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We often think that the ground state doublet controls the low temperature magnetic  
properties.  
 
This happens when the crystal field gap is much larger than the temperature and  
exchange interaction scales. 
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Figure 1. The computed CEF energy scheme drawn for the R ions
in the R2Ti2O7 pyrochlore series and comparison with experimental
values when available, as extracted from inelastic neutron scattering
measurements. Energy levels are given in units of millielectronvolts.
Solid thin and thick lines stand respectively for singlet and doublet
states. The experimental data presented in dashed lines are found
in [22–25]. In addition, we use for Er2Ti2O7 the highest value listed
by Gardner and Ehlers [26] from the PhD dissertation of Shirai
(2006, University College London). All the theoretical CEF levels
have been drawn. They may not be resolved on the figure because of
the limited graphical resolution.

R2Ti2O7 pyrochlore series. In figure 1 we present the CEF
energy scheme for six compounds of the series obtained
by fitting the positions of the energy levels as determined
by inelastic neutron scattering for four of the compounds.
Note that the simple scaling law in equation (3) leads to
a remarkably fair description of the experimental data. The
advantage of fitting the whole set of available level positions
rather than the levels for a single compound is the increase in
the number of levels involved. Even for the most favorable
case of Ho2Ti2O7 only five levels were experimentally
measured. Our global fit for four compounds includes twelve
levels.

In table 1 we give the Am
n values derived from our analysis

and in table 2 the Bm
n parameters for six compounds of

the R2Ti2O7 pyrochlore series. The strong Bm
n dependence

upon the rare earth is due to the variation of ✓n. For each
Am

n parameter are also listed in table 1 the maximum and
minimum values which have been sampled in the global fitting
procedure. Note that the range of values is rather large. It is
remarkable that only one solution, the one given in table 1,
provides a good description of all the CEF inelastic neutron
data.

As shown in table 1, the previously proposed Am
n values

inferred from neutron scattering measurements on a single
compound are reasonably consistent with our results [27, 25].
In this table we also list the Am

n parameters deduced from the
exchange charge model [10]. Again they are in reasonable
agreement with our data. Relative to all the previous works,
here we present estimates of CEF parameters for the whole
R2Ti7O7 pyrochlore series, which are fully consistent with the
available neutron literature.

It is a conventional method to estimate A0
2 from the

nuclear quadrupole splitting 1 measured in a gadolinium
compound from 155Gd Mössbauer spectroscopy [28, 29].

Table 1. The Am
n parameters obtained from a global fit of the CEF

levels determined by neutron scattering are shown for Tb2Ti2O7 in
the first line of the table. The parameters for the other compounds of
the series can be obtained from equation (3). The units for Am

n are
meV/an

0, where a0 is the atomic unit. For comparison the Am
n values

inferred from the exchange charge model for Ho2Ti2O7 and rescaled
for Tb2Ti2O7 using equation (3) are listed in the second line [10].
The same types of values are also found for Yb3+ ions diluted in a
matrix of Y2Ti2O7. In the subsequent two lines are listed the Am

n s
derived from the works of Mirebeau et al [25] and Rosenkranz
et al [27], respectively. The last line gives the intervals over which
the Am

n parameters have been varied in the global fit. Only positive
values of A3

6 have been probed, since interchanging the signs of A3
4

and A3
6 has no influence on the CEF levels and transition matrix

elements.

A0
2 A0

4 A3
4 A0

6 A3
6 A6

6

40.5(1.0) 24(1) 213(13) 1.03(3) �17(1) 14(1)
45 27 201 0.96 �16.4 17.6
37 22 184 0.88 �11.2 13.6
44.8(5) 24.1(2) 173.5(1.7) 0.96(9) �14.26(9) 17.1(3)
[0, 85] [�34, 50] [�300, 455] [�3, 3] [0, 34] [�25, 30]

Hence, using equation (3), A0
2 can be inferred for the other

compounds of the same series. Let us apply this methodology.
The quadrupole splitting measured in Gd2Ti2O7 is 1 =
�5.6 mm s�1 in Mössbauer spectroscopy units [30],
consistent with an earlier measurement [31]. Since the
quadrupole moment of the excited Mössbauer state of 155Gd
is negligible relative to the ground-state moment Qgs [28],
we only need to consider the splitting of the ground state by
the electric field gradient. Because the ground-state nuclear
spin is I = 3

2 , its splitting yields two doublets. Taking into
account that the asymmetry parameter of the electric field
gradient is ⌘ = 0 for the R2Ti2O7 compounds [32], we
compute the splitting between the two doublets to be 1 =
eQgsV latt

zz /2, where Vzz is the principal component of the
electric field gradient tensor acting on the 155Gd nuclei and
Qgs = 1.270 barn [33]. Since a Mössbauer drive velocity of
1 mm s�1 corresponds to an energy of 69.8 MHz [30], we
estimate V latt

zz = �2.5 ⇥ 1022 V m�2. It has traditionally been
assumed that V latt

zz and A0
2 are proportional, with the relation

Vzz = �4A0
2

e

1 � �1
1 � �2

, (6)

where �1 = �61 and �2 = 0.67 are Sternheimer and
screening coefficients [34]. Using this formula, we compute
A0

2 = 95 meV/a2
0 for Gd2Ti2O7. From the scaling relation

given in equation (3), we then get A0
2 = 97 meV/a2

0 for
Tb2Ti2O7. This is a factor of 2.4 larger than listed in table 1.
We have tested if this large A0

2 could provide a description
of the inelastic neutron scattering data probing, as seen in
table 3, a relatively wide range of Am

4 and Am
6 relative to the

values of these parameters in table 1. We have not found any
solution. This leads us to conclude that the proportionality
relation between Vzz and A0

2 given in equation (6) is invalid
in our case, supporting the conclusion of Coehoorn et al for
intermetallic compounds [35].

In order to reduce the number of Bm
n parameters

required to describe the CEF levels of the R2Ti2O7 series,
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in [22–25]. In addition, we use for Er2Ti2O7 the highest value listed
by Gardner and Ehlers [26] from the PhD dissertation of Shirai
(2006, University College London). All the theoretical CEF levels
have been drawn. They may not be resolved on the figure because of
the limited graphical resolution.
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FIG. 2. The formation of the local ground state Kramers’
doublet under the combination of spin-orbit coupling (SOC)
and the crystal electric field (CEF). Please refer the text for
the detailed description.

Sec. III, we carry out both Luttinger-Tisza analysis and
classical Monte Carlo simulation, and determine the clas-
sical phase diagram. In Sec. IV, we implement the self-
consistent Dyson-Maleev spin wave calculation to study
the quantum fluctuation in di↵erent ordered phase. In
Sec. V, we compute the spin-wave excitation in the pres-
ence and absence of magnetic fields. Finally in Sec. VI,
we discuss the connection with the experiments and fu-
ture theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN FOR
KRAMERS’ DOUBLET

We start with the symmetry transformation properties
of the Kramers’ doublet. While the discussion in this sec-
tion is about the Yb3+ ion in YbMgGaO4, the symmetry
analysis applies generally to any other Kramers’ doublet
that shares the same symmetry properties on the trian-
gular lattice.

The Yb3+ ion contains thirteen 4f electrons. Accord-
ing to the Hund’s rule, we should have the total spin
s = 1/2 and the orbital angular momentum L = 3 for
the Yb3+ ion. The fourteen-fold spin and orbital de-
generacy is lifted when the atomic SOC and the crystal
electric field are considered. For the 4f electrons, the
atomic SOC should be considered before the crystal elec-
tric field. As we show in Fig. 2, the atomic SOC entangles
the orbital angular momentum and the total spin, lead-
ing to a total angular momentum J = 7/2 with eight fold
degeneracy. Just like the Yb3+ ion for the pyrochlore ice
material Yb2Ti2O7

17, the crystal electric field of the D3d

point group further splits the eight J = 7/2 states into
four pairs of Kramers’ doublets. The ground state dou-
blet is well separated from other excited doublets with
an energy gap � ⇠ 420K and thus can be treated as an
e↵ective spin-1/2 degree of freedom at the temperature
that is much lower than the energy gap4,17. We introduce
an e↵ective spin-1/2 local moment, Si, that operates on
the local ground state Kramers’ doublet. This e↵ective
spin-1/2 degree of freedom for the Yb3+ ion is well sup-
ported by the low temperature magnetic entropy that is
measured to be Rln 2 per spin3,4.

This e↵ective spin, S, results from the spin-orbit en-

FIG. 3. The space group symmetry operation for the Yb
triangular layer.

tanglement of the Yb3+ 4f electrons. As a consequence,
both the position and the orientation of the spins are
transformed together under the space group symmetry
operation, and the transformation is given as

Sr ! Det[Ô] · Ô�1 · SÔ·r+t, (2)

where Ô and t are the matrix and the vector that specify
the rotation part and the translation part of the space
group operation, respectively. In contrast, in a magnetic
system whose local moment is purely given by the total
spin, the spin rotational symmetry would be decoupled
from the space group symmetry operation. The latter
merely acts on the positions of the spin moments and
does not rotate the spin components. This is the key dif-
ference between the strong spin-orbit coupled Mott insu-
lators and a conventional Mott insulator with quenched
orbital degrees of freedom.
In YbMgGaO4, the Yb3+ ions form a perfect triangu-

lar lattice. The interlayer separation between nearby Yb
triangular layers is 8.4Å and is much larger than the in-
tralayer Yb lattice constant that is 3.4Å3. Because the
Yb 4f electron is very localized spatially, one can safely
neglect the interlayer coupling and focus on the intralayer
coupling between the Yb local moments. We thus keep
the symmetry operation of the space group within each
triangular layer. As we show in Fig. 3, the R3̄m space
group of YbMgGaO4 contains two translations, T1 and
T2, along the two crystallographic axes, the three-fold
rotation, C3, around the z direction, the two-fold rota-
tion, C2 around the diagonal direction, and an inversion,
I, about the triangular lattice site. With these symme-
tries and their transformations on the spin operators, it
is ready to obtain the generic spin Hamiltonian in Eq. (1)
that describes the interaction between the local moments.

III. SEMICLASSICAL ANALYSIS:
LUTTINGER-TISZA METHOD AND CLASSICAL

MONTE CARLO SIMULATION

To obtain the first understanding of the ground state
properties of the generic spin model, in this section we
will implement the standard Luttinger-Tisza method and
classical Monte Carlo simulation to unconver the mag-
netic ordered ground states and to obtain the classical
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along hh, h, hi have been taken at di↵erent energy trans-
fers from 0 to 3 meV. Figure 4(b) shows the correspond-
ing Q-integrated intensity of the phonon plotted as a
function of !. In classical cases, it simply scales as 1/!;
in the present case however, a suppression of the phonon
intensity below the CEF is observed. These features are
the sign of a strong magneto-elastic coupling, although,
here, the CEF level and the acoustic phonon does not
seem to follow conventional hybridization processes [43–
45].

The issue remains to relate low energy propagating ex-
citations and the strong magneto-elastic coupling. The
existence of the former is indeed an intriguing question:
because of the intrinsic properties of non-Kramers mag-
netic doublets, there are no matrix elements between the
time conjugate states of the doublet |±i [46], leading to
a neutron cross section |h+|Ĵ|�i|2 = 0. Non-zero ma-
trix elements might in principle be restored by including
the first excited CEF level [8, 47]. However, as long as
the exchange terms are one order of magnitude weaker
than �, the perturbed wave function should not depart
too much from |±i, thus resulting in a vanishingly small
inelastic spectral weight [48, 49].

To recover a significant cross section, it is therefore es-
sential to go beyond a dipolar Hamiltonian, and to con-
sider for example a coupling between quadrupolar mo-
ments [28, 47]. In this respect, the magneto-elastic cou-
pling responsible for the phonon and the CEF anomalies
(see Fig. 4) could be the driving force leading to e↵ective
interactions between quadrupoles [43]. There are addi-
tional clues in favor of a strong dynamical spin-lattice
coupling: structural fluctuations below 15 K observed by
high resolution X di↵raction [50], giant magneto-striction
[51] and the instability of the spin liquid state versus
pressure and stress [52], all of which have been reported
recently, but no static distortion has been observed so far
[53].

A model based on the most simple on-site quadrupolar
term has been proposed, phenomenologically connected
with a possible static tetragonal distortion precursor to
a T ' 0 Jahn-Teller transition [20, 28, 47–49, 54–56].
Despite being rather successful in explaining a number
of experimental results [28, 49, 57], it does not, in its
present form, capture the whole nature of the ground
state; for instance, it leads to a CEF singlet state on
each site, which is not compatible with the existence of
elastic correlations (see figure 1). Finding a more appro-
priate set of quadrupolar terms might be achieved on the
basis of recent pseudo spins half e↵ective models [9, 12].
However, since the low energy branch is not the predicted
emergent photon [11], the suitability of this approach to
model Tb2Ti2O7 remains unclear. Models based on sev-
eral gauge fields [58] to account for the role of transverse
spin components could be better suited, but the coupling
between the 4f quadrupolar moments should definitely
be considered.

FIG. 4: (Color online) : (a) IN5 data showing the inelastic
scattering as a function of energy transfer ! and Q along
hh, h, hi. The data have been taken at 1.5 K but similar
results are observable at 10 K. The crossing of the acous-
tic phonon mode and the dispersing CEF occurs close to
Q = (1, 1, 1). The inset has been plotted using a di↵erent in-
tensity scale (from 0 to 1) to highlight the two branches of the
acoustic phonon dispersion. (b) Simultaneously, the intensity
of the phonon as a function of energy is strongly suppressed
below the CEF line, and recovers an usual behavior above.

In summary, our neutron results demonstrate the exis-
tence of a low energy propagating excitation emanating
from the spin liquid ground state of Tb2Ti2O7. Its pe-
culiar spectral weight distribution could be the signature
of propagating defects breaking the divergence-free flux
characteristic of Coulomb phase. We also report anoma-
lies of the phonon modes, as well as of the first CEF level,
suggesting a strong dynamical coupling to the lattice.
These experimental findings emphasize the importance of
quadrupolar interactions in the physics of non-Kramers
ions based quantum spin ices.

Authors acknowledge fruitful discussions with M. Gin-
gras, B. Canals, E. Lhotel and A. Goukassov. We
also acknowledge F. Damay for a careful reading of the
manuscript.
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or equivalently, the exchange is strong. 

Dispersion of the excited doublets

Tb3+crystal field levels of

intuition. 


calculation is to check your understanding. 


S. Guitteny, et al, arXiv: 1305.6363at one site

Gang Chen’s theory group 

Gang Chen’s theory group



Model Calculation

FCC lattice

Emergent quantum criticality for rare earth magnets

Yi-Ping Huang
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Dated: June 1, 2016)

CONTENTS

I. Problem setup 1

II. Mean field theory 3
A. Mean field theory K= 0 3

1. Mean field theory structure 3
2. Exact points for mean field theory 5
3. Numerical results 6

B. Mean field theory with K= (2⇡, 0, 0) 7
1. quadrupolar order 8

C. Phase diagram for K= 0 and K= (2⇡, 0, 0) 8

III. Flavor wave theory 9
A. Flavor wave theory for ferromagnetic order 10
B. Flavor wave theory for Ferro-quadrupolar order 12

IV. Rotor mean field theory for the singlet ground state 15

I. PROBLEM SETUP

For rare earth with non-Kramers doublets. The low energy eigenstate of single site could
be in the following configuration. The singlet ground state and the first and second excited
states are close in energy. Suppose the ground state has energy E0 = 0, the first excited
state has E1 = � and the second excited state has E2 = � + �. We assume higher excited
states are separated with the lowest three levels by a huge gap and we will focus on the
e↵ective model describe the physics within the lowest three levels.

Also, we assume � ⌧ �, thus if we define |E0i = |sz = 0i and |E1,2i = |sz = ±1i. The
single site Hamiltonian can be described as a pseudo-spin 1, s, Hamiltonian

HCEF =
X

i

� (szi )
2 (1)

Next, we would like to know what is the possible exchange between two nearest neighbor
sites. As � ⌧ �, if we assume the excited doublets are described by another pseudo-spin 1

2
operator ⌧ . The exchange Hamiltonian is

Hex =
1

2

X

hiji

Jzz⌧
z
i ⌧

z
j � J±

�

⌧+i ⌧
�
j + h.c.

�

+ J±±
�

⌧+i ⌧
+
j �ij + h.c.

�

(2)

Sz = 0

Sz = 1 Sz = �1

2

Here, the first term is just Ising exchange between |sz = ±1i, if this term dominates, the
pseudo spin ⌧ prefer to align or anti-align with each other. The second term is the exchange
between i and j site that preserve ⌧ z. The third term is the exchange between i and j site
that break the ⌧ z conservation.

The idea is if the exchange is weak, the spectrum in momentum space is a flat line with
energy gap �. As exchange of the excited doublets becomes stronger and stronger, the
spectrum becomes dispersive. If the exchange is strong enough, the dispersive band could
hit the zero energy and condense, once it condense, the system enter another phase, which
is a quantum phase transition from dis-entangled product state into a entangled quantum
state. The question is: what is the new phase and how to understand such quantum phase
transition?

If we try to express the pseudo spin ⌧ in terms of the pseudo spin s, we have

⌧ z =
1

2
sz

⌧±i =
1

2

�

s±i
�2

(3)

The full Hamiltonian for the system is H = HCEF +Hex. We can use � as the energy scale
for later convenience, then we have

H =
1

4

1

2

X

hiji

Jzzs
z
i s

z
j � J±

⇥

(s+i )
2(s�j )

2 + h.c.
⇤

+ J±±
⇥

(s+i )
2(s+j )

2�ij + h.c.
⇤

+
X

i

(szi )
2. (4)

Here, we assume � = 1. If we ignore the ⌧ z breaking e↵ect (setting J±± = 0), we approxi-
mate the Hamitonian as

H =
1

4

8

<

:

1

2

X

hiji

Jzzs
z
i s

z
j � J±

⇥

(s+i )
2(s�j )

2 + h.c.
⇤

9

=

;

+
X

i

(szi )
2 (5)

There should be several possibilities

1. Jzz ⇡ J± ⌧ 1: hszi i = 0 the ground state is trivial product state.

2. h(s+i )2i 6= 0 the ground state is some quadrupolar order (J± � Jzz � 1)

3. hszi 6= 0: magnetic order

Q: Did the Hamiltonain have a U(1) symmetry as you rotate along z axis? If yes, I should
get a gappless spectrum but I didn’t. How?

Emergent quantum criticality for rare earth magnets

Yi-Ping Huang
Department of Physics, University of Colorado, Boulder, Colorado 80309, USA

(Dated: June 1, 2016)

CONTENTS

I. Problem setup 1

II. Mean field theory 3
A. Mean field theory K= 0 3

1. Mean field theory structure 3
2. Exact points for mean field theory 5
3. Numerical results 6

B. Mean field theory with K= (2⇡, 0, 0) 7
1. quadrupolar order 8

C. Phase diagram for K= 0 and K= (2⇡, 0, 0) 8

III. Flavor wave theory 9
A. Flavor wave theory for ferromagnetic order 10
B. Flavor wave theory for Ferro-quadrupolar order 12

IV. Rotor mean field theory for the singlet ground state 15

I. PROBLEM SETUP

For rare earth with non-Kramers doublets. The low energy eigenstate of single site could
be in the following configuration. The singlet ground state and the first and second excited
states are close in energy. Suppose the ground state has energy E0 = 0, the first excited
state has E1 = � and the second excited state has E2 = � + �. We assume higher excited
states are separated with the lowest three levels by a huge gap and we will focus on the
e↵ective model describe the physics within the lowest three levels.

Also, we assume � ⌧ �, thus if we define |E0i = |sz = 0i and |E1,2i = |sz = ±1i. The
single site Hamiltonian can be described as a pseudo-spin 1, s, Hamiltonian

HCEF =
X
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� (szi )
2 (1)

Next, we would like to know what is the possible exchange between two nearest neighbor
sites. As � ⌧ �, if we assume the excited doublets are described by another pseudo-spin 1

2
operator ⌧ . The exchange Hamiltonian is
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Here, the first term is just Ising exchange between |sz = ±1i, if this term dominates, the
pseudo spin ⌧ prefer to align or anti-align with each other. The second term is the exchange
between i and j site that preserve ⌧ z. The third term is the exchange between i and j site
that break the ⌧ z conservation.

The idea is if the exchange is weak, the spectrum in momentum space is a flat line with
energy gap �. As exchange of the excited doublets becomes stronger and stronger, the
spectrum becomes dispersive. If the exchange is strong enough, the dispersive band could
hit the zero energy and condense, once it condense, the system enter another phase, which
is a quantum phase transition from dis-entangled product state into a entangled quantum
state. The question is: what is the new phase and how to understand such quantum phase
transition?

If we try to express the pseudo spin ⌧ in terms of the pseudo spin s, we have
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�
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�2

(3)

The full Hamiltonian for the system is H = HCEF +Hex. We can use � as the energy scale
for later convenience, then we have
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Here, we assume � = 1. If we ignore the ⌧ z breaking e↵ect (setting J±± = 0), we approxi-
mate the Hamitonian as
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There should be several possibilities

1. Jzz ⇡ J± ⌧ 1: hszi i = 0 the ground state is trivial product state.

2. h(s+i )2i 6= 0 the ground state is some quadrupolar order (J± � Jzz � 1)

3. hszi 6= 0: magnetic order

Q: Did the Hamiltonain have a U(1) symmetry as you rotate along z axis? If yes, I should
get a gappless spectrum but I didn’t. How?

Since this observation is general, we can actually 
demonstrate this physics can happen in any other 
lattice. 


Our formalism here can be easily adapted to more 
general situations. 
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III. FLAVOR WAVE THEORY

The non-interacting eigenstates are |sz = 0i, |sz = ±1i. Here, even though the model
doesn’t have SU(3) symmetry, we can still us HP transformation for the SU(3) generators.
The first step is identify the eigenstates. For the ferromagnetic case, h(s+)2i = 0 and the non-
interacting eigen states gives the basis to construct flavor wave theory. For the ferromagnetic
quadrupolar order, we also need to identify the corresponding eigen states first then construct
the representation of sz and s+ in the new basis in terms of the generators.

If we define |sz = 1i = |1i, |sz = 0i = |2i and |sz = �1i = |3i. The generators can be
expressed as

Sn
m = |mihn|. (26)

Here, we have 8 generators for the SU(3) group since S1
1 + S2

2 + S3
3 = 1. The SU(3) algebra

is given by
⇥
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m, S

l
k

⇤

= �n,kS
l
m � �m,lS

n
k (27)

m is the magnetic dipolar order 
q is the magnetic quadrupolar order

FQ = Ferroquadrupolar order  
or Ferro-Spin-Nematic order

2

Here, the first term is just Ising exchange between |sz = ±1i, if this term dominates, the
pseudo spin ⌧ prefer to align or anti-align with each other. The second term is the exchange
between i and j site that preserve ⌧ z. The third term is the exchange between i and j site
that break the ⌧ z conservation.

The idea is if the exchange is weak, the spectrum in momentum space is a flat line with
energy gap �. As exchange of the excited doublets becomes stronger and stronger, the
spectrum becomes dispersive. If the exchange is strong enough, the dispersive band could
hit the zero energy and condense, once it condense, the system enter another phase, which
is a quantum phase transition from dis-entangled product state into a entangled quantum
state. The question is: what is the new phase and how to understand such quantum phase
transition?

If we try to express the pseudo spin ⌧ in terms of the pseudo spin s, we have

⌧ z =
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1
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The full Hamiltonian for the system is H = HCEF +Hex. We can use � as the energy scale
for later convenience, then we have
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Here, we assume � = 1. If we ignore the ⌧ z breaking e↵ect (setting J±± = 0), we approxi-
mate the Hamitonian as

H =
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There should be several possibilities

1. Jzz ⇡ J± ⌧ 1: hszi i = 0 the ground state is trivial product state.

2. h(s+i )2i 6= 0 the ground state is some quadrupolar order (J± � Jzz � 1)

3. hszi 6= 0: magnetic order

Q: Did the Hamiltonain have a U(1) symmetry as you rotate along z axis? If yes, I should
get a gappless spectrum but I didn’t. How?

two spins are condensed, 
one spin is not condensed.
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Excitation spectrum

15

Also, notice as k ⇡ 0, c(k) ⇡ 3. For some parameter, 2 + 3J± + Jzzc(k) < 0, the
Bogoliubov transformation gives imaginary eigen energy which suggest the linear flavor
wave theory fails. This happens when Jzz + J± < �2

3 .

The meaning of the quadrupolar order is that h �|Qx2�y2 | �i + ih �|Qxy| �i = cos t +
i sin t. Thus, t is the parameter for the U(1) symmetry. This U(1) symmetry should leads
to gapless excitation in the flavor wave theory.

The flavor wave theory for the ferro quadrupolar order is

� X W L � K X

q

0

1

2

3

4

5

E

�

Flavor wave band structure

for FQ order with (J±, Jzz) = (1.1, 0.1)

EFQ
2

EFQ
3

FIG. 6. The band structure for FQ phase.

IV. ROTOR MEAN FIELD THEORY FOR THE SINGLET GROUND STATE

For the trivial singlet phase, we can introduce rotor representation to derive an e↵ective
low energy theory. With the mapping szi ! ni and s+i !

p
2ei'i . For the quadrupolar

exchange interaction
�

s+i
�2 ! 2ei2'i = 2�i. Here ['i, nj] = i�ij. And h'i|nii = e�in
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i .
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For the singlet phase, the crystal field energy is the dominate energy scale, that is ni = 0,±1.
We expect relaxing the constrain not changing the low energy physics in a significant way.

We can thus construct the imaginary time path integral representation.
Y
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excitation of the ferroquadrupolar phase

Sz = 1

Sz = 0

Sz = �1

2

Here, the first term is just Ising exchange between |sz = ±1i, if this term dominates, the
pseudo spin ⌧ prefer to align or anti-align with each other. The second term is the exchange
between i and j site that preserve ⌧ z. The third term is the exchange between i and j site
that break the ⌧ z conservation.

The idea is if the exchange is weak, the spectrum in momentum space is a flat line with
energy gap �. As exchange of the excited doublets becomes stronger and stronger, the
spectrum becomes dispersive. If the exchange is strong enough, the dispersive band could
hit the zero energy and condense, once it condense, the system enter another phase, which
is a quantum phase transition from dis-entangled product state into a entangled quantum
state. The question is: what is the new phase and how to understand such quantum phase
transition?

If we try to express the pseudo spin ⌧ in terms of the pseudo spin s, we have
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2
sz

⌧±i =
1

2
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The full Hamiltonian for the system is H = HCEF +Hex. We can use � as the energy scale
for later convenience, then we have
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Here, we assume � = 1. If we ignore the ⌧ z breaking e↵ect (setting J±± = 0), we approxi-
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There should be several possibilities

1. Jzz ⇡ J± ⌧ 1: hszi i = 0 the ground state is trivial product state.

2. h(s+i )2i 6= 0 the ground state is some quadrupolar order (J± � Jzz � 1)

3. hszi 6= 0: magnetic order

Q: Did the Hamiltonain have a U(1) symmetry as you rotate along z axis? If yes, I should
get a gappless spectrum but I didn’t. How?
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Outline

•  Emergent magnetic order due to “weak” crystal field gap.

•  Field driven Anderson-Higgs’ transition in octupolar quantum  
 spin ice.

• Hole doped Sr2IrO4: the difference from cuprates !

Yi-Ping Huang  
(CU-Boulder)

Yao-Dong Li  
(Fudan)
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Dipole-octupole doublet

• Why is this Kramers doublet so special ?

ONE-dimensional representations of the point group !

R(2⇡/3)|Jz = ±3/2i = �|Jz = ±3/2i

R(2⇡/3) ⌘ e�i 2⇡
3 Jz

= e�i 2⇡
3 ⇥(± 3

2 ) = e⌥i⇡ = �1

|Jz = +3/2i time reversal
|Jz = �3/2i

YP Huang, GC*, Hermele, Phys. Rev. Lett.112,167203 (2014)

why  special,


they are one dimensional rep of point 
group. 


in particular, if you look at the 3-fold 
rotation operation, under this rotation, 
ech state stay invariant, except a minus 
sign. they do not transform into each 
other under the point group 
transfomation. 


simple algebar


this is very different from 2-dim irep 
where these two states of the doublet 
are mixed. 


These two state are dgenerate under 
time reversal, deg proctected by time 
reversal. 
Gang Chen’s theory group 
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• Also applies to 4f electron moments on pyrochlore

2

FIG. 1. (Color online.) (a) The evolution of d electron states
under cubic crystal field, SOC and trigonal distortion. (b)
The energies for the three local doublets under di↵erent trig-
onal distortions. Compression (elongation) along the C3 axis
corresponds to �3 > 0 (�3 < 0).

Defining an e↵ective total angular momentum je↵ =
` + S, SOC alone splits the t2g manifold into an upper
doublet (je↵ = 1/2) and lower quadruplet (je↵ = 3/2).
E↵ective models of je↵ = 1/2 doublets are relevant for
iridates and have received significant attention[3, 7, 9,
15–17]. While the je↵ = 1/2 doublet is dipolar, it does
not obey a naive Heisenberg exchange model due to the
strong SOC [23, 24].

The trigonal crystal field Htri splits the quadruplet into
two more Kramers doublets, for a total of three doublets.
If �3 > 0, the lower and upper doublets are dipolar and
transform as the �+

4 irreducible representation of the D3d

double group. The middle doublet is a DO doublet; it
has jzi

e↵ = ±3/2, and transforms as �+
5 � �+

6 (see Fig. 1).
The doublet is half-filled for d3 electron configuration, or
(if �3 < 0) for d1 configuration.

While Hubbard interaction does not a↵ect the single-
site energy spectrum for a fixed number of electrons, it is
important to consider the role of Hund’s coupling. When
�3 > 0, we find that the d3 ground state multiplet re-
mains a DO doublet even for large Hund’s coupling [22].
However, as JH is increased the energy gap between the
DO doublet ground state and the dipolar doublet first ex-
cited state decreases, vanishing in the limit of large JH

where we recover a spin-3/2 moment. We find that the
splitting between the ground and first excited doublets
is substantial only when JH . �, and increases with in-
creasing �3/� [22]. Hund’s coupling has no e↵ect for d1

electron configuration.

Case (2). Here A is a trivalent rare earth, where
the ground state has angular momentum J according
to Hund’s rules. The crystal field environment also has
D3d symmetry, and the crystal field Hamiltonian has the
form Hcf = 3B0

2(J
z)2 + · · · [25]. If J = 9/2 or 15/2,

and B0
2 < 0 and dominates the other crystal field terms,

then the ground state is a DO doublet with Jz = ±J ,
transforming as �+

5 � �+
6 under D3d site symmetry. The

DO doublet nature of the ground state is robust even
when the other crystal field terms are appreciable, as long
as they do not cause a level crossing where the ground
state changes to a di↵erent representation of D3d. Among
the lanthanides, only Nd3+, Dy3+ and Er3+ have the re-
quired values of J . Of these, B0

2 < 0 only for Nd3+ and
Dy3+ [25]. Indeed, the crystal field ground state of Nd3+

in Nd2Ir2O7 is a DO doublet [26], and a DO doublet
ground state is predicted for Dy3+ in Dy2Ti2O7[27].

The action of Fd3̄m space group symmetry on DO
doublets is given in the supplementary material [22]. The
D3d site symmetry is generated by a 3-fold rotation C3,
a mirror plane M , and inversion I, with: C3 : ⌧µ ! ⌧µ,
M : ⌧x,z ! �⌧x,z, M : ⌧y ! ⌧y, and I : ⌧µ ! ⌧µ.
These transformations are not those of a pseudovector,
and imply that ⌧x,z transform like the zi-component of
a magnetic dipole, while ⌧y transforms like a component
of the magnetic octupole tensor [22].

We now proceed to construct e↵ective models using a
single DO doublet on each pyrochlore lattice site as the
basic building block. We assume throughout that higher-
energy on-site degrees of freedom can be ignored. Even
when this is not quantitatively accurate, our models may
still be valid as minimal low-energy e↵ective models.

We consider limits of itinerant and localized elec-
trons, constructing tight-binding and spin Hamiltoni-
ans, respectively, in the two limits. The Hamiltonian
contains all electron hopping terms (itinerant limit) or
spin exchange terms (localized limit) allowed by time
reversal and Fd3̄m space group symmetry, up to a
given spatial range. We note that tight-binding and ex-
change models of dipolar �+

4 doublets have been exten-
sively studied in the context of iridate and rare-earth
pyrochlores[3, 8, 19, 20, 28, 29].

In the itinerant limit we ignore electron interactions,
and the general form of the model is

HTB =
X

(r,r0)

⇥
c†rTrr0cr + h.c.

⇤
. (2)

Here, r labels pyrochlore lattice sites, the sum in HTB

is over all pairs of sites, cT
r = (cr+, cr�), and nr± =

c†r±cr±. Trr0 is a 2⇥2 matrix satisfying Tr0r = T †
rr0 . The

operator c†r± creates an electron at site r with dipole mo-
ment fully polarized in the ±-direction along the local zi-
axis. For case (1) above, this corresponds to jzi

e↵ = ±3/2.
Pseudospin operators are given by ⌧µ

r = (1/2)c†r�
µcr,

where �µ are the Pauli matrices. Time reversal symme-
try implies that Trr0 = t0rr0 + itµrr0�µ.

For nearest-neighbor sites, the hopping matrix Trr0

has a remarkably simple form. Choosing an appropri-
ate orientation for nearest-neighbor bonds [22], we find
Trr0 = i[t1nn�1 + t3nn�3], taking the same form for allif B0

2 < 0.

with the local crystal field Hamiltonian

More generally, …

e.g.

J. Phys.: Condens. Matter 24 (2012) 256003 A Bertin et al

Figure 2. Description of low-temperature neutron scattering spectra measured at constant scattering vector Q on powder samples. Left:
spectrum of Tb2Ti2O7 from Mirebeau et al [25]; see the left panel of figure 5 of this reference. Right: spectrum of Er2Ti2O7 from Champion
et al [24]; see the top panel of figure 3 of this reference. The solid lines result from a simultaneous fit to the two spectra. The presence of an
additional CEF excitation around 7.3 meV for Tb2Ti2O7, not described here and previously, suggests the existence of two inequivalent Tb
sites [12]. This interpretation may be backed by specific heat measurements, the result of which depends strongly on the sample preparation
method [37–39]. For the two fits a background intensity is added, described by a first-order polynomial of the energy.

Table 5. Ground-state wavefunctions for six compounds of the R2Ti2O7 pyrochlore series computed with the Bm
n parameters displayed in

table 2.

Tb |�±
0 i = 0.266|±5i ⌥ 0.133|±2i � 0.129|⌥1i ⌥ 0.946|⌥4i

Dy |�±
0 i = 0.981|± 15

2 i ± 0.190|± 9
2 i � 0.022|± 3

2 i ⌥ 0.037|⌥ 3
2 i + 0.005|⌥ 9

2 i ± 0.001|⌥ 15
2 i

Ho |�±
0 i = �0.979|±8i ± 0.189|±5i � 0.014|±2i ± 0.070|⌥1i � 0.031|⌥4i ± 0.005|⌥7i

Er |�±
0 i = 0.471|± 13

2 i ± 0.421|± 7
2 i � 0.569|± 1

2 i ⌥ 0.240|⌥ 5
2 i + 0.469|⌥ 11

2 i
Tm |�0i = 0.147|6i � 0.692|3i � 0.692|�3i � 0.147|�6i
Yb |�±

0 i = 0.376|± 7
2 i ± 0.922|± 1

2 i � 0.093| ⌥ 5
2 i

wavefunctions as well as the rare-earth spectroscopic g
factors.

From the methodology point of view, this work
introduces a very simple method for a reliable determination
of the rare-earth crystal-field parameters for a series of
isostructural rare-earth compounds. Its success requires the
availability of inelastic CEF neutron scattering data for a
sufficiently large number of compounds of the series.

Obviously our method does not apply if the interactions
between the CEF and other excitations, e.g. phonons, vary
much within the series. In addition, our method assumes the
interactions between the CEF excitations to be small. We
basically neglect the influence of the excited multiplets on the
ground-state multiplet. Theoretically, the contribution of the
excited multiplets may not be negligible. Referring to table
1.1 of the textbook by Jensen and MacKintosh [46], the first
excited multiplet is located at a temperature equal or larger
than 4750 K in temperature units for all the rare earths we
consider, with the exception of Tb3+ for which it is only
2900 K. It remains to be checked that our method can be
theoretically justified. In any case, we have so far obtained a
nice account of all the published inelastic neutron scattering
data, which only concern the ground-state multiplets. We
account not only for the position of the energy levels but also
for the intensity of the CEF transitions which depend on the
wavefunctions. This suggests that we have at least reached
a very reasonable phenomenological model for the R2Ti2O7
series local properties at low energy, which are of interest in
the framework of frustration.
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• May generally apply to any Kramers’ doublets with  J > 1/2 ! 

e.g,  Ce: Ce2Sn2O7

Emphasis: what matters is the wavefunction, not the spin value ! 
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We report the low-temperature magnetic properties of Ce2Sn2O7, a rare-earth pyrochlore. Our suscep-
tibilityandmagnetizationmeasurements showthatdue to the thermal isolationofaKramersdoubletgroundstate,
Ce2Sn2O7 has Ising-like magnetic moments of ∼1.18 μB. The magnetic moments are confined to
the local trigonal axes, as in a spin ice, but the exchange interactions are antiferromagnetic. Below 1 K, the
system enters a regime with antiferromagnetic correlations. In contrast to predictions for classical
h111i-Ising spins on the pyrochlore lattice, there is no sign of long-range ordering down to 0.02 K. Our results
suggest that Ce2Sn2O7 features an antiferromagnetic liquid ground state with strong quantum fluctuations.

DOI: 10.1103/PhysRevLett.115.097202 PACS numbers: 75.10.Kt, 75.40.Cx, 75.60.Ej, 76.75.+i

Quantum-mechanical phase coherence is a major theme
of modern physics. Various states with macroscopic quan-
tum coherence such as superconductors [1], superfluids [2],
fractional quantum Hall states [3], and optically confined
Bose-Einstein condensates [4] have been identified, all with
remarkable macroscopic properties. In insulators contain-
ing localized spin degrees of freedom, spin liquids can
emerge [5,6], which have no conventional order parameter
associated with a broken symmetry, but whose defining
characteristic is a long-range entangled ground-state wave
function [7,8]. Spin liquids are of great interest thanks to
the remarkable collective phenomena that they can present,
such as emergent gauge fields and fractional quasiparticle
excitations [9,10]. Such states may also offer the possible
application of coherent or topologically protected ground
states in quantum information processing devices [11].
Quantum coherence of a spin system lacking symmetry-

breaking order is well established in one-dimensional spin
chains forming a spin fluid with a quantum coherence
length almost an order of magnitude larger than the
classical antiferromagnetic correlation length [12]. In
higher dimensions, two paradigms are employed, often
simultaneously, to try to obtain a quantum spin liquid
(QSL). First, for Heisenberg spins with S ¼ 1=2, where
quantum mechanical corrections are most significant com-
pared to classical states, quantum melting of the Néel
ground state may be possible when spins pair into valence
bond singlets [13]. The result may be a valence bond crystal
(translationally ordered valence bonds) [14], a resonating
valence bond state (singlet configurations resonate around a
plaquette) [15], or a true spin liquid when valence bonds
can be formed at all length scales so that the ground state
wave function has a genuine long-range entanglement
[5,16]. Secondly, geometrically frustratedmagnets are a nat-
ural landscape for liquidlike states of magnetic moments.

In two dimensions, the triangular and kagome lattices are
important examples [17–20], and neutron scattering experi-
ments on the S ¼ 1=2 kagome lattice antiferromagnet
ZnCu3ðOHÞ6Cl2 (herbertsmithite) have provided evidence
of fractionalized excitations in a 2D QSL [21,22]. In three
dimensions,QSLs are expected on the hyperkagome (e.g., in
Na4Ir3O8 [23]) and pyrochlore lattices. Despite the prepon-
derance of S ¼ 1=2 spin liquid candidatesmentioned above,
recent work on pyrochlore spin liquid candidates such as
Yb2Ti2O7 [24,25], Pr2Zr2O7 [26], and Pr2Sn2O7 [27] have
illustrated how quantum effects can become important in
materials where they may not be expected, i.e., in rare-earth
materials where crystal field effects lead to highly aniso-
tropic magnetic moments.
The spin system of a pyrochlore with a thermally isolated

doublet ground state can be described by a generalized
Hamiltonian for effective S ¼ 1=2 spins [24,28]. This
Hamiltonian includes all symmetry-allowed near-neighbor
magnetic exchange interactions, with a leading interaction
which establishes a classical ground state if acting alone,
and competing transverse exchange terms that introduce
quantum fluctuations. Notably for Kramers ions, there is no
requirement for these competing exchange terms to be small
with respect to the leading term [9]. A leading ferromagnetic
interaction leads to a classical spin liquid ground state,
the spin-ice state. Exotic quantum phases are obtained as a
function of the transverse terms [9,29–32]: the quantum spin
ice or Uð1Þ spin liquid, a disordered phase whose emergent
properties are those of a Uð1Þ-gauge theory [9,29,31],
and the Coulombic ferromagnet [32], an ordered phase
with deconfined spinons, whose existence is under
debate [33].
In rare-earth pyrochlores with antiferromagnetic inter-

actions, where the Ising magnetic moment points “in” or
“out” of the tetrahedron (i.e., along the local h111i axis),
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calculated by applying operators on the full basis of
f-electron microstates (14 microstates in the case of Ce3þ)
[38]. This was accomplished using the computer program
CONDON, which takes into account the effect of the applied
magnetic field and allows fitting the Wybourne coefficients
of the ligand-field Hamiltonian on χðTÞ data [39]. The
refinement of six ligand-field parameters for the case of a
4f1 ion in D3d local symmetry to the susceptibility was
realized between T ¼ 1.8 and 370 K, and the resulting
calculation of the single ion magnetic moment is shown in
Fig. 2(c). The wave functions of the ground state Kramers
doublet correspond to a linear combination of mJ ¼ %3=2
states. The fitted coefficients result in energy levels at 50%
5 meV and 75% 15 meV, and four more levels distributed
around 300 meV, which are all Kramers doublets. Although
all levels consist of mixed ground (2F5=2) and first excited
(2F7=2) multiplets, the lower levels are dominated by the
2F5=2 term, while the upper four levels are dominated by the
2F7=2 term. The local anisotropy axis of the crystal field
levels yields a strong Ising anisotropy along the h111i axis.
The intermultiplet splitting of ≈300 meV is a typical value
for the transition between the ground and first excited
multiplet in Ce3þ compounds [40]. This crystal field scheme
of Ce2Sn2O7 is generally consistent with the calculations
using the MULTIX computer program [41] if the semiempir-
ical values for the spin-orbit coupling and crystal field scalers
are adjusted accordingly.
In Fig. 3(a), we show isothermal magnetization curves,

MðHÞ, evidencing another striking feature. At moderate
and low temperatures, i.e., in the plateau region of the effec-
tive moment and below, M saturates at roughly half of
the value of the effective magnetic moment observed in
the moderate temperature plateau. This is reminiscent of the
spin ices Ho2Ti2O7 and Dy2Ti2O7 where, due to the imp-
ortant noncollinear local anisotropy, the low-temperature
magnetization curves display a similar behavior [42].
Using a simple expression to model the magnetization
of noninteracting Ising spins with local h111i easy-axis
anisotropy and Seff ¼ 1=2 spins [42], our MðHÞ data

are satisfactorily reproduced for temperatures down to
1 K with a parametrized g factor of 2.18. The saturation
of the magnetization up to applied fields as large as 8 T
indicates a strong local anisotropy, as expected from the
large energy gap to the first excited doublet.
We now examine the interactions among the Ce3þ

moments. The constant extracted from the Curie-Weiss
fit at moderate temperatures (θCW ¼ −0.25% 0.08 K)
suggests antiferromagnetic interactions, but no ordering
is observed in the magnetization data down to 0.07 K, as
shown in the inset of Fig. 2(a). Evidence for antiferromag-
netic correlations is provided by the value of the effective
moment, which, below 1 K, falls below that of the ground
state doublet, as shown in Fig. 2(c). Simultaneously, below
this temperature, the isothermal MðHÞ curves shown in
Fig. 3(a) depart from the single-ion form which reproduces
well the curves at higher temperatures, thus confirming the
onset of interactions and correlations. Moreover, the same
magnetization curves are plotted as a function of H=T in
Fig. 3(b). Above 1 K, the curves collapse onto one another,
as expected for uncorrelated spins (T > θCW). Below 1 K,
the curves increasingly deviate from this scaling, and their

FIG. 2 (color online). (a) Magnetization M as a function of temperature T in a magnetic field H ¼ 1000 Oe, plotted as the
susceptibility χðTÞ ∼MðTÞ=H. The inset shows M=H at several applied fields. (b) The temperature dependence of the inverse
susceptibility χ−1ðTÞ exhibits two Curie-Weiss regimes (red lines) at high (T > 130 K) and moderate (1 K < T < 10 K) temperatures,
and, in between, a regime which shows a curvature due to crystal field effects. The inset shows an enlargement of the moderate
temperature Curie-Weiss regime; open and solid symbols refer to data points from the high- and low-temperature magnetometers,
respectively. (c) Effective moment μeff ¼ ½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
vs T. The red line is the fit, above 2 K, to the crystal field

Hamiltonian. The inset in (c) shows the heat capacity on the same temperature scale as for the main panel.

FIG. 3 (color online). Magnetization (M) recorded as a function
of magnetic field (H). (a) Data in the form MðHÞ; lines are
calculations for effective Seff ¼ 1=2 spins with h111i easy-axis
anisotropy and parametrized g factor [42]. (b) Data in the form
MðH=TÞ, so that they collapse in the uncorrelated regime. The
inset shows linear fits to low-field MðHÞ data, enabling com-
parison to the effective moments in Fig. 2(c).
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the classical ground state is the all-in–all-out FeF3 structure
[34,35]. The introduction of strong quantum effects may
melt the classical order to produce a type of spin liquid,
rather as in other unfrustrated quantum antiferromagnets. In
this Letter, we report on Ce2Sn2O7, a pyrochlore magnet
based on Ce3þ (4f1, 2F5=2). The local moments have h111i
Ising anisotropy, and we find that although antiferromag-
netic spin correlations develop below approximately 1 K,
there is no sign of magnetic order down to 0.02 K. The
magnetic moment is small, suggesting that the magnetic
dipolar couplings are much smaller than magnetic
exchange interactions. This makes Ce2Sn2O7 an excellent
model material to look for novel exchange-induced QSLs
on the pyrochlore lattice.
The low-temperature magnetic properties of Ce3þ pyro-

chlores have been little studied, probably because of the
difficulty to stabilize the magnetic Ce3þ oxidation state in
preference to the nonmagnetic Ce4þ (4f0). In Ce2Sn2O7, a
compound previously investigated for its oxygen storage
capabilities [36], the trivalent rare-earth can be readily
stabilized by taking advantage of a solid state oxydo-
reductive reaction during which Sn0 is oxidized to Sn4þ

while reducingCe4þ to the requiredCe3þ. Our sampleswere
produced using this method. Their oxygen stoichiometry,
obtained from the thermogravimetric analysis procedure,
reported in Ref. [36], is 7.00" 0.01. The absence of
excess oxygen indicates that all cerium cations are in their
trivalent oxidation state and that diffraction data can be
fitted assuming a stoichiometric formula unit. The Rietveld
refinement of a neutron powder diffraction pattern is shown
in Fig. 1 and gives the lattice parameter 10.6453(3) Å
at 1.5 K (space group: Fd3̄m). The value of the atomic
coordinate x for the oxygen atomOð48fÞ is 0.3315(3), in the
range of the typical values forA2B2O7 compounds [37]. The
Ce—Oð48fÞ bond length is 2.600" 0.003 Å, close to the
sum of the ionic radii (2.68 Å), while the Ce—O0ð8bÞ bond
(pointing along the local h111i direction) has a length of
2.305" 0.003 Å, which is markedly shorter than 2.68 Å,

as usually observed in rare-earth pyrochlores. Attempts to
refine antisite cation disorder (0.5" 2.5%) and oxygen
Frenkel disorder (0.36" 0.16%), which can induce stuffing
effects and disordered exchange interactions, respectively,
did not provide evidence for structural defects.
Magnetization (M) data weremeasured in the temperature

(T) range from 1.8 to 370 K in an applied magnetic field (H)
of 1000 Oe using a Quantum Design MPMS-XL super-
conducting quantum interference device (SQUID) magne-
tometer. Additional magnetization, and ac-susceptibility,
measurements were made as a function of temperature
and field, from T ¼ 0.07 to 4.2 K and from H ¼ 0 to
8 × 104 Oe, using SQUID magnetometers equipped with a
miniature dilution refrigerator developed at the Institut Néel-
CNRS Grenoble. The heat capacity (Cp) of a pelletized
sample was measured down to 0.3 K using a Quantum
Design physical properties measurement system (PPMS).
Muon spin relaxation (μSR) measurements were performed
at the LTF spectrometer of the Swiss Muon Source, in the
range from T ¼ 0.02 to 0.8 K. Muons were longitudinally
polarized and spectra were recorded in zero field with earth-
field compensation or in applied fields parallel to the beam.
The magnetization divided by the applied field M=H,

which is equal to susceptibility χ in the linear field regime,
is shown as a function of the temperature T over the full
temperature range in Fig. 2(a). The susceptibility increases
continuously with decreasing temperature, and there is no
evidence of any ordering transition [inset of Fig. 2(a)]. At
high temperature, T > 130 K, the inverse susceptibility
χ−1 [shown in Fig. 2(b)] is almost linear, and a fit to the
Curie-Weiss law yields a magnetic moment μ ¼
2.75" 0.20 μB=Ce, in reasonable agreement with the
expected free ion value of 2.54 μB=Ce, and
θCW ¼ −250" 10 K. This is an extremely large value for
such a rare-earth material, where magnetic interactions are
expected to be in the kelvin range. The large value of θCW can
be attributed to crystal field effects, as shown by the strong
curvature of χ−1ðTÞ below 100 K, indicating a change in the
population of crystal field levels of the Ce3þ ion. At moderate
temperatures, 1 K < T < 10 K, a linear behavior is
observed, and the Curie-Weiss fit to this part of χ−1ðTÞ
[see inset of Fig. 2(b)] gives a magnetic moment of
μ ¼ 1.18" 0.02 μB=Ce, which corresponds to the moment
of the ground state doublet, and θCW ¼ −0.25" 0.08 K.
Figure 2(c) shows that the effectivemagneticmoment fμeff ¼
½ð3kB=NAμ2BÞχT'1=2 ∼ 2.828

ffiffiffiffiffiffi
χT

p
g approaches the free ion

value at 370 K, and it falls to an approximate plateau of
1.18μB in the range from T ¼ 1 to 10K. At low temperature,
T < 1 K, the effective moment drops.
The magnetic susceptibility was used to estimate the

crystal field scheme. In the LS coupling scheme, a crystal
electric fieldwith theD3d symmetry of theCe3þ site splits the
2F5=2 free ion ground state into three Kramers doublets.
However, the ground state multiplet 2F5=2 alone does not
allowus to reproduce our experimental data. Instead,we used
matrix elements of the crystal field Hamiltonian which are

FIG. 1 (color online). Rietveld refinement of neutron
powder diffraction data (HRPT instrument at PSI) collected at
1.5 K using an incident wavelength of 1.49 Å. Fitted isotropic
displacement parameters: BCe ¼ 0.87ð4Þ Å2; BSn ¼ 0.79ð3ÞÅ2;
BOð48fÞ ¼ 1.08ð2ÞÅ2; BO0ð8bÞ¼0.87ð5ÞÅ2. Conventional Rietveld
factors (%): RP ¼ 4.10; RWP ¼ 5.19; RBragg ¼ 5.52; RF ¼ 4.25.
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XYZ model is the generic model that describes the interaction  
between DO doublets. 

4

properties, dQSI and oQSI will both have a T 3 contribu-
tion to specific heat from gapless photon modes, which
is likely to be very large in f -electron realizations [19].
Dipolar spin correlations, as measured e.g. by neutron
scattering, will however be quite di↵erent, as illustrated
by the fact that, neglecting e↵ects of long-range dipo-
lar interaction, equal-time dipolar correlations fall o↵ as
1/r4 in dQSI [2], but as 1/r8 in oQSI [22].

So far we avoided discussing the case J̃? > 0; here, less
is known for the XXZ model, due to the presence of a sign
problem in quantum Monte Carlo. In the |J̃?|/J̃z ⌧ 1
limit, J̃? favors QSI with ⇡ flux of the vector potential
Arr0 through each pyrochlore hexagon, unlike for J̃? < 0,
where zero flux is favored [22]. We have not considered
the properties of the resulting ⇡-flux versions of dQSI
and oQSI, leaving this for future work. QSI is expected
to persist over a larger range of J̃? > 0, since in this case
both J̃z and J̃? interactions are frustrated [20].

We now discuss the phase diagram of the XYZ model.
The simplest magnetically ordered phases appear ferro-
magnetic in local coordinates; for instance, if J̃z < 0
and is dominant, h⌧̃z

r i = md 6= 0. This phase is in fact
the “all-in-all-out” (AIAO) state, where magnetic dipoles
point along the local zi axes, toward (away from) py-
rochlore tetrahedron centers lying in the diamond A (B)
sublattices (or vice versa). In this state both ⌧z

r and ⌧x
r

have non-zero expection value, reflecting an admixture
of the ⌧x octupolar order, but there is no symmetry dis-
tinction from the usual AIAO state. Since ⌧z and ⌧x

transform identically under space group, the same AIAO
state arises when J̃x < 0, |J̃x| � J̃y,z. A distinct mag-
netically ordered phase, with h⌧̃y

r i = mo 6= 0, is obtained
when J̃y < 0, |J̃y| � J̃x,z. This state has distinct sym-
metry properties from the AIAO state, and in fact has
anti-ferro-octupolar order, with no on-site dipolar order.

To study the phase diagram away from the simple lim-
its discussed above, we employ the recently developed
gauge mean field theory (gMFT)[19, 20] to our model[22].
gMFT makes the U(1) gauge structure explicit via a slave
particle construction, and is capable of describing both
QSI and magnetically ordered phases. The gMFT phase
diagram is shown in Fig. 3. For simplicity, we limited our
analysis to the shaded regions shown (Fig. 3) on the faces
of a cube in (J̃x, J̃y, J̃z) space; away from these regions
the transverse exchange is frustrated, and the structure
of gMFT becomes more complex. We find only the two
QSI and magnetically ordered phases discussed above. It
is interesting to remark that, in the same regions of pa-
rameter space we analyzed via gMFT, the XYZ model
can be studied via quantum Monte Carlo without a sign
problem [22].

We now comment briefly on the prospects for applying
the models discussed above to real materials. Promis-
ing systems to realize the XYZ model are Nd2B2O7 py-
rochlores. B = Zr, Sn compounds are insulators exhibit-
ing antiferromagnetic order at low temperature [32, 33].
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FIG. 3. (Color online). Left: Unit cube in (J̃
x

, J̃
y

, J̃
z

) pa-
rameter space of the XYZ model. The shaded regions were
analyzed via gMFT. Right: The gMFT phase diagram on the
J̃
z

= 1 surface of the cube, where dQSI, all-in-all-out (AIAO),
and anti-ferro-octupolar (AFO) phases are found. Within
gMFT, the phase transition is 1st order (2nd order) at the
dashed (solid) boundary. The dotted line is the XXZ line.
We did not apply gMFT in the J̃

x

+ J̃
y

� 0 region. There,
the exchange is frustrated, and QSI is likely to be much more
stable than for J̃

x

+ J̃
y

< 0 [20]. The phase diagram on the
other surfaces of the cube can be obtained by relabeling pa-
rameters, with the nature of phases changing according to
the anisotropic character ⌧̃µ

r . dQSI occurs on the J̃
z

= 1 and
J̃
x

= 1 faces, while oQSI occurs on the J̃
y

= 1 face.

While the B = Ir compound is known to carry a DO
doublet [26], the physics is complicated by the presence
of Ir conduction electrons[6]. Synthesis of other Nd py-
rochlores has been reported [34]. DO doublets are also
likely in Dy pyrochlores [27], but the large magnetic
moment of Dy3+ makes dipolar interactions a compli-
cating factor. DO doublets may also occur in spinels
where the B site is occupied by a rare earth. Looking
more broadly, strongly localized d-electron Mott insu-
lators with S = 3/2 and D3d site symmetry comprise
another class of systems where DO doublets may be the
low-energy degrees of freedom.

5d-electron systems are a likely setting for itinerant (or
weakly localized) DO doublets. Cd2Os2O7, believed to
exhibit AIAO magnetic order below a finite-temperature
metal-insulator transition[35, 36], has Os3+ in 5d3 elec-
tron configuration. Microscopic calculations indicate a
DO doublet ground state, but show a very small splitting
between the ground and first excited doublets [37], likely
due to Hund’s coupling. Moreover, electronic structure
calculations do not show a clear separation between DO
doublet and other energy bands [38, 39]. Thus 5d1 sys-
tems, perhaps on other lattices, may be more promising
for the realization of DO doublets in the itinerant limit.

In summary, we have pointed out that Kramers dou-
blets with dipolar-octupolar character can arise on the
sites of the pyrochlore lattice in both d- and f -electron
systems. We studied e↵ective models of DO doublets in
itinerant and localized limits, finding topological insula-
tion in the former case, and two distinct quantum spin
ice phases in the latter.
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as quantum spin ice is a disordered state,

there is no long range order, no symmeetry breaking, it is 
a new phase of matter and cannot be understood 

in the landau’s paradigm of symmetry breaking theory. 


the right description of quantum spin ice is in terms of 
fractionalization and emergent gauge structure.  
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gauge photon,

it is not goldstone boson, which is due to symmetry 
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Neutron scattering and thermal transport

Dipolar-U(1) QSL  

neutron spin couples to both gauge field and matter field, observe both  
gapless gauge photon and gapped spinon continnum  
 

Octupolar-U(1) QSL 

neutron spin only couples to the matter field (spinons), observes only the  
gapped spinon continuum. External magnetic field can manipulate the  
spinon continuum, which can be confirmed by neutron scattering. 

Thermal transport 

see both contribution, but there is a big separation of energy scales in  
spinon and gapless photons.  
 
It can be beneficial to observe the low temperature peak in the thermal transport. 
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Summary

We propose a general mechanism due to “weak” crystal electric field for the  
emergent magnetic order. 
 

We propose a field-driven Anderson-Higgs’ transition as a simple knob 
to identify the octupolar U(1) quantum spin liquid. 

Thank you ! 
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