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AKLT state

S=1 chain

Due to Berry phase effect, spin-1/2 chain is  
gapless, spin-1 Heisenberg chain is gapped.

Building degree of freedom is S=1, but at there is S=1/2 edge state.
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Symmetry Protected Topological Phase

Xiao-Gang Wen

Symmetry-Protected Topological
Orders in Interacting Bosonic Systems
Xie Chen,1,2 Zheng-Cheng Gu,3 Zheng-Xin Liu,4,2 Xiao-Gang Wen5,2,4*

Symmetry-protected topological (SPT) phases are bulk-gapped quantum phases with symmetries,
which have gapless or degenerate boundary states as long as the symmetries are not broken.
The SPT phases in free fermion systems, such as topological insulators, can be classified; however,
it is not known what SPT phases exist in general interacting systems. We present a systematic
way to construct SPT phases in interacting bosonic systems. Just as group theory allows us to
construct 230 crystal structures in three-dimensional space, we use group cohomology theory
to systematically construct different interacting bosonic SPT phases in any dimension and with
any symmetry, leading to the discovery of bosonic topological insulators and superconductors.

For many years, the defining characteristic
of a phase of matter was thought to be its
symmetry, with different phases necessarily

having different symmetries (1). However, through
the study of high-temperature superconductors
and the fractional quantum Hall (FQH) effect,
it was discovered that there can be distinct quan-
tum phases—topologically ordered phases—that
cannot be distinguished by symmetry (2). A deep
connection between quantum phases and quantum
entanglement (3–5) indicates that topological or-
ders are characterized by patterns of long-range
entanglement (5). Recently, it was discovered that
even short-range entangled states with the same
symmetry can belong to different phases. These
symmetric short-range entangled states are said
to contain a new kind of order called symmetry-
protected topological (SPT) order, (6) which is
characterized by symmetry-protected gapless or
degenerate edge states despite the bulk gap. Just
like symmetry-breaking orders are described by
group theory, we show here that SPT orders are
described by group cohomology theory. This dis-
covery expands our original understanding of pos-
sible phases in many-body systems.

A central issue is to understand what SPT
phases exist. The first system known to have
SPT order was the spin-1 chain with antiferro-
magnetic Heisenberg interactions (the so-called
Haldane chains) (7, 8). This model has been gen-
eralized, leading to a complete classification of
SPT orders in one-dimensional (1D) bosonic/
fermionic systems (9–12). Topological insula-
tors (13–17) with gapless edge modes protected
by time-reversal symmetry and particle-number

conservation provided the first example of an
SPT order in higher dimensions. The noninter-
acting nature of fermions in these systems allows
a classification of this kind of SPT order (18, 19),
whereas no SPT order exists in noninteracting
bosonic systems.

However, understanding SPT orders in non-
interacting systems is not sufficient, because par-
ticles in real materials do interact. In this paper,
we present a systematic construction of SPT phases
for interacting bosonic systems in any dimen-
sion and with any symmetry. Our construction
leads to the discovery of many SPT phases in 2
and higher dimensions (see Table 1). For sim-
plicity, we are going to first present in detail the
case of the 1D Haldane chain and demonstrate
the emergence of its SPT order using the group
cohomology theory for time reversal symmetry.
The group cohomology approach allows us to
generalize the construction to higher dimensions
and to all other symmetries.

The fixed-point ground-state wave function of
the Haldane chain (6) takes a simple dimer form
(Fig. 1), where each site contains two spin 1/2’s
connected into singlet pairs j↑ri ↓liþ1〉 − j↓ri↑liþ1〉
between neighboring sites (20). Time-reversal

symmetry acts asM(T ) = isyK on each spin 1/2,
where K is complex conjugation and sy is the y
component of the spin operator. The wave func-
tion is invariant under the symmetry action. For
each spin 1/2, M(T )2 = −I, whereas on each site
with two spins, [M(T ) ⊗ M(T )]2 = I. So the
states on each site form a representation of ZT

2 ,
the symmetry group generated by time reversal
symmetry.

The wave function on a closed chain is the
gapped ground state of the Hamiltonian H ¼
∑is r

i ⋅ sl
iþ1, with antiferromagnetic Heisenberg

interactions between each pair of spin 1/2’s on
neighboring sites where s l

i and s r
i are spin op-

erators for the left and right spin 1/2 on each
site, respectively. The Hamiltonian is invariant
under time-reversal symmetry; the ground state
does not break any symmetry of the system, yet
the system is far from a trivial phase, which be-
comes evident when we put the system on an open
chain. When the chain is open, the dangling
spin 1/2 at each end forms a nontrivial projec-
tive representation of ZT

2 with M(T)2 = −I,
which does not allow a 1D representation (21).
Therefore, the degeneracy of the edge state is
robust under any perturbation as long as time-
reversal symmetry is preserved.

The ground-state structure giving rise to SPT
order in the Haldane chain can be generalized to
an arbitrary symmetry group after we relabel the
spin states with group elements and express sym-
metry actions using group cocycles. The time-
reversal symmetry group contains two elements:
ZT
2 ¼ fE,Tg with T ◦ T = E. For the left spin 1/2

on each site, label j↑〉=j↓〉 as jE 〉=jT 〉 , and for the
right one, label j↑〉=j↓〉 as jE〉= − jT 〉. The total
wave function becomes

jF〉 ¼ ∏
i
(jTr

i T
l
iþ1〉 þ jEr

i E
l
iþ1〉)

¼ ∏
i
∑
gi
jgri ¼ gi, gliþ1 ¼ gi〉 ð1Þ

wheregi ∈ ZT
2 . Time-reversal symmetry then acts

on the right/left spins on each site as M (T )jE〉 ¼
−jT 〉 and M (T )jT 〉 ¼ jE〉, which takes the form
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Table 1. SPT phases in d spatial dimensions protected by some simple symmetries (represented by the
symmetry groups). Z1 means that our construction only gives rise to the trivial phase. Zmn means that the
constructed nontrivial SPT phases plus the trivial phase are labeled by m elements in Zn. Z means that
the constructed nontrivial SPT phases are labeled by nonzero integers, whereas the trivial one is labeled
by 0. ZT2 represents time-reversal symmetry, U (1) represents boson number–conservation symmetry, SO(3)
represents rotation symmetry, Zn represents cyclic symmetry of order n, and D2 represents the Klein
four-group symmetry. The first row corresponds to bosonic topological insulators and the second row to
bosonic topological superconductors.

Symmetry d = 0 d = 1 d = 2 d = 3
U(1) ⋊ ZT2 Z Z2 Z2 Z22
ZT2 Z1 Z2 Z1 Z2
U(1) Z Z1 Z Z1
SO(3) Z1 Z2 Z Z1
SO(3) % ZT2 Z1 Z22 Z2 Z32
Zn Zn Z1 Zn Z1
ZT2 % D2 ¼ D2h Z22 Z42 Z62 Z92
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Table for boson SPTs
classified with group cohomology from symmetry and dimension.

It turns out, the well-known topological insulator is a fermion SPT that is protected  
by time reversal symmetry. Boson SPT must be stabilized by interaction. 

重要的问题：理解导致SPT的物理机制，以及在什么物理体系中可以找到。
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Topological Paramagnetism in Frustrated Spin-One Mott Insulators

Chong Wang, Adam Nahum, and T. Senthil
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Dated: January 7, 2015)

Time reversal protected three dimensional (3D) topological paramagnets are magnetic analogs of
the celebrated 3D topological insulators. Such paramagnets have a bulk gap, no exotic bulk exci-
tations, but non-trivial surface states protected by symmetry. We propose that frustrated spin-1
quantum magnets are a natural setting for realising such states in 3D. We describe a physical picture
of the ground state wavefunction for such a spin-1 topological paramagnet in terms of loops of fluc-
tuating Haldane chains with non-trivial linking phases. We illustrate some aspects of such loop gases
with simple exactly solvable models. We also show how 3D topological paramagnets can be very
naturally accessed within a slave particle description of a spin-1 magnet. Specifically we construct
slave particle mean field states which are naturally driven into the topological paramagnet upon
including fluctuations. We propose bulk projected wave functions for the topological paramagnet
based on this slave particle description. An alternate slave particle construction leads to a stable
U(1) quantum spin liquid from which a topological paramagnet may be accessed by condensing the
emergent magnetic monopole excitation of the spin liquid.

Frustrated quantum magnets display a rich variety of
many–body phenomena. Some such magnets show long–
range magnetic order at low temperature, often selected
out of a manifold of degenerate classical ground states
by quantum fluctuations. A very interesting alternative
possibility — known as quantum paramagnetism — is
the avoidance of such ordering even at zero tempera-
ture. Quantum paramagnets may be of various types.
A fascinating and intensely–studied class is the quan-
tum spin liquids: these display many novel phenomena,
for instance fractionalization of quantum numbers and
topological order, or gapless excitations that are robust
despite the absence of broken symmetries [1–3].

Recently there has been much progress in understand-
ing a di↵erent type of remarkable quantum paramagnet.
These are phases which have a bulk gap and no fractional
quantum numbers or topological order. Despite this,
they have nontrivial surface states that are protected
by global symmetries. These properties are reminiscent
of the celebrated electronic topological band insulators.
Hence they have been called topological paramagnets [4].
Topological paramagnets and topological band insulators
are both examples of what are known as Symmetry Pro-
tected Topological (SPT) phases [5–7]. A classic example
of a topological paramagnet is the Haldane/AKLT spin-1
chain: though this has a bulk gap and no bulk fraction-
alization, it has dangling spin-1/2 moments at the edge
which are protected by symmetry, for instance time re-
versal. In the last few years tremendous progress has
been made in understanding such SPT phases and their
physical properties in diverse dimensions (for reviews, see
Refs. 8 and 9).

The main focus of the present paper is on three-
dimensional topological paramagnets that are protected
by time reversal (we also briefly discuss topological para-
magnets protected by other symmetries, notably conser-
vation of at least one spin component). These are inter-
esting for a number of reasons. First, time reversal is a
robust symmetry of typical physical spin Hamiltonians.

In 1D the familiar Haldane/AKLT chain is the only time
reversal protected topological paramagnet while in 2D
there are no time reversal protected topological param-
agnets. In 3D however there are three distinct non-trivial
phases [4, 10, 11] (corresponding to a classification by
the group Z 2

2

). Second, regarded as an electronic insu-
lator, unlike the 1D Haldane chain [12], these 3D topo-
logical paramagnets survive as distinct interacting SPT
insulators [13]. The properties and experimental finger-
prints of such topological paramagnets were described in
Refs. [4, 10, 11, 13]. However there is currently very lit-
tle understanding of where such phases might actually be
found. In this paper we propose that frustrated spin-1
Mott insulators may be good places to look for an exam-
ple of such phases.

Already in the familiar 1D example it is the spin-1 anti-
ferromagnetic chain, rather than the spin-1/2 chain, that
naturally becomes a topological paramagnet. In 3D for
one of the topological paramagnets we provide a phys-
ical picture and a parton construction which are both
very natural for the spin-1 case. We hope that our ob-
servations inspire experimental and numerical studies of
frustrated spin-1 quantum magnetism in the future. To-
wards the end of the paper we remark on materials that
may form such interesting frustrated magnets.

The three 3D topological paramagnets that are pro-
tected by time reversal symmetry alone [4, 10, 11] all
allow for a gapped surface with Z

2

topological order (i.e.
a gapped surface Z

2

quantum spin liquid) even though
the bulk itself is not topologically ordered. The prop-
erties of this surface theory give a useful way to label
the bulk phases. The surface has gapped quasiparticle
excitations — labelled ‘e’ and ‘m’ — which are mutual
semions. These may be thought of as the electric charge
and magnetic flux of a deconfined Z

2

gauge theory (like
the vertex and plaquette defects of Kitaev’s toric code
[14]). At the SPT surfaces these particles have properties
— self-statistics or time reversal transformation proper-
ties — that are impossible in a strictly 2D system, and
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Section III C 2 suggests (at leading order of the strong
coupling expansion in the resulting U(1) gauge theory)
an interesting frustrated spin-1 model: the “J

1

–J
2

” an-
tiferromagnet on the diamond lattice9:

H = J
1

X

hrr0i

~S
r

· ~S
r

0 + J
2

X

hhrr0ii

~S
r

· ~S
r

0 (51)

The next-nearest neighbour coupling J
2

introduces frus-
tration. Indeed classically once J

2

> J1
8

there are an
infinite number of degenerate ground states [56] that are
not related by global spin rotation. For large spin, it
has been argued that the ground state is magnetically
ordered as a result of quantum order by disorder [57].
The ground state for S = 1 (or S = 1/2) is not known.
The SPT paramagnet discussed in this paper is a candi-
date. The various descriptions we have provided should
be a useful guide in future numerical studies should a
paramagnetic ground state be found for this model.

It is interesting to note that since the diamond lat-
tice is 4–fold coordinated classical 2-sublattice Neel or-
der is likely to be more easily destabilized by frus-
tration/quantum fluctuations than in the cubic lattice.
Thus the J

1

–J
2

diamond magnet for low spin (S = 1/2
or 1) may be an excellent candidate to find an interesting
quantum paramagnetic ground state.

The frustrated diamond lattice model appears to de-
scribe well [56] the physics of the spinel oxide materials
MnAl

2

O
4

and CoAl
2

O
4

[58] which belong to a general
family of materials of the form AB

2

O
4

. The A site forms

the diamond lattice and is magnetic. The Mn and Co
compounds have S = 5

2

and S = 3

2

respectively. In
searching for a material that realizes the S = 1 model
it is natural then to consider NiAl

2

O
4

. Here Ni is ex-
pected to be in a d8 Ni2+ configuration and have spin-1.
However the A site is tetrahedrally coordinated, and in
the resulting crystal field, the Ni2+ ion will have orbital
degeneracy in addition to spin-1. Further spin-orbit cou-
pling will split the resulting spin-orbital Hilbert space
and the physics of the lattice will be determined by its
competition with inter-site spin/orbital exchange. Thus
NiAl

2

O
4

will not be simply described by a spin-1 dia-
mond lattice model. Work toward obtaining an appro-
priate ‘spin-orbital’ model for NiAl

2

O
4

is currently in
progress [59]. It remains to be seen whether the pres-
ence of the orbital degrees of freedom aids or hinders the
formation of paramagnetic states.

In any case we hope that these considerations motivate
an experimental search for and study of frustrated spin-1
magnets.
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There is no sharp question in 1D any more. So
what is the 3D analogue of Haldane spin-1 phase? 
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Minimal spin model

Quantum Paramagnet and Frustrated Quantum Criticality in a Spin-One Diamond
Lattice Antiferromagnet

Gang Chen1,2⇤
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(Dated: January 24, 2017)

Motivated by the very recent proposal of topological quantum paramagnet in the diamond lattice
antiferromagnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and
properties of the diamond material with the spin-one local moments. The minimal model includes
the first and second neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that
is allowed by the spin-one nature of the local moment and the tetragonal symmetry of NiRh

2

O
4

below 380K. We point out that there exists a quantum phase transition from a trivial quantum

paramagnet when the single-ion spin anisotropy is dominant to the magnetic ordered states when the
exchange is dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum
paramagnetic state supports extensively degenerate band minima in the spectra. As the system
approaches the transition, extensively degenerate bosonic modes become critical at the criticality,
giving rise to unusual magnetic properties. Our phase diagram and experimental predictions for
di↵erent phases provide a guildline for the identification of the ground state for NiRh

2

O
4

. Although
our results are fundamentally di↵erent from the proposal of topological quantum paramagnet for
NiRh

2

O
4

, it represents interesting possibilities for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community [1–
25]. The well-known topological insulator, that was pro-
posed and discovered earlier, is a non-interacting fermion
SPT protected by time reversal symmetry [26, 27]. In
contrast, the SPTs in bosonic systems must be stabilized
by the interactions [11]. The spin degrees of freedom with
exchange interactions seem to be a natural candidate for
realizing the boson SPTs [10]. In fact, the Haldane spin-
one chain is a 1D boson SPT and is protected by the
SO(3) spin rotational symmetry [1, 2, 28]. The realiza-
tion of boson SPTs in high dimensions is still missing.
It was suggested that, the spin-one diamond lattice anti-
ferromagnet with frustrated spin interactions may host a
topological quantum paramagnet that is a spin analogue
of topological insulator and protected by time reversal
symmetry [29]. Quite recently, a diamond lattice anti-
ferromagnet NiRh

2

O
4

with Ni2+ spin-one local moments
was proposed to fit into the early suggestion [30].

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K [30]. As we show in Fig. 1, the magnetic ion
Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Letter, we pro-
pose a minimal spin model for NiRh

2

O
4

and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As

FIG. 1. (Color online.) The diamond lattice formed by the
Ni2+ ions. The J

1

and J
2

interactions are indicated by (red)
dashed arrows. Due to the tetragonal symmetry of the lattice,
the a and b directions are not equivalent to the c direction.
The Ni2+ ion is in a tetrahedral environment, so the e

g

or-
bitals are lower in energy than the t

2g

levels. The tetragonal
distortion further splits the two e

g

orbitals and the three t
2g

orbitals. But the degeneracy of the xz and yz orbitals re-
mains intact under the tetragonal distortion. To avoid the
orbital degree of freedom, we here place the xz and yz or-
bitals above the xy orbitals. The opposite case is discussed
in the Supplementary information.

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]

⇥z

CW

= �D
z

3
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (2)

⇥?
CW

= +
D

z

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
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model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �
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(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Spinel AB2O4

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh
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where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �
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(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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The phase diagram
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the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
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where J
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and J
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are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J
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spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J
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model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J
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z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2
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4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �
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(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh
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where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J
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2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J
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-J
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z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh
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.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
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+ 2(z
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where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Deep in quantum paramagnet, the ground state is a trivial product state.   
The state is trivial, but excitation and phase transition out of it can be non-trivial.
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Unconventional magnetic excitation
3

netic phase, we substitute the spin operators with the
rotor variables such that [38]

Sz

r = nr, S±
r =

p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
1

-J
2

-D
z

spin model
takes the form

H = J
1

X

hrr0i

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ J
2

X

hhrr0ii

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ D
z

X

r

n2

r. (6)

From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [39].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
The resulting partition function is

Z =

Z
D�rD�r exp

⇥
�S � i

X

r

�r(|�r|2 � 1)
⇤
, (7)

where the e↵ective action for the rotor variable is

S =

Z
d⌧

X

k2BZ

(2D
z

1
2⇥2

+ Jk)
�1

ij

@
⌧

�†
i,k@⌧�j,k

+
X

hrr0i

J
1

�†
r�r0 +

X

hhrr0ii

J
2

�†
r�r0 , (8)

where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the

FIG. 3. (Color online.) The magnetic excitation !
2,k in

the k
x

-k
y

plane of in the quantum paramagnet. We have
chosen the following parameters (a) J

2

= 0.05J
1

, D
z

= 3J
1

;
(b) J

2

= 0.18J
1

, D
z

= 1.5J
1

; (c) J
2

= 0.4J
1

, D
z

= 1.5J
1

; (d)
J
2

= 0.8J
1

, D
z

= 2J
1

. In the figure, we set k
z

= 0, and an ex-
tended zone with k

x

2 [�4⇡, 4⇡], k
y

2 [�4⇡, 4⇡] is used. The
degenerate minima are marked with contours. One can ob-
serve the evolution of the band minima.

unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase

X

i=1,2

X

k2BZ

2D
z

+ ⇠
i,k

!
i,k

coth(
�!

i,k

2
) = 2, (9)

where !
1,k and !

2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

!
i,k =

⇥
(4D

z

+ 2⇠
i,k)(�(T ) + ⇠

i,k)
⇤ 1

2 , (10)

and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [37]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
Frustrated quantum criticality.—Here we point out the

nontrivial magnetic excitation in the quantum paramag-
netic state and the resulting frustrated quantum critical-

4

ity. When J
2

< J
1

/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by

cos
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2
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2
cos
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2
=

J2

1

16J2

2

�1,

(11)
where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

These are bosonic excitations. What is relevant for bosons is the lowest energy mode. 
Usually, the lowest energy modes occur at certain discrete momenta. But here, the lowest 
energy modes occur at a surface in the reciprocal space. 
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Frustrated Quantum Criticality: collapse of boson surface 
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ity. When J
2

< J
1

/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

These degenerate surfaces are NOT Fermi surface !  

But at low temperature, the fluctuation of the system is governed by 
the surface, i.e. low-energy fluctuations are near the 2D surface.  
We obtain a linear-T heat capacity Cv ~ T, which is like a Fermi surface. 
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to
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+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following
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Degeneracy breaking in the ordered side
2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]

⇥z

CW

= �D
z

3
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (2)

⇥?
CW

= +
D

z

6
� S(S + 1)

3
(z

1

J
1

+ z
2

J
2

), (3)

where z
1

= 4 and z
2

= 12 are the numbers of first neigh-
bor and second neighbor bonds, respectively. The above

FIG. 2. (Color online.) The phase diagram of the J
1

-J
2

-D
z

spin model. Because the powder sample Curie-Weiss tem-
perature ⇥Powder

CW

= �8(J
1

+ 3J
2

)/3, we set the energy unit
of the spin anisotropy D

z

to J
1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
1

+ z
2

J
2

) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Here, because infinite number of 
boson modes are condensed, the 
system does not know which order  
to select. 

So quantum fluctuation will pick 
up the order that gives the lowest  
quantum zero-point energy. 
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Summary

1. We point out that NiRh2O4 spin-1 diamond lattice antiferromagnet  
is NOT the topological quantum paramagnet.  
 

2. Through a minimal model, we find that the ground state can be a  
trivial quantum paramagnet. But due to the frustrated interaction,  
the excitations with respect to this trivial state develop an extensively  
degenerate minima in the reciprocal space.  
 

3. Moreover, as the system approaches the phase transition to a  
magnetic order, these extensively degenerate low-energy bosonic  
modes condense at the same time, leading to an unusual critical  
behavior.  
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Motivated by the very recent proposal of topological quantum paramagnet in the diamond lattice
antiferromagnet NiRh

2

O
4

, we propose a minimal model to describe the magnetic interaction and
properties of the diamond material with the spin-one local moments. The minimal model includes
the first and second neighbor Heisenberg interactions as well as a local single-ion spin anisotropy that
is allowed by the spin-one nature of the local moment and the tetragonal symmetry of NiRh

2

O
4

below 380K. We point out that there exists a quantum phase transition from a trivial quantum

paramagnet when the single-ion spin anisotropy is dominant to the magnetic ordered states when the
exchange is dominant. Due to the frustrated spin interaction, the magnetic excitation in the quantum
paramagnetic state supports extensively degenerate band minima in the spectra. As the system
approaches the transition, extensively degenerate bosonic modes become critical at the criticality,
giving rise to unusual magnetic properties. Our phase diagram and experimental predictions for
di↵erent phases provide a guildline for the identification of the ground state for NiRh

2

O
4

. Although
our results are fundamentally di↵erent from the proposal of topological quantum paramagnet for
NiRh

2

O
4

, it represents interesting possibilities for spin-one diamond lattice antiferromagnets.

Introduction.—The recent theoretical proposal of sym-
metry protected topological (SPT) ordered states has
sparked a wide interest in the theoretical community [1–
25]. The well-known topological insulator, that was pro-
posed and discovered earlier, is a non-interacting fermion
SPT protected by time reversal symmetry [26, 27]. In
contrast, the SPTs in bosonic systems must be stabilized
by the interactions [11]. The spin degrees of freedom with
exchange interactions seem to be a natural candidate for
realizing the boson SPTs [10]. In fact, the Haldane spin-
one chain is a 1D boson SPT and is protected by the
SO(3) spin rotational symmetry [1, 2, 28]. The realiza-
tion of boson SPTs in high dimensions is still missing.
It was suggested that, the spin-one diamond lattice anti-
ferromagnet with frustrated spin interactions may host a
topological quantum paramagnet that is a spin analogue
of topological insulator and protected by time reversal
symmetry [29]. Quite recently, a diamond lattice anti-
ferromagnet NiRh

2

O
4

with Ni2+ spin-one local moments
was proposed to fit into the early suggestion [30].

NiRh
2

O
4

is a tetragonal spinel and experiences a
structural phase transition from cubic to tetragonal at
T = 380K [30]. As we show in Fig. 1, the magnetic ion
Ni2+ has a 3d8 electron configuration, forming a spin
S = 1 local moment and occupying the tetrahedral di-
amond lattice site. No signature of magnetic order was
observed down to 0.1K in the magnetic susceptibility and
specific heat measurements. Although this might fulfill
the basic requirement of the absence of magnetic order
in a topological quantum paramagnet, alternative state,
that is distinct from topological quantum paramagnet,
may also provide a consistent experimental prediction
with the current experiments. In this Letter, we pro-
pose a minimal spin model for NiRh

2

O
4

and study the

full phase diagram and the phase transition of our model.
We do not find the presence of the topological quantum
paramagnet in our phase diagram. Instead, due to the
strong spin frustration, the ordered state in our phase
diagram can be easily destabilized and converted into
a trivial quantum paramagnet by a moderate single-ion
spin anisotropy. We predict that this seemingly trivial
quantum paramagnetic state in a large parameter regime
supports gapped magnetic excitation that develops ex-

tensively degenerate band minima in the spectrum. As

FIG. 1. (Color online.) The diamond lattice formed by the
Ni2+ ions. The J

1

and J
2

interactions are indicated by (red)
dashed arrows. Due to the tetragonal symmetry of the lattice,
the a and b directions are not equivalent to the c direction.
The Ni2+ ion is in a tetrahedral environment, so the e

g

or-
bitals are lower in energy than the t

2g

levels. The tetragonal
distortion further splits the two e

g

orbitals and the three t
2g

orbitals. But the degeneracy of the xz and yz orbitals re-
mains intact under the tetragonal distortion. To avoid the
orbital degree of freedom, we here place the xz and yz or-
bitals above the xy orbitals. The opposite case is discussed
in the Supplementary information.
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/8, the band minimum of the lower ex-
citation !

2,k is at the � point. As we increase J
2

beyond
J
1

/8, the dispersion minima are obtained by minimizing
⇠
2,k. We find that the minima of !

2,k are extensively
degenerate and form a two-dimensional surface in the
three-dimensional reciprocal space that is defined by
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where we have set the lattice constant to unity. This
relation coincides with the degenerate spiral surface that
was obtained in the classical treatment of the J

1

-J
2

model
in Ref. 32. In Fig. 3, we depict the band !

2,k in the k
x

-k
y

plane with k
z

= 0.
Now we explain how the behavior of the heat capacity

in the vicinity of the magnetic critical point are modified
by the large density of the low-energy excitations near
the band minima. For J

2

< J
1

/8, only a single bosonic
mode becomes critical (see Fig. 3a) and leads to the usual
C

v

/ T 3 up to a logarithmic correction from the quantum
fluctuation at the criticality. For J

2

> J
1

/8, however, a
degenerate surface of bosonic modes become critical at
the transition (see Fig. 3b,c,d). To understand the con-
sequence of this unusual phenomena, we return to the
saddle point equation in Eq. (9) that reduces to

A

Z
⇤

0

dk?

Z

⌃

d2k
t

coth[�
2

(m2 + v2k2?)
1
2 ]

(m2 + v2k2?)
1
2

+ c = 2, (12)

where we have singled out the contribution from the crit-
ical modes as the first term in Eq. (12), A is an unim-
portant prefactor of the integration, and c is approxi-
mately T -independent contribution from the remaining
part of the excitations. In Eq. (12), we have chosen the
coordinate basis (k

t

, k?) such that k
t

(k?) refer to the
components of the momentum tange tangential to (nor-
mal to) the degenerate surface ⌃ (see Fig. 4), and ⇤ is
the momentum cuto↵. Here the critical mode behaves
!
2,k ' (m2 + v2k2?)

1
2 in which m is the thermally gen-

erated mass term and v is the velocity normal to the
degenerate surface. At low temperatures (T ⌧ ⇤), the
temperature dependent part of the integral becomes in-
dependent of the cuto↵ ⇤, and only depends on T via
the dimensionless parameter m2/T 2. In order for the
equality in Eq. (12) to hold, we expect m / T .

From the scaling form of m, we obtain a remarkable
result for the low-temperature heat capacity that behaves
as C

v

/ T at the criticality. This linear-T heat capacity
is like the one in a Fermi liquid metal, except that this
is a pure bosonic system! This unusual behavior simply
arises from the frustrated spin interaction.

Quantum order by disorder.—When the extensively
degenerate modes are condensed at the critical point
for J

2

> J
1

/8, extensively degenerate candidate ordered
states are available, and it is the quantum fluctuation

FIG. 4. (Color online.) The degenerate surface of the band
minima at (a) J

2

= 0.18J
1

and (b) J
2

= J
1

/3. The (k
t1 , kt2)

are the two tangential momenta and k? is the component
normal to the degenerate surface.

of the spins that selects the the particular orders in the
phase diagram of Fig. 2.
To explain this phenomenon, we first realize that the

easy-plane spin anisotropy favors the magnetic order in
the xy plane with

r 2 A, Sr = S Re[(x̂� iŷ)eiq·r], (13)

r 2 B, Sr = S Re[(x̂� iŷ)eiq·r+i✓q ], (14)

where q is the propagating wavevector of the spin spiral,
and ✓q is the phase shift between A and B sublattices of
the diamond lattice. Both q and ✓q can be obtained by
a Weiss mean-field theory that is like the early classical
treatment [32]. The quantum fluctuation with respect
to the candidate spin spiral state is analyzed by a lin-
ear spin-wave theory and is discussed in the detail in the
Supplementary information. As we plot in Fig. 2, quan-
tum fluctation favors the spiral wavevector to be either
along [001] or [111] direction. For J

2

> J
1

/4, the degen-
erate surface has expanded to the Brillouin zone bound-
ary, and the [111] direction no longer intersects with the
degenerate surface (see Fig. 4b as an example), the six
points around the [111] direction are selected, and the
resulting ordering states are labeled by [111⇤] in Fig. 2.
Discussion.—In contrary to the proposal of a topologi-

cal quantum paramagnet in NiRh
2

O
4

[30], our theoretical
prediction does not support topological quantum param-
agnet in our minimal J

1

-J
2

-D
z

spin model. Instead, due
to the strong frustrated spin interaction, a large region
of trivial quantum paramagnet state is stabilized in the
phase diagram. Although the trivial quantum param-
agnet does not represent any new state of matter, the
magnetic excitation is rather unusual and supports a de-
generate surface of band minima in the spectrum. As
the system is driven into a magnetic ordered state, ex-
tensively degenerate critical modes from the degenerate
surface are condensed, leading to an unconventional crit-
ical properties at the transition.
To di↵erentiate the proposal of topological quantum

paramagnet and our proposal, we propose the following

2

the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
disorder.

The microscopic spin model.—To understand the in-
teresting behaviors of NiRh

2

O
4

, we propose the following
microscopic spin model,

H = J
1

X

hrr0i

Sr ·Sr0+J
2

X

hhrr0ii

Sr ·Sr0+D
z

X

r

(Sz

r)
2, (1)

where J
1

and J
2

are the first neighbor and second neigh-
bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J

1

interaction alone
is unfrustrated, and would favor a simple Néel state if
J
1

is antiferromagnetic. The second neighbor interaction
J
2

is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J

2

interaction would cause a spin
frustration even when it is small compared to J

1

. Pre-
vious classical treatment of the J

1

-J
2

spin model on a
diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4

has a tetragonal lattice symmetry, so the three
spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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+ 3J
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)/3, we set the energy unit
of the spin anisotropy D

z
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1

+ 3J
2

in the plot. The tran-
sition from the quantum paramagnet to the ordered regions
is continuous at the mean-field theory. On the left of the
(red) dashed line, the band mininum of the magnetic exci-
tion is unique and appears at � point. On the right side,
the band minima form a degenerate surface in the reciprocal
space. Please refer the main text for detailed discussion.

prediction can be used to extract the single-ion spin
anisotropy. Note for a powder sample, the Curie-Weiss
temperature is ⇥Powder

CW

= �S(S+1)

3

(z
1

J
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2
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) and is
thus independent of the spin anisotropy.
Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-
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the quantum paramagnet approaches the phase transi-
tion to the proximate ordered state, the extensively de-
generate low-energy modes become gapless and are re-
sponsible for the unusual magnetic properties such as the
linear-T heat capacity at low temperatures in the vicin-
ity of the transition. In the proximate ordered phases,
we further show that the spin spiral orders are actually
induced by quantum fluctuations via quantum order by
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bor Heisenberg exchange interactions, respectively. Al-
though the tetragonal lattice symmetry allows inequiv-
alent bonds [31], in this minimal model we assume all
the bonds are equivalent. Since the diamond lattice is a
bipartite lattice, the first neighbor J
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interaction alone
is unfrustrated, and would favor a simple Néel state if
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is antiferromagnetic. The second neighbor interaction
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is an interaction within each FCC sublattice of the
diamond lattice. Due to the large numbers of second
neighbor bonds, the J
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interaction would cause a spin
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diamond lattice and the analysis of thermal fluctuation
have led to the interesting discovery of the spiral spin liq-
uid [32–35]. A quantum treatment of J

1

-J
2

model used
an exotic SP(N) parton construction for the spins [36]. In
our context, we will largely treat spins and interactions
quantum mechanically with a more conventional means
that is appropriate for the J

1

-J
2

-D
z

model. Moreover, an
additional single-ion spin anisotropy is further introduced
on top of the spin exchange interactions for NiRh

2

O
4

.
NiRh

2

O
4
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spin directions are not equivalent. The spin anisotropy
is naturally allowed by the lattice symmetry and is the
only term occuring for a spin-one local moment like the
Ni2+ ion.

Due to this single-ion spin anisotropy, the magnetic
susceptibilities along di↵erent directions should reveal
such spin anisotropy. In particular, we carry out the high
temperature series expansion and find that the Curie-
Weiss temperatures for the magnetic field parallel and
normal to the z direction are given as [37]
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temperature is ⇥Powder
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Quantum paramagnet and phase diagram.—To ob-

tain the full phase diagram of the J
1

-J
2

-D
z

model, we
start from the parameter regime where the single-ion
spin anisotropy is dominant. We consider the easy-
plane anisotropy with D

z

> 0, since the easy-axis spin
anisotropy would stabilize the Néel state and enlarge its
parameter regime. In the large and positive D

z

limit,
the ground state is a trivial quantum paramagnet with
Sz = 0 on every site, | i =

Q
r |Sz

r = 0i. For this sim-
ple state, there is no magnetic order and all the spin
excitations are fully gapped. Since the global U(1) spin
rotational symmetry around the z direction is preserved,
the magnetic susceptibility at zero temperature for the
field along the z direction is zero with �

z

(T = 0) = 0.
However, if the field is applied in the xy plane, the spin
rotational symmetry is broken by the in-plane field and
the magnetic susceptibility is a constant with

�?(T = 0) =
2µ

0

(gµ
B

)2

D
z

+ 2(z
1

J
1

+ z
2

J
2

)
, (4)

where g is the Lande factor. Again, this result is a con-
sequence of the single-ion anisotropy and can be used to
detect the quantum paramagnetic state.
As we turn on the exchange interaction, the spin exci-

tation would develop dispersion in the momentum space.
With a su�cient exchange interaction, we expect the
minimum of the dispersion to touch the zero energy that
would lead to magnetic orderings. To describe the mag-
netic ordering transition out of the quantum paramag-

Phase diagram
3

netic phase, we substitute the spin operators with the
rotor variables such that [38]

Sz

r = nr, S±
r =

p
2e±i�r , (5)

where �r is a 2⇡-periodic phase variable and nr is integer-
valued. This substitution has enlarged the physical
Hilbert space by allowing Sz or n to take the values
beyond 0 and ±1. We, however, do not expect this ap-
proximation to cause significant e↵ects since the the non-
physical values of nr has been energetically suppressed by
the large single-ion spin anisotropy. Moreover, the substi-
tition preserves the global U(1) spin rotational symmetry
around the z direction of the original spin model. Finally,
to preserve the spin commutation relation, we impose the
commutation for �r and nr with [�r, nr0 ] = i�rr0 .

With the rotor variables, the J
1

-J
2

-D
z

spin model
takes the form

H = J
1

X

hrr0i

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ J
2

X

hhrr0ii

⇥
2 cos(�r � �r0) + nrnr0

⇤

+ D
z

X

r

n2

r. (6)

From the symmetry point of view, the above model has
the same symmetry as a standard boson Hubbard model
except having an extra inter-site boson interaction. To
make this analogy a little further, the quantum param-
agnetic state is analogous to a boson Mott insulator with
nr = 0 at every site, and the proximate magnetic order
is like a superfluid of bosons. Despite the seemingly sim-
ilarity, we will show below the intrinsic spin frustration
brings rather interesting dispersion of magnetic excita-
tion in the quantum paramagnet and thus leads to un-
usual properties at the analogous “superfluid-Mott” tran-
sition [39].

The primary operators that are responsible for the
magnetic transition out of the quantum paramagnet are
the S±

r spin operators that create the gapped spin excita-
tions in the quantum paramagnet but take finite values in
the ordered states. We here carry out the coherent state
path integral and integrate out the number operator nr.
The resulting partition function is

Z =

Z
D�rD�r exp

⇥
�S � i

X

r

�r(|�r|2 � 1)
⇤
, (7)

where the e↵ective action for the rotor variable is

S =

Z
d⌧

X

k2BZ

(2D
z

1
2⇥2

+ Jk)
�1

ij

@
⌧

�†
i,k@⌧�j,k

+
X

hrr0i

J
1

�†
r�r0 +

X

hhrr0ii

J
2

�†
r�r0 , (8)

where we have introduced the variable �r ⌘ ei�r . To
impose the unimodular condition for �r, we have intro-
duced a Lagrange multiplier �r on each site to impose the

FIG. 3. (Color online.) The magnetic excitation !
2,k in

the k
x

-k
y

plane of in the quantum paramagnet. We have
chosen the following parameters (a) J

2

= 0.05J
1

, D
z

= 3J
1

;
(b) J

2

= 0.18J
1

, D
z

= 1.5J
1

; (c) J
2

= 0.4J
1

, D
z

= 1.5J
1

; (d)
J
2

= 0.8J
1

, D
z

= 2J
1

. In the figure, we set k
z

= 0, and an ex-
tended zone with k

x

2 [�4⇡, 4⇡], k
y

2 [�4⇡, 4⇡] is used. The
degenerate minima are marked with contours. One can ob-
serve the evolution of the band minima.

unimodular condition |�r| = 1 in Eq. (7). To solve for
the dispersion of the excitation, we take a saddle point
approximation and choose a uniform mean-field ansatz
such that i�r ⌘ ��(T ) where � = (k

B

T )�1. We inte-
grate out the �r field and obtain the saddle-point equa-
tion for �(T ) in the quantum paramagnetic phase

X

i=1,2

X

k2BZ

2D
z

+ ⇠
i,k

!
i,k

coth(
�!

i,k

2
) = 2, (9)

where !
1,k and !

2,k are the two modes of the magnetic
excitations in the paramagnetic phase and are given by

!
i,k =

⇥
(4D

z

+ 2⇠
i,k)(�(T ) + ⇠

i,k)
⇤ 1

2 , (10)

and ⇠
1,k and ⇠

2,k are the two eigenvalues of the exchange
matrix Jk [37]. As one decreases the single-ion spin
anisotropy, the gap of the magnetic excitation decreases
steadily. At the transition, the gap is closed and in-
duces the magnetic order, and this phase transition is
continuous within this treatment. In the phase diagram
that is depicted in Fig. 2, the phase boundary between
the quantum paramagnet and the magnetic order is then
determined by examining the gap of the excitations in
Eq. (10). In Fig. 2, the ordered region of the phase
diagram is further splited into several sub-regions with
distinct magnetic orders from the quantum order by dis-
order e↵ect. This will be explained below very soon.
Frustrated quantum criticality.—Here we point out the

nontrivial magnetic excitation in the quantum paramag-
netic state and the resulting frustrated quantum critical-

degenerate minima of the excitations  
in quantum paramagnet

Magnetic excitation in the kx-ky plane
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