Hidden multipolar orders from dipoleoctupole doublets on a triangular lattice

Gang Chen Fudan University, May 14, 2016

Outline

Yao-Dong Li

- Dipole-octupole doublet and pyrochlore spin ice
- Triangular lattice XYZ model
- Gang Chen's theory group Hidden multipolar orders
- Summary

Yao-Dong Li, GC*, in preparation

Rare-earth local moments: a crude classification

Kramers' doublet: R3+ with odd number of electrons

Non-Kramers' doublet / singlet: R3+ with **even** number of electrons

Dipole-octupole doublet

The classification of local moments is a bit crude!

One should carefully examine the wavefunction of the local doublet.

Yi-Ping Huang, **GC***, Michael Hermele arXiv 1311.1231, **Phys. Rev. Lett**.112,167203 (2014)

Local physics: start with t2g electrons

Local moments on pyrochlore lattice: effective spin-1/2

d electrons under D3d point group crystal field

Why is this Kramers doublet so special?

ONE-dimensional representations of the point group!

$$R(2\pi/3)|J^z = \pm 3/2\rangle = -|J^z = \pm 3/2\rangle$$

$$R(2\pi/3) \equiv e^{-i\frac{2\pi}{3}J^z} = e^{-i\frac{2\pi}{3}\times(\pm\frac{3}{2})} = e^{\mp i\pi} = -1$$

$$|J^z=+3/2\rangle \quad \xrightarrow{\text{time reversal}} \quad |J^z=-3/2\rangle$$

More generally, ...

Also applies to 4f electron moments on pyrochlore

$$J^z = \frac{3}{2}, \, \frac{9}{2}, \, \frac{15}{2}, \, \cdots$$

e.g. local doublet wavefunction of Dy^{3+} $(J = \frac{15}{2})$ in $\mathrm{Dy}_2\mathrm{Ti}_2\mathrm{O}_7$

$$|\phi_0^{\pm}\rangle = 0.981|\pm\frac{15}{2}\rangle \pm 0.190|\pm\frac{9}{2}\rangle - 0.022|\pm\frac{3}{2}\rangle \mp 0.037|\mp\frac{3}{2}\rangle + 0.005|\mp\frac{9}{2}\rangle \pm 0.001|\mp\frac{15}{2}\rangle$$

Bertin, etc, J. Phys: cond.mat 2012

Many Nd pyrochlores have been experimentally confirmed to be DO doublets.

Symmetry properties

Effective spin-1/2 under lattice symmetry Tetrahedral Group

$$T_d \times \mathcal{I} \times translations$$
 and $T_d = \{C_3, M\}$

$$\begin{cases} S^z = \frac{1}{2} |\frac{3}{2}\rangle \langle \frac{3}{2}| - \frac{1}{2}| - \frac{3}{2}\rangle \langle -\frac{3}{2}| \\ S^+ = |\frac{3}{2}\rangle \langle -\frac{3}{2}|, \ S^- = |-\frac{3}{2}\rangle \langle \frac{3}{2}| \end{cases}$$

$$C_3: S^{\mu} \to S^{\mu}$$

$$M: S^{x,z} \to -S^{x,z}, S^y \to S^y$$

$$\mathcal{I}: S^{\mu} \to S^{\mu}$$

Important: S^x and S^z transform identically (as a dipole), while S^y transforms as an octupole moment under *mirror*.

A small transformation into XYZ model

$$H = \sum_{\langle ij \rangle} J_z S_i^z S_j^z + J_x S_i^x S_j^x + J_y S_i^y S_j^y + J_{xz} \left(S_i^x S_j^z + S_i^z S_j^x \right)$$

Rotation around the y axis in the effective spin space

$$H_{\rm XYZ} = \sum_{\langle ij\rangle} \tilde{J}_z \tilde{S}_i^z \tilde{S}_j^z + \tilde{J}_x \tilde{S}_i^x \tilde{S}_j^x + \tilde{J}_y \tilde{S}_i^y \tilde{S}_j^y \qquad \text{XYZ model}$$

XXZ model can lead to U(1) QSL

$$H = J_{zz} \sum_{\langle i,j \rangle} S_i^z S_j^z \left(-J_{\pm} \sum_{\langle i,j \rangle} \left(S_i^+ S_j^- + S_i^- S_j^+ \right) \right) + \cdots \right)$$
 Hermele, Fisher, Balents, Moessner, Isakov, YB Kim....

• Pretty much one can add any term to create **quantum** tunneling, as long as it is not too large to induce magnetic order, the **ground state** is a U(1) QSL!

Emergent Quantum Electrodynamics

Emergent electric field

Emergent vector potential

$$S^z \sim E$$

$$S^{\pm} \sim e^{\pm iA}$$

Symmetry enriched quantum spin ice on pyrochlore

$$H_{XYZ} = \sum_{\langle ij \rangle} \tilde{J}_z \tilde{S}_i^z \tilde{S}_j^z + \tilde{J}_y \tilde{S}_i^x \tilde{S}_j^x + \tilde{J}_x \tilde{S}_i^y \tilde{S}_j^y$$

Yi-Ping Huang, **GC***, Michael Hermele arXiv 1311.1231, **Phys. Rev. Lett**.112,167203 (2014)

dQSI vs oQSI

Transformation of continuum E/B field under Oh point group

	dQSI	oQSI	
E-field	T_1^+ (pseudovector)	T_2^+	
B-field	T_1^- (vector)	T_2^-	

- Both phases have identical thermodynamical properties,
 e.g. T³ heat capacity
- Different dipolar static spin correlation:

dQSI:
$$< S_z(0) S_z(r) > \sim 1/r^4$$
.

oQSI:
$$< S_z(0) S_z(r) > \sim 1/r^8$$
,

What makes a DO doublet is the wavefunction, not the J value!

may generally apply to any Kramers' doublets with J > 1/2!

e.g, Ce: Ce2Sn2O7

PRL **115**, 097202 (2015)

PHYSICAL REVIEW LETTERS

28 AUGUST 2015

Candidate Quantum Spin Liquid in the Ce³⁺ Pyrochlore Stannate Ce₂Sn₂O₇

Romain Sibille,^{1,*} Elsa Lhotel,² Vladimir Pomjakushin,³ Chris Baines,⁴ Tom Fennell,^{3,†} and Michel Kenzelmann¹

 $4f^1$ ion in D_{3d} local symmetry to the susceptibility was realized between T=1.8 and 370 K, and the resulting calculation of the single ion magnetic moment is shown in Fig. 2(c). The wave functions of the ground state Kramers doublet correspond to a linear combination of $m_J=\pm 3/2$ states. The fitted coefficients result in energy levels at $50 \pm$

Ce³⁺
$$(4f^1, {}^2F_{5/2}).$$

$$J = \frac{5}{2}$$

How to differentiate dQSI and oQSI? Yao-Dong Li, GC*, in preparation

Triangular lattice XYZ model and hidden order

Yao-Dong Li

Compound	Magnetic ion	Space group	Local moment	$\Theta_{\rm CW}$ (K)	Magnetic transition	Frustration para.	f Ref
$YbMgGaO_4$	$Yb^{3+} (4f^{13})$	$R\bar{3}m$	Kramers doublet	-4	PM down to 60mK	f > 66	4
$\mathrm{CeCd_3P_3}$	Ce^{3+} $(4f^1)$	$P6_3/mmc$	Kramers doublet	-60	PM down to 0.48K	f > 200	5
$\mathrm{CeZn_3P_3}$	$Ce^{3+} (4f^1)$	$P6_3/mmc$	Kramers doublet	-6.6	AFM order at 0.8K	f = 8.2	7
$\mathrm{CeZn_{3}As_{3}}$	$Ce^{3+} (4f^1)$	$P6_3/mmc$	Kramers doublet	-62	unknown	unknown	8
$PrZn_3As_3$	$\Pr^{3+}(4f^2)$	$P6_3/mmc$	Non-Kramers doublet	-18	unknown	unknown	8
$NdZn_{3}As_{3} \\$	$Nd^{3+} (4f^3)$	$P6_3/mmc$	Kramers doublet	-11	unknown	unknown	8
$Nd_2O_2CO_3$	$Nd^{3+} (4f^3)$	$P6_3/mmc$	Kramers doublet	-21.7	AFM order at 1.25K	f = 17.4	9
$\mathrm{Sm}_2\mathrm{O}_2\mathrm{CO}_3$	$\mathrm{Sm}^{3+} \ (4f^5)$	$P6_3/mmc$	Kramers doublet	-18	AFM order at 0.61K	f = 31	9
$\mathrm{Dy_2O_2CO_3}$	$\mathrm{Dy}^{3+} \ (4f^9)$	$P6_3/mmc$	Kramers doublet	-10.6	AFM order at 1.21K	f = 8.8	9

- All of them have rare-earth elements, and involve strong spin-orbit coupling.
- * It is likely that some of them realize dipole-octupole doublet on the triangular lattice.

Yuesheng Li, GC*,Qingming Zhang, PhysRevLett 2015 Yao-Dong Li, Xiaoqun Wang, GC*, ArXiv 1512.02151

Triangular lattice antiferromagnets

$$H_0 = \sum_{\langle \mathbf{r} \mathbf{r}' \rangle} \left[J_x \tau_{\mathbf{r}}^x \tau_{\mathbf{r}'}^x + J_y \tau_{\mathbf{r}'}^y \tau_{\mathbf{r}'}^y + J_z \tau_{\mathbf{r}}^z \tau_{\mathbf{r}'}^z \right. + J_{yz} (\tau_{\mathbf{r}}^y \tau_{\mathbf{r}'}^z + \tau_{\mathbf{r}}^z \tau_{\mathbf{r}'}^y) \right]$$

$$H = \sum_{\langle \mathbf{r} \mathbf{r}' \rangle} \left[\mathcal{J}_x T_{\mathbf{r}}^x T_{\mathbf{r}'}^x + \mathcal{J}_y T_{\mathbf{r}}^y T_{\mathbf{r}'}^y + \mathcal{J}_z T_{\mathbf{r}}^z T_{\mathbf{r}'}^z \right]$$
$$-h \sum_{\mathbf{r}} [\cos \theta T_{\mathbf{r}}^z + \sin \theta T_{\mathbf{r}}^y],$$

spatially uniform, rather unusual for strong SOC system

 τ^x is a pure octupolar moment!

Rich phase diagram

"Hidden" ferro-octupolar order

$$H = \sum_{\langle \mathbf{r} \mathbf{r}' \rangle} \left[\mathcal{J}_x T_{\mathbf{r}}^x T_{\mathbf{r}'}^x + \mathcal{J}_y T_{\mathbf{r}}^y T_{\mathbf{r}'}^y + \mathcal{J}_z T_{\mathbf{r}}^z T_{\mathbf{r}'}^z \right]$$
$$-h \sum_{\mathbf{r}} \left[\cos \theta T_{\mathbf{r}}^z + \sin \theta T_{\mathbf{r}}^y \right],$$

 $\mathcal{J}_x < 0$ and dominates

Mean-Field Theory

$$H = \sum_{\langle \mathbf{r} \mathbf{r}' \rangle} \left[\mathcal{J}_x T_{\mathbf{r}}^x \langle T_{\mathbf{r}'}^x \rangle + \mathcal{J}_y T_{\mathbf{r}}^y \langle T_{\mathbf{r}'}^y \rangle + \mathcal{J}_z T_{\mathbf{r}}^z \langle T_{\mathbf{r}'}^z \rangle \right]$$
$$-h \sum_{\mathbf{r}} \left[\cos \theta T_{\mathbf{r}}^z + \sin \theta T_{\mathbf{r}}^y \right]$$

Well-defined spin wave should be observed by inelastic neutron.

"Hidden" antiferro-octupolar order

$$H = \sum_{\langle \mathbf{rr'} \rangle} \left[\mathcal{J}_x T_{\mathbf{r}}^x T_{\mathbf{r'}}^x + \mathcal{J}_y T_{\mathbf{r}}^y T_{\mathbf{r'}}^y + \mathcal{J}_z T_{\mathbf{r}}^z T_{\mathbf{r'}}^z \right]$$

 $\mathcal{J}_x > 0$ and dominates, $\mathcal{J}_x = \mathcal{J}_y$, "XXZ" model with a global U(1) symmetry

R Melko, etc PRL 2005: XXZ model on triangular lattice has supersolid ground state (break translation).

dipolar order

octupolar order

muSR, NMR, neutron sensitive

Summary

- We introduced a new Kramers doublet: dipole-octupole doublet.
- Motivated by rare earth triangular materials, we propose XYZ model and point out the hidden multipolar orders.
- Various experimental consequences are suggested and proposed.

