorded in zero field with earth-
field compensation or in applied fields parallel to the beam.
The magnetization divided by the applied field M=H,

which is equal to susceptibility χ in the linear field regime,
is shown as a function of the temperature T over the full
temperature range in Fig. 2(a). The susceptibility increases
continuously with decreasing temperature, and there is no
evidence of any ordering transition [inset of Fig. 2(a)]. At
high temperature, T > 130 K, the inverse susceptibility
χ−1 [shown in Fig. 2(b)] is almost linear, and a fit to the
Curie-Weiss law yields a magnetic moment μ ¼
2.75" 0.20 μB=Ce, in reasonable agreement with the
expected free ion value of 2.54 μB=Ce, and
θCW ¼ −250" 10 K. This is an extremely large value for
such a rare-earth material, where magnetic interactions are
expected to be in the kelvin range. The large value of θCW can
be attributed to crystal field effects, as shown by the strong
curvature of χ−1ðTÞ below 100 K, indicating a change in the
population of crystal field levels of the Ce3þ ion. At moderate
temperatures, 1 K < T < 10 K, a linear behavior is
observed, and the Curie-Weiss fit to this part of χ−1ðTÞ
[see inset of Fig. 2(b)] gives a magnetic moment of
μ ¼ 1.18" 0.02 μB=Ce, which corresponds to the moment
of the ground state doublet, and θCW ¼ −0.25" 0.08 K.
Figure 2(c) shows that the effectivemagneticmoment fμeff ¼
½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
g approaches the free ion

value at 370 K, and it falls to an approximate plateau of
1.18μB in the range from T ¼ 1 to 10K. At low temperature,
T < 1 K, the effective moment drops.
The magnetic susceptibility was used to estimate the

crystal field scheme. In the LS coupling scheme, a crystal
electric fieldwith theD3d symmetry of theCe3þ site splits the
2F5=2 free ion ground state into three Kramers doublets.
However, the ground state multiplet 2F5=2 alone does not
allowus to reproduce our experimental data. Instead,we used
matrix elements of the crystal field Hamiltonian which are

FIG. 1 (color online). Rietveld refinement of neutron
powder diffraction data (HRPT instrument at PSI) collected at
1.5 K using an incident wavelength of 1.49 Å. Fitted isotropic
displacement parameters: BCe ¼ 0.87ð4Þ Å2; BSn ¼ 0.79ð3ÞÅ2;
BOð48fÞ ¼ 1.08ð2ÞÅ2; BO0ð8bÞ¼0.87ð5ÞÅ2. Conventional Rietveld
factors (%): RP ¼ 4.10; RWP ¼ 5.19; RBragg ¼ 5.52; RF ¼ 4.25.
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Compound Magnetic ion Space group Local moment ⇥CW (K) Magnetic transition Frustration para. f Ref

YbMgGaO4 Yb3+ (4f13) R3̄m Kramers doublet �4 PM down to 60mK f > 66 4

CeCd3P3 Ce3+ (4f1) P63/mmc Kramers doublet �60 PM down to 0.48K f > 200 5

CeZn3P3 Ce3+ (4f1) P63/mmc Kramers doublet �6.6 AFM order at 0.8K f = 8.2 7

CeZn3As3 Ce3+ (4f1) P63/mmc Kramers doublet �62 unknown unknown 8

PrZn3As3 Pr3+ (4f2) P63/mmc Non-Kramers doublet �18 unknown unknown 8

NdZn3As3 Nd3+ (4f3) P63/mmc Kramers doublet �11 unknown unknown 8

Nd2O2CO3 Nd3+ (4f3) P63/mmc Kramers doublet �21.7 AFM order at 1.25K f = 17.4 9

Sm2O2CO3 Sm3+ (4f5) P63/mmc Kramers doublet �18 AFM order at 0.61K f = 31 9

Dy2O2CO3 Dy3+ (4f9) P63/mmc Kramers doublet �10.6 AFM order at 1.21K f = 8.8 9

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (⇥CW) for the second to the
sixth compounds are obtained from the magnetic susceptibility measurments above 50K. Here, ‘PM’ refers to paramagnetic
and ‘AFM’ refers to antiferromagnetic. The frustration parameter f is defined in Sec. III B.

doublets, the interaction between the e↵ective spin-1/2
moments is anisotropic both in the e↵ective spin space
and in the position space2,10–16. Therefore, the spin in-
teraction depends on the bond orientations. This is one
of the key propeties of the strong spin-orbit-coupled mag-
nets. The most generic spin Hamiltonian allowed by the
space group symmetry of the rare earth triangular system
is given by3
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where S±
i = Sx

i ± iSy
i , and �ij = �ji = 1, ei2⇡/3, e�i2⇡/3

are the phase factors for the bond ij along the a1, a2,
a3 directions, respectively (see Fig. 1). The first line
of Eq. (1) is the standard XXZ model and is invariant
under the global spin rotation around the z direction.
Here we have chosen the coordinate system for the spin
components to be identical with the one for the position
space (see Fig. 1). The J±± and Jz± terms of Eq. (1)
define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground state phase diagram of the model. We
find that the anisotropic J±± and Jz± interactions com-
pete with the XXZ part of the model and drive the system
into two distinct stripe ordered phases. Then we imple-
ment the classical Monte Carlo simulation to uncover the
classical magnetic orders at low temperatures. The or-
dering temperatures of di↵erent phases are determined as
well. We find that the ordering temperatures are strongly

suppressed near the the phase boundary between di↵er-
ent ordered phases, suggesting the strong frustration in
these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model
is expected to describe the interaction between Yb3+ lo-
cal moments. Therefore, it is of importance to under-
stand whether the generic model may support a disor-
dered ground state in the quantum regime, and which
parameter regime such a disordered ground state may
exist. For this purpose, in Sec. IV we study the quan-
tum fluctuation through a self-consistent Dyson-Maleev
spin wave analysis and find that the quantum fluctuation
is very strong and could melt the magnetic order in the
parameter regimes near the phase boundary. We thus
expect these regions may turn into a disordered ground
state when the quantum nature of the spins is considered.

Since the generic spin model applies broadly to any
other triangular system with Kramers’ doublet and the
long-range order should survive deep inside the ordered
regions even for the quantum spins, these magnetic or-
ders should be relevant for other triangular lattice mag-
nets with strong SOC, such as the RCd3P3, RZn3P3,
RCd3As3, RZn3As3 family, where R is a rare-earth ele-
ment. It is likely that the magnetic order may appear in
some of these materials. In Sec. V, we compute the spin
wave excitation in di↵erent ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare earth triangular magnets is usually very small, it
is ready to apply strong magnetic fields to fully polar-
ize the spin moments. This allows a direct comparison
between the theoretical results and the inelastic neutron
scattering measurements in the future experiments both
in YbMgGaO4 and other relevant materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic
spin model for the rare-earth triangular systems. In

Triangular lattice antiferromagnets
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* It is likely that some of them realize dipole-octupole doublet on the triangular lattice. 

Yuesheng Li, GC*, ….Qingming Zhang, PhysRevLett 2015 
Yao-Dong Li, Xiaoqun Wang, GC*, ArXiv 1512.02151

Yao-Dong Li

Gang Chen’s theory group 

Gang Chen’s theory group



4

atic study of the crystal electric field will be of a great
interest. The magnetic properties of many materials in
these families are not yet known, and a careful experi-
mental investigation is highly needed.

To summarize, we propose a peculiar Kramers’ dou-
blet, namely, the dipole-octupole doublet, on a triangu-
lar lattice. We analyze the symmetry properties of this
doublet and propose a rather simple model Hamiltonian
to describe the interaction between the dipole-octupole
doublets. We predict the magnetic multipolar order and
various unexpected properties associated with the mul-
tipolar order. In the future, we expect the unprecedent

simplicity of the generic model and the absence of Monte
Carlo sign problem will allow a direct comparison be-
tween quantum many-body theories, large scale numer-
ical simulations, and the experiments on these peculiar
doublets.
Acknowledgments.—This work is supported by the

start-up fund of Fudan University and the National
Thousand-Young-Talents Program (YDL, GC). Research
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Canada through Industry Canada and by the Province of
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Appendix A: Dipole-octupole doublet

We consider the general wavefunctions of a DO doublet that are linear superpositions of the Jz states with odd
integer multiples of 3/2,
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in which | �i is simply obtained from | +i by a time reversal operation. Here, both n1 and n2 are odd integers by
definition, and we assume the wavefunctions have been properly normalized. Using the definition of the e↵ective spin
operator in the main text, we can relate the e↵ective spin ⌧µ with the total moment Jµ as follows

⌧z / PJzP (A1)

⌧+ / P (J+)3n1P or / P (J�)3|n2|P (A2)

⌧� / P (J�)3n1P or / P (J+)3|n2|P (A3)

where P = | +ih +|+ | �ih �| is the projection operator that projects onto the DO doublet manifold. In Eq. (A2)
and Eq. (A3), the lowest order in J± is (J±)3. Although the magnetic field couples linearly to Jµ, only ⌧z component
survives after we restrict the magnetic field coupling to the DO doublet. The octupole moment ⌧x, however, can
couple to the magnetic field in the cubic order.

Appendix B: Space group symmetry

FIG. 2. The generators of the space group symmetry for a single triangular layer.

As we have explained in the main text, we only need to keep the space symmetry group generators of the R3̄m
or P63mmc space group. Within the triangular layer, both R3̄m and P63mmc space groups give the same list of
symmetry generators. As we show in Fig. 2, we have the three-fold rotation, C3, the two-fold rotation, C2, the
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is most easy to be understood if one applies the 3-fold
rotation along the z axis to these states. Under the
3-fold rotation, the state with Jz = 3n/2 transforms
as exp(�i 2⇡3 Jz) |Jz = 3n/2i = �|Jz = 3n/2i. Therefore,
the wavefunctions of the DO doublet, | ±i, stay invari-
ant under this rotation except picking up an overall minus
sign, i.e.,

exp(�i
2⇡

3
Jz) | ±i = �| ±i. (1)

In contrast, for the usual Kramers’ doublet, the two
states would simply mix with each other under this rota-
tion. Although the D3d point group symmetry does not
mix two states of the DO doublet, time reversal symme-
try switches these two states and thus protects the degen-
eracy of the DO doublet. This special doublet has been
found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice
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With these symmetry operation, it is straightforward to
obtain the exchange interaction between the DO dou-

blets. Since the 4f electron wavefunction is very local-
ized, it is su�cient to keep just nearest-neighbor interac-
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Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (2). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J

x

interaction
is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H0 � h

P
r ⌧

z

r .
Due to the spatial uniformity of the interaction, we are
able to implement a rotation by ✓ around the x direction
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splitting of the Ce3+ ion in Ce2Sn2O7. The crystal field
ground state wavefunctions are combinations of Jz = ±3/2
states? , thus the CEF ground state is a DO doublet. In the
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found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice
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obtain the exchange interaction between the DO dou-
blets. Since the 4f electron wavefunction is very local-
ized, it is su�cient to keep just nearest-neighbor interac-
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allowed by the space group symmetry, is given as

H0 =
X

hrr0i

⇥
J
x

⌧xr ⌧
x

r0 + J
y

⌧yr ⌧
y

r0 + J
z

⌧zr ⌧
z

r0

+J
yz

(⌧yr ⌧
z

r0 + ⌧zr ⌧
y

r0)
⇤
. (3)

Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J
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is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H0 � h
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Due to the spatial uniformity of the interaction, we are
able to implement a rotation by ✓ around the x direction
in the e↵ective spin space and eliminate the crossing cou-
pling between ⌧y and ⌧z. The simplified model is given
as
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FIG. 1. The electron configuration and the D3d crystal field
splitting of the Ce3+ ion in Ce2Sn2O7. The crystal field
ground state wavefunctions are combinations of Jz = ±3/2
states? , thus the CEF ground state is a DO doublet. In the
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found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice
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. The symmetry operation on the
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With these symmetry operation, it is straightforward to
obtain the exchange interaction between the DO dou-
blets. Since the 4f electron wavefunction is very local-
ized, it is su�cient to keep just nearest-neighbor interac-
tions. The most generic nearest-neighbor model, that is
allowed by the space group symmetry, is given as
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Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J
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interaction
is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H0 � h
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Due to the spatial uniformity of the interaction, we are
able to implement a rotation by ✓ around the x direction
in the e↵ective spin space and eliminate the crossing cou-
pling between ⌧y and ⌧z. The simplified model is given
as
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found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice
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Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J
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to an external magnetic field. After including the Zeeman
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able to implement a rotation by ✓ around the x direction
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Parameter regime Orders T

N

⇥CW DC susceptibility (�) Kerr response NMR/neutron

Regime A Ferro-dipole �3J
z

/2 diverges below T

N

Yes Uniform

Regime B Ferro-dipole �3J
z

/2 diverges below T

N

Yes Uniform

Regime C Ferro-octupole �3J
z

/2 constant at T = 0 Yes Uniform

Regime D Antiferro-dipole/Ferro-octupole �3J
z

/2 constant at T = 0 Yes Non-Uniform

Regime E Ferro-dipole/Antiferro-octupole �3J
z

/2 diverges below T

N

Yes Non-Uniform

Regime F Antiferro-dipole/Antiferro-octupole �3J
z

/2 constant at T = 0 Yes Non-Uniform

TABLE I. The ordered phases in di↵erent parameter regimes.
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FIG. 3. The phase diagram for dominant anti↵eromagnetic
J

z

. The ordering of local moments exhibits a 3-sublattice
pattern, as shown in the figure, where m

A

, m
B

, and m
C

de-
note mean-field magnetization on each sublattice. The spin
configuration on the diagonal of the phase diagram coincides
with previous numerical studies of the XXZ model. Spin con-
figurations of phases across the diagonal are related by in-
terchanging x and y components of m. Inset: coordinate
system in pseudospin space.

In phases 3 and 5, the ferro-dipolar order along y-
direction is easy to detect by measuring magnetization
when applying external magnetic fields, while in phases
4 and 6, the ferromagnetic ordering of the octupolar com-
ponent ⌧x does not feel the magnetic field to linear order,
hence is a “hidden” in the same sense introduced earlier.
Therefore, magnetization measurements for this regime
would give similar results as in the ferro-octupolar order,
hence not a informative method to distinguish such new
phases. On the other hand, neutron scattering probe of
the spin wave excitations will be very di↵erent from the
ferro-octupolar case, due to the non-uniform nature of
the antiferromagnetic ordering. In Fig. ??, we plot spec-

trum of spin wave excitaions above antiferro-octupole or-
dered ground states in phases 1 and 4, which correspond
to Regime F and D in Table ??. Magnon dispersion in
phase 6 is the same as in Eq. (??) (up to a permutation
of J ’s), so we omit it here.

FIG. 4. Excitation spectrum by linear spin wave theory
for dominant antiferromagnetic J

z

, for (a) (J
x

,J
y

,J
z

) =
(0.4, 0.1, 1) in phase 1, and (b) (J

x

,J
y

,J
z

) = (�0.3, 0, 1) in
phase 4. The vanishing gap at � and K are due to artifacts of
linear spin wave theory, and the physical spectra are expected
to be gapped.

Discussion.—It has been realized that a strong SOC
could create a significant interaction between the mag-
netic multipole moments. As a result, the magnetic mul-
tipolar orders have been proposed in several strong spin-
orbit-coupled systems such as the quadrupolar orders and
the octupolar orderes in ordered double perovskites. In
many cases, the magnetic dipolar orders, being time re-
versally odd, are concomitant with the magnetic octupo-
lar orders. As they play a dominant role in many mag-
netic measurements, this could complicate the interpre-
tation of the experiments and the direct experimental
identification of the octupolar orders. For the DO dou-
blet on the triangular lattice, the lattice symmetry natu-
rally distinguishes the octupole moments from the dipole
moments.
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the wavefunction, and has little to do with the value of
the total moment J . Any value of J > 1/2 can poten-
tially support a DO doublet as the crystal field ground
states. We do not need to restrict J to be odd integer
multiples of 3/2. This means any rare earth ions with
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FIG. 1. The electron configuration and the D3d crystal field
splitting of the Ce3+ ion in Ce2Sn2O7. The crystal field
ground state wavefunctions are combinations of Jz = ±3/2
states? , thus the CEF ground state is a DO doublet. In the
figure, �CEF is the crystal electric field gap.

found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice

translations, T
x

and T
y

. The symmetry operation on the
e↵ective spin ⌧µr is given as?
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With these symmetry operation, it is straightforward to
obtain the exchange interaction between the DO dou-
blets. Since the 4f electron wavefunction is very local-
ized, it is su�cient to keep just nearest-neighbor interac-
tions. The most generic nearest-neighbor model, that is
allowed by the space group symmetry, is given as
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Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J

x

interaction
is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H0 � h

P
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Due to the spatial uniformity of the interaction, we are
able to implement a rotation by ✓ around the x direction
in the e↵ective spin space and eliminate the crossing cou-
pling between ⌧y and ⌧z. The simplified model is given
as
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pendix. Like the XYZ model that was proposed for the
DO doublets on a pyrochlore lattice by one of the authors
and collaborators, this simplified model does not have a
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FIG. 1. The electron configuration and the D3d crystal field
splitting of the Ce3+ ion in Ce2Sn2O7. The crystal field
ground state wavefunctions are combinations of Jz = ±3/2
states? , thus the CEF ground state is a DO doublet. In the
figure, �CEF is the crystal electric field gap.

found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1
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2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice
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Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J
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Mean-Field Theory

3

sign problem for quantum Monte Carlo simulation in a
large parameter regime, and this is true on any other
lattices such as the three-dimensional FCC and hyperk-
agome lattices.

Hidden ferro-octupolar orders.—Here we explain the
hidden multipolar orders of the model in Eq. (??). We
start with the parameter regime with J

z

< 0, |J
z

| >
J
x

,J
y

that is referred as “Regime A” in Table ??. This
regime simply gives a conventional ferromagnetic ordered
ground state with a uniform h⌧zi. Since ⌧z is a dipole
moment, this ferromagnetic state is dubbed ferro-dipolar
state. Since this state has a ferromagnetic moment, it can
be readily confirmed in a magnetization measurement.

The simplified model in Eq. (??) has an interesting
permutation structure. Using the ground state in Regime
A, we can generate the ground state in Regime B with
J
y

< 0, |J
y

| > J
x

,J
z

and Regime C with J
x

< 0, |J
x

| >
J
y

,J
z

. Since the ⌧y order in Regime B shares the same
symmetry as the ⌧z order in Regime A, we do not give
a repeated discussion here. Although the permutation
trick to relate di↵erent regimes may look trivial, the
physics in Regime C is rather special and unconventional,
and it is this distinction that we will clarify and empha-
size. Clearly, as h⌧xi is uniform and non-zero in Regime
C, time reversal symmetry is explicitly broken and the
ground state is a ferromagnetic state. The usual mag-
netic susceptibility, however, does not show any divergent
behavior (see Fig. ??). This is very di↵erent from what
we would naively expect for a ferromagnetic state. The
order parameter h⌧xi is an octupole moment and does not
couple linearly to the external magnetic field. Therefore,
it is hidden in the usual magnetization measurement. In
this sense, this ferro-octupolar ordered state is more sim-
ilar to the hidden orders in URu2Si2 and ZnV2O4, rather
than any conventional ferromagnetic states.

Insert: fig of cuboid with regime A, regme B,... la-
belled Fig of uniform susceptibility and spin wave exci-
tation.

Despite its invisibility in the usual thermodynamic
measurements, we could instead look for the evidence
of the octupolar order in the other experimental probe.
Since the octupolar order explicitly breaks time reversal
symmetry, polar Kerr e↵ect could be used to detect the
time reversal symmetry breaking. Inside the octupolar
ordered phase, the dipole moment operator ⌧z flips the
octupole moment and creates octupolar spin wave excita-
tions. As ⌧z directly couples to the neutron spin, this oc-
tupolar spin wave excitation can be directly probed in an
inelastic neutron scattering experiment. Using Holstein-
Primarko↵ boson transformation, we obtain the octupo-
lar spin wave mode,
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FIG. 2. DC susceptibility and spin wave excitation. (a) �
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for (J
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) = (�2,�1,�5) and ✓ = ⇡/3 in Regime A,
showing conventional behavior described by Curie-Weiss law.
The transition temperature T

c

= 3|J
z

|/2. (b) The suscep-
tibility �

zz for (J
x

,J
y

,J
z

) = (�5,�1,�2) and ✓ = ⇡/3 in
Regime C. h⌧

x

i is non-zero and uniform at zero tempera-
ture, forming a ferro-octupolar order. This order is melted by
thermal fluctuations above T

c

= 3|J
x

|/2. �

zz has weak tem-
perature below T

c

, and does not show any divergent behav-
ior. (c) Uniform octupolar spin wave dispersion along high-
symmetry momentum line, calculated above ground state in
ferro-octupolar order, with same parameters as in (b).

triangular lattice. This mode is generically gapped be-
cause of the low symmetry of the model. In Fig. ??,
we depict the octupolar spin wave excitation along high
symmetric momentum lines.

In Table ??, we list the ordered phases that have been
discussed and their physical properties for the DO dou-
blets on a triangular lattice.

Hidden antiferro-octupolar orders.—Here we consider
the parameter regimes where the dominant interaction is
antiferromagnetic. We start with a predominant antifer-
romagnetic J

z

coupling and J
x

= J
y

. In this XXZ limit,
the model has a global U(1) symmetry, and several previ-
ous studies have shown the presence of supersolid order
with both h⌧zi 6= 0 and h⌧x,yi 6= 0 in a large parame-
ter regime. Moreover, the system develops a 3-sublattice
magnetic structure. Away from the XXZ limit, we im-
plement a self-consistent mean-field theory by assuming
a 3-sublattice structure for the mean-field ansatz. The
mean-field phase diagram is plotted in Fig. ??.

While anisotropic interactions render the system
highly frustrated, there are phases (3, 4, 5, 6) with
ferromagnetic ordering along x or y direction. Among
these, phase 5 (6) is the previously mentioned ferro-
dipolar(ferro-octupolar) order, with h⌧yi 6= 0 (h⌧xi 6= 0),
where h⌧zi is suppressed by large ferromagnetic J

y

(J
x

).
These two phases can be obtained from the superfluid or-
ders on the phase diagram diagonal by breaking the U(1)
symmetry. In phases 3 and 4 the case is similar, except
that the system favor a pattern with nonzero h⌧zi, a fea-
ture of the supersolid order that remains after breaking
U(1) symmetry.
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p
3/2), a3 =

(�1/2,�
p
3/2) are the 3 nearest-neighbor bonds on a
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FIG. 2. DC susceptibility and spin wave excitation. (a) �

zz

for (J
x

,J
y

,J
z

) = (�2,�1,�5) and ✓ = ⇡/3 in Regime A,
showing conventional behavior described by Curie-Weiss law.
The transition temperature T

c

= 3|J
z

|/2. (b) The suscep-
tibility �

zz for (J
x

,J
y

,J
z

) = (�5,�1,�2) and ✓ = ⇡/3 in
Regime C. h⌧

x

i is non-zero and uniform at zero tempera-
ture, forming a ferro-octupolar order. This order is melted by
thermal fluctuations above T

c

= 3|J
x

|/2. �

zz has weak tem-
perature below T

c

, and does not show any divergent behav-
ior. (c) Uniform octupolar spin wave dispersion along high-
symmetry momentum line, calculated above ground state in
ferro-octupolar order, with same parameters as in (b).

triangular lattice. This mode is generically gapped be-
cause of the low symmetry of the model. In Fig. ??,
we depict the octupolar spin wave excitation along high
symmetric momentum lines.

In Table ??, we list the ordered phases that have been
discussed and their physical properties for the DO dou-
blets on a triangular lattice.

Hidden antiferro-octupolar orders.—Here we consider
the parameter regimes where the dominant interaction is
antiferromagnetic. We start with a predominant antifer-
romagnetic J

z

coupling and J
x

= J
y

. In this XXZ limit,
the model has a global U(1) symmetry, and several previ-
ous studies have shown the presence of supersolid order
with both h⌧zi 6= 0 and h⌧x,yi 6= 0 in a large parame-
ter regime. Moreover, the system develops a 3-sublattice
magnetic structure. Away from the XXZ limit, we im-
plement a self-consistent mean-field theory by assuming
a 3-sublattice structure for the mean-field ansatz. The
mean-field phase diagram is plotted in Fig. ??.

While anisotropic interactions render the system
highly frustrated, there are phases (3, 4, 5, 6) with
ferromagnetic ordering along x or y direction. Among
these, phase 5 (6) is the previously mentioned ferro-
dipolar(ferro-octupolar) order, with h⌧yi 6= 0 (h⌧xi 6= 0),
where h⌧zi is suppressed by large ferromagnetic J

y

(J
x

).
These two phases can be obtained from the superfluid or-
ders on the phase diagram diagonal by breaking the U(1)
symmetry. In phases 3 and 4 the case is similar, except
that the system favor a pattern with nonzero h⌧zi, a fea-
ture of the supersolid order that remains after breaking
U(1) symmetry.
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FIG. 9. (Color online.) Spin wave dispersion along high sym-
metry momentum points. (a) Spin wave dispersion in x-stripe
phase, at J±± = �0.9J

zz

, J

z± = 0.1J
zz

. Inset: The first Bril-
louin zone, with red loop of high-symmetry points along which
we plot the dispersion indicated. (b) Spin wave dispersion in
yz-stripe phase, at J±± = 0.8J

zz

, J

z± = 0.8J
zz

. (c) Spin wave
dispersion in 120� phase, at J±± = J

z± = 0.

along the z direction, we have the spin Hamiltonian,

HZ = H � h
X

i

Sz
i , (34)

When the field h is strong enough, the spin is polar-
ized along z. To obtain the magnetic excitation of this
polarized state, we use the linear spin wave theory and
transform the spin operators as

Sz
i =

1

2
� c†i ci , (35)

FIG. 10. (Color online.) Spin wave dispersion when applying
external magnetic field along x-direction (upper yellow line)
and z-direction (lower blue line). Here the external field h

is taken to be 10J
zz

, and anisotropic exchange couplings J
z±

and J±± are taken to be 0.3J
zz

and 0.2J
zz

, respectively.

S+
i = ci , (36)

S�
i = c†i . (37)

We then plug this transformation in the Hamiltonian HZ

and keep the bilinear terms of boson operators. The mag-
netic excitation only has one branch and is simply given
by

⌦Z,k = {[h� 3Jzz + 2J±

3X

i=1

cos(k · ai)]2

�4J2
±±| cos(k · a1) + e�i 2⇡

3 cos(k · a2)
+ei

2⇡
3 cos(k · a3)|2}1/2. (38)

The Jz± coupling is absent in the above spin wave dis-
persion. This is because the Jz± interaction does not
generate any quadratic term to the spin wave Hamilto-
nian.
For the external field in the x direction, we have

HX = H � h
X

i

Sx
i . (39)

In the strong field limit, the local moment is polarized
along x direction, and we transform the spin operators
as

Sx
i =

1

2
� d†idi , (40)

Sy
i =

1

2
(di + d†i ), (41)

Sz
i =

1

2i
(di � d†i ). (42)

Under the linear spin wave approximation, the magnetic
excitation is given as

⌦X,k =
�⇥

(h� 6J±) + (J± � J±± +
Jzz
2

) cos(k · a1)

+(J± +
J±±
2

+
Jzz
2

)[cos(k · a2) + cos(k · a3)]
⇤2

Well-defined spin wave should  
be observed by inelastic neutron.
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fig1.pdf

FIG. 1. The electron configuration and the D3d crystal field
splitting of the Ce3+ ion in Ce2Sn2O7. The crystal field
ground state wavefunctions are combinations of Jz = ±3/2
states? , thus the CEF ground state is a DO doublet. In the
figure, �CEF is the crystal electric field gap.

found in various neodymium (Nd) pyrochlores, dyspro-
sium (Dy) pyrochlore, osmium (Os) pyrochlore, erbium
(Er) and ytterbium (Yb) spinels, and Ce2Sn2O7. We
expect the DO doublet should occur in some of the rare-
earth triangular lattice materials that were discovered
recently, especially since the rare-earth ions experience
the same D3d crystal field environment.

Generic spin model on a triangular lattice.—Here we
want to understand how these DO doublets interact with
each other on a triangular lattice. Because of the two-fold
degeneracy of the DO doublet, we introduce e↵ective spin
operators that act on this DO doublet, ⌧+ = | +ih �|,
⌧� = | �ih +|, ⌧z = 1

2 | +ih +| � 1
2 | �ih �|, where

⌧± ⌘ ⌧x ± i⌧y. To derive the exchange interaction be-
tween these e↵ective spins, we first explain how the ef-
fective spin transforms under the space group symmetry.

For all the three families of rare-earth triangular lat-
tice materials that were introduced previously, the space
group is either R3̄m or P63mmc. Since all rare-earth
ions in these materials have a layered triangular struc-
ture and the interlayer separation is much larger than
the intralayer lattice constant, we only need to consider
the interaction within the triangular layer and ignore the
interlayer coupling. As far as the space group symmetry
is concerned, we only need to retain the symmetry ge-
neators that operate within the triangular layer. It turns
out that, for a single triangular layer, both R3̄m and
P63mmc space groups give a three-fold rotation around
the z axis, C3, a two-fold rotation about the diagonal di-
rection, C2, a site inversion symmetry I, and two lattice

translations, T
x

and T
y

. The symmetry operation on the
e↵ective spin ⌧µr is given as?

8
>>>>>>>><

>>>>>>>>:

C3 : ⌧xr ! ⌧x
C3(r)

, ⌧yr ! ⌧y
C3(r)

, ⌧zr ! ⌧z
C3(r)

,

C2 : ⌧xr ! ⌧x
C2(r)

, ⌧yr ! �⌧y
C2(r)

, ⌧zr ! �⌧z
C2(r)

,

I : ⌧xr ! ⌧x
I(r), ⌧yr ! ⌧y

I(r), ⌧zr ! ⌧z
I(r),

T
x

: ⌧xr ! ⌧x
T

x

(r), ⌧yr ! ⌧y
T

x

(r), ⌧zr ! ⌧z
T

x

(r),

T
y

: ⌧xr ! ⌧x
T

y

(r), ⌧yr ! ⌧y
T

y

(r), ⌧zr ! ⌧z
T

y

(r).

(2)

With these symmetry operation, it is straightforward to
obtain the exchange interaction between the DO dou-
blets. Since the 4f electron wavefunction is very local-
ized, it is su�cient to keep just nearest-neighbor interac-
tions. The most generic nearest-neighbor model, that is
allowed by the space group symmetry, is given as

H0 =
X

hrr0i

⇥
J
x

⌧xr ⌧
x

r0 + J
y

⌧yr ⌧
y

r0 + J
z

⌧zr ⌧
z

r0

+J
yz

(⌧yr ⌧
z

r0 + ⌧zr ⌧
y

r0)
⇤
. (3)

Here we give a few comments about this model. First of
all, the spin interaction is anisotropic in the spin space.
This is natural since the DO doublet involves a strong
spin-orbit entanglement. What is surprising is that the
spin interaction is spatially uniform and it is identical
for every bond orientation. This is unusual since the
orbitals have orientations. This remarkable spatial prop-
erty arises from the peculiar symmetry property of the
DO doublet in Eq. (??). Secondly, there exists a cross-
ing coupling between ⌧y and ⌧z. This is because ⌧y and
⌧z transform identically like magnetic dipole moments
under the space group. Thirdly, there is no crossing cou-
pling between ⌧x and ⌧y or ⌧z. This is true even for
further neigbhor couplings. As ⌧x transforms as an oc-
tupole moment under the space group, the J

x

interaction
is the interaction between the octupole moments.
Another remarkable property of the DO doublet is the

infinite anisotropy in the Landé g-factor when it couples
to an external magnetic field. After including the Zeeman
term, we have the full Hamiltonian H = H0 � h

P
r ⌧

z

r .
Due to the spatial uniformity of the interaction, we are
able to implement a rotation by ✓ around the x direction
in the e↵ective spin space and eliminate the crossing cou-
pling between ⌧y and ⌧z. The simplified model is given
as

H =
X

hrr0i

⇥
J
x

T x

r T
x

r0 + J
y

T y

r T
y

r0 + J
z

T z

r T
z

r0 ]

�h
X

r

[cos ✓ T z

r + sin ✓ T y

r ], (4)

where T x = ⌧x, T y = ⌧z sin ✓ + ⌧y cos ✓, T z = ⌧z cos ✓ �
⌧y sin ✓, and J

x

= J
x

,J
y,z

= [J
y

+J
z

± (J
y

�J
z

) cos 2✓±
2J

yz

sin 2✓]/2. Here the angle ✓ is defined in the Ap-
pendix. Like the XYZ model that was proposed for the
DO doublets on a pyrochlore lattice by one of the authors
and collaborators, this simplified model does not have a

“XXZ” model with a global U(1) symmetryJ
x

> 0 and dominates, J
x

= J
y

,
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Summary

We introduced a new Kramers doublet: dipole-octupole doublet.  

Motivated by rare earth triangular materials, we propose XYZ model  

and point out the hidden multipolar orders.  

Various experimental consequences are suggested and proposed. 


