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My purpose of this talk

1. Explain the puzzling experiments in qguantum spin ice
candidate materials.

2. Use proximate ordered phase and proximate phase
transition to indirectly identity guantum spin ice.




Outline

* |[ntroduction: does gquantum spin ice exist In
nature”

 Magnetic transition of guantum spin ice IS
confinement transition of compact QED

 Monopole condensation and proximate phases

e Summary




Spin ice in rare-earth pyrochlores
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Classical spin ice

e The "2-In 2-out” states are extensively degenerate.

e At T < Jzz, the system thermally fluctuates within the
ice manifold, leading to classical spin ice and
interesting experimental discoveries.
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Quantum fluctuation leads to (disordered) guantum spin ice

H= J.)Y Si5;
(i.4)

“Ji Y (SFS;+5757) +- >
(1,7)

e Pretty much one can add any term to create quantum tunneling, as long as it is not too
large to induce magnetic order, the ground state is a quantum spin ice !

Hermele, Fisher, Balents,
Moessner, Isakov....

quantum
tunneling
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flip 6 spins on the hexagon
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e Unlike CSI, QS| is a novel phase of matter. No LRO, no symmetry breaking, cannot be
understood in Landau’s paradigm!

e The right description is in terms of fractionalization and emergent gauge structure. It is an
exotic phase of matter, like FQHE, and shares similar properties as topological order.




Does QSI exist in experiments?

Realistic models

H={JSiS—J.(S/S; +S;S;)
(ij)
+ J++(«y,]S+S+ + 97,8 S;)
J+[Si(£;S7 + £5;S7) + i+ jlb, S. H. Curnoe, PRB (2008).

1j=J

e Kramers’' doublet

e Non-Kramers’ doublet H = >{J_SiS¢—J.(S/S; +S;S])
(i)

+ J++(7/US+S+ T Y?jsi_sj_)
e Dipole-octupole doublet H =Y J,S7S¥+ J,S¢SY + J.S;S?
(i)
+J,2 (ST 87 + S7S9).

Y-P Huang, Gang Chen, M Hermele, PRL 2014



-Xperiments are sample dependent
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—Xperiments: a featureless state near an ordered state
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Expts are sample dependent,
some samples are AFM ordered (Prof. C. Broholm)

f-d exchange in R2[r207, Gang Chen, M Hermele PRB 2012



Synthesis of experiments in a theory way

T

featureless

disordered state g = chemical pressure,

oxygen content ......

e \What is the structure of the magnetic order?

e \What is the relationship between the featureless disordered
state and various magnetic states”

e \What is the nature of the featureless disordered states? Is it QSI?

also see Prof Horoi’s slides on Tb2Ti207




Insight from high-Tc superconductors
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Figure from wiki




Attack from left (quantum spin ice)
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guantum spin ice magnetic order J
Spinons are deconfined. Spinons are confined !

There is a subtle difference between Kramers’ doublet and non-Kramers’ doublet.
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Lattice gauge theory formalism: technical part
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e In the gauge language, E field is static, B magnetic
field is strongly fluctuating, the magnetic monopole (carrying
magnetic charge) is condensed, which confines the electric
charge carriers (spinons).




=lectromagnetic duality

Monopole lives on dual diamond lattice, carry magnetic charge or dual U(1) gauge charge.
To study monopole physics, we need to use a technique called “duality” to make it explicit.

curla = Z Gyt = Bypr — ESI.,, dual U(1) gauge
e’ €O
U 0\ 2
i Hdual — Z E(CU’I"Z a — E) — Z K cos Brr/7
Or r,r/

insert monopole variables

¢ Hiua = Z %(curl a — Z K cos B,y
diamond (dotted) and O r,r’
dual diamond lattice
(Bergman, etc, PRB 2006) - Z t cos(y — O + 2man ).

B magnetic field is strongly fluctuating, the fluctuation of dual
+ U(1) gauge field is weak.




Physical observables are gauge invariant

e Monopole loop current
defines the magnetic order

-

- oB -
curl E=-—+J,, (Maxwell’s equation)

ot E

jéfb.d5=j> cuﬂé.dz=jﬁ.dg.
C C S

l (Bergman, etc, PRB 2006)




Proximate and un-proximate magnetic states

Energy |

Un-proximity implies a strong
1st order transition!

X VAR
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>

Q=2Pi(001) AFM state is
the simplest proximate state.

States in Hilbert space



Implication for experiments

PHYSICAL REVIEW B 89, 224419 (2014)
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PIO: different samples have different Fermi energy -> RKKY
-> magnetic order, Q= 2Pi(001)

YTQO: different samples might be trapped in some metastable states.
first order transition to Q=0 FM state.



Critical theory

Standard Landau-Ginzburg expansion in the monopole fields
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The critical theory is described by multicomponent bosons coupled with a
fluctuating U(1) gauge field in 3+1D.

a unusual weak divergence X(Q) ~—InT “subsidiary order”



summary

* | have studied the phase diagram near guantum spin ice.

e Using field theoretic technique, | have obtained the structure
of the magnetic states and the nature of the magnetic transition.

e | use my theoretical results to explain the puzzling experiments

in Pralr207 and Yb2Ti207. It implies the disordered phase is likely
to be a QSI.

Thank you !
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Analogy with Boson-vortex duality

Fisher et al, PRB (1989)
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Frustrated monopole bands

The background electric field
distribution creates a Pi flux
experienced by the monopoles,

this frustrates monopole hopping.

Hipa = Z % curl a — Z K cos B,y

— Z tcos(Oy — Oy + 2Tay ).

Fixing gauge, curla=FE,

Hyp=—)Y te ?™wdld,, & =
B, = 1

The monopole band minima have a
ine degeneracy In k space.



