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YbMgGaO4, a structurally perfect two-dimensional triangular lattice with odd number of electrons
per unit cell and spin-orbit entangled e↵ective spin-1/2 local moments of Yb3+ ions, is likely to
experimentally realize the quantum spin liquid ground state. We report the first experimental
characterization of single crystal YbMgGaO4 samples. Due to the spin-orbit entanglement, the
interaction between the neighboring Yb3+ moments depends on the bond orientations and is highly
anisotropic in the spin space. We carry out the thermodynamic and the electron spin resonance
measurements to confirm the anisotropic nature of the spin interaction as well as to quantitatively
determine the couplings. Our result is a first step towards the theoretical understanding of the
possible quantum spin liquid ground state in this system and sheds new lights on the search of
quantum spin liquids in strong spin-orbit coupled insulators.

PACS numbers: 75.10.Kt, 75.30.Et, 75.30.Gw, 76.30.-v

Introduction.—Recent theoretical advance has ex-
tended the Hastings-Oshikawa-Lieb-Schultz-Mattis theo-
rem to the spin-orbit coupled insulators [1–4]. It is shown
that as long as the time reversal symmetry is preserved,
the ground state of a spin-orbit coupled insulator with
odd number of electrons per unit cell must be exotic [1].
This important result indicates that the ground state of
strong spin-orbit coupled insulators can be a quantum
spin liquid (QSL). QSLs, as we use here, are new phases
of matter that are characterized by properties such as
quantum number fractionalization, intrinsic topological
order, and gapless excitations without symmetry break-
ing [5, 6]. Among the existing QSL candidate materi-
als [7–33], the majority have a relatively weak spin-orbit
coupling (SOC), which only slightly modifies the usual
SU(2) invariant Heisenberg interaction by introducing
weak anisotropic spin interactions such as Dzyaloshinskii-
Moriya interaction [34–36]. It is likely that the QSL
physics in many of these systems mainly originates from
the Heisenberg part of the Hamiltonian rather than
from the anisotropic interactions due to the weak SOC.
The exceptions are the hyperkagome Na
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Ir
3

O
8

and the
pyrochlore quantum spin ice materials where the non-
Heisenberg spin interaction due to the strong SOC plays
a crucial role in determining the ground state proper-
ties [16, 17, 37–48], though both systems contain even
number of electrons per unit cell. Therefore, it is de-
sirable to have a QSL candidate system in the spin-orbit
coupled insulator that contains odd number electrons per

FIG. 1. (Color online.) The YbMgGaO4 lattice structure (a)
and the triangular lattice in the ab plane (b) formed by the
Yb3+ ions. The inset defines the coordinate system for the
spin components.

unit cell, where the strong SOC leads to a non-Heisenberg
spin Hamiltonian [37, 38, 40, 48–52].

In this Letter, we propose a possible experimental re-
alization of the QSL with strong SOC and odd number
of electrons per unit cell in YbMgGaO

4

, where the Yb3+

ions form a perfect triangular lattice (see Fig. 1). It was
previously found in a powder sample that the system has
a Curie-Weiss temperature ⇥Powder

CW

' �4K but does not
order magnetically down to 60mK [53]. To understand
the nature of the obviously disordered ground state ob-
served in YbMgGaO

4

, it is necessary to have a quantita-
tive understanding of the local moments and microscopic

•  Hastings-Oshikawa-Lieb-Shultz-Mattis theorem. 
•  Recent extension to spin-orbit coupled insulators (Watanabe, Po, Vishwanath, Zaletel, PNAS 2015). 
•  This is the first strong spin-orbit coupled QSL with odd electron filling and effective spin-1/2. 
•  It is the first clear observation of T2/3 heat capacity. I think it is spinon Fermi surface U(1) QSL. 
•  Inelastic neutron scattering is consistent with spinon Fermi surface results.  
•  We understand the microscopic Hamiltonian and the physical mechanism.

A rare-earth triangular lattice quantum spin liquid: YbMgGaO4
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Figure 3: Intensity contour plot of spin excitation spectrum along the high-symmetry momentum directions. a, Intensity contour plot

along the (1/2-K/2, K, 0) and (1, K, 0) directions as illustrated in b. Vertical dashed lines represent the high-symmetry points, and dotted lines

indicate the upper bounds of spin excitation energy. b, Sketch of reciprocal space. Dashed lines indicate the Brillouin zone boundaries.
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Figure 4: Constant energy scans along the symmetry directions and constant Q scans at the high-symmetry points. a,b, Constant

energy scans along the (1/2-K/2, K, 0) and (1, K, 0) directions. The solid lines are guides to the eye. c, Constant Q scans at M, K, and �

points with the final energy fixed at E f = 3, 3.5 and 4 meV. The sharp upturn of the scattering below ⇠ 0.1 meV is due to contamination from

incoherent elastic scattering at E = 0 meV (dashed line). Error bars, 1 s.d.
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To characterize the behaviour of the local moment of Yb, we first 
measured the magnetic susceptibility of single-crystalline YbMgGaO4 
(Fig. 1c). For magnetic fields H applied both parallel to and normal to 
the c axis of the lattice, we found predominantly antiferromagnetic 
spin interactions, as evidenced by negative Curie–Weiss temperatures  
(Fig. 1c, inset). Because of the anisotropic spin interaction, the Curie–
Weiss temperatures for H ⊥  c and H ‖  c were not identical (Fig. 1c, 
inset; Extended Data Fig. 1f), with ΘCW,⊥ =  − 4.78 K and ΘCW,‖ =   
− 3.2 K, consistent with previous measurements18,19. We examined 
the magnetic susceptibilities in field cooling (FC) and zero-field 
 cooling (ZFC)  measurements. No splitting was detected between the 
FC and ZFC results down to 2 K, indicating the absence of spin glassy 
 transitions (Fig. 1c).

The Curie–Weiss temperature and the spin excitation bandwidth 
(discussed below) set the energy scale for the spin interactions. Our 
elastic neutron scattering measurements revealed no magnetic Bragg 
peaks (Extended Data Fig. 2) at temperatures as low as 30 mK, con-
siderably lower than the Curie–Weiss temperature (about 4 K) and 
spin excitation bandwidth (about 17 K); this is consistent with pre-
vious  measurements of specific heat and susceptibility. To reveal the 
 intrinsic quantum dynamics of the local moments of Yb, we used 
inelastic  neutron scattering (INS) to study the spin excitations in sin-
gle  crystals of YbMgGaO4 at approximately 70 mK. Constant-energy 
images are presented in Fig. 2a–e, which indicate the presence of dif-
fusive  magnetic excitations for all measured energies. The scattering 
spectral weights are spread broadly in the Brillouin zone, whereas 
the spectral intensities near the zone centre (that is, the Γ  point) are  
suppressed. For a low-energy transfer of 0.3 meV, the spectral intensity 

is slightly more pronounced around the M points, while the broad con-
tinuum across the Brillouin zone still carries the vast majority of the 
spectral weight (Fig. 2a).

Figure 3a displays a contour plot of spectral intensity along the 
high-symmetry momentum directions (M–K–Γ –M–Γ ) in energy–
momentum (E–Q) space. Similarly to the constant-energy images 
shown in Fig. 2a–e, the spectral intensity is broadly distributed 
in momentum for all of the energies measured. Moreover, a clear 
V-shaped upper bound on the excitation energy is evident near the  
Γ  point (Fig. 3a, dotted line). The intensity of the spin excitation 
 gradually decreases with increasing energy, and vanishes above 
 approximately 1.5 meV. This feature is confirmed by the Q scans in 
Fig. 4a, b and the E scans at a few given momentum points (Γ , M and K)  
in Fig. 4c.

The broad continuum is an immediate consequence, and strong  
evidence, of spinon excitations in QSLs1,7,12. This differs from magnon- 
like excitations that would peak strongly at specific momenta in recip-
rocal space, with or without static magnetic order23,24. In general, the 
spinful excitations in QSLs are carried by deconfined spinons1,7. For 
most experimentally relevant QSLs, the spinons carry half-integer 
spins. One neutron-spin-flip event in an INS measurement creates an 
integer spin change that necessarily excites two (or more) spinons1. 
Therefore, the energy transfer E and momentum transfer p of the  
neutron are shared by two spinon excitations that are created by  
the neutron spin flip. According to energy–momentum conservation, 
we have E(p) =  ωs(k) +  ωs(p −  k), where ωs(k) is the spinon  dispersion 
and k is the momentum of one spinon. This relation implies the 
 presence of an excitation continuum in the INS spectrum. The broad 
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Figure 2 | Measured and calculated momentum dependence of the spin 
excitations, and calculated spinon Fermi surface of YbMgGaO4.  
a–e, Constant-energy images at the indicated energies and T =  70 mK, 
displaying diffusive magnetic excitations covering a wide region of the 
Brillouin zone. The scattering intensity is represented by the colour scale, 
and in c, d and e has been multiplied by 2, 4 and 8, respectively, for clarity. 
The data were collected on ThALES using the Flatcone detector, and were 
corrected for neutron-beam self-attenuation (Methods). f, Calculated 
momentum dependence of the spin excitations for a typical, finite E.  

Here t is the hopping amplitude between nearest-neighbour sites.  
g, Spinon Fermi surface calculated using the model described in the 
main text. The black arrow indicates a spinon particle–hole excitation 
with momentum transfer p and dashed lines indicate the Brillouin zone 
boundaries of the conventional unit cell (a =  b =  3.40 Å, c =  25.12 Å). 
High-symmetry points M, K and Γ  are labelled by red, green and blue 
dots, respectively. The wave vector Q is defined as Q =  Ha* +  Kb* +  Lc*; 
a.u., arbitrary units; r.l.u., reciprocal lattice units.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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FIG. 4. Energy-dependent curves of the dynamic spin struc-
ture factor at (a) � and (b) �0 (see Fig. 1d). Right at �,
there is a narrow Zeeman peak for nonzero fields whose po-
sition shifts with the field. Away from �, there is a broad
continuum corresponding to the spinon particle-hole excita-
tions. Note that the very low-energy part of spectral weight is
underestimated in the mean-field theory due to the neglecting
of the gauge fluctation.

low energies. For example, the Yukawa coupling between
the fermionic spinons and the gapless U(1) gauge pho-
ton would give rise a self-energy correction to the spinon
Green’s function and thus enhance the low-energy density
of states16,17. Therefore, the inelastic neutron scattering
process that excites the spinon particle-hole pair, would
have an enhanced spectral weight at low energies. This
property is not captured in the spinon mean-field the-
ory. We thus expect the very low energy spectral weights
in Figs. 2,4 and also in Fig. 5 to be enhanced when the
gauge flucutation is included. Moreover, the slight en-
hancement of the overall bandwidth of the spinon contin-
uum in the field is probably a mean-field artifact as well
because the bandwidth should be set by the exchange
interaction of the system.

V. THE RPA CORRECTION FROM THE
ANISOTROPIC INTERACTION

As we have proposed in Ref. 8, the anisotropic spin
exchange terms J±± and J

z± from the strong SOC in
Eq. (3) is likely to play an important role in stabiliz-
ing the QSL ground state. The SOC is further sug-
gested to be responsible for the weak spectral peak at
the M point9–11. Here we consider the e↵ect of the
anisotropic spin interaction on the dynamic spin struc-
ture factors following a phenomenological approach in-
troduced in Refs. 11 and 22. Starting from the free-
spinon theory HMFh and the corresponding susceptibil-
ity �0(q,!), we treat the anisotropic interaction H 0

spin as
perturbations. The resulting magnetic susceptibility is
calculated in the random phase approximation (RPA)22,

�RPA(q,!) = [1� �0(q,!)J (q)]�1�0(q,!), (9)

FIG. 5. Dynamic spin structure factors for the interacting
spinon theory with external magnetic field along z-direction
up to 0.6B, where the interaction is given by H 0

Spin.

where J (q) is the exchange matrix from H 0
spin,

J (q) =
0

BB@

2 (uq � vq) J±± �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 2 (vq � uq) J±± (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (10)

with uq = cos(q · a1), vq = 1
2 [cos(q · a2) + cos(q · a3)],

and wq = 1
2 [cos(q · a2)� cos(q · a3)].

The RPA corrected dynamic spin structure factor
is related �RPA(q,!) by the equation SRPA(q,!) =
� 1

⇡

Im[�RPA(q,!)]+�. The renormalized dynamic spin
structure factor SRPA(q,!) is shown in the Fig. 5, where
we choose the parameters to be J

z±/t1 = 0.2, J±±/t1 =
0.35. From the results we conclude that the anisotropic
exchange terms merely redistribute the spectral weight
within the Brillouin zone and leave the qualitative fea-
tures in the vicinity of the � point mentioned in previous
sections una↵ected.

Yao Shen, Yaodong Li …GC*, Jun Zhao*   Nature 2016

Consistent results from Paddison et al, Nature Physics 2016
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Parton construction and  
PSG classification

3

where nO = 0, 1. For translations, one can always
choose a gauge such that WT1

r = (i�x)n1 ,WT2
r =

(i�x)n2ei�2[x,y]�
z

with n1, n2 = 0, 1 and �2[0, y] = 0. The
group relation in Eq. (3) further demands n1 = n2 = 0.
Thus the group relation in Eq. (1) gives WT1

r = 1,WT2
r =

eix�1�
z

, where �1 is the flux through each unit cell of the
triangular lattice and takes the value of 0 or ⇡ [46]. The
PSGs with �1 = 0 (⇡) are labeled by U1A (U1B). Among
the sixteen algebraic PSGs that we find, eight unphysical
solutions have T 2 = 1 for the spinons and give vanishing
spinon hoppings everywhere. In Tab. I and the Supple-
mentary information, we list the remaining eight PSGs
that have T 2 = �1 consistent with the fact that fermionic
spinons are Kramers doublets [46].

Mean-field states.—Here we obtain the spinon mean-
field Hamiltonian from Tab. I and explain why the
U1A00 state stands out as the candidate ground state
for YbMgGaO4. We start with the U1A states. Among
the four U1A states, the U1A10 state gives a vanish-
ing mean-field Hamiltonian for the spinon hoppings be-
tween the first and the second neighbors, the remain-
ing ones except the U1A00 state all have symmetry pro-
tected band touchings at the spinon Fermi level (see
Fig. 2). To illustrate the idea [53], we consider the
U1A01 state where the spinon Hamiltonian has the form
HU1A01

MF =
P

k h↵�

(k)f†
k↵fk� in the momentum space

and h(k) is a 2⇥ 2 matrix with

h(k) = d0(k)I2⇥2 +
3X

µ=1

d
µ

(k)�µ. (13)

For this band structure there are nondegenerate band
touchings at �, M and K points that are pro-
tected by the PSG of the U1A01 state. Under C6,
the PSG demands that [54] spinons to transform as
fk" ! �e�i⇡/3f†

�C

�1
6 k,#, fk# ! ei⇡/3f†

�C

�1
6 k,". Applying

C6 three times and keeping HMF invariant, we require
h(k) = �[�yh(k)�y]T which forces d0(k) = 0. The time
reversal symmetry (T = i�y ⌦ I2⇥2K) further requires
that d

µ

(k) = �d
µ

(�k). Thus we have symmetry pro-
tected band touchings with h(k) = 0 at the time reversal
invariant momenta � and M. The K points are invariant
under C2 and C6 because the spinon partile-hole trans-
formation is involved for C6 [46]. Using those two sym-
metries, we further establish the band touching at the K
points. Likewise, for the U1A11 state, the PSG demands
the band touchings at � and M points. Because there
are only two spinon bands for the U1A states, these band
touchings generically occur at the spinon Fermi level.

Due to the Dirac band touchings at the Fermi level, the
low-energy dynamic spin structure factor, that measures
the spinon particle-hole continuum, is concentrated at a
few discrete momenta that correspond to the intra-Dirac-
cone and the inter-Dirac-cone scatterings [36]. Clearly,
this is inconsistent with the recent inelastic neutron scat-
tering result that observes a broad continuum covering a

FIG. 2. (a,b,c) The mean-field spinon bands along the high-
symmetry momentum lines (see (d)) of the U1A00, U1A01
and U1A11 states, where t1, t

0
1 and t2 are hoppings in their

spinon mean-field Hamiltonians [46]. The Dirac cones are
highlighted in dashed circles. The dashed line refers to the
Fermi level. (d) The Brioullin zone of the triangular lattice.

rather large portion of the Brillouin zone [36, 37].
For the U1B states, the spinons experience a ⇡ back-

ground flux in each unit cell. The direct consequence of
the ⇡ background flux is that the U1B states support an
enhanced periodicty of the dynamic spin structure in the
Brillouin zone [45, 55, 56]. Such an enhanced periodicity
is absent in the inelastic neutron scattering result [36, 37].
In particular, unlike what one would expect for an en-
hanced periodicity, the spectral intensity at the � point
is drastically di↵erent from the one at the M point in the
existing experiments [36, 37].
The above analysis leads to the conclusion that the

U1A00 state is the most promising candidate U(1) QSL
for YbMgGaO4, and this conclusion is independent from
any microscopic model. The spinon mean field Hamilto-
nian, allowed by the U1A00 PSG, is remarkably simple
and is given as [57]

HU1A00
MF = �t1

X

hrr0i,↵
f†
r↵fr↵ � t2

X

hhrr0ii,↵
f†
r↵fr↵, (14)

where the spinon hopping is isotropic for the first
and the second neighbors. This mean-field state only
has a single band that is 1/2-filled, so it has a large
spinon Fermi surface. From HU1A00

MF , we construct the
mean-field ground state by filling the spinon Fermi sea,
| U1A00

MF i = Q
✏k<✏F

f†
k"f

†
k# |0i, where ✏k is the spinon dis-

persion and ✏F is the spinon Fermi energy. The mean-
field variational energy is

Evar = h U1A00
MF |Hspin| U1A00

MF i, (15)

where Hspin =
P

hrr0i JzzS
z

rS
z

r0 + J±(S
+
r S�

r0 + S�
r S+

r0) +

J±±(�rr0S+
r S+

r0 + �⇤
rr0S�

r S�
r0)� i

2Jz±[(�
⇤
rr0S+

r � �rr0S�
r )

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

The U1A00 state is the spinon Fermi surface state  
that we proposed in Shen, et al, Nature.

2

U(1) QSL WT1
r WT2

r WC2
r WC6

r

U1A00 I2⇥2 I2⇥2 I2⇥2 I2⇥2

U1A10 I2⇥2 I2⇥2 i�y I2⇥2

U1A01 I2⇥2 I2⇥2 I2⇥2 i�y

U1A11 I2⇥2 I2⇥2 i�y i�y

TABLE I. List of the gauge transformations for the four U1A
PSGs. For time-reversal symmetry, all PSGs here have W T

r =
I2⇥2. The last two letters in the labels of the U(1) QSLs are
extra quantum numbers in the PSG classfication [46].

work with an equivalent symmetry group that involves
two translations, T1 and T2, one 2-fold rotation, C2, and
one 6-fold rotation, C6 (see Fig. 1b). It is ready to con-
firm that I ⌘ C3

6 , C3 ⌘ C2
6 and C6 = C�1

3 I. The multi-
plication rules of this symmetry group is given as

T�1
1 T2T1T

�1
2 = T�1

1 T�1
2 T1T2 = 1, (1)

C�1
2 T1C2T

�1
2 = C�1

2 T2C2T
�1
1 = 1, (2)

C�1
6 T1C6T2 = C�1

6 T2C6T
�1
2 T�1

1 = 1, (3)

(C2)
2 = (C6)

6 = (C6C2)
2 = 1. (4)

Due to the presence of time reversal in YbMgGaO4 [33,
36–38], we further supplement the symmetry group with
the time reversal T such that O�1T OT = 1 and T 2 = 1,
where O is a lattice symmetry operation.

Fermionic parton construction.—To describe the U(1)
QSL that we propose for YbMgGaO4, we introduce
the fermionic spinon operator fr↵(↵ =", #) that carries
spin-1/2, and express the Yb local moment as Sr =
1
2

P
↵,�

f†
r↵�

↵�

fr� , where � = (�x,�y,�z) is a vec-
tor of Pauli matrices. We further impose a constraintP

↵

f†
r↵fr↵ = 1 on each site to project back to the phys-

ical Hilbert space of the spins. The choice of fermionic
spinons allows a local SU(2) gauge freedom [45].

As a direct consequence of the spin-orbital entangle-
ment, the spinon mean-field Hamiltonian for the U(1)
QSL should generically involve both spin-preserving and
spin-flipping hoppings, and has the following form

HMF = �
X

(rr0)

X

↵�

⇥
trr0

,↵�

f†
r↵fr0

�

+ h.c.
⇤
, (5)

where trr0
,↵�

is the spin-dependent hopping. The choice
of the mean-field ansatz in Eq. (5) breaks the local SU(2)
gauge freedom down to U(1). Here, to get a more com-
pact form for Eq. (5), we follow Ref. 47 and introduce the
extended Nambu spinor representation for the spinons
such that  r = (fr", f

†
r#, fr#,�f†

r")
T and

HMF = �1

2

X

(r,r0)

⇥
 †

rurr0 r0 + h.c.
⇤
, (6)

where urr0 is a hopping matrix that is related to trr0
,↵�

.
With the extended Nambu spinor, the spin operator Sr

and the generatorGr for the SU(2) gauge transformation
are given by [45, 48–51]

Sr =
1

4
 †

r(� ⌦ I2⇥2) r, Gr =
1

4
 †

r(I2⇥2 ⌦ �) r,(7)

where I2⇥2 is a 2⇥2 identity matrix. Under the symmetry
operation O,  r transforms as

 r ! UOGO
O(r) O(r) = GO

O(r)UO O(r), (8)

where GO
O(r) is the local gauge transformation that cor-

responds to the symmetry operation O, and we add a
spin rotation UO because the spin components are trans-
formed when O involves a rotation. In Eq. (8), the
gauge transformation and the spin rotation are commu-
tative [52] simply because [Sµ

r , G
⌫

r] = 0. Moreover, from
Eq. (7), the gauge transformation GO

r is block diagonal
with GO

r = I2⇥2 ⌦WO
r , where WO

r is a 2⇥ 2 matrix [46].
Projective symmetry group classification.—For the

spinon mean-field Hamiltonian in Eq. (5), the lattice
symmetries are realized projectively and form the projec-
tive symmetry group (PSG). To respect the lattice sym-
metry transformation O, the mean-field ansatz should
satisfy

urr0 = GO†
O(r)U†

OuO(r)O(r0)UOGO
O(r0). (9)

The ansatz itself is invariant under the so-called invariant
gauge group (IGG) with urr0 = G1†

r urr0G1
r0 . The IGG

can be regarded as a set of gauge transformations that
correspond to the identity transformation. For an U(1)
QSL, IGG = U(1).

A general group relation O1O2O3O4 = 1 for the lattice
symmetry turns into the following group relation for the
PSG

UO1
GO1
r UO2

GO2

O2O3O4(r)
UO3

GO3

O3O4(r)
UO4

GO4

O4(r)

= UO1
UO2

UO3
UO4

GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
(10)

2 IGG, (11)

where we used the fact that the gauge transforma-
tion commutes with the spin rotation. As the se-
ries of rotations O1O2O3O4 either rotate the spinons
by 0 or 2⇡, UO1

UO2
UO3

UO4
= ±I4⇥4, where I4⇥4 is

a 4 ⇥ 4 identity matrix. Since {±I4⇥4} ⇢ IGG, then
GO1
r GO2

O2O3O4(r)
GO3

O3O4(r)
GO4

O4(r)
2 IGG. This immediately

indicates that, to classify the PSGs for a spin-orbit-
coupled Mott insulator, we only need to focus on the
gauge part, first find the gauge transformation with the
same procedures as those for the conventional Mott in-
sulators with spin-only moments [45], and then account
for the spin rotation.

For the mean-field ansatz in HMF, we choose
the “canonical gauge” for the IGG with IGG =
{I2⇥2 ⌦ ei��

z |� 2 [0, 2⇡)}. Under the canonical gauge,
the gauge transformation associated with the symmetry
operation O takes the form of

GO
r = I2⇥2 ⌦WO

r ⌘ I2⇥2 ⌦
⇥
(i�x)nOei�O[r]�z⇤

, (12)

LETTER RESEARCH

METHODS
Sample growth and characterizations. High-quality YbMgGaO4 single crystals 
were synthesized using the optical floating zone technique19. A representative  
single crystal, which is optically transparent with mirror-like cleaved surfaces, is 
shown in Extended Data Fig. 1a. Our X-ray diffraction (XRD) measurements 
revealed that all of the reflections from the cleaved surface could be indexed by 
(0, 0, L) peaks of triangular YbMgGaO4; no impurity phases were observed 
(Extended Data Fig. 1b). The full-width at half-maximum (FWHM) of the rocking 
curve of the (0, 0, 18) peak was about 0.009°, indicating an extremely high crystal-
lization quality (Extended Data Fig. 1c). This was confirmed by the sharp and clear 
diffraction spots in the X-ray Laue pattern (Extended Data Fig. 1d). Powder XRD 
patterns on ground single crystals also revealed no indication of impurity phases 
(Extended Data Fig. 1e). The Rietveld refinements31 confirm that the XRD pattern 
can be described by the R m3  space group. The refined structural parameters are 
given in Extended Data Table 1. These results suggested that the YbMgGaO4 single 
crystal possessed a perfect triangular lattice with no detectable impurities. This is 
consistent with previous measurements that have demonstrated that the impurity/
isolated spins are less than 0.04% in similar samples18,19. Although the Mg/Ga site 
disorder in the non-magnetic layers does not directly affect the exchange interac-
tion between the Yb local moments, it may have an indirect effect and could lead 
to some exchange disorder. It seems that this disorder is not significant, because 
no signs of spin freezing were observed. A QSL is often stable against weak local 
perturbations, provided that the perturbation is irrelevant or not significant. 
Therefore, if a QSL is realized as the ground state for YbMgGaO4, then the possible 
exchange disorder will not destabilize this state if the disorder strength is not  
significant.

In addition, the field dependence of magnetization in our single  crystal 
 displayed a linear behaviour above 12 T (Extended Data Fig. 1f),  indicative 
of a fully  polarized state. The Van Vleck susceptibility extracted from the 
 linear-field-dependent magnetization data was subtracted in the inset of Fig. 1c.
Neutron scattering experiments. INS measurements were carried out on the 
ThALES cold triple-axis spectrometer at the Institut Laue-Langevin, Grenoble, 
France, and at the FLEXX cold triple-axis spectrometer in the BER-II reactor at 
Helmholtz-Zentrum Berlin, Germany32. For the ThALES experiment, silicon (111) 
was used as a monochromator and analyser; the final neutron energies were fixed at 
Ef =  3 meV (energy resolution of about 0.05 meV), Ef =  3.5 meV (energy resolution 
of about 0.08 meV) or Ef =  4 meV (energy resolution of about 0.1 meV). For the 
FLEXX experiment, pyrolythic graphite (002) was used as a monochromator and 
analyser. Contamination from higher-order neutrons was eliminated through a 
velocity selector installed in the front of the monochromator. The final neutron 
energy was fixed at Ef =  3.5 meV (energy resolution of about 0.09 meV). Three (six) 
pieces of single crystals with total a mass of about 5 g (19 g) were coaligned in the 
(HK0) scattering plane for the ThALES (FLEXX) experiment. The FWHM of the 
rocking curve of the coaligned crystals for the ThALES and FLEXX experiments 
were approximately 0.95° and 0.92°, respectively. The elastic neutron scattering 
experiment was carried out at the WAND neutron diffractometer at the High 
Flux Isotope Reactor, Oak Ridge National Laboratory, USA; one single crystal was 
used for the experiment, with the incident wavelength λ =  1.488 Å (Extended Data  
Fig. 2). For the low-temperature experiments, a dilution insert for the standard 4He 
cryostat was used to reach temperatures down to around 30–70 mK.

Because of the non-uniform shape of the single crystal, the relatively large 
sample volume and the extremely broad spin-excitation spectrum, the neutron 
beam self-attenuation (by the sample) may require consideration. In most cases 
the self-attenuation is dependent on only the distance traversed by the  neutrons 
through the sample. We observed the self-attenuation effect in an elastic  incoherent 
scattering image of our sample at 20 K, which exhibited an anisotropic intensity 
distribution (Extended Data Fig. 3a). The self-attenuation effect was also observed 
in the raw constant-energy images (Extended Data Fig. 3b–f), which were shown 
to be anisotropic, with slightly higher intensities occurring at approximately 
the same direction as that observed in the elastic incoherent scattering images. 
The self- attenuation can be corrected by normalizing the data with the elastic 
 incoherent scattering image; that is, the elastic incoherent scattering intensity, 
which is dependent on the sample position (ω) and scattering angle (2θ), is  
converted to a linear attenuation correction factor for the scattering images 
 measured at different energies. The normalized constant-energy images are 
 presented in Fig. 2a–e, revealing a nearly isotropic intensity distribution.

Extended Data Fig. 4 shows the spin excitation spectrum at 20 K, which is 
 broadened and weakened compared with that at 70 mK (discussed below).
Spinon Fermi surface and dynamic spin structure factor. Here we explain the 
spinon mean-field state that is used to explain the dynamic spin structure factor 
of the neutron scattering experiments. As we proposed in the main text, a QSL 
with a spinon Fermi surface gives a compatible explanation for the INS results 
for YbMgGaO4.

To describe the candidate spinon-Fermi-surface QSL state in YbMgGaO4, we 
formally express the Yb3+ effective spin as the bilinear combination of the 
 fermionic spinon with spin †σ=∑αβ α αβ βS f fi i i

1
2

 and a Hilbert space constraint  
†∑ =α α αf f 1i i , where σαβ is a vector whose three components are the Pauli matrices 

and †
αfi  ( fiα) creates (annihilates) a spinon with spin α =  ↑ , ↓  at site i. For the QSL 

with a spinon Fermi surface, we propose a minimal mean-field Hamiltonian HMFT 
for the spinons on the  triangular lattice. We consider a uniform spinon hopping 
with a zero background flux:

† †∑ ∑µ=− + . . −α α α α
〈 〉

H t f f f f( h c ) (1)
ij

i j
i

i iMFT

where t is the mean-field parameter, which represents the hopping amplitude 
between nearest-neighbour sites. The chemical potential µ is included to impose 
the Hilbert space constraint on average. Here, we have treated the spinons freely 
by neglecting the gauge fluctuations. This mean-field state gives a single spinon 
dispersion

∑ω µ=− ⋅ −k at cos( )k
a

i
{ }i

where {ai} are six nearest-neighbour vectors of the triangular lattice. Owing to the 
Hilbert space constraint, the spinon band is half-filled, leading to a large Fermi 
surface in the Brioullin zone (Extended Data Fig. 5a).

INS measures the dynamic spin structure factor

∫∑
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2

i j

where N is total number of lattice sites, the summation goes over all eigenstates, 
| Ω〉  refers to the spinon ground state with the spinons filling the Fermi sea, E0 is 
the energy of the ground state and En(p) is the energy of the nth excited state with 
momentum p. In the actual calculation, owing to the energy resolution of the 
experiments, the δ function is taken to have a broadening: 

δ η
η

− =
/π

− +
ε

ε
E

E
( )

( )2 2

where η is the broadening and ε is the measured energy. Because †=∑+
+ ↑ ↓S f fp k k p k , 

the summation in equation (2) would be over all possible spin-1 excited states that 
are characterized by one spinon particle–hole pair crossing the spinon Fermi 
 surface (Fig. 2g) with a total momentum p and a total energy E. As we show in  
Fig. 2f and Extended Data Fig. 5b, and discuss in the main text, this spinon- Fermi-
surface QSL state gives the three crucial features of the INS results: (1) the broad 
continuum that covers the large portion of the Brioullin zone; (2) the broad 
 continuum persisting from the lowest energy transfer to the highest energy 
 transfer; and (3) the clear upper excitation edge near the Γ  point.

In our calculation of Fig. 2f and Extended Data Fig. 5b, we choose the lattice 
size to be 40 ×  40 and η =  1.2t, in accordance with the energy and momentum 
resolution of the instruments. The energy scale of Fig. 2f is set to be 7.5t.

Here we explain the details of the dynamic spin structure factor in Fig. 2f and 
Extended Data Fig. 5b, based on the particle–hole excitation of the spinon Fermi 
surface. For an infinitesimal energy transfer, the neutrons simply probe the spinon 
Fermi surface. Because the spinon particle and hole can be excited anywhere near 
the Fermi surface, the neutron spectral intensity appears from p =  0 to p =  2kF, 
where kF is the Fermi wavevector. Because | 2kF|  already exceeds the first Brillouin 
zone, the neutron spectral intensity then covers the whole Brillouin zone  including 
the Γ  point. For a small but finite E, as we explain in the main text, a minimal 
momentum transfer pmin ≈  E/vF is required to excite the spinon particle–hole 
pairs. Therefore, the spectral intensity gradually moves away from the Γ  point as 
E increases. Because it is always possible to excite the spinon particle–hole pair with 
the momenta near the zone boundary, the spectral intensity is not greatly affected 
at the zone boundary as E increases. Thus, the broad continuum continues to cover 
a large portion of the Brillouin zone at a finite E.

With the free spinon mean-field model HMFT, we further calculate the spectral 
weight along the energy direction for fixed momenta. The discrepancy between the 
theoretical results in Extended Data Fig. 5d and the experimental results in Extended 
Data Fig. 5e occurs at low energies. We attribute this low-energy  discrepancy to 
the fact that the free spinon theory ignores the gauge fluctuations. The enhance-
ment of the low-energy spectral weight compared to the free spinon results is 
then identified as possible evidence of strong gauge fluctuations in the system;  
we elaborate on this in the following discussion of the heat capacity  behaviour.
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FIG. 3. (a) S(q,!) along the high-symmetry momentum
lines from HU1A00

MF with t2 = 0.2t1. The spinon bandwidth
B = 9.6t1. (b) The RPA corrected SRPA(q,!) along the
high symmetry momentum lines. We have set the parame-
ters in the spin model to be J±/Jzz = 0.915, J±±/Jzz = 0.35,
and Jz±/Jzz = 0.2. The ratio Jzz/t1 is obtained from
Refs. [33, 36] and fixed to be 1.0 for concreteness.

⇥Sz

r0 + Sz

r(�
⇤
rr0S

+
r0 � �rr0S

�
r0)] is the microscopic spin

model that was introduced in Refs. 33 and 35, and �rr0

is a bond-dependent phase factor due to the spin-orbit-
entangled nature of the Yb moments [35, 46]. For the
specific choice of exchange couplings with J± = 0.915J

zz

in the following, we find the minimum variational energy
Evar = �0.39J

zz

and occurs at t2 = 0.2t1 [46]. Here, the
expectation values of the J±± and J

z± interactions sim-
ply vanish, and this is an artifact of the free spinon mean-
field theory with the isotropic hoppings in Eq. (14). We
here establish that the U1A00 state is a spinon Fermi
surface U(1) QSL.

Spectroscopic properties.—For the U1A00 state, the
dynamic spin structure essentially detects the spinon
particle-hole excitation across the Fermi surface. The
information about the Fermi surface is encoded in the
profile of the dynamic spin structure factor. We evaluate
the dynamic spin structure factor within the free spinon
mean-field theory [46] (see Fig. 3a). Qualitatively similar
to the mean-field theory with only first neighbor spinon
hoppings, the improved free-spinon mean-field theory of
HU1A00

MF captures the crucial features of the inelastic neu-
tron scattering results [36, 37]. The spinon particle-hole
continuum covers a large portion of the Brillouin zone,
and vanishes beyond the spinon bandwidth. More im-
portantly, the “V-shape” upper excitation edge near the
� point in Fig. 3a was clearly observed in the experi-
ments [36, 37], and the slope of the “V-shape” is the
Fermi velocity.

Due to the isotropic spinon hoppings, HU1A00
MF does not

explicitly reflect the absence of spin-rotational symmetry
that is brought by the J±± and J

z± interactions. To
incorporate the J±± and J

z± interactions, we here follow
the phenomenological treatment for the “t-J” model in
the context of cuprate superconductors [58] and consider
H = HU1A00

MF +H 0
spin, where H 0

spin are the J±± and J
z±

interactions. In the parton construction, H 0
spin is treated

as the spinon interactions and thus introduces the spin
rotational symmetry breaking. With a random phase

approximation (RPA) for the interactionH 0
spin, we obtain

the dynamic spin susceptibility [58]

�RPA(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (16)

where �0 is the free-spinon susceptibility, and J (q) is
the exchange matrix from H 0

spin [46]. The renormalized

SRPA(q,!) can be read o↵ from �RPA via SRPA(q,!) =

� 1
⇡

Im
⇥
�RPA(q,!)

⇤+�
and is plotted in Fig. 3b.

The very precise values of J±± and J
z± cannot be de-

termined from the existing data-rich neutron scattering
experiment in a strong field normal to the triangular
plane. This is partly due to the experimental resolu-
tion and others [46], and is also due to the fact that
the linear spin wave spectrum for the field normal to
the plane is independent of J

z± and is not quite sen-
sitive to J±± [35, 39]. In Fig. 3b, instead, we choose
(J±±, Jz±) to fall into the disordered region of the phase
diagram in Ref. [35] where the quantum fluctuations are
expected to be strong [35, 46]. While the free spinon
theory already captures the main features of the neutron
scattering data [36, 37], the anisotropic spin interaction
H 0

spin, included by RPA, merely redistributes the spectral
weight in the momentum space. We find in Fig. 3b that,
the low-energy spectral weight at M is slightly enhanced,
a feature observed in Refs. 36 and 37. From our choice
of the parameters, it is plausible that this peak results
from the proximity to a phase with a stripe-like magnetic
order [35, 36, 39, 46].
Discussion.—We have demonstrated that the spinon

Fermi surface U(1) QSL gives a consistent explanation
of the inelastic neutron scattering result in YbMgGaO4.
Moreover, the anisotropic spin interaction, slightly en-
hances the spectral weight at the M points. The
U(1) gauge fluctuation in the spinon Fermi surface U(1)
QSL [42, 43] was suggested to be the cause for the sub-
linear temperature dependence of the heat capacity in
YbMgGaO4 [35, 36, 39, 44].
In YbMgGaO4, the exchange coupling between the Yb

moments is relatively weak [33]. It is feasible to fully po-
larize the spin with experimentally accessible magnetic
fields [35, 37, 39]. The polarized state is a simple prod-
uct state with short-range quantum entanglement. Since
the ground state of YbMgGaO4 is expected to be ex-
otic [36, 39], there is a quantum phase transition from an
exotic state with long-range quantum entanglement to a
simple product state with short-range quantum entan-
glement as one increases the magnetic field. This field-
driven transition is necessarily a unconventional tran-
sition beyond the traditional Landau’s paradigm and
has not been studied in the previous spin liquid candi-
dates [59–62]. The smooth growth of the magnetization
with varying external fields indicates a continuous tran-
sition [33]. Since we propose YbMgGaO4 to be a spinon
Fermi surface U(1) QSL and gapless, the transition would
be associated with the openning of the spin gap at the
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FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.

The representation is chosen to be �(1,2,3,4,5) = (�x ⌦
1,�z ⌦ 1,�y ⌦ ⌧x,�y ⌦ ⌧y,�y ⌦ ⌧z). �a and �ab is odd
under time reversal except when a = 4 or b = 4. The
Hamiltonian is thus

h(k) =
5X

a=1

d
a

(k)�a +
5X

a<b=1

d
ab

(k)�ab (71)

For the U1B00 state,

d3(k) = t01 sin(kx/2�
p
3k

y

/2),

d4(k) = t01 cos(kx/2 +
p
3k

y

/2),

d5(k) = �2t01 sin(kx),

d13(k) = �2t1 sin(kx/2�
p
3k

y

/2),
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p
3k

y

/2),
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p
3t01 sin(kx/2�

p
3k

y

/2),

d24(k) =
p
3t01 cos(kx/2 +

p
3k

y

/2),

d34(k) = 2t2 cos(
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B. The U1B01 state
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C. The U1B10 state
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FIG. 1. (a-e) Dynamic spin structure factor for the free spinon theory of the U1A00 state with di↵erent values of t2/t1. (f-h)
The evolution of SRPA(q,!) as a function of J±±. In all subfigures, the energy transfer is normalized against the corresponding
bandwidth B. The parameter ↵ is defined as J
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where we have omitted J±± and J
z± because they do not

conserve spin, therefore their contribution to Evar is zero.
This is an artifact of the free spinon theory of HU1A00

MF
that only includes isotropic spinon hoppings for the first
two neighbors.

As we describe in the main text, we treat the J±± and
J
z± interaction as the spinon interaction. We include

the spinon interaction and compute the dynamic spin
susceptibility by a standard random phase approximation
(RPA). The RPA susceptibility is given by

�(q,!) =
⇥
1� �0(q,!)J (q)

⇤�1
�0(q,!), (69)

where J (q) is the spin exchange matrix from H 0
spin

J (q) =

0

BB@

0 �2
p
3wqJ±± �

p
3wqJz±

�2
p
3wqJ±± 0 (uq � vq) Jz±

�
p
3wqJz± (uq � vq) Jz± 0

1

CCA (70)

with uq = cos(q · a1), vq = 1
2 (cos(q · a2) + cos(q · a3)),

and wq = 1
2 (cos(q · a2)� cos(q · a3)).

V. THE U1B STATES

In this section we use PSG to determine the free spinon
mean-field Hamiltonian for the U1B states to the first and
second spinon hoppings. In Fig. 2, we further present
their spectroscopic features for comparison. Like the
notation for U1As, the U1B states are also labeled by
U1Bn

C2nC6 .

A. The U1B00 state

For ⇡-flux states, the dynamic spin structure factor has
a enhanced periodicity due to anticommutative lattice
translations. A direct consequence of the periodicity is
that � and M become equivalent, and the V-shaped upper
excitation edge in Ref. 2 cannot be reproduced for the
U1B states.
We choose the spinon basis in the momentum space

fk,I = (f
A,k,", fB,k,", fA,k,#, fB,k,#)

T , where A and B
denote the two inequivalent sites in each unit cell due
to ⇡-flux.
The Hamiltonian is written in terms of the Dirac ma-

trices �a and their anticommutators �ab = [�a,�b]/(2i).

7

FIG. 2. Dynamic spin structure factor for six free spinon mean-field states other than U1A00. Note the U1A10 Hamiltonian is
identically zero for the first and second neighbor hoppings. None of them is consistent with the spinon Fermi surface picture.
In all subfigures, the energy transfer is normalized against the corresponding bandwidth B.

The representation is chosen to be �(1,2,3,4,5) = (�x ⌦
1,�z ⌦ 1,�y ⌦ ⌧x,�y ⌦ ⌧y,�y ⌦ ⌧z). �a and �ab is odd
under time reversal except when a = 4 or b = 4. The
Hamiltonian is thus

h(k) =
5X

a=1

d
a

(k)�a +
5X

a<b=1

d
ab

(k)�ab (71)
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Two major questions

1. Whether the continuum represents the fractionalized  
    spinon excitation? Probably most important !  
   
            discussed in our new work  
Yao-Dong Li, Gang Chen, arXiv:1703.01876

2.   What is the physical origin of the QSL physics ?
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Our Roadmap

1. Detect fractionalized excitations, i.e. spinons  
    a) detect the fractionalization.  
    b) detect the emergent fermion statistics.   

2. Detect the emergent U(1) gauge field ? 

3.   Detect the spinon-gauge coupling (i.e. Lorentz coupling) ?
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Our new idea: explore the weak field regime

Detecting Spin Fractionalization in a Spinon Fermi Surface Spin Liquid:
Prediction and Application for YbMgGaO4

Yao-Dong Li1 and Gang Chen1,2⇤
1
State Key Laboratory of Surface Physics, Department of Physics,

Center for Field Theory & Particle Physics, Fudan University, Shanghai, 200433, P.R.China and

2
Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, P.R.China

(Dated: March 7, 2017)

Continuing the recent proposal of the spinon Fermi surface U(1) spin liquid state for YbMgGaO4 in
Yao-Dong Li, et al, arXiv:1612.03447 and Yao Shen, et al, Nature 2016, we explore the experimental
consequences of the external magnetic fields on this exotic state. Specifically, we focus on the
weak field regime where the spin liquid state is preserved and the fractionalized spinon excitations
remain to be a good description of the magnetic excitations. From the spin-1/2 nature of the
spinon excitation, we predict the unique features of spinon continuum when the magnetic field is
applied to the system. Due to the small energy scale of the rare-earth magnets, our proposal for
the spectral weight shifts in the magnetic fields can be immediately tested by inelastic neutron
scattering experiments. Several other experimental aspects about the spinon Fermi surface and
spinon excitations are discussed and proposed. Our work provides a new way to examine the
fractionalized spinon excitation and the candidate spin liquid states in the rare-earth magnets like
YbMgGaO4.

I. INTRODUCTION

A quantum spin liquid (QSL) is an exotic quantum
phase of matter that carries long-range quantum en-
tanglements and is often characterized by the emergent
gauge structure and the fractionalized spin excitation1–3.
The experimental search of QSLs has lasted for forty
years since the original proposal by Anderson in 19734,5.
Many QSL candidate materials have been proposed, but
the confirmation of QSLs has not been achieved in any
of these materials. Recently, a rare-earth triangular lat-
tice antiferromagnet YbMgGaO4, that was first discov-
ered in the powder form6, is proposed as the first QSL
candidate in the strong spin-orbit-coupled Mott insulator
with odd electron fillings7–11. This proposal is compat-
ible with the more fundamental view based on the time
reversal symmetry and quantum entanglements7–9,11,12.
Due to the unprecedented experimental advantage such
as the availability of large high-quality single-crystal sam-
ples7, YbMgGaO4 may stand out as another important
QSL candidate for which a variety of experimental tech-
niques can be implemented and the theoretical proposal
and ideas may be directly tested.

The Yb local moments in YbMgGaO4 remain disor-
dered down to the lowest measured temperature at which
the magnetic entropy is almost exhausted6,9,13,14. The
low-temperature heat capacity has a sub-linear temper-
ature dependence6,14,15 that is close to the C

v

/ T 2/3

behavior for the spinon Fermi surface U(1) QSL16–18.
More substantially, the dynamic spin structure, that is
measured by the inelastic neutron scattering on single-
crystal samples9,14, shows a reasonable agreement with
the theoretical prediction for the spinon Fermi surface
state9,11,16–18.

There are two major questions concerning the candi-
date QSL state in YbMgGaO4. The first and probably
the most crucial one is whether the excitation continuum

from the inelastic neutron scattering is truly a spinon
continuum and represents the spin quantum number frac-
tionalization. The second question is the microscopic
mechanism for the QSL behavior of YbMgGaO4. It was
suggested that the anisotropic interaction of the local
moments, due to the spin-orbit entanglement, could en-
hance the quantum fluctuation and destabilize the mag-
netically ordered phases7,8,10. This observation was first
proposed as one possible mechanism for the QSL behav-
ior in YbMgGaO4

7,8, and explained in details in Refs. 8
and 10. Both questions have been partially addressed
by the mean-field theory analysis9 and the later pro-
jective symmetry analysis 9,11 that identify the spinon
Fermi surface U(1) QSL as the candidate ground state
for YbMgGaO4. Clearly, this exotic state provides a con-
sistent explanation for both thermodynamic and spectro-
scopic behaviors of YbMgGaO4

9.

Ideally, it would be nice to directly solve our micro-
scopic spin model and see if one can obtain any QSL
ground state in the phase diagram, then both questions
may be completely resolved. Due to the complication of
the model, this is di�cult even numerically8,11. In this
work, instead of directly tackling the anisotropic spin
model8,10,19, we work on the spinon mean-field Hamil-
tonian9,11 and address the first question about how to
detect or confirm the very existence of the fractionalized
spinon excitations in YbMgGaO4. We propose a sim-
ple experimental scheme to test the spin quantum num-
ber fractionalization and confirm the spinon excitation.
We suggest to apply a weak external magnetic field and
study the spectral weight shifts of the dynamic spin struc-
ture factor. The splitting of the degenerate spinon bands
by the magnetic field is directly revealed by the spinon
particle-hole continuum that is detected by the dynamic
spin structure factor. We show that the persistance of
the spinon continuum, the spectral weight shifts and the
spectral crossing around the � point, the existence of the

Yao-Dong Li, GC, arXiv: 1703.01876
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2

upper and lower excitation edges under the weak mag-
netic field represent unique properties of the spinon ex-
citation for the spinon Fermi surface state, and thus pro-
vide a sharp experimental prediction for the identification
of the spinon excitation with respect to the spinon Fermi
surface.

The remaining part of the paper is organized as follows.
In Sec. II, we explain our view on the magnetic excitation
continuum and the weak spectral weight in the inelastic
neutron scattering results on YbMgGaO4 and motivate
our approach in this paper. In Sec. III, we justify the
mean-field Hamiltonian in the magnetic field. In Sec. IV,
we obtain the dynamic spin structure factor from the free
spinon theory in the magnetic field and explain the spec-
tral weight shifts. In Sec. V, we repeat the calculation in
Sec. IV with a RPA calculation that includes the spinon
interactions. Finally in Sec. VI, we conclude with a dis-
cussion about various future experimental direction for
the spinon Fermi surface state.

II. THE SPINON FERMI SURFACE STATE

We start with the fermionic parton construction for
the spin operator with S

i

= 1
2f

†
i↵

�
↵�

f
i�

, where f†
i↵

(f
i↵

)
creates (annihilates) one spinon with spin ↵(=", #) at the
site i and � = (�x,�y,�z) is a vector of Pauli matrices.
This construction is further supplemented by a Hilbert
space constraint

P
↵

f†
i↵

f
i↵

= 1. At the mean-field level,
the following spinon Hamiltonian,

HMF = �t1
X

hiji,↵

f†
i↵

f
j↵

� t2
X

hhijii,↵

f†
i↵

f
j↵

�µ
X

i,↵

f†
i↵

f
i↵

(1)

was proposed for YbMgGaO4 and gives a large spinon
Fermi surface9,11. Here the chemical potential µ is in-
troduced to impose the Hilbert space constraint. It was
found that the spinon particle-hole excitation of this sim-
ple state provides a consistent magnetic excitation con-
tinuum with the inelastic neutron scattering experiments.
Moreover, the anisotropic spin interaction, that is in-
cluded into the the spinon mean-field theory by a ran-
dom phase approximation (RPA), gives a weak spectral
peak at the M points, which is also consistent with the
experimental observation.

The spinon continuum is much more important than
the weak spectral peak. The spectral peak at certain
momenta merely represents some collective mode of the
spinons that is enhanced by the residual and short-range
interaction between the fermionic spinons, and is quite
common for example in the Fermi liquids of electrons as
an analogy. Nevertheless, the spectral peak does provide
hints about the form of the microscopic interactions. In
contrast, the spinon continuum is a consequence of the
spin quantum number fractionalization that reveals the
defining nature of QSLs.

FIG. 1. (Color online.) (a) The Yb triangular lattice with
a1,a2,a3 bonds. (b) The spinon band structure for� = 0.6B
and t2/t1 = 0.2 (this value is optimized for the variational en-
ergy; see main text). (c) A schematic illustration of the spinon
band structure and the particle-hole excitation for the zero
momentum transfer. (d) The Brillouin zone of the triangular
lattice, with high-symmetry points and the basis vectors (in
r.l.u. coordinates) highlighted.

Since we think the spinon continuum is more impor-
tant and the spinon continuum is already obtained by
the free-spinon theory of HMF, our approach will mostly
rely on the free-spinon mean-field theory and focus more
on the spinon continuum rather than the weak spectral
peak. The (short-range) anisotropic spin interaction will
be included into the free-spinon theory in the later parts
of the paper. The coupling to the gapless U(1) gauge
photon is not included throught this paper. This spin-
gauge coupling has an important e↵ect on the low-energy
properties of the system16,17.

III. COUPLING TO THE MAGNETIC FIELD

Unlike the electron, the fermionic spinon is a charge
neutral object and does not couple to the external mag-
netic field via the Lorentz coupling. Here, we point out
that the prior theory on the organic spin liquid ma-
terial20 -(ET)2Cu2(CN)3 has actually invoked the in-
teresting Lorentz coupling of the spinons to the exter-
nal magnetic field indirectly through the internal U(1)
gauge flux21. This is because the the organic material
-(ET)2Cu2(CN)3 is in the weak Mott regime where the
charge gap is small and the four-spin ring exchange in-
teraction can be significant18. It is the four-spin ring
exchange that connects and transfers the external mag-
netic flux to the internal emergent U(1) gauge flux21.
In contrast, the 4f electrons of the Yb ions are in the
strong Mott regime and is very localized. As we have ex-
plained, the e↵ective spin S

i

arises from the strong spin-
orbit coupling (SOC) and crystal electric field splitting,

Magnetic field splits the spin-up and down spinon bands

Strong Mott regime: only Zeeman coupling to field
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and the four-spin ring exchange is strongly suppressed
due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
field of the spinons in the organic spin liquid does not ap-
ply to YbMgGaO4. Although the strong magnetic field
fully polarizes the Yb local moments along the field di-
rection and thus destabilizes the spin liquid state, in the
weak field regime, the field does not change the spin liq-
uid ground state and the spinon remains to be a valid
description of the magnetic excitation. From the above
argument, if YbMgGaO4 ground state is a spinon Fermi
surface QSL, the appropriate spinon mean-field Hamilto-
nian for YbMgGaO4 in a weak external magnetic field
should be

HMFh = �t1
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f
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2
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f
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, (2)

where only Zeeman coupling is needed, and g
z

is the
Landé factors for the field normal to the triangular plane,
respectively. The mean-field Hamiltonian in Eq. (2) will
be the basis of the analysis below.

IV. SPECTRAL WEIGHT SHIFTS FROM THE
FREE-SPINON THEORY

For each magnetic field, the spinon hopping and the
chemical potential in Eq. (2) need to be re-determined
by optimizing the variational energy of the microscopic
spin Hamiltonian HSpin-h that is

HSpin-h =
X

hiji

⇥
J
zz

Sz

i

Sz

j

+ J±(S
+
i

S�
j

+ S�
i

S+
j

)

+J±±(�
ij

S+
i

S+
j

+ �⇤
ij

S�
i

S�
j

)

� iJ
z±
2

�
(�⇤

ij

S+
i

� �
ij

S�
i

)Sz

j

+ hi $ ji
�⇤

�
X

i

g
z

µBhz

Sz

i

. (3)

Here �
ij

’s are the bond-dependent phase variables that
arises from the spin-orbit coupling of the Yb 4f elec-
trons7,8,10,11, and �

ij

= 1, ei2⇡/3, e�i2⇡/3 for ij along the
a1, a2, a3 bond, respectively. Throughout the paper, we
set J± = 0.915J

zz

. The z-direction magnetic field shifts
the chemical potential for the spin-" and spin-# spinons
up and down such that the spinon excitations are given
by

⇠"(k) = ✏(k)� µ" ⌘ ✏(k)� (µ +
g
z

µBhz

2
), (4)

⇠#(k) = ✏(k)� µ# ⌘ ✏(k)� (µ � g
z

µBhz

2
), (5)

where ✏(k) is the dispersion that is obtained from the
first line of Eq. (2). In Fig. 1, we plot the mean-field

FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-

3
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due to the very large on-site interaction of the 4f elec-
trons. Therefore, the orbital coupling to the magnetic
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rection and thus destabilizes the spin liquid state, in the
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be the basis of the analysis below.
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FIG. 2. (a-g) Dynamic spin structure factors for free spinon
theory with z-direction magnetic field up to 0.6B, where
B = 9.6t1 is the bandwidth for the free spinon theory without
the field in Eq. (1). The values of t2/t1 are optimized from
the variational energy. (h) Illustration of the particle-hole ex-
citations with small momenta. Such excitations for each q are
degenerate at zero field, and the 2-fold degeneracy is lifted as
soon as the field is turned on.

dispersions of the spinons in the magnetic field, where
the spin up and spin down spinons have di↵erent Fermi
surfaces. Therefore, in the weak field regime, the system
remains gapless.
In the inelastic neutron scattering measurement, the

neutron spin flip excites the spinon particle-hole pairs
across the spinon Fermi surface. In the free-spinon the-
ory, the energy and momentum change of the neutron, !
and p, is shared by the one spinon particle-hole pair, and
we have

p = k1 � k2, (6)

!(p) = ⇠#(k1)� ⇠"(k2). (7)

In the mean-field theory, the field essentially breaks the
degenerate spinon bands by separating the dispersions of
spin-" and spin-# spinon bands in energy with a Zeeman
splitting. Thus, there exists a large density of particle-

Prediction for dynamic spin structure factor

We predict:  
1. The system remains gapless and spinon continuum persists  
2. spectral weight shifts  
3. the spectral crossing at Gamma point  
4. the presence of lower and upper excitation edges

Very different from magnon in the field !! 
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Summary
1. We propose the weak field regime to detect the behavior of 
fractionalization.   

2. Such a regime is quite feasible in current laboratory settings. 

3. Predictions have been made. It can be immediately tested by 
inelastic neutron.

4. It is a small effect, but if it is observed, it gives a very strong support of 
the QSL ground state in this system. The idea can be well extended to 
other strong-Mott-insulating QSL systems.

Yao-Dong Li, GC, arXiv: 1703.01876
Yao-Dong Li, YM Lu, GC, arXiv 1612.03447

Lots of isostructure rare-earth materials, lots of opportunity !

Yao-Dong Li, XQ Wang, GC, PRB 2016
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